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Abstract

This paper considers moment-based tests applied to estimated quantities. We propose a gen-
eral class of transforms of moments to handle the parameter uncertainty problem. The construction
requires only a linear correction that can be implemented in-sample and remains valid for some
extended families of non-smooth moments. We reemphasize the attractiveness of working with ro-
bust moments, which lead to testing procedures that do not depend on the estimator. Furthermore,
no correction is needed when considering the implied test statistic in the out-of-sample case. We
apply our methodology to various examples with an emphasis on the backtesting of value-at-risk

forecasts.
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1 Introduction

Moment-based tests for assessing distributions or particular distribution features (tail properties,
kurtosis) are particularly attractive because of their implementation simplicity. These tests are
universal because they can consider univariate or multivariate parametric distributions, discrete or
continuous distributions, and independent or serially correlated data in the same setting. Moment-
based tests have therefore been extensively used in recent papers related to financial econometrics
(Amengual and Sentana, 2011; Amengual et al., 2013; Bai and Ng, 2005; Bontemps and Meddahi,
2005, 2012; Candelon et al., 2011; Dufour et al., 2003; Fiorentini et al., 2004; Mencia and Sen-

tana, 2012), forecasting (Diebold and Mariano, 1995, West, 1996, West and Mc Cracken, 1998,
McCracken, 2000), and microeconometrics (Butler and Chatterjee, 1997, Tauchen, 1985, Mora and
Moro-Egido, 2008). Additionally, structural econometric models provide moment-based equations
from testable overidentifying restrictions. For example, structural search models (see Jolivet et al.,
2006) provide testable implications for job durations and job offer arrival rates and their relations
to the wage distribution.

Very often, these moment equations involve quantities or parameters that must be estimated,
generally with the same data set. This is the parameter uncertainty problem that generally modifies
the asymptotic distribution of the implied test statistic. Ignoring this issue would lead to an invalid
procedure. This is a known problem that has been resolved in different ways. For example, Lil-
liefors (1980) retabulates the critical values of the Kolmogorov-Smirnov statistic using simulation
methods. When introducing their portmanteau test for the white noise process in ARMA models,
Box and Pierce (1970) use an approximation of the true distribution, integrating the fact that the
parameters of the ARMA process are estimated. Using a moment-based test approach, Tauchen
(1985) and Newey (1985) evaluate and correct for the impact of estimation noise. The correction

method is explained in Subsection 2.2.2. However, a tractable expression is required for the esti-



mated parameters. This is a regularity condition that may not be satisfied in some contexts, such
as for two-step estimators or semiparametric estimations.

In this paper, we use an alternate approach to address this problem by transforming the moment
of interest into one that is orthogonal to the underlying score function. We call such a moment a
robust moment. As further explained below, this transform is a linear correction of the moment of
interest for which the weights can be estimated (or calculated) easily. Orthogonality to the score
function ensures that local variations of the estimate around the true value (these variations belong
to the space spanned by the score) do not affect, at the first order, the information measured by
the moment. Our framework can handle both smooth and non-smooth moments. The literature
shows that what matters is not the smoothness of the moment but the smoothness of its expectation
around the true value (see Tauchen, 1985 or Andrews, 1994). Our orthogonalization strategy
systematically exploits the generalized information matrix equality that remains valid for a large
class of non-smooth moments, an attractive feature when testing discrete distributions.

Several methods can be used to orthogonalize a given function with respect to the score func-
tion. In recent contributions, Bontemps and Meddahi (2012) use the orthogonal projection method,
and Wooldridge (1990) modifies the instruments in a conditional distribution setting. Here, we
consider a general class of oblique projections. Interestingly, we obtain an analytical expression
explicitly involving not the score function but the derivatives of some functionals of interest, which
is of particular interest when the score function is difficult to characterize in a closed form. Addi-
tionally, it enables us to consider moments in semiparametric models in which one does not have
to specify the full structure of the data. We consider such an example in Section 3.

Working with robust moments is of particular interest and is useful for testing purposes. First,
we do not have to explicitly characterize the first-order expansion of the estimate because the
implied test statistic does not change whether the researcher plugs in the true value of the parameter
or a consistent' estimate. Second, we can allow for a slower convergence speed than the usual
standard square root convergence rate, which is particularly interesting if part of the parameter

is estimated at the nonparametric rate. Additionally, a robust moment is robust whether the data

ISee Proposition 3 for the required convergence speed.



are serially correlated or not; therefore, handling dependence is not complicated. The alternative
to correcting the statistic, when feasible, requires many calculations to compute the asymptotic
distribution of the test statistic, which we avoid here.

Finally, we also prove that working with robust moments is particularly appealing for out-
of-sample evaluation. The forecasting literature (see, in particular, West and McCracken, 1998)
shows that out-of-sample correction depends on the estimation scheme. With a robust moment, no
correction is required, and one can use this robust moment indiscriminately for both in-sample and
out-of-sample cases. In Section 3, we consider an out-of-sample case, including, in a Monte Carlo
subsection, an evaluation of the small sample properties of our approach and a comparison with
existing correction methods.

We also study the power implications of our orthogonalization strategy. First, there is no triv-
ial loss of power when working with robust moments, in comparison to the correction strategy.
Second, there is no optimal transform in our projection class with no precise knowledge of the al-
ternative because a particular choice can always be dominated by (or dominate) another choice for
another local alternative. The tractability of the test procedure is ultimately the major guideline.

We organize the rest of this paper as follows. Section 2 develops the general framework and
characterizes the class of our orthogonalization methods. We then expose their theoretical prop-
erties and conduct a local power study. Section 3 characterizes the advantages of using robust
moments in out-of-sample contexts and presents some examples. Section 4 describes in detail the
backtesting of value-at-risk (VaR) models. In particular, we derive easy-to-compute procedures to
test the accuracy of VaR forecasts from a GARCH model. These tests are valid regardless of the
true conditional mean and variance used to generate the GARCH. We focus, in particular, on two
popular models, the normal GARCH model and the T-GARCH model. Monte Carlo simulations
of the proposed tests suggest that the tests perform well in the setups traditionally considered in the
literature. Finally, Section 5 considers an empirical application to test the VaR forecasts derived
from a T-GARCH(1,1) model for daily exchange rate data. Section 6 concludes the paper. The
Supplemental Material contains appendices that provide the proofs (Appendix B) and additional

analysis.



2 General results

2.1 Set-up and notations

We consider a sample of 7" independent or serially correlated observations (yi, ..., yr), drawn
from a univariate random variable Y for which stationarity is assumed. Our goal is to test moment
restrictions on these data.

Generally these moment restrictions are derived from an assumption on the distribution of Y.
For example, assume that the probability density function of Y belongs to a parametric family
of discrete or continuous distributions Py indexed by § € © C R".2 This assumption implies
restrictions that are testable in the data. For example, a Poisson assumption implies that mean and
variance of Y are equal. If we assume a Bernoulli distribution with parameter o« known, it implies
that the mean of Y is equal to a. Note that the resulting test is generally not an omnibus test for the
distributional assumption since we select a finite number of moments. Most of the leading tests in
the literature are not omnibus either. For example, when testing normality, tests based on skewness
and kurtosis measures cannot detect deviation from moments greater than five. However, these
tests are frequently used because they are intuitive, easy to implement, and sufficiently powerful
for the standard alternatives of interest. Furthermore, one of the advantages of moment-based tests
is that we can always adapt the moment to the alternative of interest.?

Additionally, our setup includes the case where we test particular features of the data without
relying on full distributional assumptions. For example, in forecasting, one is interested in testing
whether the one-step-ahead forecast error is orthogonal to the previous period’s forecast error, and
the marginal distribution is generally left unspecified.

In this paper, 6 denotes the vector of parameters that are estimated and is generally estimated

2We can adapt our framework to the conditioning case in which X gathers explanatory variables
that may or may not contain past values of Y in the time series case. In this case, Py would become
Py », and we would be able to test unconditional moments implied by the conditional distribution

of V| X =u.
SBontemps et al. (2017) study point optimal moment-based procedures.



in-sample from vy, . . ., yr.* The true value of parameter @ is denoted by §°, and IE and V denote,
respectively, the expectation and variance under the true data generating process (DGP). The sym-
bol T denotes the transpose operator, and for two vector-valued functions h4(y, 6) and hs(y, 0),
we denote by Eq [h1h] | the matrix Eq [h(y, 6°)h] (y,6°)].

The moment restrictions that we consider are denoted by m(-), a particular k-dimensional

vector® chosen by the researcher. Under the null hypothesis,

Eo [m(yt,é’o)} =0.

Our procedure consists of testing whether the empirical average of these moments is close to

zero when 6 is also estimated.

2.1.1 One leading example

Financial institutions use VaR forecasts as a measure of risk exposure. Generally, backtesting
procedures are required to assess the reliability of the models used to compute VaR forecasts.
Following the recent financial crisis, it has become important for financial institutions to hold
sufficient capital to sustain potential losses. Although other risk measures can be used in empirical
finance, VaR is the most common. Most existing tests are based on the sequence of hits, /;, of VaR
violations. Under perfect accuracy, I; is i.i.d. Bernoulli distributed with parameter «, the coverage
level of the VaR. It implies some moment restrictions that we test, which is one of our leading

examples that is addressed in detail in Section 4.

2.1.2 Test statistic when the parameter is known

For a benchmark, we first present the hypothetical case in which the true value 6° of the parameter

0 is known.

4See Section 3 for the out-of-sample case.
>The k components of m(-) are assumed to be free, that is, the variance of m(-) under the null

hypothesis is of full rank.



Assumption CLT - Central limit theorem.
Throughout this paper, we assume that the long-run covariance matrix of m(-), ¥, is finite and
positive definite and that the CLT applies.®

Under Assumption CLT, a test statistic &,,, can be constructed from any consistent estimator

S1of Xt
1 o 0 : —1 1 d 0
gm = <\/T ;:1 m(yt70 )) b (\/T ;:1 m(ytae )) . (1)

Under the null hypothesis, this statistic asymptotically follows a chi-squared distribution with &
degrees of freedom.

In this paper, we do not focus on how to select the moment. First, in many contexts, the
researcher has an idea about which moment to test (such as skewness and kurtosis in the normal
case). Moreover, the choice of moment is linked to optimality concepts and requires a separate and
longer treatment (see Bontemps et al., 2017). Appendix E in the Supplemental Material provides
a discussion on how to generate a moment with zero expectation when one considers testing a
discrete distribution.

In the above VaR example, a natural moment to check first is to compare the frequency of VaR
violations with the expected value, .. The corresponding moment is m; = [;—«. Additionally, one
can consider the property that the hit sequence should be independent of the past by considering

the moment m;Z;_; for any random variable Z;_; in the past information set.

2.2 Test statistic when the parameter is estimated

Next we consider the case in which §° is estimated in the sample. Let s4(+) be the score function
of the model. We now detail the regularity assumptions that we impose to write our first-order

expansion in Equation (4). These regularity conditions are standard in the GMM literature.

®Lower-level assumptions that ensure Assumption CLT for m(-) can be found, for example, in

Corollary 5.3 of Hall and Heyde (1980).



