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Abstract

This paper considers moment-based tests applied to estimated quantities. We propose a gen-

eral class of transforms of moments to handle the parameter uncertainty problem. The construction

requires only a linear correction that can be implemented in-sample and remains valid for some

extended families of non-smooth moments. We reemphasize the attractiveness of working with ro-

bust moments, which lead to testing procedures that do not depend on the estimator. Furthermore,

no correction is needed when considering the implied test statistic in the out-of-sample case. We

apply our methodology to various examples with an emphasis on the backtesting of value-at-risk

forecasts.
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1 Introduction

Moment-based tests for assessing distributions or particular distribution features (tail properties,

kurtosis) are particularly attractive because of their implementation simplicity. These tests are

universal because they can consider univariate or multivariate parametric distributions, discrete or

continuous distributions, and independent or serially correlated data in the same setting. Moment-

based tests have therefore been extensively used in recent papers related to financial econometrics

(Amengual and Sentana, 2011; Amengual et al., 2013; Bai and Ng, 2005; Bontemps and Meddahi,

2005, 2012; Candelon et al., 2011; Dufour et al., 2003; Fiorentini et al., 2004; Mencia and Sen-

tana, 2012), forecasting (Diebold and Mariano, 1995, West, 1996, West and Mc Cracken, 1998,

McCracken, 2000), and microeconometrics (Butler and Chatterjee, 1997, Tauchen, 1985, Mora and

Moro-Egido, 2008). Additionally, structural econometric models provide moment-based equations

from testable overidentifying restrictions. For example, structural search models (see Jolivet et al.,

2006) provide testable implications for job durations and job offer arrival rates and their relations

to the wage distribution.

Very often, these moment equations involve quantities or parameters that must be estimated,

generally with the same data set. This is the parameter uncertainty problem that generally modifies

the asymptotic distribution of the implied test statistic. Ignoring this issue would lead to an invalid

procedure. This is a known problem that has been resolved in different ways. For example, Lil-

liefors (1980) retabulates the critical values of the Kolmogorov-Smirnov statistic using simulation

methods. When introducing their portmanteau test for the white noise process in ARMA models,

Box and Pierce (1970) use an approximation of the true distribution, integrating the fact that the

parameters of the ARMA process are estimated. Using a moment-based test approach, Tauchen

(1985) and Newey (1985) evaluate and correct for the impact of estimation noise. The correction

method is explained in Subsection 2.2.2. However, a tractable expression is required for the esti-
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mated parameters. This is a regularity condition that may not be satisfied in some contexts, such

as for two-step estimators or semiparametric estimations.

In this paper, we use an alternate approach to address this problem by transforming the moment

of interest into one that is orthogonal to the underlying score function. We call such a moment a

robust moment. As further explained below, this transform is a linear correction of the moment of

interest for which the weights can be estimated (or calculated) easily. Orthogonality to the score

function ensures that local variations of the estimate around the true value (these variations belong

to the space spanned by the score) do not affect, at the first order, the information measured by

the moment. Our framework can handle both smooth and non-smooth moments. The literature

shows that what matters is not the smoothness of the moment but the smoothness of its expectation

around the true value (see Tauchen, 1985 or Andrews, 1994). Our orthogonalization strategy

systematically exploits the generalized information matrix equality that remains valid for a large

class of non-smooth moments, an attractive feature when testing discrete distributions.

Several methods can be used to orthogonalize a given function with respect to the score func-

tion. In recent contributions, Bontemps and Meddahi (2012) use the orthogonal projection method,

and Wooldridge (1990) modifies the instruments in a conditional distribution setting. Here, we

consider a general class of oblique projections. Interestingly, we obtain an analytical expression

explicitly involving not the score function but the derivatives of some functionals of interest, which

is of particular interest when the score function is difficult to characterize in a closed form. Addi-

tionally, it enables us to consider moments in semiparametric models in which one does not have

to specify the full structure of the data. We consider such an example in Section 3.

Working with robust moments is of particular interest and is useful for testing purposes. First,

we do not have to explicitly characterize the first-order expansion of the estimate because the

implied test statistic does not change whether the researcher plugs in the true value of the parameter

or a consistent1 estimate. Second, we can allow for a slower convergence speed than the usual

standard square root convergence rate, which is particularly interesting if part of the parameter

is estimated at the nonparametric rate. Additionally, a robust moment is robust whether the data

1See Proposition 3 for the required convergence speed.
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are serially correlated or not; therefore, handling dependence is not complicated. The alternative

to correcting the statistic, when feasible, requires many calculations to compute the asymptotic

distribution of the test statistic, which we avoid here.

Finally, we also prove that working with robust moments is particularly appealing for out-

of-sample evaluation. The forecasting literature (see, in particular, West and McCracken, 1998)

shows that out-of-sample correction depends on the estimation scheme. With a robust moment, no

correction is required, and one can use this robust moment indiscriminately for both in-sample and

out-of-sample cases. In Section 3, we consider an out-of-sample case, including, in a Monte Carlo

subsection, an evaluation of the small sample properties of our approach and a comparison with

existing correction methods.

We also study the power implications of our orthogonalization strategy. First, there is no triv-

ial loss of power when working with robust moments, in comparison to the correction strategy.

Second, there is no optimal transform in our projection class with no precise knowledge of the al-

ternative because a particular choice can always be dominated by (or dominate) another choice for

another local alternative. The tractability of the test procedure is ultimately the major guideline.

We organize the rest of this paper as follows. Section 2 develops the general framework and

characterizes the class of our orthogonalization methods. We then expose their theoretical prop-

erties and conduct a local power study. Section 3 characterizes the advantages of using robust

moments in out-of-sample contexts and presents some examples. Section 4 describes in detail the

backtesting of value-at-risk (VaR) models. In particular, we derive easy-to-compute procedures to

test the accuracy of VaR forecasts from a GARCH model. These tests are valid regardless of the

true conditional mean and variance used to generate the GARCH. We focus, in particular, on two

popular models, the normal GARCH model and the T-GARCH model. Monte Carlo simulations

of the proposed tests suggest that the tests perform well in the setups traditionally considered in the

literature. Finally, Section 5 considers an empirical application to test the VaR forecasts derived

from a T-GARCH(1,1) model for daily exchange rate data. Section 6 concludes the paper. The

Supplemental Material contains appendices that provide the proofs (Appendix B) and additional

analysis.
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2 General results

2.1 Set-up and notations

We consider a sample of T independent or serially correlated observations (y1, . . . , yT ), drawn

from a univariate random variable Y for which stationarity is assumed. Our goal is to test moment

restrictions on these data.

Generally these moment restrictions are derived from an assumption on the distribution of Y .

For example, assume that the probability density function of Y belongs to a parametric family

of discrete or continuous distributions Pθ indexed by θ ∈ Θ ⊂ Rr.2 This assumption implies

restrictions that are testable in the data. For example, a Poisson assumption implies that mean and

variance of Y are equal. If we assume a Bernoulli distribution with parameter α known, it implies

that the mean of Y is equal to α. Note that the resulting test is generally not an omnibus test for the

distributional assumption since we select a finite number of moments. Most of the leading tests in

the literature are not omnibus either. For example, when testing normality, tests based on skewness

and kurtosis measures cannot detect deviation from moments greater than five. However, these

tests are frequently used because they are intuitive, easy to implement, and sufficiently powerful

for the standard alternatives of interest. Furthermore, one of the advantages of moment-based tests

is that we can always adapt the moment to the alternative of interest.3

Additionally, our setup includes the case where we test particular features of the data without

relying on full distributional assumptions. For example, in forecasting, one is interested in testing

whether the one-step-ahead forecast error is orthogonal to the previous period’s forecast error, and

the marginal distribution is generally left unspecified.

In this paper, θ denotes the vector of parameters that are estimated and is generally estimated

2We can adapt our framework to the conditioning case in whichX gathers explanatory variables

that may or may not contain past values of Y in the time series case. In this case, Pθ would become

Pθ,x, and we would be able to test unconditional moments implied by the conditional distribution

of Y | X = x.
3Bontemps et al. (2017) study point optimal moment-based procedures.
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in-sample from y1, . . . , yT .4 The true value of parameter θ is denoted by θ0, and E0 and V0 denote,

respectively, the expectation and variance under the true data generating process (DGP). The sym-

bol > denotes the transpose operator, and for two vector-valued functions h1(y, θ) and h2(y, θ),

we denote by E0

[
h1h

>
2

]
the matrix E0

[
h1(y, θ0)h>2 (y, θ0)

]
.

The moment restrictions that we consider are denoted by m(·), a particular k-dimensional

vector5 chosen by the researcher. Under the null hypothesis,

E0

[
m(yt, θ

0)
]

= 0.

Our procedure consists of testing whether the empirical average of these moments is close to

zero when θ is also estimated.

2.1.1 One leading example

Financial institutions use VaR forecasts as a measure of risk exposure. Generally, backtesting

procedures are required to assess the reliability of the models used to compute VaR forecasts.

Following the recent financial crisis, it has become important for financial institutions to hold

sufficient capital to sustain potential losses. Although other risk measures can be used in empirical

finance, VaR is the most common. Most existing tests are based on the sequence of hits, It, of VaR

violations. Under perfect accuracy, It is i.i.d. Bernoulli distributed with parameter α, the coverage

level of the VaR. It implies some moment restrictions that we test, which is one of our leading

examples that is addressed in detail in Section 4.

2.1.2 Test statistic when the parameter is known

For a benchmark, we first present the hypothetical case in which the true value θ0 of the parameter

θ is known.
4See Section 3 for the out-of-sample case.
5The k components of m(·) are assumed to be free, that is, the variance of m(·) under the null

hypothesis is of full rank.
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Assumption CLT - Central limit theorem.

Throughout this paper, we assume that the long-run covariance matrix of m(·), Σ, is finite and

positive definite and that the CLT applies.6

Under Assumption CLT, a test statistic ξm can be constructed from any consistent estimator

Σ̂−1 of Σ−1:

ξm =

(
1√
T

T∑
t=1

m(yt, θ
0)

)>
Σ̂−1

(
1√
T

T∑
t=1

m(yt, θ
0)

)
. (1)

Under the null hypothesis, this statistic asymptotically follows a chi-squared distribution with k

degrees of freedom.

In this paper, we do not focus on how to select the moment. First, in many contexts, the

researcher has an idea about which moment to test (such as skewness and kurtosis in the normal

case). Moreover, the choice of moment is linked to optimality concepts and requires a separate and

longer treatment (see Bontemps et al., 2017). Appendix E in the Supplemental Material provides

a discussion on how to generate a moment with zero expectation when one considers testing a

discrete distribution.

In the above VaR example, a natural moment to check first is to compare the frequency of VaR

violations with the expected value, α. The corresponding moment ismt = It−α. Additionally, one

can consider the property that the hit sequence should be independent of the past by considering

the moment mtZt−1 for any random variable Zt−1 in the past information set.

2.2 Test statistic when the parameter is estimated

Next we consider the case in which θ0 is estimated in the sample. Let sθ(·) be the score function

of the model. We now detail the regularity assumptions that we impose to write our first-order

expansion in Equation (4). These regularity conditions are standard in the GMM literature.

6Lower-level assumptions that ensure Assumption CLT for m(·) can be found, for example, in

Corollary 5.3 of Hall and Heyde (1980).
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2.2.1 Regularity conditions

Assumption REG - Regular estimator.

We assume that θ̂, an estimator of θ0 based on y1, . . . , yT , converges almost surely (the regularity

conditions can be found in Hansen, 1982) and satisfies the following expansion:

√
T (θ̂ − θ0) =

1√
T

T∑
t=1

w(yt, θ
0) + oP (1),

where w(·) is an estimating function that satisfies the CLT and therefore ensures the asymptotic

normality of θ̂. The influence function, w(·), can be derived from maximum likelihood (ML) or

GMM estimation. In our procedure, we do not need to explicitly know w(·).

Assumption GIM - Generalized information matrix equality.

The GIM equality

(
∂E0 [m(yt, θ)]

∂θ>

)
θ=θ0

+ E0

[
ms>θ

]
= 0 (2)

is satisfied.

The conditions for Assumption GIM to be valid can be found in Tauchen (1985) (it is proved in

Theorem 5 under Assumptions 2 and 4) and requires, in particular, the continuous differentiability

of E0 [m(y, θ)] with respect to θ in some open neighborhood of θ0.

