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1 Introduction

We study the implications of vertical integration in the e-commerce sector. Speci�cally,

we consider the possibility that a (major) retailer and/or a platform buys one or several

of the parcel delivery operators, or sets up its own delivery network.

Horizontal mergers are typically considered as �suspicious� and potentially anti-

competitive. In the e-commerce sector, this includes the emergence of platforms which

may bring about signi�cant market power both in the retail and indirectly in the up-

stream parcel delivery market; see e.g., Borsenberger et al. (2016).

The economic literature on vertical mergers yields more mixed results. It gener-

ates a number of potential bene�ts. These include the reduction of transaction costs,

technological economies, and probably most signi�cantly, the elimination of successive

monopolies or oligopolies and thus of the double marginalization these entail.1 However,

on the downside, it also involves the danger of �foreclosure�. There is an extensive liter-

ature on this concept and its scope is quite large; see for instance Rey and Tirole (2007)

or Motta (2004, Ch.6). Probably the most extreme example is when the merger deprives

the competing �rms from an essential input and thus e¤ectively excludes them from the

market. But the concept also covers a wider range of anti-competitive practices made

possible by a vertical merger, including various types of vertical restraints (tying exclu-

sive territories, etc.), the extension of market power in one market segment (upstream

or downstream) to a di¤erent market segment, the possibility to raise competitor�s cost

etc.

In the postal sector this issue is particularly relevant. Some big retailers/platforms

already have signi�cant market power in their relevant markets, which gives them

monopsony power towards parcel delivery operators.

In a �rst step, Sections 2�4, we make the assumption that a vertical merger with

a major retailer buying a delivery operator and/or setting up its own delivery network

will in the long run result in an integrated monopoly. We revisit this assumption

later and show how the integrated monopoly may come about when the number of

1See Viscusi, Vernon and Harrington (1998) or Motta (2004) for a detailed overview of the various
e¤ects of vertical integration.
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active �rms is endogenous. We compare the integrated monopoly to a competitive

scenario with independent retailers and delivery operators. This comparison involves a

tradeo¤ between competition which tends to decrease prices and double marginalization

which will have the opposite e¤ect. Consequently, we cannot expect a general and

unambiguous result. We show that with linear demands the integrated monopoly sets a

higher price and achieves a lower total surplus than the independent oligopoly provided

that there are at least 3 retailers and delivery operators. With a constant elasticity of

demand on the other hand surplus is larger even for an independent duopoly. In this

�rst step we evaluate welfare gross of �xed costs. This implies that a larger surplus may

not be su¢ cient to yield a larger welfare.

In Section 6 we do account for �xed costs and their impact on welfare and on

the number of active �rms in a setting, where the number of �rms is endogenous and

determined by the opportunity to earn positive pro�ts net of �xed costs. This issue is

too complex to deal with analytically and we resort to numerical illustrations.2 However,

to set the grounds for this we �rst need to de�ne and study the equilibrium with a single

integrated �rm and several independent retailers and/or delivery operators; this is done

in Section 5.

The numerical results then yield a number of interesting insights. First, while the

integration of a single retailer-delivery operator pair may initially be welfare improving,

the resulting market structure may not be sustainable when the induced decrease in the

competitors pro�ts leads to their exit. Depending on the �xed costs this may well result

in an integrated monopoly as only sustainable con�guration (and as initially assumed).

This requires �xed costs to be su¢ ciently large, which in turn pleads for a small number

of �rms. Interestingly, it turns out that there exist a range of �xed costs for which the

integrated monopoly emerges (following a single integration) and is welfare inferior to

the initial independent equilibrium even when the reduction in the number of �xed costs

is taken into account.

The second interesting lesson that emerges is that multiple integration is typically

2For the cases of linear and of constant elasticity demand, analytical solutions can be obtained (and
some expressions are provided in the Appendix). However the expressions are not very telling so that
examples are useful to illustrate the cases that can arise.
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welfare superior (for a given total number of �rms) to the integration of a single retailer-

delivery operator.

The settings discussed so far neglect one crucial characteristic of the parcel delivery

sector, namely that delivery costs di¤er across customers. In Section 7 we consider an

extension in which we distinguish between two types of customers according to their

location: urban or rural. Delivery costs are larger for rural than for urban customers.

We assume that delivery operators (when independent) charge a uniform delivery rate

and retailers a uniform price. A vertically integrated �rm on the other hand is likely

to deliver only in urban areas and take advantage of an independent delivery operator�s

uniform pricing for customers in high cost areas. We reexamine the implications of ver-

tical integration in this context, while considering the simplest possible initial situation,

namely an independent duopoly (two retailers and two delivery operators). We show

through analytical and numerical examples that urban integration is more likely to have

an adverse e¤ect on welfare than full integration. A crucial factor in the comparison

turns out to be the proportion of rural customers (which must be su¢ ciently large), but

at least for the considered demand functions the result obtains for proportions which

are consistent with stylized empirical facts.

When examining this issue we assume in a �rst step that the integrated �rm �nds it

bene�cial not to deliver in rural areas. While this is intuitive it is not a priori obvious

because the operators� delivery rate will include a markup above marginal cost. In

a second step, we show through some numerical examples that this is not an empty

assumption.