2.2.1 Regularity conditions

Assumption REG - Regular estimator.
We assume that 6, an estimator of 6° based on Y1, - - -, Y1, converges almost surely (the regularity

conditions can be found in Hansen, 1982) and satisfies the following expansion:
1 I
VIO -6 = —= > wly,0%) +op(1),
t=1

where w(+) is an estimating function that satisfies the CLT and therefore ensures the asymptotic
normality of 0. The influence function, w(-), can be derived from maximum likelihood (ML) or
GMM estimation. In our procedure, we do not need to explicitly know w(-).

Assumption GIM - Generalized information matrix equality.

The GIM equality

<3]E0 [m(yy, 0)]
o097

) +Eo [msyg | =0 2)
=00
is satisfied.

The conditions for Assumption GIM to be valid can be found in Tauchen (1985) (it is proved in
Theorem 5 under Assumptions 2 and 4) and requires, in particular, the continuous differentiability
of Eq [m(y, 8)] with respect to # in some open neighborhood of 6°.

First, any moment m/(-) continuously differentiable in a neighborhood of §° satisfies Assump-

tion GIM; this expression is used, for example, in Newey and McFadden (1994). Additionally, this

paper considers the following class of non-smooth moments:

m(y,0) = Ky € [1(0), u(0)]} — p(0), 3)

where 1{-} is the indicator function and [, u, and p are continuously differentiable functions of 6.
Such a moment estimates the frequency of a given interval/class and compares it with the expected
frequency and is often used in discrete distributions; the Pearson’s chi-squared test is a famous

example. Following Tauchen (1985), any moment in this class satisfies Assumption GIM.



2.2.2 Asymptotic expansion

The next proposition characterizes the asymptotic distribution of the average of the moment eval-

uated at the estimated parameter, 0.

Proposition 1. Let m(-,0°) be a moment with zero expectation under the null that satisfies As-
sumption CLT, and let 0 be a square-root consistent estimator of 0° that satisfies Assumption REG.

~ ~

Under Assumption GIM, the sequence m(y1,0), ..., m(yr, 0) satisfies the following expansion.:

% Zm(yt, 0) = % Zm(yt,QO) —E [ms;] VT(0 —6°) + op(1). 4)

Equation (4) is generally known in the differentiable case because it is the first-order expansion

in which Eq [ms] | is replaced by —E, [27%], which is proved by Tauchen (1985) in the non-
smooth case (see Theorem 2 of Tauchen). We are not the first to use this equation, but we exploit
it here systematically for testing in an alternate form.

In standard cases, plugging in 0 for 6° generally modifies the asymptotic variance, as the above
equation indicates. Ignoring this change would lead to size distortion, a problem of empirical
relevance because assumptions that should be rejected might not be and conversely. This distortion
level depends on the covariance between m(-) and the score function as well as on the estimating
function used to estimate parameter 6°. Equation (4) highlights the two strategies to address the
impact of parameter uncertainty.

The first strategy, which we call correcting hereafter, consists of deriving the joint asymptotic
distribution of the two terms on the right-hand side of (4), as in Newey, 1985, Mora and Moro-
Egido, 2008, for the probit case, and Escanciano and Olmo, 2010, for the VaR example. However,
this is not always possible because the score may not be properly defined, as in a semiparametric
GARCH model, or when the influence function w(-) is not easy to derive, as in two-step estimators.
This strategy can also be very cumbersome in some cases, for example in time series.

The second strategy involves working with moments m(-) orthogonal to the true score function,

which we call robust moments. For robust moments, the asymptotic distribution of \/ifm(yt, é) is

the same, at the first order, as the asymptotic distribution of \%Tm(yt, 6°) because the second term



on the right-hand side of Equation (4) is equal to zero. Thus, we do not have to consider the
estimation impact. For example, Bontemps and Meddahi (2005) find that Hermite polynomials of
degree 3 or more can be used for the normality testing of generalized regression model (including
GARCH) residuals.

In this paper, we transform any moment m(-) into a moment that is robust. We propose general
projection methods that can transform any moment into a moment orthogonal to the score function.
Note that any method in the literature that builds robust moments implicitly or explicitly transforms
a moment into a moment orthogonal to the score function. For example, Wooldridge (1990) con-
siders moment-based tests for conditional distributions. In his framework, the matrix involved is
the full expectation with respect to the joint distribution of ¥ and X. He proposes transformation
of the instruments h(X) to obtain orthogonality with respect to this joint distribution and does not
refer to the score function. Bontemps and Meddahi (2012) propose projection of the moment of
interest m(-) orthogonally onto the space S, the space orthogonal to the space spanned by the

score. Specifically, the transformed moment is

m*(y,0) = m(y,0) — K, [msﬂ Volse] *se(y). (5)

2.3 Orthogonalization methods

In this subsection, we introduce our general class of oblique projection transforms. These trans-
forms generalize the orthogonal projection of Bontemps and Meddahi (2012). Interestingly, the

robust moment can be characterized without explicitly mentioning the score function.

2.3.1 Robustification by oblique projection

Consider an estimating function ¢(-) that can identify’ parameter ¢ and satisfy Assumption CLT

and Assumption GIM. This estimating function can be used to estimate ¢, but we do not impose it

It means

Eo [g(y,0)] = 0iff 6 = 6°.

10



here. We assume that g(-) has the same dimension as 6, as in the identifying restrictions of a GMM

procedure. We denote by 7, the projection of m/(-) onto S+ parallel to direction g.

Proposition 2. Let 1y, be the projection of m(-) onto S* parallel to direction g. T, can be

expressed as

ﬁ@@h9)=7nﬁh9)—'(Q@Q%ggﬁﬁﬂ)eeo(éﬁh%%%ﬁﬁn)eeogQLHL (6)

and this moment is robust to parameter estimation uncertainty.

Proof. Equation (6) exploits the GIM equality for m(-),

() = B[],

and for ¢(-). Therefore, 1, can also be expressed as

My (y, 0) = m(y, 0) — B [msg | Eo [gsg ] g(y,0). (7)

This moment is clearly orthogonal to the true score function. Note that (5), the orthogonal projec-

tion onto the orthogonal space spanned by the score, is a specific case of (7) with g = sy. 0

Equation (6) in Proposition 2 is one of our important results. Observe first that this transform is
a simple linear correction (that exploits the generalized information equality) that depends on only
m(-), the moment tested, and ¢(-), the estimating function chosen. Moreover, the expression in (6)
does not use the score function but the derivatives of the functions of interest with respect to 6. In
many cases, these quantities are easy to derive analytically (see the examples in Section 3 and 4).
If it is not possible to obtain a closed form for the expectation, it is still possible to estimate these

quantities in the data. Moreover, if m(-) is smooth, one can simplify the first matrix in Equation

(), == o]

(6) because

007 07
and similarly for g(-).
As we discuss later in Subsection 2.3.4, many choices exist for ¢(-). The empirical researcher

should be aware that there is no "best choice” for g(-) without a specific alternative. According to

11



the testing literature, a closed-form expression provides better small-sample performance because
it avoids imprecise quantity estimates. The ultimate guideline is to choose the estimating function

g(+) that appears to be most tractable.

2.3.2 Advantages of working with robust moments

Working with robust moments has several advantages. Since the test statistic is insensitive to the
quality of the estimates, it depends on only the choice of the moment. Therefore, the critical
values of the test statistic can be tabulated using either the asymptotic distribution or by simulation
(bootstrap or Monte Carlo techniques can be used to improve the small-sample properties).

Additionally, a robust moment is robust whether the data are 1.i.d. or serially correlated. The
alternative, which consists of correcting the statistic, could require numerous calculations to com-
pute the covariance between the first and second terms in Equation (4), which we avoid here.
Moreover, the same argument holds for two-step estimators, in cases where the influence function
is not easy to derive, and when the asymptotic distribution is non-standard.

We now present another interesting property of robust moments; we can indeed loosen As-

sumption REG.

Proposition 3. Let 1, be a robust moment defined as above. When T*( — 6°) = Op(1) for
a>1/4,
Ly~ 6= 1 > 0° 1
ﬁ ;mg(yta )= ﬁ ;mg(yta ) +op(1).

In some cases, the parameters of interest have slower convergence rates. For example, Manski’s
maximum score estimator converges at a slower rate than 1/2. Additionally, the convergence rate
of the estimates of private values in auction models estimated nonparametrically is also slower
than the standard square-root rate. In these cases, the usual correction strategy requires further
investigation (Expansion (4) is indeed not valid when 6 has a convergence rate slower than T2,

Proposition 3 shows that a testing procedure derived from a robust moment remains a solution for

testing in less-regular cases.

12



2.3.3 A simplified procedure: building robustness from an auxiliary model

While Proposition 2 provides a strategy for building a robust moment, its attractiveness depends
on the choice of ¢(-). Here, we propose a simplified procedure to construct robust moments. This
procedure can be used when the parameters of interest can be concentrated out.

Consider a simple model M (the auxiliary model) defined by the parametric family of distri-
butions P(y;; 3), and let s5(-) be the score for this auxiliary model. Assume further that our true
model can be concentrated and linked to this auxiliary model by 5 = h(X;_1, ), where h(X;_1, -)
is a smooth function in the neighborhood of the true value and X; ; is a collection of variables
such that, conditional on X,_;, the distribution of y, is in P(y;; 3). A moment orthogonal to s4(-)
in the auxiliary model is also orthogonal to the true score in the true model.® This approach is par-
ticularly appealing because in some cases, it is easier to build a moment orthogonal to the score for
an auxiliary model than for the true model. Interestingly, such a moment remains robust regardless

of the functional form h(-). We illustrate this result with two examples.

VaR Example Consider the following model for financial returns:

re = p(Ji—1, B) + 0(Ji—1, B)es,

where J;_1 is the information set at time ¢ — 1, &, is an i.i.d. variable with a known distribution
and [ is a vector of parameters. Here, we can define p = p(J;_1,0) and 0 = o(J;_1, 3); our

auxiliary model is therefore the constant location-scale model
Ty = U+ O&.

In this auxiliary model, one can apply Proposition 2 from an estimating function g(-) (the first
two moments, for example) to build a robust moment. Following our result above, this robust
moment is also robust for the GARCH model just introduced.

This characteristic is particularly important in practice because the robustness of this moment

is valid regardless of the specification of () and o(-) of the GARCH model, which makes our

8See proof in subsection B.2 in the Supplemental Material.
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approach interesting for financial regulators. Ignoring parameter uncertainty may distort the results
and lead to not rejecting a VaR model that should be rejected. The systematic use of this robust
moment approach controls for this problem even without precise knowledge of the true underlying

models. We detail the implementation in Section 4.

Testing a moment in a parametric family The previous example can be generalized to the
case of any robust moment with zero expectation under a given parametric distribution. If the
parameter of this distribution [ is linked to some exogenous variables X, 5 = h(X, ), where 0 is
a parameter vector to be estimated, the same moment remains robust when 6 is estimated from the

data. Following Proposition 3, the convergence rate for 6 can also be the nonparametric rate.

2.3.4 Local power properties and choice of ¢

We presented above the main advantages of using a robust moment in a moment-based test. How-
ever, a successful testing procedure must control the size to ensure validity and also have good
power properties, at least with respect to the usual alternatives. Here, we might wonder whether
the projection strategy may systematically decrease the power compared to the correction strategy.
Additionally, the choice of g(-) could influence the power properties of the testing procedure. We
investigate these two questions in this section.’