First, any moment m(·) continuously differentiable in a neighborhood of θ0 satisfies Assump-

tion GIM; this expression is used, for example, in Newey and McFadden (1994). Additionally, this

paper considers the following class of non-smooth moments:

m(y, θ) = 1{y ∈ [l(θ), u(θ)]} − p(θ), (3)

where 1{·} is the indicator function and l, u, and p are continuously differentiable functions of θ.

Such a moment estimates the frequency of a given interval/class and compares it with the expected

frequency and is often used in discrete distributions; the Pearson’s chi-squared test is a famous

example. Following Tauchen (1985), any moment in this class satisfies Assumption GIM.
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2.2.2 Asymptotic expansion

The next proposition characterizes the asymptotic distribution of the average of the moment eval-

uated at the estimated parameter, θ̂.

Proposition 1. Let m(·, θ0) be a moment with zero expectation under the null that satisfies As-

sumption CLT, and let θ̂ be a square-root consistent estimator of θ0 that satisfies Assumption REG.

Under Assumption GIM, the sequence m(y1, θ̂), . . . ,m(yT , θ̂) satisfies the following expansion:

1√
T

T∑
t=1

m(yt, θ̂) =
1√
T

T∑
t=1

m(yt, θ
0)− E0

[
ms>θ

]√
T (θ̂ − θ0) + oP (1). (4)

Equation (4) is generally known in the differentiable case because it is the first-order expansion

in which E0

[
ms>θ

]
is replaced by −E0

[
∂m
∂θ>

]
, which is proved by Tauchen (1985) in the non-

smooth case (see Theorem 2 of Tauchen). We are not the first to use this equation, but we exploit

it here systematically for testing in an alternate form.

In standard cases, plugging in θ̂ for θ0 generally modifies the asymptotic variance, as the above

equation indicates. Ignoring this change would lead to size distortion, a problem of empirical

relevance because assumptions that should be rejected might not be and conversely. This distortion

level depends on the covariance between m(·) and the score function as well as on the estimating

function used to estimate parameter θ0. Equation (4) highlights the two strategies to address the

impact of parameter uncertainty.

The first strategy, which we call correcting hereafter, consists of deriving the joint asymptotic

distribution of the two terms on the right-hand side of (4), as in Newey, 1985, Mora and Moro-

Egido, 2008, for the probit case, and Escanciano and Olmo, 2010, for the VaR example. However,

this is not always possible because the score may not be properly defined, as in a semiparametric

GARCH model, or when the influence functionw(·) is not easy to derive, as in two-step estimators.

This strategy can also be very cumbersome in some cases, for example in time series.

The second strategy involves working with momentsm(·) orthogonal to the true score function,

which we call robust moments. For robust moments, the asymptotic distribution of 1√
T
m(yt, θ̂) is

the same, at the first order, as the asymptotic distribution of 1√
T
m(yt, θ

0) because the second term
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on the right-hand side of Equation (4) is equal to zero. Thus, we do not have to consider the

estimation impact. For example, Bontemps and Meddahi (2005) find that Hermite polynomials of

degree 3 or more can be used for the normality testing of generalized regression model (including

GARCH) residuals.

In this paper, we transform any moment m(·) into a moment that is robust. We propose general

projection methods that can transform any moment into a moment orthogonal to the score function.

Note that any method in the literature that builds robust moments implicitly or explicitly transforms

a moment into a moment orthogonal to the score function. For example, Wooldridge (1990) con-

siders moment-based tests for conditional distributions. In his framework, the matrix involved is

the full expectation with respect to the joint distribution of Y and X . He proposes transformation

of the instruments h(X) to obtain orthogonality with respect to this joint distribution and does not

refer to the score function. Bontemps and Meddahi (2012) propose projection of the moment of

interest m(·) orthogonally onto the space S⊥, the space orthogonal to the space spanned by the

score. Specifically, the transformed moment is

m⊥(y, θ) = m(y, θ)− E0

[
ms>θ

]
V0[sθ]

−1sθ(y). (5)

2.3 Orthogonalization methods

In this subsection, we introduce our general class of oblique projection transforms. These trans-

forms generalize the orthogonal projection of Bontemps and Meddahi (2012). Interestingly, the

robust moment can be characterized without explicitly mentioning the score function.

2.3.1 Robustification by oblique projection

Consider an estimating function g(·) that can identify7 parameter θ and satisfy Assumption CLT

and Assumption GIM. This estimating function can be used to estimate θ, but we do not impose it

7It means

E0 [g(y, θ)] = 0 iff θ = θ0.
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here. We assume that g(·) has the same dimension as θ, as in the identifying restrictions of a GMM

procedure. We denote by m̃g the projection of m(·) onto S⊥ parallel to direction g.

Proposition 2. Let m̃g be the projection of m(·) onto S⊥ parallel to direction g. m̃g can be

expressed as

m̃g(y, θ) = m(y, θ)−
(
∂E0 [m(yt, θ)]

∂θ>

)
θ=θ0

(
∂E0 [g(yt, θ)]

∂θ>

)−1

θ=θ0
g(y, θ), (6)

and this moment is robust to parameter estimation uncertainty.

Proof. Equation (6) exploits the GIM equality for m(·),(
∂E0 [m(yt, θ)]

∂θ>

)
θ=θ0

= −E0

[
ms>θ

]
,

and for g(·). Therefore, m̃g can also be expressed as

m̃g(y, θ) = m(y, θ)− E0

[
ms>θ

]
E0

[
gs>θ
]−1

g(y, θ). (7)

This moment is clearly orthogonal to the true score function. Note that (5), the orthogonal projec-

tion onto the orthogonal space spanned by the score, is a specific case of (7) with g = sθ.

Equation (6) in Proposition 2 is one of our important results. Observe first that this transform is

a simple linear correction (that exploits the generalized information equality) that depends on only

m(·), the moment tested, and g(·), the estimating function chosen. Moreover, the expression in (6)

does not use the score function but the derivatives of the functions of interest with respect to θ. In

many cases, these quantities are easy to derive analytically (see the examples in Section 3 and 4).

If it is not possible to obtain a closed form for the expectation, it is still possible to estimate these

quantities in the data. Moreover, if m(·) is smooth, one can simplify the first matrix in Equation

(6) because (
∂E0 [m(yt, θ)]

∂θ>

)
θ=θ0

= E0

[
∂m

∂θ>

]
,

and similarly for g(·).

As we discuss later in Subsection 2.3.4, many choices exist for g(·). The empirical researcher

should be aware that there is no ”best choice” for g(·) without a specific alternative. According to
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the testing literature, a closed-form expression provides better small-sample performance because

it avoids imprecise quantity estimates. The ultimate guideline is to choose the estimating function

g(·) that appears to be most tractable.

2.3.2 Advantages of working with robust moments

Working with robust moments has several advantages. Since the test statistic is insensitive to the

quality of the estimates, it depends on only the choice of the moment. Therefore, the critical

values of the test statistic can be tabulated using either the asymptotic distribution or by simulation

(bootstrap or Monte Carlo techniques can be used to improve the small-sample properties).

Additionally, a robust moment is robust whether the data are i.i.d. or serially correlated. The

alternative, which consists of correcting the statistic, could require numerous calculations to com-

pute the covariance between the first and second terms in Equation (4), which we avoid here.

Moreover, the same argument holds for two-step estimators, in cases where the influence function

is not easy to derive, and when the asymptotic distribution is non-standard.

We now present another interesting property of robust moments; we can indeed loosen As-

sumption REG.

Proposition 3. Let m̃g be a robust moment defined as above. When Tα(θ̂ − θ0) = OP (1) for

α > 1/4,
1√
T

T∑
t=1

m̃g(yt, θ̂) =
1√
T

T∑
t=1

m̃g(yt, θ
0) + oP (1).

In some cases, the parameters of interest have slower convergence rates. For example, Manski’s

maximum score estimator converges at a slower rate than 1/2. Additionally, the convergence rate

of the estimates of private values in auction models estimated nonparametrically is also slower

than the standard square-root rate. In these cases, the usual correction strategy requires further

investigation (Expansion (4) is indeed not valid when θ has a convergence rate slower than T 1/2).

Proposition 3 shows that a testing procedure derived from a robust moment remains a solution for

testing in less-regular cases.
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2.3.3 A simplified procedure: building robustness from an auxiliary model

While Proposition 2 provides a strategy for building a robust moment, its attractiveness depends

on the choice of g(·). Here, we propose a simplified procedure to construct robust moments. This

procedure can be used when the parameters of interest can be concentrated out.

Consider a simple model M̃ (the auxiliary model) defined by the parametric family of distri-

butions P̃ (yt; β), and let sβ(·) be the score for this auxiliary model. Assume further that our true

model can be concentrated and linked to this auxiliary model by β = h(Xt−1, θ), where h(Xt−1, ·)

is a smooth function in the neighborhood of the true value and Xt−1 is a collection of variables

such that, conditional on Xt−1, the distribution of yt is in P̃ (yt; β). A moment orthogonal to sβ(·)

in the auxiliary model is also orthogonal to the true score in the true model.8 This approach is par-

ticularly appealing because in some cases, it is easier to build a moment orthogonal to the score for

an auxiliary model than for the true model. Interestingly, such a moment remains robust regardless

of the functional form h(·). We illustrate this result with two examples.

VaR Example Consider the following model for financial returns:

rt = µ(Jt−1, β) + σ(Jt−1, β)εt,

where Jt−1 is the information set at time t− 1, εt is an i.i.d. variable with a known distribution

and β is a vector of parameters. Here, we can define µ = µ(Jt−1, β) and σ = σ(Jt−1, β); our

auxiliary model is therefore the constant location-scale model

rt = µ+ σεt.

In this auxiliary model, one can apply Proposition 2 from an estimating function g(·) (the first

two moments, for example) to build a robust moment. Following our result above, this robust

moment is also robust for the GARCH model just introduced.

This characteristic is particularly important in practice because the robustness of this moment

is valid regardless of the specification of µ(·) and σ(·) of the GARCH model, which makes our

8See proof in subsection B.2 in the Supplemental Material.
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approach interesting for financial regulators. Ignoring parameter uncertainty may distort the results

and lead to not rejecting a VaR model that should be rejected. The systematic use of this robust

moment approach controls for this problem even without precise knowledge of the true underlying

models. We detail the implementation in Section 4.

Testing a moment in a parametric family The previous example can be generalized to the

case of any robust moment with zero expectation under a given parametric distribution. If the

parameter of this distribution β is linked to some exogenous variables X , β = h(X, θ), where θ is

a parameter vector to be estimated, the same moment remains robust when θ is estimated from the

data. Following Proposition 3, the convergence rate for θ can also be the nonparametric rate.

2.3.4 Local power properties and choice of g

We presented above the main advantages of using a robust moment in a moment-based test. How-

ever, a successful testing procedure must control the size to ensure validity and also have good

power properties, at least with respect to the usual alternatives. Here, we might wonder whether

the projection strategy may systematically decrease the power compared to the correction strategy.

Additionally, the choice of g(·) could influence the power properties of the testing procedure. We

investigate these two questions in this section.9

First, we need to stretch the fact that a moment is robust independently of the choice of the

parameter estimator. If the estimating function g(·) used to estimate the parameters is the one used

to make the moment robust, i.e., we use m̃g(·) for our robust moment, the two test statistics result in

the same numerical value. Consequently, there is no trivial loss of power for our strategy because

it coincides with the correcting strategy for some specific choice of the estimating function g(·) in

Equation (6). Again, remember that the correction strategy, which depends on the estimator, can

be numerically challenging when the influence function of the estimator is not tractable.

Next, we turn to the choice of g(·), the direction of the oblique projection. Proposition 2

does not impose any particular requirement on g(·). Equation (6) illustrates that some choices of

9The proof is provided in Section B.3 of the Supplemental Material.
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g(·) can provide closed-form expressions. Clearly, a closed-form expression helps to improve the

small-sample properties of the test derived from this moment. The next proposition calculates the

parameter that drives the power property of a test based on g.

Proposition 4. Let g(·) be some estimating function for θ like in Proposition 2 and m̃g the robust

version of m(·) after projection along the direction g (see Equation (6)). Assume that, under the

(local) alternative, the p.d.f is q1 = q0(1 + h(y)/
√
T ). The power function from the test based on

m̃g is an increasing function of the parameter:

a(g) =
E0 [m̃gh]2

V1[m̃g]
.