2 Independent retailers and delivery operators

There are (potentially) I upstream delivery operators i = 1; :::; I: Each delivers yi parcels

at a constant marginal cost ki and �xed cost Fi. There are J downstream retailers

j = 1; :::; J who sell a homogenous product xj at a variable cost cj (xj) and pay a per

unit delivery rate of t. Retailers also face a �xed cost Gj � 0. The demand for the �nal

good is represented by its demand function X(p) or equivalently, the inverse demand

function p (X) where X is the quantity and p its consumer price.
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The timing of the game is as follow:

1. Stage 1: The delivery operator i sets a quantity of parcels yi taking as given the

quantity chosen by their competitor (but anticipating the inverse input demand

function induced by the second stage equilibrium).

2. Stage 2: The retailer j sets a quantity of the �nal good xj taking as given the

quantity chosen by its competitor.

3. Stage 3: Demand is realized at a price p (X).

We study the subgame perfect (Cournot-)Nash equilibrium and, as usual solve the

model by backward induction. We derive general price formula and illustrate them using

analytical and numerical examples. All of these assume that marginal cost is constant,

cj (x) = cjx; and that demand is either linear p (X) = a�bX, or that demand elasticity

" de�ned by jX 0(p)p=X(p)j is constant.

2.1 Stage 2

Each retailer j chooses xj that solves p (X) such that:

max
xj

pxj � c (xj)� txj �Gj

s.t. p = p

0@X
j

xj

1A
The FOCs for each retailer j = 1; :::; J , are given by

p (X) + p0 (X)xj � c0j (xj)� t = 0; (1)

which implies
p (X)� c0j (xj)� t

p (X)
= �p

0 (X)xj
p (X)

(2)

This system of J simultaneous equations de�nes the (second stage) Nash equilibrium

quantities xj(t) and the total output

X(t) =
X
j

xj(t);
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and we can de�ne an inverse demand function for the upstream market as

t (X) = t

0@X
j

xj

1A : (3)

Let us illustrate this procedure through the two examples mentioned above.

2.1.1 Example 1: linear demand

In this case, equation (1) is given by

a� b
JX
k=1

xk � bxj � cj � t = 0, j = 1; :::; J:

Summing over all j yields

J (a� t)� bJX � bX �
X
k

ck = 0;

so that

X (t) =
J

J + 1

(a� t� �c)
b

;

where

�c =
1

J

X
k

ck;

is the average marginal cost of the retailers, excluding delivery. Inverting this function

we obtain

t (X) = a� �c� J + 1
J

bX (4)

2.1.2 Example 2: constant elasticity demand

Summing (1) over j yields

Jt = Jp (X) + p0 (X)X �
JX
j=1

cj

so that
p(X)� c� t

p(X)
=
1

J"
;
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which is the classical expression, best known in the monopoly case with J = 1. This

equation holds for any demand function, but it yields a closed form solution only when

" is constant. Solving for t yields

t (X) = p (X)

�
1� 1

J"

�
� �c: (5)

2.2 Stage 1

Each delivery operator chooses yi to solve

max
yi

tyi � kiyi � Fi; (6)

s.t. t = t (X) , X = Y =
X
i

yi:

This is exactly like a traditional Cournot oligopoly with inverse demand t(X). Subgame

perfection requires that the level of t induces a second stage equilibrium with aggregate

output X = Y =
P
i yi. The FOC associated with delivery operator i�s problem is given

by

yi
@t (Y )

@yi
+ t (yi)� ki = 0; i = 1; :::; I: (7)

To obtain the equilibrium of the full game, one has to substitute t(�) from (3) and

solve this system of I equations. This gives us the yi�s from which we can obtain t and

thus also the equilibrium outputs of the retailers xj . The �xed cost play no direct role

in this problem as they are a constant in the pro�t maximization problem. However,

the equilibrium is sustainable only if all delivery operators realize a positive pro�t in

equilibrium. We assume for the time being that this is the case.

To illustrate these conditions and to show how they can be used to determine the

equilibrium of the full game, we return to our two examples.

2.2.1 Example 1

Substituting (4) into (7) yields the following equations for i = 1; : : : ; I

�J + 1
J

byi + a� �c�
J + 1

J
bY � ki = 0
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which, after simpli�cation can be written as

�yi � Y +
J

J + 1

(a� �c� ki)
b

= 0:

Summing over I, using X = Y and rearranging yields

X =
I

I + 1

J

J + 1

�
a� �c� �k

�
b

; (8)

where

�k =
1

I

IX
i=1

ki

denotes the average of the delivery operator�s marginal delivery costs.

2.2.2 Example 2

We now substitute t(�) from (5) into (7) to obtain

yip
0 (Y )

�
1� 1

J"

�
+ p (Y )

�
1� 1

J"

�
� �c� ki = 0

Summing over i, using X = Y and rearranging successively yields

Y p0 (Y )

�
1� 1

J"

�
+ Ip (Y )

�
1� 1

J"

�
� I�c�

X
i=1:::I

ki = 0

p (X)

�
1� 1

J"

��
1� 1

I"

�
� �c� �k = 0;

so that

p (X) =
�c+ �k�

1� 1
J"

� �
1� 1

I"

� (9)

3 N integrated �rms

We now suppose that there are N integrated �rms denoted by subscript n = 1; :::; N . An

integrated �rm maximizes total pro�ts obtained from its up- and downstream activities.