First, we need to stretch the fact that a moment is robust independently of the choice of the
parameter estimator. If the estimating function g(+) used to estimate the parameters is the one used
to make the moment robust, i.e., we use mg(-) for our robust moment, the two test statistics result in
the same numerical value. Consequently, there is no trivial loss of power for our strategy because
it coincides with the correcting strategy for some specific choice of the estimating function g(+) in
Equation (6). Again, remember that the correction strategy, which depends on the estimator, can
be numerically challenging when the influence function of the estimator is not tractable.

Next, we turn to the choice of g(-), the direction of the oblique projection. Proposition 2

does not impose any particular requirement on g(-). Equation (6) illustrates that some choices of

The proof is provided in Section B.3 of the Supplemental Material.
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g(+) can provide closed-form expressions. Clearly, a closed-form expression helps to improve the
small-sample properties of the test derived from this moment. The next proposition calculates the

parameter that drives the power property of a test based on g.

Proposition 4. Let g(-) be some estimating function for 6 like in Proposition 2 and 1, the robust
version of m(+) after projection along the direction g (see Equation (6)). Assume that, under the
(local) alternative, the p.d.fis ¢ = qo(1 + h(y)/v/T). The power function from the test based on

Mg is an increasing function of the parameter:

a(g) = —E%ETTSLZ] .

Proposition 4 allows us to prove that no optimal choice of ¢(-) for power maximization exists
uniformly. Indeed, the power of the test for a specific choice of m(-) depends on the local alter-
native, h(-), considered. Consequently, for any choices of ¢;(-) and go(-), there exist two local
alternatives such that 1y, is better than my, in the first case and the reverse is true for the second
case. Without any specific direction of departure from the null, our suggestion is to select the

estimating function g(-) that appears to be the most tractable.

3 Out of sample evaluation of robust moments

In this section, we focus on moments evaluated out-of-sample. As noted by West and McCracken
(1998) in particular, the estimated parameters modify, as in the in-sample case, the asymptotic
distribution of the test statistic. Moreover, the correction they provide depends on the estimation
scheme (recursive, rolling, or fixed) and the ratio between the number of out-of-sample obser-
vations and the sample size used for the parameter estimation. McCracken (2000) extends the

approach to the case of non-smooth moments.

3.1 Invariance of the robust moments to the estimation scheme

One may use our robust moments instead of correcting. The following proposition states that a

robust moment leads to invariant statistics, even for out-of-sample evaluations.
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Proposition 5. Let ét be a sequence of square-root-consistent GMM-type estimators of 0° using
the data y;_g, . .., y;_1 (rolling estimator), vy, . . .,y;_1 (recursive estimator), or vy, . . ., yr (fixed
estimator). We assume that 6, satisfies Assumption REG for the corresponding values of the time
index. We also assume that R and P tend to oo while \/P /R tends to 0 and that m(-) satisfies

Assumptions CLT and GIM. If m(+) is a robust moment,

R+P R+P
> myn0) = —= > m(y,0°) + op(1). (®)
\/_t R+1 \/_t R+1

The proof is a direct consequence of the fact that the second term in the asymptotic expansion
vanishes owing to orthogonality of m to the score function. Observe, however, that working with a
robust moment allows us to loosen the requirement of a finite limit of P/ R in West and McCracken
(1998), which is generalized in McCracken (2000) for non-smooth moments.

The intuition is the same as for the in-sample properties. A robust moment is orthogonal to the
score and is therefore uncorrelated with the local deviations of § around 6°.

Therefore, when the moments are robust, the asymptotic variance of the out-of-sample averages
of these moments is the standard long-run variance. We do not have to correct for the estimation

scheme, which further demonstrates why robust moments are attractive.

3.2 Derivation of robust moments in different examples

We now complement this result by deriving robust moments for some of the tests proposed in West
and McCracken (1998) and in McCracken (2000). For simplicity, we omit, in our notations, the

dependence of the functions on y and 6.

3.2.1 Testing for first-order correlation in a regression model

Consider the stationary model'°

Y = xTHO + &¢.

The goal is to test whether Eq [¢,6;_1] = 0 from the estimated residuals; &, = y; — xtT ét is computed

using one of the three different schemes.

1"Model 6.1 in West and McCracken (1998).
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West and McCracken (1998) propose a scheme-dependent correction method and a simple
procedure to correct for parameter uncertainty through auxiliary regressions. In our approach, we
transform the moment m = £,6,_; into one that is robust to parameter uncertainty. On the basis
of Proposition 2 and because g = (y; — x/ 6)z;, one can derive the matrices of interest as follows,

noting that the moments and the estimating function are both smooth functions of the parameter.

P 0
Eo [a—ﬂ;} = —E [z, 1] and By {80%} = —Eo [z.2/] .

Thus, the robust version of m is
1 T T1-1
m- =¢&gig-1 — Ep [:Bt st_l} E, [:tht } TiE¢. )

The two expectations above can be simultaneously estimated in the sample with the estimation
of #°. Closed-form expressions can be derived with more structure. For example, an AR(1) model

without a constant term, y; = py;—1 + €, leads to the following moment:

m* =g — (1= p)y_ies

3.2.2 Encompassing test

Following West and McCracken (1998), we consider the encompassing test. Consider model 1,
y; = x{,8; + v1;, and the encompassing test with model 2, y; = z,, 35 + vy;. This process consists

of testing
Eq [Uu(x;ﬁ;)} = 0.

The algebra is similar to that of the previous case. The robust version of the test replaces

m = vy(2q9,35) with

mt = vi(29,85) — Bo [216(25,85)] (Bo [21627]) ™ 2rpvns.
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3.2.3 Test of equal MAE

We next consider a non-smooth moment and test for equal mean absolute error between model 1,

Y = :L“E/Bf + vy, and model 2, y, = xQTtB; + v9;. The moment considered in McCracken (2000) is
m = |uy| — |ugl,

which satisfies the regularity conditions given in Section 2. We define the robust version according
to Equation (6) as follows. For each model 7, 7 = 1 or 2, the first matrix <w> 1S
equal to —Eq [sgn(uy)z}]. Because g(-) is smooth, we obtain the usual expression for theﬁsie_cﬂ(i)nd
matrix; that is, —[Eg [m,t:rﬂ Consequently,

1 1 1
m— = Uy — Uy,

where u; = |u;| — Eqg [sgn(uit)xﬂ (EO [xit:tg])_l UpTi, T = 1,2.

3.3 A small Monte Carlo exercise

Now, we consider the first-order serial correlation test when one estimates an AR(1) model with

mean:

Yt = 1+ pYi—1 + &t

This is a Monte Carlo exercise developed in West and McCracken (1998). The experiment
involves 10 000 replications. The robust moment, as calculated above, is 45,1 — (1 — p*)es (y—1 —
), which has long-run variance p?c?, where o2 is the variance of ;. In all the tables, we report
the rejection frequencies for a 5% level test.

We first present in-sample results where we compare our test with the famous Box-Pierce
(1970) test'! with two correlations and its corrected version proposed by Ljung and Box (1978).

Both tests consider parameter uncertainty; however, we focus on only the first autocorrelations for

UBP(K) =T Y% | p*(h), which follows a x? distribution with K — 1 degrees of freedom in

our case. We present the results for K = 2.
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a fair comparison.'?> Under the null hypothesis, as in our proposed test, BP(2) is asymptotically
x%(1) distributed when p and p are estimated.

Table 1 shows the size results for four sample sizes: 7' = 50, 100, 250 and 500. We generate
observations from an autoregressive process with mean 1 = 0, ¢; ~ N(0, 1) and autocorrelation p,
where p takes values from 0.2 to 0.99. Both x4 and p are estimated in-sample. Overall, our robust
test has good small-sample-size properties, similar to the Box-Pierce and Ljung-Box versions.
However, as p increases and approaches one, size distortion occurs for both the Box-Pierce and
Llung-Box tests.

Table 2 displays the power results for the same test when the true DGP for y, is the AR(2)
process ¥y = (po + p1)Yi—1 — pPop1Yi—2 + € The two inverse roots of the process are py and
p1. Here, we take py = 0.5, as in West and McCracken (1998), and the results are qualitatively
equivalent for other values. We let p; increase from 0.1 to 0.5. The larger p; is, the further the
process is from an AR(1) process. Therefore, we observe higher rejection rates as p; increases.

Furthermore, our robust moment greatly outperforms the standard Box-Pierce test.!?
[insert Tables 1 and 2 here]

We now present the out-of-sample properties of the same tests. West and McCracken (1998)
show that there is no parameter uncertainty problem for the recursive scheme. We consider here

the rolling scheme.'*

We present the results for various values of R (the sample size used for
estimating the parameters, from 50 to 500) and P (the sample size used to evaluate our test, from
50 to 500). We compare our robust moment-based tests with the correction proposed in West and
McCracken (1998). The results are displayed in Table 3. The size distortion for R = 50 is severe in

both cases. Our test statistic has much better size properties and also performs better for detecting

departure from the null.

2The power of a chi-squared test decreases as the number of degrees of freedom increases.
3We did not correct for the size distortion of the BP test; the comparison is therefore in favor

of the BP test.
“The fixed scheme results, available in Appendix C of the Supplemental Material, lead to sim-

ilar conclusions.
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[insert Table 3 here]

4 Application to the backtesting of VaR models

In 1996, the Basel Committee on Banking Supervision proposed the use of VaR models as a pos-
sible risk management measure. There is a debate on what characterizes a good risk measure and
whether VaR is adequate (for example, see Artzner et al., 1999). However, VaR is the measure
commonly used by financial institutions. Let 7, be the daily log return of some given portfolio,
and let VaR}' be the one-day-ahead VaR forecast (computed at time ¢ — 1) for a given level of risk
« (the value considered is generally 5% or 1%). With an abuse of notation, we consider the VaR
measure, V aRRy, as the negative of the a-quantile of the conditional distribution of r;, given J;_1,

the information set at date t — 1:1°

P(ry < =VaR{|Ji—1) = . (10)

Backtesting techniques attempt to check the accuracy of the models used by a given institution,
in most cases observing only the VaR forecasts, the returns and the distribution assumed for the
innovation terms. It is particularly appealing for regulators to measure the adequacy of these risk
measures.

Let I, be the hit, that is, the indicator of VaR violation.!® Under H,, i.e., the VaR parametric
model used by the financial institution is the right model, /; is i.i.d. Bernoulli distributed with
parameter o.

This section presents some feasible tests that are robust to the parameter uncertainty introduced
by the estimation of the conditional variance for the returns. This parameter estimation uncertainty

has rarely been considered in the literature.

5Tn fact, the VaR measure is the potential loss induced by this negative return.
167, is defined as

1 ifr, < —VaR?,
I = (11)

0 otherwise.
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Christoffersen (1998) considers a likelihood ratio test in a Markov framework. Christoffersen
and Pelletier (2004) and Candelon et al. (2011) consider tests based on the distribution of the du-
ration between two consecutive hits without parameter uncertainty. Escanciano and Olmo (2010)
characterize the potential size distortion that could arise from ignoring its impact and use the cor-
rection strategy. However, as discussed above, this strategy depends on the underlying model used
for the returns. Additionally, they do not consider the parameter uncertainty with respect to the
estimation of the number of degrees of freedom in the T-GARCH model. Note also that a moment
framework can handle the case where the number of actual hits is equal to zero without any modi-
fication, which is particularly interesting when one backtests VaR forecasts with low coverage rate,

Q.