Proposition 4 allows us to prove that no optimal choice of g(·) for power maximization exists

uniformly. Indeed, the power of the test for a specific choice of m(·) depends on the local alter-

native, h(·), considered. Consequently, for any choices of g1(·) and g2(·), there exist two local

alternatives such that m̃g1 is better than m̃g2 in the first case and the reverse is true for the second

case. Without any specific direction of departure from the null, our suggestion is to select the

estimating function g(·) that appears to be the most tractable.

3 Out of sample evaluation of robust moments

In this section, we focus on moments evaluated out-of-sample. As noted by West and McCracken

(1998) in particular, the estimated parameters modify, as in the in-sample case, the asymptotic

distribution of the test statistic. Moreover, the correction they provide depends on the estimation

scheme (recursive, rolling, or fixed) and the ratio between the number of out-of-sample obser-

vations and the sample size used for the parameter estimation. McCracken (2000) extends the

approach to the case of non-smooth moments.

3.1 Invariance of the robust moments to the estimation scheme

One may use our robust moments instead of correcting. The following proposition states that a

robust moment leads to invariant statistics, even for out-of-sample evaluations.
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Proposition 5. Let θ̂t be a sequence of square-root-consistent GMM-type estimators of θ0 using

the data yt−R, . . . , yt−1 (rolling estimator), y1, . . . , yt−1 (recursive estimator), or y1, . . . , yR (fixed

estimator). We assume that θ̂t satisfies Assumption REG for the corresponding values of the time

index. We also assume that R and P tend to ∞ while
√
P/R tends to 0 and that m(·) satisfies

Assumptions CLT and GIM. If m(·) is a robust moment,

1√
P

R+P∑
t=R+1

m(yt, θ̂t) =
1√
P

R+P∑
t=R+1

m(yt, θ
0) + oP (1). (8)

The proof is a direct consequence of the fact that the second term in the asymptotic expansion

vanishes owing to orthogonality of m to the score function. Observe, however, that working with a

robust moment allows us to loosen the requirement of a finite limit of P/R in West and McCracken

(1998), which is generalized in McCracken (2000) for non-smooth moments.

The intuition is the same as for the in-sample properties. A robust moment is orthogonal to the

score and is therefore uncorrelated with the local deviations of θ̂ around θ0.

Therefore, when the moments are robust, the asymptotic variance of the out-of-sample averages

of these moments is the standard long-run variance. We do not have to correct for the estimation

scheme, which further demonstrates why robust moments are attractive.

3.2 Derivation of robust moments in different examples

We now complement this result by deriving robust moments for some of the tests proposed in West

and McCracken (1998) and in McCracken (2000). For simplicity, we omit, in our notations, the

dependence of the functions on y and θ.

3.2.1 Testing for first-order correlation in a regression model

Consider the stationary model10

yt = x>t θ
0 + εt.

The goal is to test whether E0 [εtεt−1] = 0 from the estimated residuals; ε̂t = yt−x>t θ̂t is computed

using one of the three different schemes.
10Model 6.1 in West and McCracken (1998).
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West and McCracken (1998) propose a scheme-dependent correction method and a simple

procedure to correct for parameter uncertainty through auxiliary regressions. In our approach, we

transform the moment m = εtεt−1 into one that is robust to parameter uncertainty. On the basis

of Proposition 2 and because g = (yt − x>t θ)xt, one can derive the matrices of interest as follows,

noting that the moments and the estimating function are both smooth functions of the parameter.

E0

[
∂m

∂θ

]
= −E0

[
x>t εt−1

]
and E0

[
∂g

∂θ>

]
= −E0

[
xtx
>
t

]
.

Thus, the robust version of m is

m⊥ = εtεt−1 − E0

[
x>t εt−1

]
E0

[
xtx
>
t

]−1
xtεt. (9)

The two expectations above can be simultaneously estimated in the sample with the estimation

of θ0. Closed-form expressions can be derived with more structure. For example, an AR(1) model

without a constant term, yt = ρyt−1 + εt, leads to the following moment:

m⊥ = εtεt−1 − (1− ρ2)yt−1εt.

3.2.2 Encompassing test

Following West and McCracken (1998), we consider the encompassing test. Consider model 1,

yt = x>1tβ
∗
1 + v1t, and the encompassing test with model 2, yt = x>2tβ

∗
2 + v2t. This process consists

of testing

E0

[
v1t(x

>
2tβ
∗
2)
]

= 0.

The algebra is similar to that of the previous case. The robust version of the test replaces

m = v1t(x
>
2tβ
∗
2) with

m⊥ = v1t(x
>
2tβ
∗
2)− E0

[
x1t(x

>
2tβ
∗
2)
] (

E0

[
x1tx

>
1t

])−1
x1tv1t.
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3.2.3 Test of equal MAE

We next consider a non-smooth moment and test for equal mean absolute error between model 1,

yt = x>1tβ
∗
1 + v1t, and model 2, yt = x>2tβ

∗
2 + v2t. The moment considered in McCracken (2000) is

m = |u1t| − |u2t|,

which satisfies the regularity conditions given in Section 2. We define the robust version according

to Equation (6) as follows. For each model i, i = 1 or 2, the first matrix
(
∂E0[|yt−x>itβ∗i |]

∂β>i

)
βi=β∗i

is

equal to −E0

[
sgn(uit)x

>
it

]
. Because g(·) is smooth, we obtain the usual expression for the second

matrix; that is, −E0

[
xitx

>
it

]
. Consequently,

m⊥ = u⊥1t − u⊥2t,

where u⊥it = |uit| − E0

[
sgn(uit)x

>
it

] (
E0

[
xitx

>
it

])−1
uitxit, i = 1, 2.

3.3 A small Monte Carlo exercise

Now, we consider the first-order serial correlation test when one estimates an AR(1) model with

mean:

yt = µ+ ρyt−1 + εt.

This is a Monte Carlo exercise developed in West and McCracken (1998). The experiment

involves 10 000 replications. The robust moment, as calculated above, is εtεt−1−(1−ρ2)εt(yt−1−

µ), which has long-run variance ρ2σ4, where σ2 is the variance of εt. In all the tables, we report

the rejection frequencies for a 5% level test.

We first present in-sample results where we compare our test with the famous Box-Pierce

(1970) test11 with two correlations and its corrected version proposed by Ljung and Box (1978).

Both tests consider parameter uncertainty; however, we focus on only the first autocorrelations for

11BP (K) = T
∑K

h=1 ρ̂
2
ε(h), which follows a χ2 distribution with K − 1 degrees of freedom in

our case. We present the results for K = 2.
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a fair comparison.12 Under the null hypothesis, as in our proposed test, BP (2) is asymptotically

χ2(1) distributed when µ and ρ are estimated.

Table 1 shows the size results for four sample sizes: T = 50, 100, 250 and 500. We generate

observations from an autoregressive process with mean µ = 0, εt ∼ N(0, 1) and autocorrelation ρ,

where ρ takes values from 0.2 to 0.99. Both µ and ρ are estimated in-sample. Overall, our robust

test has good small-sample-size properties, similar to the Box-Pierce and Ljung-Box versions.

However, as ρ increases and approaches one, size distortion occurs for both the Box-Pierce and

Llung-Box tests.

Table 2 displays the power results for the same test when the true DGP for yt is the AR(2)

process yt = (ρ0 + ρ1)yt−1 − ρ0ρ1yt−2 + εt. The two inverse roots of the process are ρ0 and

ρ1. Here, we take ρ0 = 0.5, as in West and McCracken (1998), and the results are qualitatively

equivalent for other values. We let ρ1 increase from 0.1 to 0.5. The larger ρ1 is, the further the

process is from an AR(1) process. Therefore, we observe higher rejection rates as ρ1 increases.

Furthermore, our robust moment greatly outperforms the standard Box-Pierce test.13

[insert Tables 1 and 2 here]

We now present the out-of-sample properties of the same tests. West and McCracken (1998)

show that there is no parameter uncertainty problem for the recursive scheme. We consider here

the rolling scheme.14 We present the results for various values of R (the sample size used for

estimating the parameters, from 50 to 500) and P (the sample size used to evaluate our test, from

50 to 500). We compare our robust moment-based tests with the correction proposed in West and

McCracken (1998). The results are displayed in Table 3. The size distortion forR = 50 is severe in

both cases. Our test statistic has much better size properties and also performs better for detecting

departure from the null.

12The power of a chi-squared test decreases as the number of degrees of freedom increases.
13We did not correct for the size distortion of the BP test; the comparison is therefore in favor

of the BP test.
14The fixed scheme results, available in Appendix C of the Supplemental Material, lead to sim-

ilar conclusions.
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[insert Table 3 here]

4 Application to the backtesting of VaR models

In 1996, the Basel Committee on Banking Supervision proposed the use of VaR models as a pos-

sible risk management measure. There is a debate on what characterizes a good risk measure and

whether VaR is adequate (for example, see Artzner et al., 1999). However, VaR is the measure

commonly used by financial institutions. Let rt be the daily log return of some given portfolio,

and let VaRα
t be the one-day-ahead VaR forecast (computed at time t− 1) for a given level of risk

α (the value considered is generally 5% or 1%). With an abuse of notation, we consider the VaR

measure, V aRα
t , as the negative of the α-quantile of the conditional distribution of rt given Jt−1,

the information set at date t− 1:15

P (rt ≤ −V aRα
t |Jt−1) = α. (10)

Backtesting techniques attempt to check the accuracy of the models used by a given institution,

in most cases observing only the VaR forecasts, the returns and the distribution assumed for the

innovation terms. It is particularly appealing for regulators to measure the adequacy of these risk

measures.

Let It be the hit, that is, the indicator of VaR violation.16 Under H0, i.e., the VaR parametric

model used by the financial institution is the right model, It is i.i.d. Bernoulli distributed with

parameter α.

This section presents some feasible tests that are robust to the parameter uncertainty introduced

by the estimation of the conditional variance for the returns. This parameter estimation uncertainty

has rarely been considered in the literature.

15In fact, the VaR measure is the potential loss induced by this negative return.
16It is defined as

It =

 1 if rt ≤ −V aRα
t ,

0 otherwise.
(11)
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Christoffersen (1998) considers a likelihood ratio test in a Markov framework. Christoffersen

and Pelletier (2004) and Candelon et al. (2011) consider tests based on the distribution of the du-

ration between two consecutive hits without parameter uncertainty. Escanciano and Olmo (2010)

characterize the potential size distortion that could arise from ignoring its impact and use the cor-

rection strategy. However, as discussed above, this strategy depends on the underlying model used

for the returns. Additionally, they do not consider the parameter uncertainty with respect to the

estimation of the number of degrees of freedom in the T-GARCH model. Note also that a moment

framework can handle the case where the number of actual hits is equal to zero without any modi-

fication, which is particularly interesting when one backtests VaR forecasts with low coverage rate,

α.

4.1 Robust moments for backtesting VaR models

In this subsection, we detail the construction of a robust moment. We also show how to build

several test statistics from one robust moment.

4.1.1 Building a robust moment for backtesting in practice

Assume that the model for returns is the following constant location-scale model

rt = µ0 + σ0εt, (12)

where εt ∼ i.i.d. D(0, 1), a continuous distribution with mean 0 and variance 1. We assume that

the parameter for this distribution is known, as for the standard normal variable, or estimated with

no parameter uncertainty, as for a standardized Student’s distribution where the number of degrees

of freedom is constrained to be an integer (this is the case considered in Escanciano and Olmo,

2010).

Assume that we want to backtest the VaR sequence in this model. The moment mt = It − α,

which compares the VaR violation frequency with the expected one α, is not robust to parameter

uncertainty. Following Proposition 2, we detail the steps to transform mt into a robust moment:

1. Choose an estimating function g(·) for the parameters.
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2. Calculate ∂E0[g(rt,θ)]
∂θ>

at θ = θ0, which can be done numerically or explicitly.

3. Similarly, calculate ∂E0[It−α]
∂θ>

at θ = θ0.

4. Apply Equation (6) and calculate the test statistic ξ in (1).

We now apply this method to our specific case. First, a simple estimating function for µ0 and

σ0 is

g =

 rt − µ

(rt − µ)2 − σ2

 . (13)

For the second step, observe that because g(·) is smooth, we need to compute only the expec-

tation of its derivative with respect to parameter θ, θ = (µ, σ)>:

∂g

∂θ>
(rt, θ) =

 −1 0

−2(rt − µ) −2σ

 .
The expectation at θ = θ0 is therefore V = diag(−1,−2σ0).