This implies that the two stages collapse into a single stage, where �rm n chooses xn

that solves

max
Xn

p (X)xn � cn (xn)� knxn � Fn �Gn
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The FOC is

p0 (X)xn + p (X)� c0n (xn)� kn = 0 (10)

We once again present the solution for the two examples

3.1 Example 1

The FOCs are then given by

a� bX � bxn � cn � kn = 0:

Summing over N and solving for X yields

X =
N

N + 1

a� �c� �k
b

; (11)

where

�c =

NX
n=1

cn

N
�k =

NX
n=1

kn

N

denote the average of retailers�and delivery operators�costs.

3.2 Example 2

Summing condition (10) over N and solving for p shows that

p (X) =
�c+ �k�
1� 1

N"

� : (12)

which, once again, represents a closed form solution when " is constant.

4 Independent vs integrated operators

We now compare the independent and integrated equilibria for our two examples. We

assume for the time being that �c and �k are the same under the two scenarios. To

compare total surplus we can then either compare X or p, keeping in mind that the

best solution is the one which gives the larger output and the lower price. For the time

being, we restrict our attention to surplus, which does not account for �xed costs. These

will be reintroduced and included in the welfare analysis in Section 6.
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4.1 Example 1

In this setting it is easier to compare equilibrium aggregate output levels. Using (8)

and (11) shows that the equilibrium with independent operators yields a larger output

than the integrated solution if and only if

I

I + 1

J

J + 1
>

N

N + 1
:

With N = 1, this condition is violated for J = 2; I = 2, 4=9 < 1=2. Consequently

the integrated monopoly yields a better solution than two independent retailers and

delivery operators. In other words, with two �rms at each level, competition is not

strong enough to compensate for the double marginalization that occurs when delivery

operators are independent. Furthermore, when J = 3 and I = 2 or J = 2 and I = 3

the two solutions are equivalent. To obtain a better solution than under the integrated

monopoly it takes at least 3 retailers and 3 delivery operators.3

4.2 Example 2

Turning to the constant demand elasticity case, we use (9) and (11) to show that an

integrated monopoly yields a higher price and is welfare inferior if and only if�
1� 1

N"

�
<

�
1� 1

J"

��
1� 1

I"

�
(13)

Suppose again that N = 1, J = 2; I = 2, so that (13) reduces to�
1� 1

"

�
<

�
1� 1

2"

��
1� 1

2"

�
1

"
("� 1) < 1

4"2
(2"� 1)2

4"("� 1) < (2"� 1)2 = 4"("� 1) + 1

a condition which is always satis�ed.4 Consequently, the competition under vertical sep-

aration dominates as long as there are at least two retailers and two delivery operators.
3Or 2 retailers with 4 delivery operators, etc.
4However, J = 2 and I = 1 or J = 1 and I = 1 is not enough. Condition (13) then requires�

1� 1

"

�
<

�
1� 1

2"

��
1� 1

"

�
;

which is never satis�ed.
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It thus turns out that constant elasticity demand leads to a more intense competition.

Its downward pressure on the price outweighs the cost of double marginalization even

for a duopoly.

5 A single integrated �rm competing with non integrated
retailers and delivery operators

So far we have assumed that the integration of one of the retailers and delivery operators

results in a monopoly. To show how this can come about we shall now consider a setting

where the number of actors is endogenous and determined as the maximum number of

retailers and delivery operators who can realize positive equilibrium pro�ts. In other

words, their pro�ts gross of �xed costs must exceed their �xed costs. The no integration

equilibrium with I independent delivery operators and J retailers has been studied in

Section 2. The equilibrium pro�ts determine the range of �xed costs for which this

equilibrium is sustainable. Alternatively one can set given levels of �xed costs and

determine I and J endogenously. Either way the relevant equilibrium to consider is

that determined in Section 2.

To study the equilibrium number of delivery operators and retailers when one pair is

vertically integrated, we have to study the equilibrium with J�1 independent retailers,

I � 1 independent delivery operators and one integrated retailer cum delivery operator.

To avoid tedious repetitions, we concentrate on the proper speci�cation of the game

and the general conditions. Their counterparts for the two considered examples are

given in Appendix A. They are used to solve the numerical illustrations presented in

the next section.