4.1 Robust moments for backtesting VaR models

In this subsection, we detail the construction of a robust moment. We also show how to build

several test statistics from one robust moment.

4.1.1 Building a robust moment for backtesting in practice
Assume that the model for returns is the following constant location-scale model
re =4’ +o'e, (12)

where ¢; ~ i.i.d. D(0, 1), a continuous distribution with mean 0 and variance 1. We assume that
the parameter for this distribution is known, as for the standard normal variable, or estimated with
no parameter uncertainty, as for a standardized Student’s distribution where the number of degrees
of freedom is constrained to be an integer (this is the case considered in Escanciano and Olmo,
2010).

Assume that we want to backtest the VaR sequence in this model. The moment m; = I; — «,
which compares the VaR violation frequency with the expected one «, is not robust to parameter

uncertainty. Following Proposition 2, we detail the steps to transform m; into a robust moment:

1. Choose an estimating function g(-) for the parameters.
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2. Calculate W at @ = 0°, which can be done numerically or explicitly.

Tollizol at§ = 6°.

3. Similarly, calculate =737+

4. Apply Equation (6) and calculate the test statistic £ in (1).

We now apply this method to our specific case. First, a simple estimating function for x° and

ol is

e —
9= . (13)
(e = ) = o°
For the second step, observe that because ¢(-) is smooth, we need to compute only the expec-
tation of its derivative with respect to parameter 0, 6 = (u, o) ':

—1 0
@(Ttae) =

00" —2(ry —p) —20
The expectation at § = 0° is therefore V = diag(—1, —200).
207

Third, we compute P = <M> .
6=0

which is equal to:

1 o
P= {Ff(qa);%f(qa) :

where ¢, is the  quantile of the distribution of €, and f(-) is the probability distribution function.!”

Finally, applying (6) yields a robust version of m; = I; — a:

mi =1 — o+ fla)e + L) @ ), (14)

""Here are the main steps to calculate P; observe that

Eo [l — o] = Eo [1{r: < (1 + 0¢a)} — 0

re— p—p o
:Eo{l{ g <( oy +Eqa)}—a1

0
B w— [ o
_F( g +an>—a.

Consequently, %ﬁ_a} =5f (“;—5‘0 + ;—Oqa> and W =ILf (“_—é‘o + %%).

g o
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where the variance, V,,, depends on the distribution D assumed for ;. Observe that we do not
manipulate the score function to build this robust moment.
m;- is the robust moment in the constant location-scale model built with the estimating function

g(+) in (13). Now, we apply the result of Subsection 2.3.3. m;- is also robust for any GARCH model
Ty = ,u(Jt_l,O) +O-(Jt—179>5t7 (15)

where J;_; is the information set at time ¢ — 1 and @ is a vector of parameters. Different choices of
g(+) generate different robust moments. Additionally, we can also consider the true model (15) to

orthogonalize.

4.2 Building test statistics for backtests from a robust moment

Let e; be a transform of I, — « that is robust in the GARCH model (15). V,, denotes the variance
under the null hypothesis. Let Z;_; be any squared integrable random variable belonging to the

information set at date ¢ — 1. The orthogonalized moment
mf‘ = Zt_let (16)

satisfies [ [mﬂ = ( and is robust to parameter uncertainty.

Thus, the corresponding test statistic

T
1 & a1

§z=T (f Z Zt—1€t> (Eo [Zt—lth_1] Va) ' <? Z Zt—1€t> (17)
t=1 t=1

is asymptotically distributed as a x?(k), where k is the dimension of Z;_;, whether the parameters
of the GARCH model are estimated or known.

In the next Monte Carlo subsection, we study different choices for the above instruments in the
past information set. Z;_; = 1 corresponds to the unconditional test (i.e., we test that the frequency
of hits is the expected one, «); Z; 1 can also be past values, e; 1, e;_», etc. Furthermore, linear

combinations of past values of e; are also possible.
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4.3 A Monte Carlo exercise

We now examine the size and power properties of our test procedure and compare them with the
correcting strategy. The returns of a fictive portfolio/asset are assumed to follow a GARCH (1,1)

model with zero mean and i.i.d. innovations:

ro= \JoR0)e, 02(0) =+ 1y + Bod s, (18)
with g, ~ D(0,1), w = 0.0001, v = 0.045 and 5 = 0.95. We successively consider the standard
normal distribution and the standardized Student’s distribution for the distribution of ;.

We simulate samples with 7" = 250, 500 and 750 observations. For each sample, after estima-
tion of the model by maximum likelihood, we compute the series of one-day-ahead VaR forecasts,
VaR§, for o equal to 5%. All the results displayed are based on 10 000 replications, and each

table reports the rejection frequencies for a 5% level test.

4.3.1 The Normal GARCH model

We first consider the case of a Gaussian innovation process. In Table 4, we study the out-of-sample
properties, evaluating first the size, then the power of different competing tests.!® One-day-ahead
VaR forecasts are computed with a rolling estimator assuming normality for the innovation term.
This forecasting scheme is the most appropriate for this financial example. We use & = 500
values to estimate the parameters. We evaluate our moments on P = 100, P = 250 and P = 500
observations. As emphasized earlier, robust moment tests do not require additional correction, even
when studying out-of-sample performance. The tests are detailed here and are also presented in
Section A.1 in the Supplemental Material. e; is the robust version of I; — « calculated in Equation
(14), and €; is the orthogonal projection of I, — « onto the orthogonal of the space spanned by the
true score function of the Normal GARCH model. Finally, ¢f = I; — « 1s a non-robust moment
for which we correct for parameter uncertainty, as shown in Subsection 2.2.2. We also consider

covariance tests based on the product of these moments with their past values, that is, e;e;_j for

8The in-sample results are given in Appendix C of the Supplemental Material.
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h =1, 2, 3 and similarly for the two other moments.

The size properties are good, despite the slight over-rejection in the covariance tests.

The power properties are studied for two alternatives. In the first one, the distribution for the
innovation terms ¢, is a standardized Student distribution with 3 degrees of freedom. When com-
puting the VaR measure, Gaussianity is assumed, wrongly. In the second one, we simulate an
EGARCH model'® with T(4) innovations, estimating the standard normal GARCH(1,1) model to
compute the VaR forecasts. Both the distributional assumption and the volatility model are wrong.
The power is good for the robust moments given the alternative considered. The most important
outcome is the comparison with the power properties of the correcting strategy. Correcting deteri-
orates the power of the test for all values of P considered and for both alternatives. Furthermore,
we recall that the test based on e; is valid for any GARCH specification. The performances of
this moment are very close to the performances of the one build from considering the real score

function.

[insert Table 4 here]

4.3.2 The T-GARCH model

The T-GARCH (1,1) model is a popular model in empirical finance because it accurately fits most
financial data, especially the tail properties. Our new DGP maintains the same conditional vari-
ance model as in the GARCH normal case, but the distribution of &, is the standardized Student’s
distribution with v = 6 degrees of freedom.

We have now one additional parameter to estimate, v, and we need to consider the parameter
uncertainty generated by this additional estimation. We again consider the same three moments as
in the normal case. For e,, the first moment, the estimating function ¢(-) used for the orthogonaliza-
tion is the score in the constant variance auxiliary model. e} is the orthogonal projection of I; — «
onto the orthogonal of the space spanned by the true score of the full -GARCH model. Finally ef

denotes, as before, I; — «, which is a non-robust moment. We use the correction strategy to take

Bo2 = exp(0.0001 +0.9In02 | + 0.3(|g;1| — /2/7m) — 0.8,_1).

25



into account the parameter uncertainty. The analytical expressions of these moments are given in
Subsection A.2 of the Supplemental Material. As before, we present only the out-of-sample prop-
erties with a rolling scheme, the natural framework for VaR forecasts.?’ The results are displayed
in Table 5 for P = 100, 250 and 500. Again, we choose R = 500, which corresponds to the value
chosen in the empirical application. We first present the size and then the power properties. For
the power, we consider the historical simulation scheme and a skewed t-distribution.?! As in the
normal case, the tests based on ¢, or e; appear to be the best, although e; does not exploit the full
GARCH structure and is valid for any GARCH specification.

The correction strategy is dominated for the skewed t alternative. For the historical simulation,

in the out-of-sample case, there is power from the unconditional moments and ef performs well.

[insert Table 5 here]

S Empirical Application

We illustrate our methodology in an empirical application related to VaR forecasts. We consider
the exchange rate data considered previously in Kim, Shephard, and Chib (1998) and also in Bon-
temps and Meddahi (2005, 2012). These data comprise observations of weekday close exchange
rates?? from 10/01/1981 to 06/28/1985. Bontemps and Meddahi (2005) strongly reject the nor-
mality assumption for a GARCH(1,1), whereas Bontemps and Meddahi (2012) do not reject the

20The in-sample properties are given in Appendix C of the Supplemental Material.
2I'The skewed t-distribution with  degrees of freedom and parameter v has the following density

g, where f, is the density of the standard Student’s distribution:

2 2

T 1/7f(795) when z < 0, g(x) = T 1/’yf(£E/’7) when z > 0.

g(r) =

In the Monte Carlo exercise, we take v = 0.5. Additional simulations not provided here show

similar patterns, with increasing power as we depart from v = 1.
22The U.K. Pound, French Franc, Swiss Franc, and Japanese Yen rates, all versus the U.S.

Dollar.
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T-GARCH(1,1) model for all but the SF-USS series.

The T-GARCH (1,1) model is estimated by maximum likelihood, and the parameter estimates
are used to compute the one-day-ahead VaR forecast for any value of «, the risk exposure. The
in-sample estimates are shown in the first part of Table 6 with degrees of freedom varying from
6.73 to 12.25.

We first test the accuracy of the in-sample VaR forecasts for the four series for three risk levels,
a = 0.5%, a = 1% and a = 5%, using the moments from Section 4.3.2. We also include the
non-robust tests based on the number of VaR violations, /; — «, ignoring (wrongly) the parameter
uncertainty issue. The p-values of the tests are presented in Table 6.

Note that, for each exchange rate, there is always one risk level a for which our backtesting
procedure is rejected. The number of degrees of freedom of the Student’s innovations captures
the behavior of the left tail, which is why the T-GARCH model is popular. Globally, two series
pass the unconditional tests (FF/US and Yen/US). For o = 0.5%, no unconditional test is rejected.
The unconditional tests are rejected for the SF/US series with « = 1% and for the UK/US series
with o = 5%. For the last series, although the T-GARCH assumption is not rejected globally, the
Student’s assumption captures the tail behavior for low-risk values but fails to measure the risk
for higher values.The percentages of VaR violations in the following table show that there are too

many VaR violations (6.6% instead of 5%) for this exchange rate and this risk exposure.

UK/US$ FF/US$ SF/US$ Yen/US$

Q
0.005 0.004 0.003 0.005 0.006
0.010 0.013 0.010 0.018 0.011
0.050 0.066 0.044 0.055 0.048

Empirical frequencies of VaR violations
The covariance tests are often rejected except for at low values of « (on the other hand, for
a = 0.05%, we expect approximately one VaR violation per year, which reduces the power of the
covariance tests). For the SF/US series, many rejections occur for o = 1%; we know that, globally,

the T-GARCH assumption is rejected. The same is true for the Yen/US exchange rate, where the
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covariance tests are systematically rejected. Therefore, the conditional variance model should be
adapted.