Third, we compute P =
(
∂E0[It−α]

∂θ>

)
θ=θ0

,

which is equal to:

P =

[
1

σ0
f(qα);

qα
σ0
f(qα)

]
,

where qα is the α quantile of the distribution of ε, and f(·) is the probability distribution function.17

Finally, applying (6) yields a robust version of mt = It − α:

m⊥t = It − α + f(qα)εt +
qαf(qα)

2

(
ε2
t − 1

)
, (14)

17Here are the main steps to calculate P ; observe that

E0 [It − α] = E0 [1{rt ≤ (µ+ σqα)} − α]

= E0

[
1{rt − µ

0

σ0
≤ (

µ− µ0

σ0
+

σ

σ0
qα)} − α

]
= F

(
µ− µ0

σ0
+

σ

σ0
qα

)
− α.

Consequently, ∂E0[It−α]
∂µ

= 1
σ0f

(
µ−µ0
σ0 + σ

σ0 qα

)
and ∂E0[It−α]

∂σ
= qα

σ0f
(
µ−µ0
σ0 + σ

σ0 qα

)
.
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where the variance, Vα, depends on the distribution D assumed for εt. Observe that we do not

manipulate the score function to build this robust moment.

m⊥t is the robust moment in the constant location-scale model built with the estimating function

g(·) in (13). Now, we apply the result of Subsection 2.3.3. m⊥t is also robust for any GARCH model

rt = µ(Jt−1, θ) + σ(Jt−1, θ)εt, (15)

where Jt−1 is the information set at time t− 1 and θ is a vector of parameters. Different choices of

g(·) generate different robust moments. Additionally, we can also consider the true model (15) to

orthogonalize.

4.2 Building test statistics for backtests from a robust moment

Let et be a transform of It − α that is robust in the GARCH model (15). Vα denotes the variance

under the null hypothesis. Let Zt−1 be any squared integrable random variable belonging to the

information set at date t− 1. The orthogonalized moment

m⊥t = Zt−1et (16)

satisfies E0

[
m⊥t
]

= 0 and is robust to parameter uncertainty.

Thus, the corresponding test statistic

ξZ = T

(
1

T

T∑
t=1

Zt−1et

)> (
E0

[
Zt−1Z

>
t−1

]
Vα
)−1

(
1

T

T∑
t=1

Zt−1et

)
(17)

is asymptotically distributed as a χ2(k), where k is the dimension of Zt−1, whether the parameters

of the GARCH model are estimated or known.

In the next Monte Carlo subsection, we study different choices for the above instruments in the

past information set. Zt−1 = 1 corresponds to the unconditional test (i.e., we test that the frequency

of hits is the expected one, α); Zt−1 can also be past values, et−1, et−2, etc. Furthermore, linear

combinations of past values of et are also possible.
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4.3 A Monte Carlo exercise

We now examine the size and power properties of our test procedure and compare them with the

correcting strategy. The returns of a fictive portfolio/asset are assumed to follow a GARCH (1,1)

model with zero mean and i.i.d. innovations:

rt =
√
σ2
t (θ)εt, σ

2
t (θ) = ω + γr2

t−1 + βσ2
t−1, (18)

with εt ∼ D(0, 1), ω = 0.0001, γ = 0.045 and β = 0.95. We successively consider the standard

normal distribution and the standardized Student’s distribution for the distribution of εt.

We simulate samples with T = 250, 500 and 750 observations. For each sample, after estima-

tion of the model by maximum likelihood, we compute the series of one-day-ahead VaR forecasts,

V aRα
t , for α equal to 5%. All the results displayed are based on 10 000 replications, and each

table reports the rejection frequencies for a 5% level test.

4.3.1 The Normal GARCH model

We first consider the case of a Gaussian innovation process. In Table 4, we study the out-of-sample

properties, evaluating first the size, then the power of different competing tests.18 One-day-ahead

VaR forecasts are computed with a rolling estimator assuming normality for the innovation term.

This forecasting scheme is the most appropriate for this financial example. We use R = 500

values to estimate the parameters. We evaluate our moments on P = 100, P = 250 and P = 500

observations. As emphasized earlier, robust moment tests do not require additional correction, even

when studying out-of-sample performance. The tests are detailed here and are also presented in

Section A.1 in the Supplemental Material. et is the robust version of It − α calculated in Equation

(14), and e?t is the orthogonal projection of It − α onto the orthogonal of the space spanned by the

true score function of the Normal GARCH model. Finally, ect = It − α is a non-robust moment

for which we correct for parameter uncertainty, as shown in Subsection 2.2.2. We also consider

covariance tests based on the product of these moments with their past values, that is, etet−h for

18The in-sample results are given in Appendix C of the Supplemental Material.
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h = 1, 2, 3 and similarly for the two other moments.

The size properties are good, despite the slight over-rejection in the covariance tests.

The power properties are studied for two alternatives. In the first one, the distribution for the

innovation terms εt is a standardized Student distribution with 3 degrees of freedom. When com-

puting the VaR measure, Gaussianity is assumed, wrongly. In the second one, we simulate an

EGARCH model19 with T(4) innovations, estimating the standard normal GARCH(1,1) model to

compute the VaR forecasts. Both the distributional assumption and the volatility model are wrong.

The power is good for the robust moments given the alternative considered. The most important

outcome is the comparison with the power properties of the correcting strategy. Correcting deteri-

orates the power of the test for all values of P considered and for both alternatives. Furthermore,

we recall that the test based on et is valid for any GARCH specification. The performances of

this moment are very close to the performances of the one build from considering the real score

function.

[insert Table 4 here]

4.3.2 The T-GARCH model

The T-GARCH (1,1) model is a popular model in empirical finance because it accurately fits most

financial data, especially the tail properties. Our new DGP maintains the same conditional vari-

ance model as in the GARCH normal case, but the distribution of εt is the standardized Student’s

distribution with ν = 6 degrees of freedom.

We have now one additional parameter to estimate, ν, and we need to consider the parameter

uncertainty generated by this additional estimation. We again consider the same three moments as

in the normal case. For et, the first moment, the estimating function g(·) used for the orthogonaliza-

tion is the score in the constant variance auxiliary model. e?t is the orthogonal projection of It − α

onto the orthogonal of the space spanned by the true score of the full T-GARCH model. Finally ect

denotes, as before, It − α, which is a non-robust moment. We use the correction strategy to take

19σ2
t = exp(0.0001 + 0.9 lnσ2

t−1 + 0.3(|εt−1| −
√

2/π)− 0.8εt−1).
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into account the parameter uncertainty. The analytical expressions of these moments are given in

Subsection A.2 of the Supplemental Material. As before, we present only the out-of-sample prop-

erties with a rolling scheme, the natural framework for VaR forecasts.20 The results are displayed

in Table 5 for P = 100, 250 and 500. Again, we choose R = 500, which corresponds to the value

chosen in the empirical application. We first present the size and then the power properties. For

the power, we consider the historical simulation scheme and a skewed t-distribution.21 As in the

normal case, the tests based on et or e∗t appear to be the best, although et does not exploit the full

GARCH structure and is valid for any GARCH specification.

The correction strategy is dominated for the skewed t alternative. For the historical simulation,

in the out-of-sample case, there is power from the unconditional moments and ect performs well.

[insert Table 5 here]

5 Empirical Application

We illustrate our methodology in an empirical application related to VaR forecasts. We consider

the exchange rate data considered previously in Kim, Shephard, and Chib (1998) and also in Bon-

temps and Meddahi (2005, 2012). These data comprise observations of weekday close exchange

rates22 from 10/01/1981 to 06/28/1985. Bontemps and Meddahi (2005) strongly reject the nor-

mality assumption for a GARCH(1,1), whereas Bontemps and Meddahi (2012) do not reject the

20The in-sample properties are given in Appendix C of the Supplemental Material.
21The skewed t-distribution with ν degrees of freedom and parameter γ has the following density

g, where fν is the density of the standard Student’s distribution:

g(x) =
2

γ + 1/γ
f(γx) when x < 0, g(x) =

2

γ + 1/γ
f(x/γ) when x ≥ 0.

In the Monte Carlo exercise, we take γ = 0.5. Additional simulations not provided here show

similar patterns, with increasing power as we depart from γ = 1.
22The U.K. Pound, French Franc, Swiss Franc, and Japanese Yen rates, all versus the U.S.

Dollar.
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T-GARCH(1,1) model for all but the SF-US$ series.

The T-GARCH (1,1) model is estimated by maximum likelihood, and the parameter estimates

are used to compute the one-day-ahead VaR forecast for any value of α, the risk exposure. The

in-sample estimates are shown in the first part of Table 6 with degrees of freedom varying from

6.73 to 12.25.

We first test the accuracy of the in-sample VaR forecasts for the four series for three risk levels,

α = 0.5%, α = 1% and α = 5%, using the moments from Section 4.3.2. We also include the

non-robust tests based on the number of VaR violations, It − α, ignoring (wrongly) the parameter

uncertainty issue. The p-values of the tests are presented in Table 6.

Note that, for each exchange rate, there is always one risk level α for which our backtesting

procedure is rejected. The number of degrees of freedom of the Student’s innovations captures

the behavior of the left tail, which is why the T-GARCH model is popular. Globally, two series

pass the unconditional tests (FF/US and Yen/US). For α = 0.5%, no unconditional test is rejected.

The unconditional tests are rejected for the SF/US series with α = 1% and for the UK/US series

with α = 5%. For the last series, although the T-GARCH assumption is not rejected globally, the

Student’s assumption captures the tail behavior for low-risk values but fails to measure the risk

for higher values.The percentages of VaR violations in the following table show that there are too

many VaR violations (6.6% instead of 5%) for this exchange rate and this risk exposure.

UK/US$ FF/US$ SF/US$ Yen/US$

α

0.005 0.004 0.003 0.005 0.006

0.010 0.013 0.010 0.018 0.011

0.050 0.066 0.044 0.055 0.048

Empirical frequencies of VaR violations

The covariance tests are often rejected except for at low values of α (on the other hand, for

α = 0.05%, we expect approximately one VaR violation per year, which reduces the power of the

covariance tests). For the SF/US series, many rejections occur for α = 1%; we know that, globally,

the T-GARCH assumption is rejected. The same is true for the Yen/US exchange rate, where the
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covariance tests are systematically rejected. Therefore, the conditional variance model should be

adapted.

In Table 7, we perform the same exercise, out-of-sample, using a T-GARCH(1,1) model-based

rolling estimator on the last 445 observations. With 945 observations, we test our model using

500 out-of-sample one-day-ahead VaR forecasts. Note that this is how VaR forecasts are often

calculated in practice. Unsurprisingly, the out-of-sample behavior of the tests is different than the

in-sample behavior.

First, globally, tests based on ect are more conservative than tests based on et and e∗t . For the

unconditional tests, we have similar behavior as before. The unconditional tests are rejected only

for the SF/US exchange rate with α = 1%, and the results are close to rejection for the UK/US

exchange rate with α = 5%, as for the in-sample results. Note that the difference between It and ect

is small; simply counting (i.e., ignoring parameter uncertainty or using It without any correction)

generally decreases the power of the test.

The covariance tests lead to slightly different conclusions. Overall, one should definitively not

draw any conclusion from the in-sample properties, especially when the degree of persistence is

very high (the estimates of β for the conditional variance are all greater than 0.9). The covariance

tests for the Yen/US series are rejected for all values of α. The VaR forecasts for the FF/US

exchange rate appear to be accurate, and no test is rejected. By contrast, there is a problem with

the local dynamics of the UK/US exchange rate as many covariance tests are rejected for all risk

levels α.

[insert Tables 6 and 7 here]

In appendix D of the Supplemental Material, we explore additional series by considering three

other exchange rates, the US dollar versus the Yen, the British Pound and the Euro, for the pe-

riod 2010-2015. We also consider three stock indexes23 for the same period. Stock indexes have

different behavior: the estimates of β are lower than those for exchange rates and the tails are

thicker (lower estimates of ν). However, we obtain similar conclusions; that is, the T-GARCH

23S&P 500, NIKKEI and NASDAQ
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model globally fails to accurately forecast VaR measures for different values of α. Additionally,

Berkowitz et al. (2011) also rejects the accuracy of VaR forecasts based on T-GARCH models for

data from three of four business lines within a large commercial bank.