5.1 Stage 2

Retailers 2; : : : ; J solve

max
xj

p(X)xj � c (xj)� txj �Gj

while the integrated retailer 1 solves

max
x1

p (X)x1 � c1 (x1)� k1x1 � F1 �G1
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The FOC�s are given by

p (X) + p0 (X)xj � cj � t = 0; j = 2; :::; J (14)

p (X) + p0 (X)x1 � c1 � k1 = 0 (15)

5.2 Stage 1

Delivery operators 2; : : : ; I solve

max
yi

tyi � kiyi � Fi;

s.t. t = t (X�1) , X�1 = Y�1:

The �rst order condition yields:

t0 (X�1)xi + t (X�1)� ki = 0; i = 2; :::I (16)

6 Numerical examples

These numerical examples bring together the speci�cations considered in Sections 2,

3 and 5. Most importantly we use the equilibrium pro�ts they yield to study which

market structure is sustainable when the number of delivery operators and retailers

is endogenously determined. This shows that for suitable levels of �xed costs, the

integration of a single retailer-delivery operator pair indeed results in an integrated

monopoly.

For each scenario we report only the most relevant properties of the equilibrium,

including, total output as well as pro�ts and total surplus, both of these being de�ned

gross of possible �xed costs. However, we do examine the role played by �xed costs,

both for entry and exit and for welfare comparisons.

All scenarios considered in this section assume k = 0:05 and c = 0:1.

6.1 Examples starting with I = J = 2:

Assume that the inverse demand function is given by p (X) = X�1=", so that demand

elasticity is constant and equal to ". We start from the independent equilibrium with 2

delivery operators and 2 retailers.
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6.1.1 Scenario 1: " = 2.

With I = J = 2 the independent equilibrium (Section 2) yields a total output of 14.06

and a total surplus (TS ) of 5.39. When retailer 1 and delivery operator 1 integrate

(Section 3) total output is 18.04 and TS increases to 5.78. Thus in a �rst step, inte-

gration has a positive impact on welfare. However, when G2 > 0:15 or F2 > 0:26 (if

one of the two independent actors disappears there is no room for the other actor to

exist since there is no available market for them), the integrated monopoly is the only

sustainable equilibrium where total output is 11.11 and a TS of 5. The independent

2*2 equilibrium is thus the only sustainable equilibrium and better than the integrated

monopoly if the avoided �xed costs are not too large: F2 +G2 < 5:39� 5 = 0:39 while

we have either G2 > 0:15 or F2 > 0:26.5

Scenario 2*2 1i, 1r, 1o 1i
Total surplus 5:39 5:78 5

Total output 14:06 18:04 11:11

Pro�t integrated � 1:11 1:11

Pro�t retailer(s) 0:46 0:15 �
Pro�t delivery operator(s) 0:35 0:26 �

6.1.2 Scenario 2 " = 0:9:

We now consider a smaller level of elasticity, namely " = 0:9. This yields the following

results:
Scenario 2*2 1i, 1r, 1o
Total surplus �9:92 �10:13
Total output 1:31 1:01

Pro�t integrated � 0:65

Pro�t retailer(s) 0:26 0:05

Pro�t delivery operator(s) 0:12 0:13

In this case, integration reduces welfare even for a given number of retailers and

delivery operators. The new equilibrium may or may not be sustainable depending on

the �xed costs but for this level of demand elasticity no interior solution exists for the

integrated monopoly case.
5We use the following notation to identify the scenarios. 2*2 or 3*3 etc. refers to a market with

2 or 3 independent delivery operators and retailers; 1i, 1r, 1o, for instance, means that there is one
integrated �rm, one independent retailer and one independent operator. The other labels follow the
same logic and should be self-explanatory.
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6.2 Examples starting with I = J = 3

Now for each scenario, we study whether integration leads to the exit of �rms (retailers

or delivery operators) for some con�gurations of �xed costs and study whether the

equilibrium with exit leads to a lower or higher social welfare for this con�guration of

�xed costs. In the process we also study scenarios with multiple integrated �rms.

6.2.1 Linear demand

Assume p (X) = a � bX, a = 20; b = 1 (low elasticity of demand). Starting with the

scenarios where at most one retailer-delivery operator pair integrates we obtain

Scenario 3*3 1i, 2r, 2o 1i, 1r, 2o 1i, 2r, 1o 1i, 1r, 1o 1i
Total surplus 559 575 567 569 562 547

Total output 11:16 13:23 12:13 12:40 11:57 9:92

Pro�t integrated � 43:78 59:58 55:40 68:40 98:50

Pro�t retailer(s) 13:85 10:94 19:45 6:15 10:94 �
Pro�t delivery operator(s) 18:46 10:94 7:29 24:62 16:41 �

We obtain 1i (one integrated �rm) as a free entry equilibrium when G2 > 10:94 and

F2 > 16:41. The 1i equilibrium implies a loss in total surplus of 559�547 = 12 compared

to the 3*3 setting but this is not enough to justify the extra �xed costs incurred in the

3*3 case. In this case integration of a single retailer-delivery operator pair appears at

�rst bene�cial. However, the following table shows that for any given total number

of �rms multiple integration always welfare dominates that of a single retailer-delivery

operator pair. Speci�cally, 3i dominates (2i, 1r, 1o) which in turn dominates (1i, 2r, 2o).

Similarly, 2i yields a higher level of welfare than (1i, 1r, 1o). This is not surprising: with

multiple integration double marginalization is eliminated while the number of competing

retailers remains constant.