In Table 7, we perform the same exercise, out-of-sample, using a T-GARCH(1,1) model-based
rolling estimator on the last 445 observations. With 945 observations, we test our model using
500 out-of-sample one-day-ahead VaR forecasts. Note that this is how VaR forecasts are often
calculated in practice. Unsurprisingly, the out-of-sample behavior of the tests is different than the
in-sample behavior.

First, globally, tests based on e are more conservative than tests based on e, and e;. For the
unconditional tests, we have similar behavior as before. The unconditional tests are rejected only
for the SF/US exchange rate with @ = 1%, and the results are close to rejection for the UK/US
exchange rate with a = 5%, as for the in-sample results. Note that the difference between I; and ¢§
is small; simply counting (i.e., ignoring parameter uncertainty or using /; without any correction)
generally decreases the power of the test.

The covariance tests lead to slightly different conclusions. Overall, one should definitively not
draw any conclusion from the in-sample properties, especially when the degree of persistence is
very high (the estimates of [ for the conditional variance are all greater than 0.9). The covariance
tests for the Yen/US series are rejected for all values of a. The VaR forecasts for the FF/US
exchange rate appear to be accurate, and no test is rejected. By contrast, there is a problem with
the local dynamics of the UK/US exchange rate as many covariance tests are rejected for all risk

levels a.
[insert Tables 6 and 7 here]

In appendix D of the Supplemental Material, we explore additional series by considering three
other exchange rates, the US dollar versus the Yen, the British Pound and the Euro, for the pe-
riod 2010-2015. We also consider three stock indexes? for the same period. Stock indexes have
different behavior: the estimates of  are lower than those for exchange rates and the tails are

thicker (lower estimates of v). However, we obtain similar conclusions; that is, the T-GARCH

23S &P 500, NIKKEI and NASDAQ
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model globally fails to accurately forecast VaR measures for different values of «. Additionally,
Berkowitz et al. (2011) also rejects the accuracy of VaR forecasts based on T-GARCH models for

data from three of four business lines within a large commercial bank.

6 Conclusion

This paper considers moment-based tests for testing features of univariate distributions. The mo-
ments of interest can be smooth or non-smooth. In our setup, some parameters must be estimated,
which generally modifies the asymptotic distribution of the underlying test. We address the param-
eter uncertainty problem by projecting the moment onto the orthogonal of the space spanned by
the score. Therefore, we consider a class of oblique projections from which we pick any transform.
Interestingly, we provide an alternative expression that does not depend on the score function. Our
framework is therefore semiparametric because we do not need to specify the full structure of the
model.

This paper shows that a robust moment can be built simply by applying a linear correction
in which the coefficients can be estimated in-sample. Moreover, robust moments have attractive
features and lead to testing procedures that are as powerful as existing ones, even better in many
of the examples considered in this paper. For example, the testing procedure does not have to be
changed when the estimator of the parameters changes; additionally, a moment-based test based
on a robust moment is valid in some cases where the parameters are estimated with slower rates
of convergence than the standard square-root rate. Finally, our method can handle out-of-sample
evaluations without further correction.

We apply our method to different examples, namely, out-of-sample evaluations and backtesting
different GARCH models. When proposing new test procedures, it is particularly important to
first check that the small-sample-size properties are good and that the power properties are at
least competitive with those of the existing alternative procedures. Our Monte Carlo experiments
suggest that our tests behave well for both in-sample and out-of-sample cases, even better than the

existing ones in most of the cases considered.
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Applied econometrics requires distributional assumptions to compute forecasts or to derive
tractable results in structural models. However, these assumptions should be tested whenever
possible because they can lead to biased results in the case of misspecification. Moment-based
procedures are standard. They have been widely used for estimation, and they can similarly be
systematically used to test these assumptions. Parameter uncertainty, which is often ignored in

empirical applications, can be easily addressed with the methodology derived in this paper.
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A. Size, p1 =0 R P

50 100 150 250 500
Robust moment m;- 50 714 787 859 8.64 10.11
100 545 554 562 557 5.89
150 561 521 523 544 5.70
250 534 555 505 572 5.57
500 536 518 524 496 5.48
Correction 50 677 877 11.50 19.15 41.15
100  4.03 402 407 5.26 9.67
150 3.14 275 277 3.06 4.60
250 252 239 229 253 2.85
500 239 205 212 1.85 2.06
B. Power, p1 = 0.2 R P
50 100 150 250 500
Robust moment m;- 50 1251 19.04 25.53 37.33 6148
100 12.18 17.69 24.07 3637 62.21
150 1122 17.62 23.60 3523 61.49
250 11.30 16.78 2325 3582 61.16
500 11.10 17.37 2329 3536 61.08
Correction 50 11.88 23.00 3529 6034 93.67
100  7.55 1271 19.15 3453  70.33
150  6.30 10.58 1549 28.01 58.85
250 570 9.08 12.88 2277  49.25
500 5.17 831 11.70 19.69 43.03
C. Power, p; = 0.5 R P
50 100 150 250 500
Robust moment m;- 50 4287 71.03 86.95 97.57 99.98
100 41.48 70.17 86.47 97.58 99.99
150 40.87 6843 8498 97.39 99.98
250 39.86 6697 84.47 9729 99.97
500 40.05 67.55 8325 96.73  99.95
Correction 50 2821 61.28 84.61 98.75 100.00
100 21.88 4896 7196 9424  99.98
150 19.95 4478 6738 92.04 99.86
250 17.79 40.65 63.61 8991  99.87
500 16.76 40.11 61.61 87.82  99.66

Note: the DGP is a univariate AR(2). The two inverse roots
of the process are py = 0.5 and p;. We estimate an AR(1)
process with mean and test the first order autocorrelation
out-of-sample for various values of R and P. We report the
rejection frequencies from 10000 simulations. p; = 0 cor-
responds to the size. We compare our robust moment ;-
with the out-of-sample correction of West and McCracken

(100R)



Size Power

T-GARCH EGARCH
P =100 P=250 P=500 P =100 P=250 P=500 P =100 P =250 P =500
et 5.44 5.44 5.36 22.60 36.09 51.68 26.68 43.61 62.69
ey 5.45 5.48 5.35 22.85 36.57 52.22 26.80 43.47 62.62
ef 5.23 6.31 6.91 4.71 11.04 20.17 11.89 13.14 13.67

eter—1 6.82 6.58 6.13 12.44 18.45 25.44 25.34 38.59 51.98
eter—2 6.89 6.37 6.14 12.67 18.98 24.94 21.26 32.30 43.25
eter—3 6.63 6.31 5.83 13.50 19.45 26.72 19.83 29.01 38.04
ere;_ 6.78 6.57 6.02 12.11 18.19 25.19 25.19 38.34 51.58
efe;_o 6.83 6.25 6.12 12.56 18.81 25.19 21.20 32.19 42.99
efe;_s 6.78 6.19 5.88 13.39 19.33 26.31 19.78 29.10 38.09
efe; 4 4.93 5.62 5.00 2.78 2.78 2.20 17.38 26.73 38.50
efe;_o 4.40 5.62 4.93 3.10 3.22 2.66 12.59 18.66 26.57

efe; s 4.33 5.05 4.67 2.83 3.34 2.80 9.55 14.42 17.74
Note: for each sample size T, we report the rejection frequencies for a 5% significance level

test of the accuracy of the one-day-ahead VaR forecasts computed out-of-sample from a rolling
estimation of a GARCH normal model. e; is the robust version of I; — « calculated in Equation
(14), ey is the orthogonal projection of I; — « onto the orthogonal of the space spanned by the
true score function of the Normal GARCH model, ef = I; — « is a non-robust moment for which
we correct for the parameter uncertainty, as shown in Subsection 2.2.2. See Subsection 4.3.1 for
further details.

Table 4: Backtesting VaR measures, @ = 5% - Normal GARCH model - Out of sample properties,

rolling scheme, R = 500 observations.
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Size Power

HS Skewed-T

P=100 P=250 P=500 P =100 P=250 P=500 P =100 P =250 P = 500
ey 4.86 4.98 5.46 26.92 38.30 38.25 19.99 41.82 70.48
ey 4.94 5.13 5.56 27.01 38.05 38.11 19.89 41.70 69.89
ef 4.98 6.00 6.46 26.19 40.61 41.52 18.73 35.14 61.04
€rer—1 6.49 5.79 5.47 13.55 16.65 22.56 7.04 7.10 7.52
etet—_9 6.64 6.01 6.08 13.54 17.05 22.36 6.98 7.16 7.67
€1ei—3 6.62 6.28 6.27 13.17 17.02 22.41 6.60 6.70 7.88
eje; 6.63 5.86 5.80 13.71 16.67 2291 6.96 7.12 7.56
efe;_o 6.70 5.99 6.22 13.61 17.21 22.42 7.02 7.28 7.76
efe;_s 6.71 6.47 6.37 13.05 17.08 22.40 6.48 6.53 7.65

efe; 4 4.78 4.98 4.31 12.37 15.91 21.47 10.68 13.74 15.59
efe;_o 4.78 5.23 4.89 12.12 15.44 21.56 10.36 13.61 15.88

efes s 4.63 5.09 5.19 11.57 16.20 21.66 10.56 14.12 16.10
Note: for each sample size T, we report the rejection frequencies for a 5% significance level

test of the accuracy of the one-day-ahead VaR forecasts computed from the estimation of a T-
GARCH(1,1) model. We study respectively the size, the power with the Historical Simulation, the
power with the skewed-T distribution with v = 0.5. e; is the robust version of [; — « calculated
from the projection in the auxiliary model with constant variance, e} is the orthogonal projection
of I; — « onto the orthogonal of the space spanned by the true score function of the T-GARCH
model, ef = I; — v is a non-robust moment for which we correct for the parameter uncertainty, as

shown in Subsection 2.2.2. See Subsection 4.3.2 for further details.

Table 5: Backtesting VaR measures, & = 5% - T-GARCH model - Out of sample properties, rolling
scheme, R = 500.
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A

SUPPLEMENTAL MATERIAL

SUPPLEMENT TO "MOMENT-BASED TESTS UNDER PARAMETER
UNCERTAINTY ‘¢
by Christian BONTEMPS

Moments used in the Monte Carlo exercise for the backtests

We detail here the moments used for backtesting in the Monte Carlo experiments in Subsection
4.3. We consider a GARCH(1,1) model without mean

e =1/0}(0)er, 0} (0) = w + 1y + Boy

where the innovations ¢, follow respectively a standard normal distribution and a standardized
student distribution with parameter . Hereafter, 6 denotes the parameter vector related to the
variance equation: = (w,v,3)".

Al

Moments used for the GARCH Normal case

All the moments used are based on a robustification of the centered hit value, ef = I; — «, which
is not robust to parameter uncertainty.

e; 1s the orthogonal projection of I; — « onto the orthogonal of the score in the auxiliary
model with constant variance. Following Subsection 2.3.3, it is also robust in the GARCH
model. Bringing back Equation (14), we have:

na$(na)

refite) (2 1),

where n,, is the « quantile of the standard normal distribution and ¢(-) its p.d.f. The variance
of e; is equal to

et:[t—oz—i-

(naW(na))z_

2

e; 1s the orthogonal projection of I, — o onto the orthogonal of the score in the full GARCH
Normal model:

e =1 —a+ %(”Q)EO (L) By [diydl] ™ diy (2 — 1),

8 In gt (9)
a0T

Vole] = a(l —a) —

where dl; denotes . Its variance is equal to:

Vole] = a(l — a) — MEO (dly) By [dldl] ] ™" By [dI] ] .