6 Conclusion

This paper considers moment-based tests for testing features of univariate distributions. The mo-

ments of interest can be smooth or non-smooth. In our setup, some parameters must be estimated,

which generally modifies the asymptotic distribution of the underlying test. We address the param-

eter uncertainty problem by projecting the moment onto the orthogonal of the space spanned by

the score. Therefore, we consider a class of oblique projections from which we pick any transform.

Interestingly, we provide an alternative expression that does not depend on the score function. Our

framework is therefore semiparametric because we do not need to specify the full structure of the

model.

This paper shows that a robust moment can be built simply by applying a linear correction

in which the coefficients can be estimated in-sample. Moreover, robust moments have attractive

features and lead to testing procedures that are as powerful as existing ones, even better in many

of the examples considered in this paper. For example, the testing procedure does not have to be

changed when the estimator of the parameters changes; additionally, a moment-based test based

on a robust moment is valid in some cases where the parameters are estimated with slower rates

of convergence than the standard square-root rate. Finally, our method can handle out-of-sample

evaluations without further correction.

We apply our method to different examples, namely, out-of-sample evaluations and backtesting

different GARCH models. When proposing new test procedures, it is particularly important to

first check that the small-sample-size properties are good and that the power properties are at

least competitive with those of the existing alternative procedures. Our Monte Carlo experiments

suggest that our tests behave well for both in-sample and out-of-sample cases, even better than the

existing ones in most of the cases considered.
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Applied econometrics requires distributional assumptions to compute forecasts or to derive

tractable results in structural models. However, these assumptions should be tested whenever

possible because they can lead to biased results in the case of misspecification. Moment-based

procedures are standard. They have been widely used for estimation, and they can similarly be

systematically used to test these assumptions. Parameter uncertainty, which is often ignored in

empirical applications, can be easily addressed with the methodology derived in this paper.
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A. Size, ρ1 = 0 R P

50 100 150 250 500
Robust moment m⊥t 50 7.14 7.87 8.59 8.64 10.11

100 5.45 5.54 5.62 5.57 5.89
150 5.61 5.21 5.23 5.44 5.70
250 5.34 5.55 5.05 5.72 5.57
500 5.36 5.18 5.24 4.96 5.48

Correction 50 6.77 8.77 11.50 19.15 41.15
100 4.03 4.02 4.07 5.26 9.67
150 3.14 2.75 2.77 3.06 4.60
250 2.52 2.39 2.29 2.53 2.85
500 2.39 2.05 2.12 1.85 2.06

B. Power, ρ1 = 0.2 R P

50 100 150 250 500
Robust moment m⊥t 50 12.51 19.04 25.53 37.33 61.48

100 12.18 17.69 24.07 36.37 62.21
150 11.22 17.62 23.60 35.23 61.49
250 11.30 16.78 23.25 35.82 61.16
500 11.10 17.37 23.29 35.36 61.08

Correction 50 11.88 23.00 35.29 60.34 93.67
100 7.55 12.71 19.15 34.53 70.33
150 6.30 10.58 15.49 28.01 58.85
250 5.70 9.08 12.88 22.77 49.25
500 5.17 8.31 11.70 19.69 43.03

C. Power, ρ1 = 0.5 R P

50 100 150 250 500
Robust moment m⊥t 50 42.87 71.03 86.95 97.57 99.98

100 41.48 70.17 86.47 97.58 99.99
150 40.87 68.43 84.98 97.39 99.98
250 39.86 66.97 84.47 97.29 99.97
500 40.05 67.55 83.25 96.73 99.95

Correction 50 28.21 61.28 84.61 98.75 100.00
100 21.88 48.96 71.96 94.24 99.98
150 19.95 44.78 67.38 92.04 99.86
250 17.79 40.65 63.61 89.91 99.87
500 16.76 40.11 61.61 87.82 99.66

Note: the DGP is a univariate AR(2). The two inverse roots
of the process are ρ0 = 0.5 and ρ1. We estimate an AR(1)

process with mean and test the first order autocorrelation
out-of-sample for various values of R and P . We report the
rejection frequencies from 10000 simulations. ρ1 = 0 cor-
responds to the size. We compare our robust moment m⊥t
with the out-of-sample correction of West and McCracken
(1998).

Table 3: Size and power of first order autocorrelation test - rolling scheme
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Size Power
T-GARCH EGARCH

P = 100 P = 250 P = 500 P = 100 P = 250 P = 500 P = 100 P = 250 P = 500

et 5.44 5.44 5.36 22.60 36.09 51.68 26.68 43.61 62.69
e∗t 5.45 5.48 5.35 22.85 36.57 52.22 26.80 43.47 62.62
ect 5.23 6.31 6.91 4.71 11.04 20.17 11.89 13.14 13.67

etet−1 6.82 6.58 6.13 12.44 18.45 25.44 25.34 38.59 51.98
etet−2 6.89 6.37 6.14 12.67 18.98 24.94 21.26 32.30 43.25
etet−3 6.63 6.31 5.83 13.50 19.45 26.72 19.83 29.01 38.04

e∗t e
∗
t−1 6.78 6.57 6.02 12.11 18.19 25.19 25.19 38.34 51.58

e∗t e
∗
t−2 6.83 6.25 6.12 12.56 18.81 25.19 21.20 32.19 42.99

e∗t e
∗
t−3 6.78 6.19 5.88 13.39 19.33 26.31 19.78 29.10 38.09

ecte
c
t−1 4.93 5.62 5.00 2.78 2.78 2.20 17.38 26.73 38.50

ecte
c
t−2 4.40 5.62 4.93 3.10 3.22 2.66 12.59 18.66 26.57

ecte
c
t−3 4.33 5.05 4.67 2.83 3.34 2.80 9.55 14.42 17.74

Note: for each sample size T , we report the rejection frequencies for a 5% significance level
test of the accuracy of the one-day-ahead VaR forecasts computed out-of-sample from a rolling
estimation of a GARCH normal model. et is the robust version of It − α calculated in Equation
(14), e?t is the orthogonal projection of It − α onto the orthogonal of the space spanned by the
true score function of the Normal GARCH model, ect = It − α is a non-robust moment for which
we correct for the parameter uncertainty, as shown in Subsection 2.2.2. See Subsection 4.3.1 for
further details.

Table 4: Backtesting VaR measures, α = 5% - Normal GARCH model - Out of sample properties,
rolling scheme, R = 500 observations.
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Size Power
HS Skewed-T

P = 100 P = 250 P = 500 P = 100 P = 250 P = 500 P = 100 P = 250 P = 500

et 4.86 4.98 5.46 26.92 38.30 38.25 19.99 41.82 70.48
e∗t 4.94 5.13 5.56 27.01 38.05 38.11 19.89 41.70 69.89
ect 4.98 6.00 6.46 26.19 40.61 41.52 18.73 35.14 61.04

etet−1 6.49 5.79 5.47 13.55 16.65 22.56 7.04 7.10 7.52
etet−2 6.64 6.01 6.08 13.54 17.05 22.36 6.98 7.16 7.67
etet−3 6.62 6.28 6.27 13.17 17.02 22.41 6.60 6.70 7.88

e∗t e
∗
t−1 6.63 5.86 5.80 13.71 16.67 22.91 6.96 7.12 7.56

e∗t e
∗
t−2 6.70 5.99 6.22 13.61 17.21 22.42 7.02 7.28 7.76

e∗t e
∗
t−3 6.71 6.47 6.37 13.05 17.08 22.40 6.48 6.53 7.65

ecte
c
t−1 4.78 4.98 4.31 12.37 15.91 21.47 10.68 13.74 15.59

ecte
c
t−2 4.78 5.23 4.89 12.12 15.44 21.56 10.36 13.61 15.88

ecte
c
t−3 4.63 5.09 5.19 11.57 16.20 21.66 10.56 14.12 16.10

Note: for each sample size T , we report the rejection frequencies for a 5% significance level
test of the accuracy of the one-day-ahead VaR forecasts computed from the estimation of a T-
GARCH(1,1) model. We study respectively the size, the power with the Historical Simulation, the
power with the skewed-T distribution with γ = 0.5. et is the robust version of It − α calculated
from the projection in the auxiliary model with constant variance, e?t is the orthogonal projection
of It − α onto the orthogonal of the space spanned by the true score function of the T-GARCH
model, ect = It−α is a non-robust moment for which we correct for the parameter uncertainty, as
shown in Subsection 2.2.2. See Subsection 4.3.2 for further details.

Table 5: Backtesting VaR measures, α = 5% - T-GARCH model - Out of sample properties, rolling
scheme, R = 500.
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SUPPLEMENTAL MATERIAL

SUPPLEMENT TO ”MOMENT-BASED TESTS UNDER PARAMETER
UNCERTAINTY“

by Christian BONTEMPS

A Moments used in the Monte Carlo exercise for the backtests
We detail here the moments used for backtesting in the Monte Carlo experiments in Subsection
4.3. We consider a GARCH(1,1) model without mean

rt =
√
σ2
t (θ)εt, σ

2
t (θ) = ω + γr2

t−1 + βσ2
t−1,

where the innovations εt follow respectively a standard normal distribution and a standardized
student distribution with parameter ν. Hereafter, θ denotes the parameter vector related to the
variance equation: θ = (ω, γ, β)>.

A.1 Moments used for the GARCH Normal case
All the moments used are based on a robustification of the centered hit value, ect = It − α, which
is not robust to parameter uncertainty.

• et is the orthogonal projection of It − α onto the orthogonal of the score in the auxiliary
model with constant variance. Following Subsection 2.3.3, it is also robust in the GARCH
model. Bringing back Equation (14), we have:

et = It − α +
nαϕ(nα)

2

(
ε2
t − 1

)
,

where nα is the α quantile of the standard normal distribution and ϕ(·) its p.d.f. The variance
of et is equal to

V0 [et] = α(1− α)− (nαϕ(nα))2

2
.

• e∗t is the orthogonal projection of It−α onto the orthogonal of the score in the full GARCH
Normal model:

e∗t = It − α +
nαϕ(nα)

2
E0 [dlt]E0

[
dltdl

>
t

]−1
dlt
(
ε2
t − 1

)
,

where dlt denotes ∂ lnσt(θ)
∂θ>

. Its variance is equal to:

V0 [e∗t ] = α(1− α)− (nαϕ(nα))2

2
E0 [dlt]E0

[
dltdl

>
t

]−1 E0

[
dl>t
]
.

The expectation above can be estimated in-sample from standard formulas (see, for example,
Franck and Zakoian, 2010).

• ect = It − α is not robust. We need to correct its variance.

• We also use joint moments etet−h and similarly for the two other moments, that test for
uncorrelation with the past values.
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A.2 Moments used for the T-GARCH case
Following the expression of the score function for the constant variance model:

sσ2,ν(εt) =

 − 1
2σ2

(
1 + εt

∂ log fν
∂εt

(εt)
)

∂ log fν
∂ν

(εt)

 , (A.1)

where fν(·) denotes the p.d.f. of the standardized Student distribution with ν degrees of freedom,
we can derive the expression of the moments used in the Monte Carlo Section for the T-GARCH
model.

• et is the orthogonal projection of It − α onto the orthogonal of the score in the auxiliary
model with constant variance, i.e. sσ2,ν(·) expressed above. It is robust in the T-GARCH
model. Adapting Equation (14) with s̃θ(·) as the new estimating function for the parameters,
we have:

et = It − α− PV −1
s sσ2,ν(εt),

where sσ2,ν(·) the score function in the auxiliary model, Vs its variance and P the covariance
between It and the score sσ2,ν(·). Its variance is equal to

V0 [et] = α(1− α)− PV −1
s P>.

Both P and Vs are computed in-sample.

• e∗t like before is the orthogonal projection of It − α onto the orthogonal of the score in the
full T-GARCH model:

e∗t = It − α− P ∗(V ∗s )−1s∗θ,ν(εt),

where s∗θ,ν(·) is the full score function, P ∗ is the covariance between It and this score and V ∗s
its variance. These last two quantities are estimated in-sample. The variance of e∗t is equal
to

V0 [e∗t ] = α(1− α)− P ∗(V ∗s )−1(P ∗)>.

Note that et and e∗t have the same expression but the first considers the score of the constant
scale model whereas the second considers the score of the true GARCH model.