Scenario 3i 2i, 1r, 1o 2i
Total surplus 584 580 575

Total output 14:88 14:06 13:23

Pro�t integrated 24:62 33:51 43:78

Pro�t retailer(s) 6:15

Pro�t delivery operator(s) 8:20

To test the robustness of these results we have considered a number of alternative

scenarios with di¤erent parameter values of a and b and they all give exactly the same
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pattern of results. To avoid repetitions we do not report them and instead now turn to

a di¤erent speci�cation of demand.

6.2.2 Constant elasticity demand

Scenario 1: " = 2 Considering the same scenarios as in the linear case we obtain the

following results.

Scenario 3*3 1i, 2r, 2o 1i, 1r, 2o 1i, 2r, 1o 1i, 1r, 1o 1i
Total output 21:43 25 20:81 20:95 18:04 11:11

Total surplus 6:04 6:25 6 6:01 5:78 5

Pro�t integrated � 0:625 0:90 0:89 1:11 1:66

Pro�t retailer(s) 0:257 0:156 0:31 0:07 0:159 �
Pro�t delivery operator(s) 0:214 0:156 0:11 0:37 0:26 �

Suppose we start from 3*3 and that in a �rst step a single retailer-delivery operator

pair integrates. Suppose that Gj > Gmin = 0:159 and Fi > Fmin = 0:156. While this

integration yields initially a welfare gain, the resulting equilibrium is not sustainable

and with endogenous entry and exit we�ll end up with 1i. This implies a gross social

welfare loss of 6:04 � 5 = 1:04. The social welfare gain stemming from decreased �xed

costs is at least 2�Gmin+2�Fmin = 0:63. Moving from 3*3 to 1i thus involves a welfare

loss if 1:04 > 2 � Gj + 2 � Fi > 0:63. Notice that when 3*3 is sustainable (along with

Gj > Gmin = 0:159 and Fi > Fmin = 0:156) then the move to the integrated monopoly

involves a welfare loss even when the savings in �xed costs are accounted for.

The following table shows the results obtained under multiple integration. Like in

the linear case it shows that for any given number of �rms multiple integration is welfare

superior.
Scenario 3i 2i, 1r, 1o 2i
Total output 30:86 27:93 25

Total surplus 6:48 6:38 6:25

Pro�t integrated 0:30 0:45 0:625

Pro�t retailer(s) 0:077 �
Pro�t delivery operator(s) 0:11 �
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Scenario 2: " = 1:1

scenario 3*3 1i, 2r, 2o 1i, 1r, 2o 1i, 2r, 1o 1i, 1r, 1o 1i
Total output 3:72 4:23 3:27 3:07 2:42 0:63

Total surplus 10:84 10:91 10:76 10:72 10:56 9:46

Pro�t integrated � 0:259 0:39 0:43 0:539 0:86

Pro�t retailer(s) 0:114 0:064 0:14 0:030 0:066 �
Pro�t delivery operator(s) 0:079 0:064 0:05 0:167 0:122 �

As in the previous case we start from 3*3 and consider integration of a single �rm.

When Gj > Gmin = 0:066 and Fi = Fmin > 0:064, we end up with an integrated

monopoly 1i for which total surplus is 9:46. The gross welfare loss brought about by

integration is thus 1:38. The welfare gain due to saved �xed costs is at least equal to

2 � 0:066 + 2 � 0:064 = 0:26: Integration of a single �rm and the subsequent changes in

market structure thus lead to a welfare loss if the following three conditions hold: (i)

1:38 > 2 � Gj + 2 � Fi, (ii) Gj > Gmin = 0:066, and (iii) Fi = Fmin > 0:064. The �rst

condition is necessarily satis�ed if 3*3 is sustainable.

Considering the possibility of multiple integration yields the results shown in the

following table. The pattern of results is exactly the same as in the previous scenario.

Scenario 3i 2i, 1r, 1o 2i
Total output 5:53 4:88 4:23

Total welfare 11:03 10:98 10:91

Pro�t integrated 0:12 0:18 0:26

Pro�t retailer(s) 0:03

Pro�t delivery operator(s) 0:04

Comparing the two scenarios suggests that the range of �xed costs for which the

integrated monopoly obtains and yields to a welfare reduction (even when the �xed

cost is accounted for), is larger the smaller is the demand elasticity. This is also not a

surprise; a monopoly will have more market power, the lower is the demand elasticity.

The qualitative results obtained in these two scenarios carry over to other scenarios

with di¤erent parameter values and particularly di¤erent demand elasticities.
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7 Extension: two delivery areas

We now distinguish between two types of customers according to their location: urban or

rural. Delivery costs are larger for rural than for urban customers. Delivery operators

(when independent) charge a uniform delivery rate and retailers a uniform price. A

vertically integrated �rm on the other hand delivers only in urban areas. Urban and

rural customers have identical demand functions. Let �U and �R = 1 � �U denote

the share of urban and rural customers respectively. Total demand is then given by

X (p) = �UX (p) + �RX (p). Rural and urban deliveries involve speci�c �xed costs

denoted by FUi and FRi . Marginal delivery costs of delivery operator i, are denoted k
U
i

and kRi .