The expectation above can be estimated in-sample from standard formulas (see, for example,
Franck and Zakoian, 2010).

ef = I; — « is not robust. We need to correct its variance.

We also use joint moments e;e;_, and similarly for the two other moments, that test for
uncorrelation with the past values.
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A.2 Moments used for the T-GARCH case

Following the expression of the score function for the constant variance model:

—% 1+€t_8l§€gfy (6})
sl = | (alogfu< | | o
ov o

where f,(-) denotes the p.d.f. of the standardized Student distribution with v degrees of freedom,
we can derive the expression of the moments used in the Monte Carlo Section for the T-GARCH
model.

e ¢, is the orthogonal projection of I, — « onto the orthogonal of the score in the auxiliary
model with constant variance, i.e. s,2,(-) expressed above. It is robust in the T-GARCH
model. Adapting Equation (14) with 4(-) as the new estimating function for the parameters,

we have:
—1
et =1 —a— PV, 5,2 ,(g),

where s,2 ,,(-) the score function in the auxiliary model, V; its variance and P the covariance
between I; and the score s,2 ,,(-). Its variance is equal to

Voled] = a(l —a) — PV 'PT.
Both P and Vj are computed in-sample.

e ¢; like before is the orthogonal projection of /; — « onto the orthogonal of the score in the
full T-GARCH model:
ef =1 —a— P (V) 's5,(e0),

where s; () is the full score function, P* is the covariance between /; and this score and V'
its variance. These last two quantities are estimated in-sample. The variance of e is equal

to
Vo le;] = a(l —a) = P(V)TH(P)".

Note that e; and e; have the same expression but the first considers the score of the constant
scale model whereas the second considers the score of the true GARCH model.

o Finally ef is not robust and we need to correct for the parameter uncertainty.

e Like in the normal case, we also consider joint tests.

B Proof of the propositions

B.1 Proof of Proposition 3

We prove here the result in the smooth case where m/(+) is assumed to be continuously differentiable
in a neighborhood of the true value #°. The non-smooth case is build similarly from Tauchen
(1985)’s arguments. We assume here that
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(i) m(-) is twice continuously differentiable in a neighborhood N of 6°,

(ii) its second derivative with respect to 6 is uniformly bounded on this neighborhood, i.e. Eq [|0%m/060,;06;|] <
M foralli,jin [1,...,7]?, where 7 is the dimension of 6,

(iii) each partial derivative of m satisfies Assumption CLT.

For convenience we write the proof assuming that the moment and the parameter 6 are unidimen-
sional without loss of generality. Let m be a robust moment.
For any 0, and for any ¢ € [1; T, there is 6; between 6 and ¢° such that
10%*m

R o R .
m(ye, 0) = m(ys, 6°) + a—?(yt, 6°)(6 — 0°) + 55 (s )6 6°)2. (B.2)

Averaging Equation (B.2) from ¢ = 1 to 7" and multiplying by v/T', we obtain

The second term on the right-hand side which multiplies (6 — 6°) is equal to Z + O, (1), where
Z 1s a standard normal variable, because of assumption (iii). The third term which multiplies
VT (9 — 0")? has a bounded expectation because of assumption (ii). Therefore we can rewrite the
expansion above using ( — 6°) = Op (7). We obtain

1 « 1 1 1
ﬁ E m(yt,ﬁ) = ﬁ E m(ytﬁo) + OP <ﬁ> + OP (W) . (B3)
t=1 t=1

When 2o — 1/2 > 0, the conclusion follows.

B.2 Robustness from an auxiliary model (subsection 2.3.3)

The conditional score function with respect to 6, sg(y;| X;_1), in the true model, is equal to

L. Oh,
so(yel Xe1) = %T%(Xt—hg)sﬂj(yt)a

j=1
where [ is the dimension of 3. The conditional score is therefore a linear combination of the

components of the score in the auxiliary model; the weights are functions of X;_;. Consequently,

!
oh;
Eo [msg| X;—1] = 37?(&—179)150 [mss] =0,

J=1

which implies E, [msq] = 0.
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B.3 Choice of ¢(-) and local power properties

B.3.1 Correcting for parameter uncertainty or working with a robust moment

We assume that parameter 6 is estimated from the estimating function g(-). We also assume that all
the functions involved are continuously differentiable w.r.t. § in a neighborhood of the true value
and that the data are i.i.d.

We first derive the asymptotic variance of \%m(yt, é) Equation (4) combined with Assump-
tion REG gives the following expansion

. Lm(yt,eo) + Eo [am] ! w(y,0°) + op(1)

ﬁm(ytae) = ﬁ 907 \/—

L (m+ Do), 0°) + 0p (1),

VT

where D,, denotes Eq [ 27 ].
Its asymptotic variance is therefore 2 = V(m+ D, w). Note that under the standard regularity
conditions of the GMM literature (here g(-) can be seen as the set of identifiying restrictions),

-1
w(-, ), the influence function, is equal to Eq | 897} q(+,0).
The correcting strategy consists of calculating the test statistic

=T (% ;m(yt,é)) ot (% ;m(yt,é)> .

Q) is generally estimated in-sample.

e Assume now that we use the robust moment m, in Equation (6) for the same estimating
function g(-). For any ¢ and € in a neighborhood of ¢°:

i om dg 17"
mg(ye, 0) = m(ys, 0) + Eo [OQT] Eq [%] 9y, 0).

First, the variance of m,, when 6 = 0, is {2 introduced above. Then, write the empirical
average:

The second term on the right-hand side is indeed equal to zero because ¢g(-) is the estimating
function used to estimate 6. Consequently,

T
Z yt7 = 0.
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Observe that this is not true if 6° is estimated by another estimating function. Now, using the prop-
erty, that 7, is a robust moment, the asymptotic variance of fmg(yt, 0) is the one of fmg (s, 0"),
i.e. 2. The test statistic based on 1, is therefore

It is the same as &, above.

Consequently, there is no loss of power for our strategy because it coincides with the correcting
strategy for some specific choice of the estimating function g(-) in Equation (6). Remark that if
the two statistics coincide in 6, it it not true for any other value, and especially 6°. This is the
advantage of using a robust moment: for any estimator of #° (including the true value itself), one
manipulates the same expression.

B.3.2 Proof of Proposition 4

We first calculate the behavior of the test statistic under the local alternative ¢,. First,

iy = / i, 6%) (q0y) + h()ao(w)/VT)dy
/ mg(y, 0°)h(y)qo(y)dy

= _EO [1igh] .

vT

Second,

o) = [ 7300, 0) ao(o) + Aly)an()VT)dy — B i)

1
— —Eq [iyh]”.

1
= Vo [1y] + —=Eo [m_h] =

VT

&im,» defined in Equation (1), is asymptotically x? distributed, under the null, for any choice of
g(+). Moreover, under the local alternative,
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( Zt 1mg(3/t79 ))2

0[]

( Tth ity (1 90>—E1{mg1+ﬁ Ex [ )

Emy =T

VVo ] Vo [my]

( TTZt 1MW 8) — B[] | B [mf]] +0P(1)> ,

Vl [Thg] Vl [mg
Zl + ErV a + Op ) .

In the third line above, we use the fact that the variances of the moment under the null and the
local alternative are equal at the first order. Then, we apply the central limit theorem under the
alternative, Z; is therefore a standard normal variable. Finally we replace, v'TE, [ri,] by Eq [1i2gh]
to get the result (g, is equal to the sign of Eq [m,h]).

Consequently, &, is asymptotically distributed as a noncentral chi-squared distribution under

Eo[m }
Vifing]

mizing the power is maximizing a(g) and the solution depends on h.

the alternative. a(g) = the noncentrality parameter, drives the power properties. Maxi-

B.4 Proof of Proposition 5

We follow here the proof of Lemma 4.1 in West and McCracken (1998) assuming that the moment
m(-) is smooth. Following McCracken (2000) and Tauchen (1985), we can adapt the proof to non-
smooth moments under our regularity conditions (and specifically the regular Assumptions 2 and
4 in Tauchen, 1985).

We now detail the proof for the rolling scheme under Assumptions 1 to 5 of West and Mc-
Cracken (1998). It adapts easily for the other schemes. We also assume for notational simplicity
that both m and  are scalar. Let m be a robust moment and let d; denote 2 55 e, 6°). Follow-
ing Assumption 2 of West and McCracken (1998), the estimate of 6, 0, satlsﬁes our regularity
assumption (R) in Section 2: § — % = £ 37 w(y;,6°) + op(1). In the following, w; denotes
w(yy, 0°).

For any P, R and 7 > 1, we can write the following expansion:

R+P-1 R+P-1 R+P-1
1 1 1

Was )p) = —— 0y , _+ om 0 B )
NG ; m(Yi+r,0r) NG ; m(Yeyr, 0°) + NG ; 50 “— (s, 0°) (O — 0°) + 0p(1).
(B.4)

The difference with respect to West and McCracken (1998), Equation (A1), is that, due to the fact
that m(-) is robust, there is no other term. We now work with the second term of the right hand
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1 R+P-1 om 1 R+P-1 1 t
— = (Yor, 0°) (O — 0°) = —= - | & 5 0°) | +op(1),
5 g Wear, 07) (0 — 07) = —5 ; - (R > )) p(1)

t=R s=t—R+1
1 R+P—1
= ﬁ ; dt+7(wt_R+1 —i—wt_R+2+...+wt) —|—Op<1).

Let us compute the expectation of each term of the right hand side. Let v, = Eo(dyw,_s). We
first assume that P < R (the bound is similar for R < P).

R+P—1
Ko ( Z dpyr(Wi—py1 + Wi—py2 + ... + wt)) = P(Vr +Yrs1+ -+ Yr4r-1)

t=R
+oo
<P Z Vs-

S=—00

The expectation of the second term of the right hand side of Equation (B.4) tends to zero when
VP /R tends to zero. Following the argument in West (1996), page 1080, (the same argument
is used in West and McCracken, page 837), the second term tends to zero under the regularity
conditions.