• Finally ect is not robust and we need to correct for the parameter uncertainty.

• Like in the normal case, we also consider joint tests.

B Proof of the propositions

B.1 Proof of Proposition 3
We prove here the result in the smooth case wherem(·) is assumed to be continuously differentiable
in a neighborhood of the true value θ0. The non-smooth case is build similarly from Tauchen
(1985)’s arguments. We assume here that
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(i) m(·) is twice continuously differentiable in a neighborhood N0 of θ0,

(ii) its second derivative with respect to θ is uniformly bounded on this neighborhood, i.e. E0 [|∂2m/∂θj∂θi|] ≤
M for all i, j in [1, ..., r]2, where r is the dimension of θ,

(iii) each partial derivative of m satisfies Assumption CLT.

For convenience we write the proof assuming that the moment and the parameter θ are unidimen-
sional without loss of generality. Let m be a robust moment.

For any θ̂, and for any t ∈ [1;T ], there is θt between θ̂ and θ0 such that

m(yt, θ̂) = m(yt, θ
0) +

∂m

∂θ
(yt, θ

0)(θ̂ − θ0) +
1

2

∂2m

∂θ2
(yt, θt)(θ̂ − θ0)2. (B.2)

Averaging Equation (B.2) from t = 1 to T and multiplying by
√
T , we obtain

1√
T

T∑
t=1

m(yt, θ̂) =
1√
T

T∑
t=1

m(yt, θ
0) +
√
T

[
1

T

T∑
t=1

∂m

∂θ
(yt, θ

0)

]
(θ̂ − θ0)

+
1

T

T∑
t=1

[
1

2

∂2m

∂θ2
(yt, θt)

]√
T (θ̂ − θ0)2.

The second term on the right-hand side which multiplies (θ̂− θ0) is equal to Z +Op(1), where
Z is a standard normal variable, because of assumption (iii). The third term which multiplies√
T (θ̂ − θ0)2 has a bounded expectation because of assumption (ii). Therefore we can rewrite the

expansion above using (θ̂ − θ0) = OP

(
1
Tα

)
. We obtain

1√
T

T∑
t=1

m(yt, θ̂) =
1√
T

T∑
t=1

m(yt, θ
0) +OP

(
1

Tα

)
+OP

(
1

T 2α−1/2

)
. (B.3)

When 2α− 1/2 > 0, the conclusion follows.

B.2 Robustness from an auxiliary model (subsection 2.3.3)
The conditional score function with respect to θ, sθ(yt|Xt−1), in the true model, is equal to

sθ(yt|Xt−1) =
l∑

j=1

∂hj
∂θ>

(Xt−1, θ)sβj(yt),

where l is the dimension of β. The conditional score is therefore a linear combination of the
components of the score in the auxiliary model; the weights are functions of Xt−1. Consequently,

E0 [msθ|Xt−1] =
l∑

j=1

∂hj
∂θ>

(Xt−1, θ)E0 [msβ] = 0,

which implies E0 [msθ] = 0.
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B.3 Choice of g(·) and local power properties

B.3.1 Correcting for parameter uncertainty or working with a robust moment

We assume that parameter θ is estimated from the estimating function g(·). We also assume that all
the functions involved are continuously differentiable w.r.t. θ in a neighborhood of the true value
and that the data are i.i.d.

We first derive the asymptotic variance of 1√
T
m(yt, θ̂). Equation (4) combined with Assump-

tion REG gives the following expansion

1√
T
m(yt, θ̂) =

1√
T
m(yt, θ

0) + E0

[
∂m

∂θ>

]
1√
T
w(yt, θ

0) + oP (1)

=
1√
T

(m+Dmw)(yt, θ
0) + oP (1),

where Dm denotes E0

[
∂m
∂θ>

]
.

Its asymptotic variance is therefore Ω = V0(m+Dmw). Note that under the standard regularity
conditions of the GMM literature (here g(·) can be seen as the set of identifiying restrictions),
w(·, θ), the influence function, is equal to E0

[
∂g
∂θ>

]−1
g(·, θ).

The correcting strategy consists of calculating the test statistic

ξc = T

(
1

T

T∑
t=1

m(yt, θ̂)

)>
Ω−1

(
1

T

T∑
t=1

m(yt, θ̂)

)
.

Ω is generally estimated in-sample.

• Assume now that we use the robust moment m̃g in Equation (6) for the same estimating
function g(·). For any t and θ in a neighborhood of θ0:

m̃g(yt, θ) = m(yt, θ) + E0

[
∂m

∂θ>

]
E0

[
∂g

∂θ>

]−1

g(yt, θ).

First, the variance of m̃g, when θ = θ0, is Ω introduced above. Then, write the empirical
average:

1

T

T∑
t=1

m̃g(yt, θ̂) =
1

T

T∑
t=1

m(yt, θ̂) + E0

[
∂m

∂θ>

]
E0

[
∂g

∂θ>

]−1
1

T

T∑
t=1

g(yt, θ̂),

=
1

T

T∑
t=1

m(yt, θ̂).

The second term on the right-hand side is indeed equal to zero because g(·) is the estimating
function used to estimate θ. Consequently,

1

T

T∑
t=1

g(yt, θ̂) = 0.
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Observe that this is not true if θ0 is estimated by another estimating function. Now, using the prop-
erty, that m̃g is a robust moment, the asymptotic variance of 1√

T
m̃g(yt, θ̂) is the one of 1√

T
m̃g(yt, θ

0),
i.e. Ω. The test statistic based on m̃g is therefore

ξm̃g = T

(
1

T

T∑
t=1

m̃g(yt, θ̂)

)>
Ω−1

(
1

T

T∑
t=1

m̃g(yt, θ̂)

)
,

= T

(
1

T

T∑
t=1

m(yt, θ̂)

)>
Ω−1

(
1

T

T∑
t=1

m(yt, θ̂)

)
.

It is the same as ξc above.
Consequently, there is no loss of power for our strategy because it coincides with the correcting

strategy for some specific choice of the estimating function g(·) in Equation (6). Remark that if
the two statistics coincide in θ̂, it it not true for any other value, and especially θ0. This is the
advantage of using a robust moment: for any estimator of θ0 (including the true value itself), one
manipulates the same expression.

B.3.2 Proof of Proposition 4

We first calculate the behavior of the test statistic under the local alternative q1. First,

E1 [m̃g] =

∫
m̃g(y, θ

0)(q0(y) + h(y)q0(y)/
√
T )dy

=
1√
T

∫
m̃g(y, θ

0)h(y)q0(y)dy

=
1√
T
E0 [m̃gh] .

Second,

V1 [m̃g] =

∫
m̃2
g(y, θ

0)(q0(y) + h(y)q0(y)/
√
T )dy − 1

T
E0 [m̃gh]2

= V0 [m̃g] +
1√
T
E0

[
m̃2
gh
]
− 1

T
E0 [m̃gh]2 .

ξm̃g , defined in Equation (1), is asymptotically χ2 distributed, under the null, for any choice of
g(·). Moreover, under the local alternative,
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ξm̃g = T

(
1
T

∑T
t=1 m̃g(yt, θ

0)
)2

V0 [m̃g]

=

(
√
T

1
T

∑T
t=1 m̃g(yt, θ

0)− E1 [m̃g]√
V0 [m̃g]

+
√
T

E1 [m̃g]√
V0 [m̃g]

)2

,

=

(
√
T

1
T

∑T
t=1 m̃g(yt, θ

0)− E1 [m̃g]√
V1 [m̃g]

+
√
T

E1 [m̃g]√
V1 [m̃g]

+ oP (1)

)2

,

=
(
Z1 + εh

√
a(g) + oP (1)

)2

.

In the third line above, we use the fact that the variances of the moment under the null and the
local alternative are equal at the first order. Then, we apply the central limit theorem under the
alternative, Z1 is therefore a standard normal variable. Finally we replace,

√
TE1 [m̃g] by E0 [m̃gh]

to get the result (εh is equal to the sign of E0 [m̃gh]).
Consequently, ξm̃g is asymptotically distributed as a noncentral chi-squared distribution under

the alternative. a(g) = E0[m̃gh]2

V1[m̃g ]
, the noncentrality parameter, drives the power properties. Maxi-

mizing the power is maximizing a(g) and the solution depends on h.

B.4 Proof of Proposition 5
We follow here the proof of Lemma 4.1 in West and McCracken (1998) assuming that the moment
m(·) is smooth. Following McCracken (2000) and Tauchen (1985), we can adapt the proof to non-
smooth moments under our regularity conditions (and specifically the regular Assumptions 2 and
4 in Tauchen, 1985).

We now detail the proof for the rolling scheme under Assumptions 1 to 5 of West and Mc-
Cracken (1998). It adapts easily for the other schemes. We also assume for notational simplicity
that both m and θ are scalar. Let m be a robust moment and let dt denote ∂m

∂θ
(yt, θ

0). Follow-
ing Assumption 2 of West and McCracken (1998), the estimate of θ0, θ̂, satisfies our regularity
assumption (R) in Section 2: θ̂ − θ0 = 1

T

∑T
t=1 w(yt, θ

0) + oP (1). In the following, wt denotes
w(yt, θ

0).
For any P , R and τ ≥ 1, we can write the following expansion:

1√
P

R+P−1∑
t=R

m(yt+τ , θ̂R) =
1√
P

R+P−1∑
t=R

m(yt+τ , θ
0) +

1√
P

R+P−1∑
t=R

∂m

∂θ
(yt+τ , θ

0)(θ̂R − θ0) + oP (1).

(B.4)
The difference with respect to West and McCracken (1998), Equation (A1), is that, due to the fact
that m(·) is robust, there is no other term. We now work with the second term of the right hand
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side.

1√
P

R+P−1∑
t=R

∂m

∂θ
(yt+τ , θ

0)(θ̂R − θ0) =
1√
P

R+P−1∑
t=R

dt+τ

(
1

R

t∑
s=t−R+1

w(zs, θ
0)

)
+ oP (1),

=
1√
PR

R+P−1∑
t=R

dt+τ (wt−R+1 + wt−R+2 + . . .+ wt) + oP (1).

Let us compute the expectation of each term of the right hand side. Let γs = E0(dtwt−s). We
first assume that P < R (the bound is similar for R ≤ P ).

E0

(
R+P−1∑
t=R

dt+τ (wt−R+1 + wt−R+2 + . . .+ wt)

)
= P (γτ + γτ+1 + . . .+ γτ+R−1)

≤ P
+∞∑
s=−∞

γs.

The expectation of the second term of the right hand side of Equation (B.4) tends to zero when√
P/R tends to zero. Following the argument in West (1996), page 1080, (the same argument

is used in West and McCracken, page 837), the second term tends to zero under the regularity
conditions.

C Additional Monte Carlo results

C.1 Out-of-sample properties, fixed scheme, first order autocorrelation test
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A. Size, ρ1 = 0 R P

50 100 150 250 500
Robust moment m⊥t 50 12.38 15.54 16.89 20.54 26.21

100 7.73 8.89 9.39 10.61 13.25
150 6.63 7.42 7.70 7.70 9.25
250 6.03 5.71 6.61 6.12 6.60
500 6.28 5.50 5.51 5.50 5.65

Correction 50 2.61 2.40 2.25 2.01 1.94
100 2.42 2.37 2.22 1.82 1.90
150 2.43 2.41 1.81 1.73 1.96
250 2.24 2.03 2.08 2.05 1.78
500 2.68 1.81 1.88 1.96 1.77

B. Power, ρ1 = 0.2 R P

50 100 150 250 500
Robust moment m⊥t 50 13.97 18.15 21.05 28.48 43.44

100 11.75 16.32 21.22 28.89 47.67
150 11.77 16.24 21.06 30.89 51.13
250 11.49 17.08 21.29 32.04 55.18
500 11.46 16.90 21.81 33.64 57.09

Correction 50 5.62 7.82 11.91 19.01 38.53
100 5.30 8.15 11.41 18.24 38.49
150 5.19 7.70 10.72 17.70 37.58
250 5.21 7.56 10.39 18.04 38.10
500 5.21 7.46 10.27 18.02 37.71

C. Power, ρ1 = 0.5 R P

50 100 150 250 500
Robust moment m⊥t 50 37.69 58.74 72.14 86.69 95.48

100 38.84 62.61 78.37 92.88 99.31
150 38.77 63.36 80.10 94.62 99.78
250 39.57 65.29 81.67 96.03 99.93
500 40.78 65.42 83.32 96.07 99.93

Correction 50 18.38 40.27 61.03 87.04 99.61
100 17.33 39.69 60.48 87.04 99.61
150 16.16 39.11 59.79 86.38 99.76
250 16.70 38.72 60.62 86.77 99.59
500 17.61 37.52 59.78 86.30 99.63

Note: the DGP is a univariate AR(2). The two inverse roots of the process are
ρ0 = 0.5 and ρ1. We estimate an AR(1) process with mean and test the first
order autocorrelation out-of-sample for various values of R and P . We report
the rejection frequencies from 10000 simulations. ρ1 = 0 corresponds to the
size. We compare our robust moment m⊥t with the out-of-sample correction of
West and McCracken.