7.1 No integration

There are two retailers j = 1; 2 and two delivery operators i = 1; 2 playing the Cournot

game speci�ed in Section 2. We proceed again by backward induction but restrict

ourselves to recalling the main results.

7.1.1 Stage 2

Retailer j chooses xj to solve

max
xj

p (X)xj � cjxj � txj �Gj

s.t. X = x1 + x2:

This is exactly the same problem as in subsection 2.1, which yields a total equilibrium

output X(t) and thus an inverse demand function t (X).

7.1.2 Stage 1

Delivery operators choose yi to solve

max
yi

tyi �
�
�RkRi + �

UkUi
�
yi � (FUi + FRi )

s.t. t = t (X) , X = Y =
X
i

yi:
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From the results derived in Section 2, and in particular (4) and (8) derived for linear

demands we obtain

t (X) =
a� �c+ 2�k

3
; (17)

X =
4
�
a� c� �k

�
9b

; (18)

where �k is rede�ned as

�k =
X
i=1;2

�RkRi +
�
1� �R

�
kUi

2
.

7.2 With integration

We compare this scenario with the case where retailer 1 and delivery operator 1 are

integrated. Integrated delivery operator 1 delivers only urban parcels, while delivery

operator 2 continues to be independent and delivers to both areas at a uniform rate.

Retailer 2 ships all its parcels via operator 2, while retailer 1 uses its own delivery

operator for urban parcels and delivery operator 2 for the rural ones.

7.2.1 Stage 2

Integrated retailer1 and independent retailer 2 compete. The problem of �rm 1 is:

max
x1

p (X)x1 � cx1 � �UkU1 x1 � �Rtx1 �G1 � FU1

and the problem of independent retailer 2 is:

max
x2

p (X)x2 � cx2 � tx2 �G2

where X = x1 + x2:

The FOCs are given by

p0 (X)x1 + p (X)� c� �UkU1 � �Rt = 0

p0 (X)x2 + p (X)� c� t = 0

17



which for the case of linear demands can be rewritten as

a� 2bx1 � bx2 � c� �UkU1 � �Rt = 0 (19)

a� 2bx2 � bx1 � c� t = 0 (20)

This yields the equilibrium levels of xi as function of t

x1 (t) =
a� c� 2�UkU1 + t

�
1� 2�R

�
3b

;

x2 (t) =
a� c+ �UkU1 �

�
2� �R

�
t

3b
;

and similarly for the equilibrium aggregate output

X (t) = x1 (t) + x2 (t) =
2 (a� c)� �UkU1 � t

�
1 + �R

�
3b

(21)

Note that

@x2
@t

= �
�
2� �R

�
3b

(22)

@ (x1 + x2)

@t
= �

�
1 + �R

�
3b

(23)

De�ning X�1 (t) = �Rx1 (t) + x2 (t), one has

X�1 =

�
1 + �R

�
(a� c)� �UkU1

�
2�R � 1

�
� 2t

�
�R

2 � �R + 1
�

3b
:

Solving for t and rearranging yields

t (X�1) =

�
1 + �R

�
(a� c)� �UkU1

�
2�R � 1

�
� 3bX�1

2
�
�R2 � �R + 1

� (24)

and

t0 (X�1) = �
3b

2
�
�R2 � �R + 1

� : (25)

7.2.2 Stage 1

Delivery operator 2 is the sole player at this stage and chooses yR2 and y
U
2 to solve

max
yR2 ;y

U
2

t
�
yR2 + y

U
2

�
� kR2 yR2 � kU2 yU2 � (FU2 + FR2 ) s.t. yR2 + y

U
2 = X�1

t � t (X�1)

yR2 = �
R (x1 (t) + x2 (t))

yU2 = �
Ux2 (t) :
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Substituting the constraints into the objective function the problem of delivery operator

2 can thus be reformulated as

max
X�1

t (X�1)X�1��UkU2 x2 (t (X�1))��RkR2 (x1 (t (X�1)) + x2 (t (X�1)))� (FU2 +FR2 );

and the FOC is given by

t0 (X�1)

�
X�1 � �UkU2

@x2
@t

� �RkR2
�
@x1
@t

+
@x2
@t

��
+ t (X�1) = 0:

With the linear demand functions we have

�
1 + �R

�
(a� c)� �UkU1

�
2�R � 1

�
� 3bX�1

2
�
�R2 � �R + 1

�
� 3b

2
�
�R2 � �R + 1

�  X�1 + �UkU2 �2� �R�3b
+ �RkR2

�
1 + �R

�
3b

!
= 0:

Solving for X�1, using expression (24) yields

tI =

�
1 + �R

�
(a� c)� �UkU1

�
2�R � 1

�
+
�
1 + �R

�
�RkR2 + �

UkU2
�
2� �R

�
4
�
�R2 � �R + 1

� ; (26)

XI =
(a� c)

�
7�R

2 � 10�R + 7
�
+ kU2

�
�2 + �R � �R2 (2� �R)

�
12b

�
�R2 � �R + 1

� :

+
kU1

h
�R
�
2�R

2 � 7�R + 10
�
� 5
i
� �RkR2

�
1 + �R

�2
12b

�
�R2 � �R + 1

� (27)

To assess the impact of integration these expressions have to be compared to their

counterparts in the nonintegrated case, (17) and (18)

When marginal delivery costs are the same in both areas so that k = kRi = kUi ,

expressions (18) and (27) reduce to

XI =
(a� c� k)

�
7�R

2 � 10�R + 7
�

12b
�
�R2 � �R + 1

� ;

X =
4 (a� c� k)

9b
;

so that

sign[XI �X] = sign
h�
5�R

2 � 14�R + 5
�
(a� c� k)

i
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and

XI < X i¤ �R > 0:42:

In words, the integrated scenario yields a lower level of output and thus a larger price

and a lower welfare than the setting with independent actors as long as the share of

rural parcels is larger than 42%.