C Additional Monte Carlo results

C.1 Out-of-sample properties, fixed scheme, first order autocorrelation test
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A.Size,p1 =0 R P
50 100 150 250 500
Robust moment m#‘ 50 1238 1554 16.89 20.54 26.21
100 7.73 8.89 9.39 10.61 13.25
150 6.63 7.42 7.70 7.70 9.25
250 6.03 5.71 6.61 6.12 6.60
500 6.28 5.50 5.51 5.50 5.65
Correction 50 2.61 2.40 2.25 2.01 1.94
100 242 2.37 2.22 1.82 1.90
150 243 241 1.81 1.73 1.96
250 2.24 2.03 2.08 2.05 1.78
500 2.68 1.81 1.88 1.96 1.77

B. Power, p1 = 0.2 R P
50 100 150 250 500
Robust moment m;- 50 1397 18.15 21.05 2848 43.44

100 11.75 1632 21.22  28.89 47.67
150 11.77 1624 21.06 30.89 51.13
250 1149 17.08 21.29 32.04 55.18
500 11.46 1690 21.81 33.64 57.09
Correction 50 5.62 7.82 1191 19.01 38.53
100 5.30 8.15 1141 18.24 38.49
150 5.19 7.70 1072 17.70 37.58
250 5.21 756 1039 18.04 38.10
500 5.21 746 1027 18.02 37.71

C. Power, p1 = 0.5 R P
50 100 150 250 500
Robust moment mf- 50 37.69 58.74 72.14 86.69 95.48

100 38.84 62.61 7837 92.88 99.31

150 38.77 63.36  80.10 94.62 99.78

250 39.57 6529 81.67 96.03 99.93

500 40.78 6542 83.32 96.07 99.93

Correction 50 1838 40.27 61.03 87.04 99.61

100 1733 39.69 6048 87.04 99.61

150  16.16 39.11 59.79 86.38 99.76

250 16.70 38.72 60.62 86.77 99.59

500 17.61 3752 59.78 86.30 99.63

Note: the DGP is a univariate AR(2). The two inverse roots of the process are

po = 0.5 and p1. We estimate an AR(1) process with mean and test the first
order autocorrelation out-of-sample for various values of R and P. We report
the rejection frequencies from 10000 simulations. p; = O corresponds to the
size. We compare our robust moment mf‘ with the out-of-sample correction of
West and McCracken.

Table VIII: Size and power of first order autocorrelation test - fixed scheme
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C.2 In-sample properties, GARCH Normal example

Size Power
Hist. Simulation T-GARCH EGARCH
T 250 500 750 250 500 750 250 500 750 250 500 750
e 4.74 5.00 5.07 0.00 0.00 0.00 16.05 34.54 50.36 33.95 56.64 72.17
ey 427 493 4.71 0.00 0.00 0.00 14.05 32.65 47.69 33.33 56.45 72.35
ef 3.80 5.95 4.67 0.00 0.00 0.00 11.49 32.51 44.87 11.27 18.16 15.86

erei—1 4.71 4.81 4.87 10.81 15.12 21.16  9.76 13.91 17.79 33.38 4791 56.84
erer—g 4.82 4.80 4.89 10.94 14.23 20.70 11.52 15.72 19.57 26.99 37.20 43.93
erer—3 5.20 4.85 4.72 9.91 14.30 19.38 11.91 15.74 19.27 23.70 32.34  38.49
ere;_; 4.69 4.79 4.80 10.97 15.13 21.39 8.78 12.41 16.41 32.68 47.44  56.64
eje;_o 4.78 4.71 5.06 10.80 14.30 20.78 10.57 14.57 18.14 26.67 36.98  43.67

eje;_3 5.12 5.03 4.59 9.95 14.40 19.53 11.15 14.75 17.89 23.45 32.14  38.36
efe;_; 3.27 3.53 4.14 4.30 10.54 17.88 247 2.00 196 24.74 37.51 46.34
efef_o 3.92 4.08 4.11 4.78 1042 18.24 341 2.16 2.07 18.3124.69 30.04
efe;_5 3.87 4.03 4.05 391 9.9516.87 3.00 2.19 2.09 13.17 16.48 19.39

Note: for each sample size T, we report the rejection frequencies for a 5% significance level
test of the accuracy of the one-day-ahead VaR forecasts computed from the estimation of a
GARCH normal model. e; is the robust version of I; — « calculated in Equation (14), e}
is the orthogonal projection of I; — « onto the orthogonal of the space spanned by the true
score function of the Normal GARCH model, ef = I; —a is a non-robust moment for which
we correct for the parameter uncertainty, as shown in Subsection 2.2.2. See Subsection 4.3.1
for further details.

Table IX: Backtesting VaR measures, « = 5% - Normal GARCH model - In sample properties.
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C.3 In-sample properties, T-GARCH example

Size Alternatives
HS Skewed t

T 250 500 750 250 500 750 250 500 750
ey 492 482 462 0.00 0.00 0.00 41.75 71.57 88.50
ey 5.10 5.01 473 0.00 0.00 0.00 44.44 73.55 89.35
ef 442 447 452 0.00 0.00 0.00 40.48 76.04 88.25
erer—1 4.67 488 493 1031 1448 21.44 593 6.96 7.83
erer—o 5.05 5.08 5.02 10.33 14.35 21.28 6.59 7.37 7.98
erer—3 5.11 496 499 10.17 15.00 20.68 7.02 7.12 8.18
e;e;_; 5.10 5.03 5.02 10.98 14.47 21.75 6.72 7.50 8.37
eje;_o 549 523 5.19 10.75 14.86 21.44 7.85 8.07 8.46
eje;_3 546 522 5.14 10.49 1537 2094 7.67 7.81 8.72
efef_; 5.22 482 456 10.70 11.80 19.04 9.94 16.35 16.82
efef_o 5.93 5.07 5.06 11.02 11.23 1891 11.54 16.96 17.41
efef_5 6.00 476 459 10.67 11.57 18.42 12.85 17.25 17.59
Note: for each sample size 7', we report the rejection frequen-

cies for a 5% significance level test of the accuracy of the one-
day-ahead VaR forecasts computed from the estimation of a T-
GARCH(1,1) model. We study respectively the size , the power
with the Historical Simulation, the power with the skewed t-
distribution with v = 0.5. ¢; is the robust version of [; — «
calculated from the projection in the auxiliary model with con-
stant variance, e; is the orthogonal projection of I; — « onto the
orthogonal of the space spanned by the true score function of the
T-GARCH model, e = I; — « is a non-robust moment for which
we correct for the parameter uncertainty, as shown in Subsection
2.2.2. See Subsection 4.3.2 for further details.

Table X: Backtesting VaR measures, & = 5% - T-GARCH model- In sample properties.
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D Additional Backtests evaluations
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Yen/US$ UK/US$ EUR/USS S&P 500 NIKKEI NASDAQ

w 5.20e-07 9.31e-08  3.77e-08 3.77e-06 7.53e-06  4.64e-06
0 0.040 0.034 0.034 0.134 0.106 0.107
B 0.945 0.963 0.966 0.831 0.857 0.855
v 5.018 15.565 8.203 6.407 9.449 7.634

Note: MLE of the T"-GARCH(1,T) model for daily exchange rates

or stock indexes.
Ty = Uf(&)at, 03(9) =w+ 77}2,1 + ﬁat{l, er ~ T(v).

a=0.5% a=1% a=5%

Yen/US UK/US EUR/US Yen/US UK/US EUR/US Yen/US UK/US EUR/US

e, 0125 0514 0654 0.011 0.585 0.421 0.550 0.003 0.011

e; 0176 0.601 0.595 0.026 0.625 0.564 0.604 0.005 0.032

ef 0.183 0.580 0.586  0.028 0.599 0.574 0.638 0.004 0.034

I; 0060 0496 0.864 0.002 0.562 0.399 0.407 0.006 0.007
eter_1 0.983 0.871 0984  0.341 0.907 0.678 0.243 0.834 0.111
etei_o 0972 0276 0941 0.991 0.148 0.953 0.988 0.988 0.852
erer—3 0969 0.481 0.270  0.964 0.872 0.541 0.936 0.925 0.080
ere;_ 0.808 0.696 0959 0.862 0.621 0.778 0.270 0.756 0.255
eje;_o 0929 0406 0928 0.890 0.071 0.881 0.821 0.754 0.628
eje;_s 0.923 0.698 0.763 0.859 0.384 0.849 0.890 0.695 0.314
efe; 1 0991 0.786 0.774 0978 0.623 0.776  0.836 0.286 0.311
efef o, 0990 0.784  0.783  0.978 0.035 0.773 0378 0.971 0.534
efe; s 0.990 0.782 0.771 0977 0.618 0.772 0452 0972 0.639
LI+ 0.983 0.963 0.967 0.250 0.945 0.809  0.503 0.863 0.073
LI, 5 0936 0.393 0978 0978 0.125 0.994 0.903 0.980 0.922

I3 0882 0860 0.678 0928 0.827 0.720 0910 0915 0.049
Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-

GARCH(1,1) model for different levels of risk « for three daily exchange rates - period
2010-2015. The p-value of the test statistics are reported. The moments are defined in
Section 4.3.

Table XI: Backtesting of VaR forecasts for the T"-GARCH(1,1) model, In sample evaluation.
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a = 0.5% a=1% a=5%

S& P 500 NIKKEI NASDAQ Sé& P 500 NIKKEI NASDAQ Sé& P 500 NIKKEI NASDAQ

et 0494 0434 0.803 0.004 0.086 < 0.001 0.050  0.167 0.015
ey 0.582 0.579 0.864 0.031 0.174 0.007 0.069  0.190 0.026
ef 0.585 0.580 0.864 0.032 0.175 0.007 0.070  0.191 0.026

I 0.338 0.726 0.490 0.022  0.265 0.007 0.079  0.165 0.029

eter—1 0.004 < 0.001 0250 < 0.001 0.142 0.208 0.427  0.255 0.502
etet—2 0.007  0.962 0.468 0.003 0974 0.429 0.500  0.025 0.249
eter—3 0.707  0.639 0.604 0.946  0.825 0.307 0.265 0.577 0.624

eje; | 0.813 < 0.001 0910 < 0.001 < 0.001 0.034 0.307 0.178 0.271
eje; 5 <0.001 0573 <0.001 <0.001 0337 <0.001 0.479  0.012 0.853
eje;_s 0.734  0.670 0.910 0.384 0.676 0.148 0.018  0.650 0.118

efe; 0.786 < 0.001 0.826 < 0.001 < 0.001 0.090 0.540  0.489 0.438
efef_5 < 0.001 0786 < 0.001 <0.001 0513 <0.001 0.027 < 0.001 0.389
efe; s 0.784 0.776 0.826 0.419  0.509 0.363 0.089  0.344 0.436

Il 0.523 < 0.001 0.675 0.001  0.098 0.198 0.346 0.244 0.307
Lo 0.001 0932 <0.001 <0.001 0.862 0.037 0.521  0.024 0.243
L1 3 0.718  0.967 0.961 0.584 0.866 0.464 0.154  0.573 0.325

Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-
GARCH(1,1) model for different level of risk « for three stock indexes - period 2010-2015.

The p-value of the test statistics are reported. The moments are defined in Section 4.3.

Table XII: Backtesting of VaR forecasts for the T-GARCH(1,1) model, In sample evaluation.
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a=0.5% a=1% a=5%

Yen/US UK/US EUR/US Yen/US UK/US EUR/US Yen/US UK/US EUR/US

e; 0472 0.346 0.024 0.266 0.051 0.001 0.378 0.001 0.046

ey 0.497 0.091 0.338 0.307 0.015 0.062 0.460 0.001 0.351

ef 0340 0.112 0.340 0.176  0.024 0.071 0.213 0.004 0.407

I 0.342 0.113 0.342 0.178  0.025 0.072  0.218 0.004 0.412
eter_1 0.725 0.675 0.736 0.015 0.625 0.668  0.567 0.991 0.012
€19 0.942 0.581 0.839 0.928 0.342 0.898 0461 0.214 0.333
eter_3 0910 0.878 0.641 0987 0423 0.878 0.638 0.887 0.800
eje; 4 0.617 0.699 0.753 < 0.001 0.238 0.655 0.580 0.420 0.069
eye; o 0914 0.720 0.789 0933 0.153 0.723 0.430 0.747 0.738
eye; s 0.888 0.208 0.834 0.926 0.570 0.674  0.350 0.891 0.982
efes 0982 0.735 0982 < 0.001 0.496 0.892 0.743 0.744 0.043
efe;_o 0982 0.735 0.982 0.965 < 0.001 0.893 0.537 0.204 0.891
efe; s 0.982 0.733 0.981 0.965 0.495 0.892  0.535 0.565 0.893
L1 4 0.982 0.736 0982 < 0.001 0497 0.892 0.743 0.743 0.043
Ii1;_o 0982 0.735 0.982 0.965 < 0.001 0.893 0.537 0.204 0.891

Lil,_s 0983 0.735 0.983 0965 0496 0.893 0.535 0.566  0.893
Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-

GARCH(1,1) model for different levels of risk « for three daily exchanges rates - period
2010-2015. The out-of-sample evaluation is based on 1000 observations to estimate the
parameters and 500 observations to test the moment. The p-value of the test statistics are

reported. The moments are defined in Section 4.3.