Table VIII: Size and power of first order autocorrelation test - fixed scheme
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C.2 In-sample properties, GARCH Normal example

Size Power
Hist. Simulation T-GARCH EGARCH

T 250 500 750 250 500 750 250 500 750 250 500 750

et 4.74 5.00 5.07 0.00 0.00 0.00 16.05 34.54 50.36 33.95 56.64 72.17
e∗t 4.27 4.93 4.71 0.00 0.00 0.00 14.05 32.65 47.69 33.33 56.45 72.35
ect 3.80 5.95 4.67 0.00 0.00 0.00 11.49 32.51 44.87 11.27 18.16 15.86

etet−1 4.71 4.81 4.87 10.81 15.12 21.16 9.76 13.91 17.79 33.38 47.91 56.84
etet−2 4.82 4.80 4.89 10.94 14.23 20.70 11.52 15.72 19.57 26.99 37.20 43.93
etet−3 5.20 4.85 4.72 9.91 14.30 19.38 11.91 15.74 19.27 23.70 32.34 38.49

e∗t e
∗
t−1 4.69 4.79 4.80 10.97 15.13 21.39 8.78 12.41 16.41 32.68 47.44 56.64

e∗t e
∗
t−2 4.78 4.71 5.06 10.80 14.30 20.78 10.57 14.57 18.14 26.67 36.98 43.67

e∗t e
∗
t−3 5.12 5.03 4.59 9.95 14.40 19.53 11.15 14.75 17.89 23.45 32.14 38.36

ecte
c
t−1 3.27 3.53 4.14 4.30 10.54 17.88 2.47 2.00 1.96 24.74 37.51 46.34

ecte
c
t−2 3.92 4.08 4.11 4.78 10.42 18.24 3.41 2.16 2.07 18.31 24.69 30.04

ecte
c
t−3 3.87 4.03 4.05 3.91 9.95 16.87 3.00 2.19 2.09 13.17 16.48 19.39

Note: for each sample size T , we report the rejection frequencies for a 5% significance level
test of the accuracy of the one-day-ahead VaR forecasts computed from the estimation of a
GARCH normal model. et is the robust version of It − α calculated in Equation (14), e?t
is the orthogonal projection of It − α onto the orthogonal of the space spanned by the true
score function of the Normal GARCH model, ect = It−α is a non-robust moment for which
we correct for the parameter uncertainty, as shown in Subsection 2.2.2. See Subsection 4.3.1
for further details.

Table IX: Backtesting VaR measures, α = 5% - Normal GARCH model - In sample properties.
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C.3 In-sample properties, T-GARCH example

Size Alternatives
HS Skewed t

T 250 500 750 250 500 750 250 500 750

et 4.92 4.82 4.62 0.00 0.00 0.00 41.75 71.57 88.50
e∗t 5.10 5.01 4.73 0.00 0.00 0.00 44.44 73.55 89.35
ect 4.42 4.47 4.52 0.00 0.00 0.00 40.48 76.04 88.25

etet−1 4.67 4.88 4.93 10.31 14.48 21.44 5.93 6.96 7.83
etet−2 5.05 5.08 5.02 10.33 14.35 21.28 6.59 7.37 7.98
etet−3 5.11 4.96 4.99 10.17 15.00 20.68 7.02 7.12 8.18

e∗t e
∗
t−1 5.10 5.03 5.02 10.98 14.47 21.75 6.72 7.50 8.37

e∗t e
∗
t−2 5.49 5.23 5.19 10.75 14.86 21.44 7.85 8.07 8.46

e∗t e
∗
t−3 5.46 5.22 5.14 10.49 15.37 20.94 7.67 7.81 8.72

ecte
c
t−1 5.22 4.82 4.56 10.70 11.80 19.04 9.94 16.35 16.82

ecte
c
t−2 5.93 5.07 5.06 11.02 11.23 18.91 11.54 16.96 17.41

ecte
c
t−3 6.00 4.76 4.59 10.67 11.57 18.42 12.85 17.25 17.59

Note: for each sample size T , we report the rejection frequen-
cies for a 5% significance level test of the accuracy of the one-
day-ahead VaR forecasts computed from the estimation of a T-
GARCH(1,1) model. We study respectively the size , the power
with the Historical Simulation, the power with the skewed t-
distribution with γ = 0.5. et is the robust version of It − α

calculated from the projection in the auxiliary model with con-
stant variance, e?t is the orthogonal projection of It − α onto the
orthogonal of the space spanned by the true score function of the
T-GARCH model, ect = It − α is a non-robust moment for which
we correct for the parameter uncertainty, as shown in Subsection
2.2.2. See Subsection 4.3.2 for further details.

Table X: Backtesting VaR measures, α = 5% - T-GARCH model- In sample properties.
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D Additional Backtests evaluations
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Yen/US$ UK/US$ EUR/US$ S&P 500 NIKKEI NASDAQ
ω̂ 5.20e-07 9.31e-08 3.77e-08 3.77e-06 7.53e-06 4.64e-06
γ̂ 0.040 0.034 0.034 0.134 0.106 0.107
β̂ 0.945 0.963 0.966 0.831 0.857 0.855
ν̂ 5.018 15.565 8.203 6.407 9.449 7.634
Note: MLE of the T-GARCH(1,1) model for daily exchange rates
or stock indexes.
rt =

√
σ2
t (θ)εt, σ

2
t (θ) = ω + γr2

t−1 + βσ2
t−1, εt ∼ T (ν).

α = 0.5% α = 1% α = 5%

Yen/US UK/US EUR/US Yen/US UK/US EUR/US Yen/US UK/US EUR/US

et 0.125 0.514 0.654 0.011 0.585 0.421 0.550 0.003 0.011
e∗t 0.176 0.601 0.595 0.026 0.625 0.564 0.604 0.005 0.032
ect 0.183 0.580 0.586 0.028 0.599 0.574 0.638 0.004 0.034

It 0.060 0.496 0.864 0.002 0.562 0.399 0.407 0.006 0.007

etet−1 0.983 0.871 0.984 0.341 0.907 0.678 0.243 0.834 0.111
etet−2 0.972 0.276 0.941 0.991 0.148 0.953 0.988 0.988 0.852
etet−3 0.969 0.481 0.270 0.964 0.872 0.541 0.936 0.925 0.080

e∗t e
∗
t−1 0.808 0.696 0.959 0.862 0.621 0.778 0.270 0.756 0.255

e∗t e
∗
t−2 0.929 0.406 0.928 0.890 0.071 0.881 0.821 0.754 0.628

e∗t e
∗
t−3 0.923 0.698 0.763 0.859 0.384 0.849 0.890 0.695 0.314

ecte
c
t−1 0.991 0.786 0.774 0.978 0.623 0.776 0.836 0.286 0.311

ecte
c
t−2 0.990 0.784 0.783 0.978 0.035 0.773 0.378 0.971 0.534

ecte
c
t−3 0.990 0.782 0.771 0.977 0.618 0.772 0.452 0.972 0.639

ItIt−1 0.983 0.963 0.967 0.250 0.945 0.809 0.503 0.863 0.073
ItIt−2 0.936 0.393 0.978 0.978 0.125 0.994 0.903 0.980 0.922
ItIt−3 0.882 0.860 0.678 0.928 0.827 0.720 0.910 0.915 0.049
Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-
GARCH(1,1) model for different levels of risk α for three daily exchange rates - period
2010-2015. The p-value of the test statistics are reported. The moments are defined in
Section 4.3.

Table XI: Backtesting of VaR forecasts for the T-GARCH(1,1) model, In sample evaluation.
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α = 0.5% α = 1% α = 5%

S& P 500 NIKKEI NASDAQ S& P 500 NIKKEI NASDAQ S& P 500 NIKKEI NASDAQ

et 0.494 0.434 0.803 0.004 0.086 < 0.001 0.050 0.167 0.015
e∗t 0.582 0.579 0.864 0.031 0.174 0.007 0.069 0.190 0.026
ect 0.585 0.580 0.864 0.032 0.175 0.007 0.070 0.191 0.026

It 0.338 0.726 0.490 0.022 0.265 0.007 0.079 0.165 0.029

etet−1 0.004 < 0.001 0.250 < 0.001 0.142 0.208 0.427 0.255 0.502
etet−2 0.007 0.962 0.468 0.003 0.974 0.429 0.500 0.025 0.249
etet−3 0.707 0.639 0.604 0.946 0.825 0.307 0.265 0.577 0.624

e∗t e
∗
t−1 0.813 < 0.001 0.910 < 0.001 < 0.001 0.034 0.307 0.178 0.271

e∗t e
∗
t−2 < 0.001 0.573 < 0.001 < 0.001 0.337 < 0.001 0.479 0.012 0.853

e∗t e
∗
t−3 0.734 0.670 0.910 0.384 0.676 0.148 0.018 0.650 0.118

ecte
c
t−1 0.786 < 0.001 0.826 < 0.001 < 0.001 0.090 0.540 0.489 0.438

ecte
c
t−2 < 0.001 0.786 < 0.001 < 0.001 0.513 < 0.001 0.027 < 0.001 0.389

ecte
c
t−3 0.784 0.776 0.826 0.419 0.509 0.363 0.089 0.344 0.436

ItIt−1 0.523 < 0.001 0.675 0.001 0.098 0.198 0.346 0.244 0.307
ItIt−2 0.001 0.932 < 0.001 < 0.001 0.862 0.037 0.521 0.024 0.243
ItIt−3 0.718 0.967 0.961 0.584 0.866 0.464 0.154 0.573 0.325
Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-
GARCH(1,1) model for different level of risk α for three stock indexes - period 2010-2015.
The p-value of the test statistics are reported. The moments are defined in Section 4.3.

Table XII: Backtesting of VaR forecasts for the T-GARCH(1,1) model, In sample evaluation.
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α = 0.5% α = 1% α = 5%

Yen/US UK/US EUR/US Yen/US UK/US EUR/US Yen/US UK/US EUR/US

et 0.472 0.346 0.024 0.266 0.051 0.001 0.378 0.001 0.046
e∗t 0.497 0.091 0.338 0.307 0.015 0.062 0.460 0.001 0.351
ect 0.340 0.112 0.340 0.176 0.024 0.071 0.213 0.004 0.407

It 0.342 0.113 0.342 0.178 0.025 0.072 0.218 0.004 0.412

etet−1 0.725 0.675 0.736 0.015 0.625 0.668 0.567 0.991 0.012
etet−2 0.942 0.581 0.839 0.928 0.342 0.898 0.461 0.214 0.333
etet−3 0.910 0.878 0.641 0.987 0.423 0.878 0.638 0.887 0.800

e∗t e
∗
t−1 0.617 0.699 0.753 < 0.001 0.238 0.655 0.580 0.420 0.069

e∗t e
∗
t−2 0.914 0.720 0.789 0.933 0.153 0.723 0.430 0.747 0.738

e∗t e
∗
t−3 0.888 0.208 0.834 0.926 0.570 0.674 0.350 0.891 0.982

ecte
c
t−1 0.982 0.735 0.982 < 0.001 0.496 0.892 0.743 0.744 0.043

ecte
c
t−2 0.982 0.735 0.982 0.965 < 0.001 0.893 0.537 0.204 0.891

ecte
c
t−3 0.982 0.733 0.981 0.965 0.495 0.892 0.535 0.565 0.893

ItIt−1 0.982 0.736 0.982 < 0.001 0.497 0.892 0.743 0.743 0.043
ItIt−2 0.982 0.735 0.982 0.965 < 0.001 0.893 0.537 0.204 0.891
ItIt−3 0.983 0.735 0.983 0.965 0.496 0.893 0.535 0.566 0.893
Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-
GARCH(1,1) model for different levels of risk α for three daily exchanges rates - period
2010-2015. The out-of-sample evaluation is based on 1000 observations to estimate the
parameters and 500 observations to test the moment. The p-value of the test statistics are
reported. The moments are defined in Section 4.3.