When costs di¤er and are given by kR = k + �k and kU = k; the two relevant

expressions are given by

XI =
(a� c� k)

�
7�R

2 � 10�R + 7
�
� �R

�
1 + �R

�2
�k

12b
�
�R2 � �R + 1

� ;

X =
4
�
a� c� k � �R�k

�
9b

:

And we have

sign[XI �X]

= sign
h�
5�R

2 � 14�R + 5
�
(a� c� k) + �R�k

�
13�R

2 � 22�R + 13
�i

Since
�
13�R

2 � 22�R + 13
�
> 0, this means that the di¤erence between XI and X

increases with the cost di¤erence, so that the critical level of �R above which integration

reduces welfare is increasing.

Observe that integration has two con�icting e¤ects. First, under plausible conditions

it increases the competitor�s cost, that is t. To see this use (17) and (26) to show that

when costs are equal across delivery areas, k = kRi = k
U
i , we have

sign[tI � t] = sign

24�
h
4�R

2 � 7�R + 1
i
[a� c� k]

12
�
�R2 � �R + 1

�
35

so that

tI � t > 0 i¤
h
4�R

2 � 7�R + 1
i
< 0;

a condition which is satis�ed �R > (7 �
p
33)=8 � 0:15, that is when the rural area

represents more than 15% of deliveries, which we can safely assume. When costs di¤er
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so that kR = k +�k and kU = k;

tI =

�
1 + �R

�
(a� c) + k

�
4�R

2 � 5�R + 3
�
+ �R

�
1 + �R

�
�k

4
�
�R2 � �R + 1

�
so that

sign[tI � t]

= sign
h
�
h
4�R

2 � 7�R + 1
i
[(a� c)� k] + �R�k

h
8�R

2 � 11�R + 5
ii
:

Since
h
8�R

2 � 11�R + 5
i
> 0 then �R > (7 �

p
33)=8 � 0:15 remains a su¢ cient

su¢ cient condition when �k > 0: To sum up, we can assume that irrespective of the

cost structure integration increases t. This in turn will have a negative e¤ect on welfare

at it will reduce the independent retailer�s output. This e¤ect is boosted by the impact

t has on the rural delivery cost of the integrated �rm. However, integration also reduces

the urban delivery cost of the integrated �rm which in turn is welfare improving. To be

more precise, integration eliminates the double marginalization on the urban segment

and this e¤ect is reinforced as kU increases (�k decreases). Consequently, it is not

surprising that the welfare impact of integration depends on the share of rural parcels.

Speci�cally when it is su¢ ciently large, one can expect the �rst e¤ect to dominate.

Finally, observe that we have assumed for simplicity that marginal delivery costs

are larger in the rural area. Alternatively, one could assume that average rural costs are

larger; this may be due to smaller volumes which imply that the �xed cost per parcel is

larger. From that perspective it may actually be the case that marginal rural cost are

smaller (due to excess capacities). This would not change our analysis except that �k

could now be negative which would e¤ectively reinforce our conclusions.

7.3 Numerical illustrations

The following examples illustrate these results. They show cases where �full�integration

of a single �rm increases welfare (given the number of �rms) but where urban integration

decreases output and surplus.

Furthermore the examples allow us to compare pro�ts of the integrated �rm across

the di¤erent scenarios. So far we have assume that it is optimal for the integrated
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�rm to integrate urban delivery only. While this is in line with intuition, it is not a

priori obvious because the rural delivery rate faced by the integrated �rm is subject

to a markup (it is above the �rm�s marginal cost). The examples illustrate situations

where this is indeed true: the integrated retailer�s pro�ts are larger with urban-only

integration.6

7.3.1 Scenario 1: kU = 0:05; kR = 0:1; �R = 0:25; c = 0:1; p (X) = X�1=", " = 2:

The example is based on the demand function with elasticity of 2 already used above.

Scenario 2*2 Integration (1i+1r+1o) Urban Integration
Total output 11:98 15:37 10:74

Uniform delivery rate t 0:113 0:116 0:156

Total surplus 4:97 5:34 4:89

Pro�t integrated � 1:03 1:07

Pro�t retailer(s) 0:43 0:14 0:05

Pro�t delivery operator(s) 0:32 0:24 0:47

7.3.2 Scenario 2: kU = 0:05; kR = 0:1; �R = 0:25; c = 0:1; p (X) = X�1=", " = 1:11:

This examples revisits the case where the demand elasticity is smaller.