Table XIII: Backtesting of VaR forecasts for the T-GARCH(1,1) model, Out of sample evaluation.
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a=0.5% a=1% a=5%

S& P 500 NIKKEINASDAQ S& P 500 NIKKEI NASDAQ S& P 500 NIKKEINASDAQ

et 0.009 0.741 0.032 0.015 0.018 0.010 0.078 0.077 0.024

ey 0.089 0.042 0.120 0.132  0.001 0.075 0.121 0.016 0.056

ef 0.112 0.112 0.112 0.176  0.007 0.071 0.214 0.147 0.062

I; 0.113 0.113 0.113 0.178  0.007 0.072 0.218 0.151 0.065
erer—1 < 0.001 <0.001 <0.001 <0.001 0.564 0.149 0.172 0979 0.509
€t€t_9 0413 0.492 0.414 0.004 0.642 0.778 0.649 0.038 0.459
€163 0.694 0.870 0.407 0.742  0.690 0.847 0.485 0411 0.997
eje; ; <0.001 <0.001 <0.001 <0.001<0.001 <0.001 0.613 0.510 0.896
efe;_o 0.771  0.754 0936 < 0.001 0.743 0.852 0.524  0.007 0.551
eje;_s 0.937 0.760 0.786 0.822 0.595 0.422 0.155 0.926 0.642
efef_; < 0.001 <0.001 <0.001 <0.001<0.001 < 0.001 0.890 0.927 0.424
efef_o 0.735 0.735 0.735 < 0.001 0.440 0.555 0.043 < 0.001 0.883
efef s 0.735 0.733 0.735 0.617 0.439 0.555 0418 0.930 0.882
I;I;_1 <0.001 <0.001 <0.001 <0.001<0.001 <0.001 0.889 0.927 0.424
LI o 0.735 0.735 0.735 < 0.001 0.441 0.556 0.043 < 0.001 0.884

Il 3 0.735 0.735 0.735 0.617 0.440 0.555 0.418 0.930 0.882
Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-

GARCH(1,1) model for different levels of risk « for three stock indexes - period 2010-2015.

The out-of-sample evaluation is based on 1000 observations to estimate the parameters and

500 observations to test the moment. The p-value of the test statistics are reported. The
moments are defined in Section 4.3.

Table XIV: Backtesting of VaR forecasts for the T-GARCH(1,1) model, Out of sample evaluation.
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E Choice of the moments

In this section, we provide a guideline on how to derive moment conditions from a discrete distri-
butional assumption. The support of Y is supposed to be discrete and, without loss of generality,
we assume it is N. p;(#) denotes the probability that Y = i under F.

E.1 Adhoc choices

Adhoc choices of moments are always possible. For standard distributions, one generally knows
the first moments (mean, variance, skewness, and kurtosis) as functions of the parameters. For
discrete distributions, one can also compare the expected frequency of counts with the actual ones
(this is the rationale of the standard Pearson’s chi-squared test).

For the Poisson distribution, we know that it has the property of equidispersion, i.e. the mean
and the variance are equal. This gives us the opportunity to test H, from the first and second
moments together. We could alternatively use the sequence of moments m;(y,6) = 1{Y = i} —
p;(0) for different i.

E.2 Orthogonal polynomials and Ord’s family of discrete distributions

The Ord’s family is a well-known extension of the famous Pearson’s family to the case of dis-
crete distributions. This family includes the Poisson, binomial, Pascal (or negative binomial), and
hypergeometric distributions, as particular examples.

A discrete distribution belongs to the Ord’s family if the ratio (we omit the dependence of p;
in 0) pi‘%;py equals the ratio of two polynomials A(.) and B(.), where A(.) is affine and B(.) is
quadratic.

Apy  pyr1i—py  Aly)  actay
Dy Py B(y) b+ by + byy?’
where A is the forward difference operator: Ap, = p,+1 — py.
We can build the associated orthonormal polynomial family @);, j € N, where each polynomial

is derived using an analogue of the Rodrigues’ formula on finite difference (see Weber and Erdelyi,
1952 or Szego, 1967):

Qs(y) = N~ [py, By)Bly — 1)..Bly — j + 1)].

(E.5)

where )\; is a constant which ensures that the variance of (); is equal to 1.

These orthonormal polynomials can be used for our testing procedure. They are not necessarily
the best in terms of power or robust to parameter uncertainty. However, one advantage is that the
variance is known, equal to one.

Another advantage is that the family of orthogonal polynomials is complete in L? (see, for ex-
ample, Gallant, 1980, in a continuous case). Testing the distribution or testing the full sequence of
polynomials is therefore equivalent. The next Section presents some particular examples of Ord’s
distributions and related polynomial families of interest. Candelon et al. (2011) used, for example,
the Meixner polynomials to test the geometric distributional assumption in a VaR framework.
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E.3 Examples of Ord’s distributions

We provide here particular examples of discrete distributions. The definition of the orthonormal
polynomial family is provided in Table XV.

E.3.1 The Poisson distribution

When Y ~ Po(h), the probability distribution function of Y is:

y
e? 0—

y!

The orthonormal family associated to the Poisson distribution is the family of Charlier polyno-
mials CY(y). As

Py =

Olnp, .y _ _Cly)

6 0 N

Charlier polynomials of degree greater or equal to 2 are robust to parameter uncertainty when one
estimates the parameter 6.

E.3.2 The Pascal distribution

The Pascal distribution is also known as the negative binomial distribution. It extends the Poisson
distribution to some cases where the variance could be greater than the mean of the distribution
(the overdispersion that Poisson counting processes fail to fit). The negative binomial distribution
is also known as a Poisson-Gamma mixture.

When Y ~ Pa(u,d),
= (25) () o

When § — +o0, the Pascal distribution tends to the Poisson distribution. The orthonormal
polynomials associated to this distribution are the Meixner polynomials M;(y, p, ).

When o = 1, the Pascal distribution is the geometric distribution (o = ﬁ). Candelon et al.
(2011) test this discrete distribution in a context of backtesting.

E.3.3 The binomial distribution

The probability distribution function of the Binomial distribution is:

py=()p@—p)"NY
where p < 1

In this case, the orthogonal polynomials K ;(y, N, p) are the Krawtchouk polynomials. They
can be used for testing probit and logit models.
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Table XV: Ord’s family and orthonormal polynomials.

Name Dy A B 1
Recursive relationship

=

y! NG

Poisson e —(y—p+1) y+1 L=y
()

Qi+1(y) = _\/%Qj< y) — \/jjﬁqu Y

Y5\t 5—6
Pascal  (#5) (i55) mybidy ds+0-(+1) g+l

po(p+3)
) — u(2540)+6(5—vy) j(6+j5—1)
@inly) = ZoS oo m@W - Gy @1 W)
Geometric (1—-a)la —a(y+1) y+1 lfclfzy
(1—a)(2j+1)+a(j j
Qjly) = U0 0 (y) — 5Q; 1 (y)
Binomial (M) (1 —p)Nv —(y— Np+q) qly +1) pj;;ﬁ

Qj—H( )_ %QJ( ) \/ JJ:\{ J+1) Q] 1( )

py%y_py = %. (); is the orthogonal polynomial of degree j, normalized.

E.4 A general class of moments

The two previous sections present some particular moments that can be used for testing purposes.
There are however some cases where such moments are not so easy to derive. We propose here a
general rule for constructing any moment for which the expectation under the null is equal to zero.
Let v be a function defined on N x © and such that its expectation under P, is finite. We assume
that (0, §) = 0, this is just a normalization.

Proposition 6. Let m(y, 6) be the function defined by

() = [0+ 1.0) = v 0) + 2O E Dy g e

We have:
Eo [m(y,0°)] = 0. (E.7)
Proof. We first prove the proposition in the case where N is infinite. Take first the expectation of
AY(+)(y,6°) under the null:

—+00

Eo[At(y, 0°)] =) (w(i +1,6°) — (i, 6°)) pi(6°) (E.8)

=0
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Reordering the second term of the last expression yields to
+00 +oo
Eo[Av(y, )] =Y (i +1,6%)p:(6°) = > 4b(i, 6°)pi(6°)
i=0 i=0

+00 +oo
= (i 4+ 1,6%)pi(0°) = > 1)(i,6°)pi(6°) because (0, 6°) = 0,

=0 =1

+o00 400
= Z¢(Z +1,0%)p,(6") — Zw(’l +1,6%)pi11(6°)
i=0 i=0

- Zw(l +1,6°) (pira(6°) — pi(6°))

DPy+1 (90) B py<90> }
p(y, 6°) '

= —Eyo [¢(y +1,60%)

Consequently

E, {A¢(y, 0°) + <¢(y +1, eo)p“l(eo) — py(e()))} = 0.

p(y, 6°)
Observe that the quantity inside the brackets is exactly m(y, 6°). When N is finite, the proof is
similar as p;(0) is equal to zero when i > (N + 1).

O
We illustrate the usefulness of Proposition 6 previous results by considering the geometric
distribution with parameter 6. In this case, p,(6) = (1 — 0)¥6 and W = —0. When

¥(y,0) = y, we obtain the first Meixner polynomial, up to some scale factor, 1 — § — fy. When
¥(y,0) = y?, the moment derived from (E.6) is a linear combination of the first two Meixner
polynomials. The family of functions y* generates the first k& terms of the Meixner family.

More generally, Proposition 6 generates a set of moments when one does not have any obvious
moment to use.

One could argue that focusing on this class could restrict the range of the tests derived from
these moment conditions. It might be the case that the set of moments generated by Equation (E.6)
could be a small subset of the set of moments with zero expectation. The next proposition shows
that any moment with zero expectation can be generated by the construction presented above.

Proposition 7. Let m(y, 0) be a moment such that
Eo [m(y,6")] = 0. (E.9)

Let (y, 0) be a function defined on S by:

¥(0,0) =0,

vt (E.10)
m(k, 0)px(0) fory > 1

U(y,0) =



Then, m(-) satisfies the equality in Eq. (E.6).

Proof. Following the definition of (-),

20000 + 0(y-+1,0) 22200
=y +1,0) —¥(y,0) + Yy + 1,2y,0) (%
=y +1, 9)% —(y,0)
- L Zmﬁf o) - mk, 0)pi(6)
. h

Observe that the last equality holds without the expectation.
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using Equation (E.10),