Table XIII: Backtesting of VaR forecasts for the T-GARCH(1,1) model, Out of sample evaluation.
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α = 0.5% α = 1% α = 5%

S& P 500 NIKKEI NASDAQ S& P 500 NIKKEI NASDAQ S& P 500 NIKKEI NASDAQ

et 0.009 0.741 0.032 0.015 0.018 0.010 0.078 0.077 0.024
e∗t 0.089 0.042 0.120 0.132 0.001 0.075 0.121 0.016 0.056
ect 0.112 0.112 0.112 0.176 0.007 0.071 0.214 0.147 0.062

It 0.113 0.113 0.113 0.178 0.007 0.072 0.218 0.151 0.065

etet−1 < 0.001 < 0.001 < 0.001 < 0.001 0.564 0.149 0.172 0.979 0.509
etet−2 0.413 0.492 0.414 0.004 0.642 0.778 0.649 0.038 0.459
etet−3 0.694 0.870 0.407 0.742 0.690 0.847 0.485 0.411 0.997

e∗t e
∗
t−1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.613 0.510 0.896

e∗t e
∗
t−2 0.771 0.754 0.936 < 0.001 0.743 0.852 0.524 0.007 0.551

e∗t e
∗
t−3 0.937 0.760 0.786 0.822 0.595 0.422 0.155 0.926 0.642

ecte
c
t−1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.890 0.927 0.424

ecte
c
t−2 0.735 0.735 0.735 < 0.001 0.440 0.555 0.043 < 0.001 0.883

ecte
c
t−3 0.735 0.733 0.735 0.617 0.439 0.555 0.418 0.930 0.882

ItIt−1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.889 0.927 0.424
ItIt−2 0.735 0.735 0.735 < 0.001 0.441 0.556 0.043 < 0.001 0.884
ItIt−3 0.735 0.735 0.735 0.617 0.440 0.555 0.418 0.930 0.882
Note: we test the accuracy of the one-day-ahead VaR forecast computed from a T-
GARCH(1,1) model for different levels of risk α for three stock indexes - period 2010-2015.
The out-of-sample evaluation is based on 1000 observations to estimate the parameters and
500 observations to test the moment. The p-value of the test statistics are reported. The
moments are defined in Section 4.3.

Table XIV: Backtesting of VaR forecasts for the T-GARCH(1,1) model, Out of sample evaluation.
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E Choice of the moments
In this section, we provide a guideline on how to derive moment conditions from a discrete distri-
butional assumption. The support of Y is supposed to be discrete and, without loss of generality,
we assume it is N. pi(θ) denotes the probability that Y = i under Pθ.

E.1 Adhoc choices
Adhoc choices of moments are always possible. For standard distributions, one generally knows
the first moments (mean, variance, skewness, and kurtosis) as functions of the parameters. For
discrete distributions, one can also compare the expected frequency of counts with the actual ones
(this is the rationale of the standard Pearson’s chi-squared test).

For the Poisson distribution, we know that it has the property of equidispersion, i.e. the mean
and the variance are equal. This gives us the opportunity to test H0 from the first and second
moments together. We could alternatively use the sequence of moments mi(y, θ) = 1{Y = i} −
pi(θ) for different i.

E.2 Orthogonal polynomials and Ord’s family of discrete distributions
The Ord’s family is a well-known extension of the famous Pearson’s family to the case of dis-
crete distributions. This family includes the Poisson, binomial, Pascal (or negative binomial), and
hypergeometric distributions, as particular examples.

A discrete distribution belongs to the Ord’s family if the ratio (we omit the dependence of pi
in θ) py+1−py

py
equals the ratio of two polynomials A(.) and B(.), where A(.) is affine and B(.) is

quadratic.

∆py
py

=
py+1 − py

py
=
A(y)

B(y)
=

a0 + a1y

b0 + b1y + b2y2
, (E.5)

where ∆ is the forward difference operator: ∆py = py+1 − py.
We can build the associated orthonormal polynomial familyQj , j ∈ N, where each polynomial

is derived using an analogue of the Rodrigues’ formula on finite difference (see Weber and Erdelyi,
1952 or Szegö, 1967):

Qj(y) = λj
1

py
∆j [py−jB(y)B(y − 1)...B(y − j + 1)] ,

where λj is a constant which ensures that the variance of Qj is equal to 1.
These orthonormal polynomials can be used for our testing procedure. They are not necessarily

the best in terms of power or robust to parameter uncertainty. However, one advantage is that the
variance is known, equal to one.

Another advantage is that the family of orthogonal polynomials is complete in L2 (see, for ex-
ample, Gallant, 1980, in a continuous case). Testing the distribution or testing the full sequence of
polynomials is therefore equivalent. The next Section presents some particular examples of Ord’s
distributions and related polynomial families of interest. Candelon et al. (2011) used, for example,
the Meixner polynomials to test the geometric distributional assumption in a VaR framework.
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E.3 Examples of Ord’s distributions
We provide here particular examples of discrete distributions. The definition of the orthonormal
polynomial family is provided in Table XV.

E.3.1 The Poisson distribution

When Y ∼ Po(θ), the probability distribution function of Y is:

py = e−θ
θy

y!

The orthonormal family associated to the Poisson distribution is the family of Charlier polyno-
mials Cθ

j (y). As
∂ ln py
∂θ

= −1 +
y

θ
= −C

θ
1(y)√
θ
,

Charlier polynomials of degree greater or equal to 2 are robust to parameter uncertainty when one
estimates the parameter θ.

E.3.2 The Pascal distribution

The Pascal distribution is also known as the negative binomial distribution. It extends the Poisson
distribution to some cases where the variance could be greater than the mean of the distribution
(the overdispersion that Poisson counting processes fail to fit). The negative binomial distribution
is also known as a Poisson-Gamma mixture.

When Y ∼ Pa(µ, δ),

py =

(
µ

µ+ δ

)y (
δ

µ+ δ

)δ
Γ(y + δ)

Γ(δ)Γ(y + 1)

When δ → +∞, the Pascal distribution tends to the Poisson distribution. The orthonormal
polynomials associated to this distribution are the Meixner polynomials Mj(y, µ, δ).

When δ = 1, the Pascal distribution is the geometric distribution (α = 1
µ+1

). Candelon et al.
(2011) test this discrete distribution in a context of backtesting.

E.3.3 The binomial distribution

The probability distribution function of the Binomial distribution is:

py =
(
N
y

)
py(1− p)N−y

where p ≤ 1
In this case, the orthogonal polynomials Kj(y,N, p) are the Krawtchouk polynomials. They

can be used for testing probit and logit models.
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Table XV: Ord’s family and orthonormal polynomials.

Name py A B Q1

Recursive relationship
Poisson e−µ µ

y

y!
−(y − µ+ 1) y + 1 µ−y√

µ

Qj+1(y) = µ+j−y√
µ(j+1)

Qj(y)−
√

j
j+1

Qj−1(y)

Pascal
(

µ
µ+δ

)y (
δ

µ+δ

)δ
Γ(y+δ)

Γ(δ)Γ(y+1)
µ
µ+δ

(y + δ)− (y + 1) y + 1 µδ−δy√
µδ(µ+δ)

Qj+1(y) = µ(2j+δ)+δ(j−y)√
µ(µ+δ)(j+δ)(j+1)

Qj(y)−
√

j(δ+j−1)
(j+1)(δ+j)

Qj−1(y)

Geometric (1− α)yα −α(y + 1) y + 1 1−α−αy√
1−α

Qj+1(y) = (1−α)(2j+1)+α(j−y)√
1−α(j+1)

Qj(y)− j
j+1

Qj−1(y)

Binomial
(
N
y

)
py(1− p)N−y −(y −Np+ q) q(y + 1) pN−y√

pqN

Qj+1(y) = p(N−j)+qj−y√
pq(N−j)(j+1)

Qj(y)−
√

j(N−j+1)
(j+1)(N−j)Qj−1(y)

py+1−py
py

= A(y)
B(y)

. Qj is the orthogonal polynomial of degree j, normalized.

E.4 A general class of moments
The two previous sections present some particular moments that can be used for testing purposes.
There are however some cases where such moments are not so easy to derive. We propose here a
general rule for constructing any moment for which the expectation under the null is equal to zero.
Let ψ be a function defined on N × Θ and such that its expectation under Pθ is finite. We assume
that ψ(0, θ) = 0, this is just a normalization.

Proposition 6. Let m(y, θ) be the function defined by

m(y, θ) =

[
ψ(y + 1, θ)− ψ(y, θ) +

py+1(θ)− py(θ)
py(θ)

ψ(y + 1, θ)

]
. (E.6)

We have:
E0

[
m(y, θ0)

]
= 0. (E.7)

Proof. We first prove the proposition in the case where N is infinite. Take first the expectation of
∆ψ(·)(y, θ0) under the null:

E0[∆ψ(y, θ0)] =
+∞∑
i=0

(
ψ(i+ 1, θ0)− ψ(i, θ0)

)
pi(θ

0) (E.8)
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Reordering the second term of the last expression yields to

E0[∆ψ(y, θ0)] =
+∞∑
i=0

ψ(i+ 1, θ0)pi(θ
0)−

+∞∑
i=0

ψ(i, θ0)pi(θ
0)

=
+∞∑
i=0

ψ(i+ 1, θ0)pi(θ
0)−

+∞∑
i=1

ψ(i, θ0)pi(θ
0) because ψ(0, θ0) = 0,

=
+∞∑
i=0

ψ(i+ 1, θ0)pi(θ
0)−

+∞∑
i=0

ψ(i+ 1, θ0)pi+1(θ0)

= −
+∞∑
i=0

ψ(i+ 1, θ0)
(
pi+1(θ0)− pi(θ0)

)
= −E0

[
ψ(y + 1, θ0)

py+1(θ0)− py(θ0)

p(y, θ0)

]
.

Consequently

E0

[
∆ψ(y, θ0) +

(
ψ(y + 1, θ0)

py+1(θ0)− py(θ0)

p(y, θ0)

)]
= 0.

Observe that the quantity inside the brackets is exactly m(y, θ0). When N is finite, the proof is
similar as pi(θ) is equal to zero when i ≥ (N + 1).

We illustrate the usefulness of Proposition 6 previous results by considering the geometric
distribution with parameter θ. In this case, py(θ) = (1 − θ)yθ and py+1(θ)−py(θ)

py(θ)
= −θ. When

ψ(y, θ) = y, we obtain the first Meixner polynomial, up to some scale factor, 1 − θ − θy. When
ψ(y, θ) = y2, the moment derived from (E.6) is a linear combination of the first two Meixner
polynomials. The family of functions yk generates the first k terms of the Meixner family.

More generally, Proposition 6 generates a set of moments when one does not have any obvious
moment to use.

One could argue that focusing on this class could restrict the range of the tests derived from
these moment conditions. It might be the case that the set of moments generated by Equation (E.6)
could be a small subset of the set of moments with zero expectation. The next proposition shows
that any moment with zero expectation can be generated by the construction presented above.

Proposition 7. Let m(y, θ) be a moment such that

E0

[
m(y, θ0)

]
= 0. (E.9)

Let ψ(y, θ) be a function defined on S by:

ψ(0, θ) = 0,

ψ(y, θ) =
1

py(θ)

y−1∑
k=0

m(k, θ)pk(θ) for y ≥ 1
(E.10)
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Then, m(·) satisfies the equality in Eq. (E.6).

Proof. Following the definition of ψ(·),

∆ψ(y, θ) + ψ(y + 1, θ)
∆py(θ)

py(θ)

= ψ(y + 1, θ)− ψ(y, θ) + ψ(y + 1, xy, θ)

(
py+1(θ)

py(θ)
− 1

)
= ψ(y + 1, θ)

py+1(θ)

py(θ)
− ψ(y, θ)

=
1

py(θ)

y∑
k=0

m(k, θ)pk(θ)−
1

py(θ)

y−1∑
k=0

m(k, θ)pk(θ) using Equation (E.10),

= m(y, θ).

Observe that the last equality holds without the expectation.

61