Scenario 2*2 Integration (1i+1r+1o) Urban Integration
Total output 1:99 2:22 0:65

Uniform delivery rate t 0:19 0:26 0:80

Total surplus 10:39 10:47 9:48

Pro�t integrated � 0:53 0:55

Pro�t retailer(s) 0:24 0:06 0:03

Pro�t delivery operator(s) 0:13 0:12 0:27

8 Summary and conclusion

We have studies vertical integration of a retailer and an operator in the e-commerce

sector. Our main results can be summarized as follows.

First, the comparison between independent oligopoly and integrated monopoly in-

volves a tradeo¤ between competition and double marginalization which will have the

opposite e¤ect. No general result unambiguous result can be obtains. However, we have

6These are of course just illustrations. However, try as we might, we did not manage to �nd a
counter-example.
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shown that with linear demand we need at least 3 �rms (upstream and downstream)

for the independent oligopoly to yield larger surplus. With constant elasticity demand,

on the other hand, this is always true.

Second, we have considered a setting wherein the number of �rms is endogenous

and determined such that gross pro�ts cover �xed costs. We have shown that while the

integration of a single retailer-delivery operator pair may initially be welfare improving,

the resulting market structure may not be sustainable. Furthermore, there exist a range

of �xed costs for which the integrated monopoly emerges (following a single integration)

and is welfare inferior to the initial independent equilibrium even when the reduction in

the number of �xed costs is taken into account. Within this setting we have also show

that multiple integration is typically welfare superior (for a given total number of �rms)

to the integration of a single retailer-delivery operator.

Third and last, we have considered an extension incorporating an important feature

of the delivery sector, namely that customers di¤er according to their location, urban

or rural, involving di¤erent delivery costs. We have shown that urban integration is

more likely to have an adverse e¤ect on welfare than full integration. Finally, we have

provided examples where the integrated �rm �nds it indeed bene�cial not to deliver

in rural areas, even though the operators�delivery rate will include a markup above

marginal cost.
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Appendix

A First-order conditions and equilibria in Section 5 with
linear and constant elasticity demands

A.1 Linear demand

With the linear demand function (example 1) speci�ed in Section 2, the relevant ex-

pressions for the two stages are as follows.

A.1.1 Stage 2

The FOCs are given by

a� bX � bxj � cj � t = 0, j = 2; :::; J: (A1)

a� bX � bx1 � c1 � k1 = 0 (A2)

From (A2), and using X = X�1 + x1, one has

x1 =
a� bX�1 � c1 � k1

2b
:

Moreover, summing (A1) over j = 2; :::; J yields

(J � 1) a� b (J � 1)X � bX�1 �
JX
j=2

cj � (J � 1) t = 0;

which after some computations yields:

t (X�1) =
1

2
a� b

2
X�1

(J + 1)

(J � 1) �
�c

(J � 1) +
c1
2

(J + 1)

(J � 1) +
k1
2

(A3)

With c1 = �c and k1 = �k this reduces to

t (X�1) =
1

2
a� b

2
X�1

(J + 1)

(J � 1) �
�c

2
+
�k

2

A.1.2 Stage 1

Summing (16) over i = 2; :::I yields:

t0 (X�1)X�1 + (I � 1) t (X�1)� �k + k1 = 0 (A4)
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where t (X�1) is given by (A3) and t0 (X�1) = � (b=2) (J + 1) = (J � 1) : Substituting

into (A4) and rearranging yields

X�1 =
(J � 1)
(J + 1)

(I � 1)
I

a

b
� 2
b

(I � 1)
I (J + 1)

�c� 2
b

(J � 1)
I (J + 1)

�k+
1

b

(I � 1)
I

c1+
1

b

(I + 1)

I

(J � 1)
(J + 1)

k1:

Since

x1 =
a� bX�1 � c1 � k1

2b

X = X�1 +
a� bX�1 � c1 � k1

2b

which can be rearranged as

X =
2IJ � J + 1
I (J + 1)

a

2b
� 1
b

(I � 1)
I (J + 1)

�c� 1
b

(J � 1)
I (J + 1)

�k � 1

2b

1

I
c1 +

1

2b

(J � 2I � 1)
I (J + 1)

k1:

With c1 = �c and k1 = �k, this reduces to

XI =
2IJ � J + 1
I (J + 1)

a

2b
� 1
b

2I + J � 1
2I (J + 1)

�
�c+ �k

�
:

A.2 Constant elasticity demand

A.2.1 Stage 2

Summing (14) over j = 2:::J and adding it to (15) yields

Jp (X)

�
1� 1

J"

�
� J�c� (J � 1) t� k1 = 0;

p (X) + p0 (X)x1 � c1 � k1 = 0

Denoting X�1 = X � x1, we thus have the following system of two equations with two

unknowns X�1 and x1:

Jp (X�1 + x1)

�
1� 1

J"

�
� J�c� (J � 1) t� k1 = 0 (A5)

p (X�1 + x1) + p
0 (X�1 + x1)x1 � c1 � k1 = 0 (A6)

The second equation de�nes x1 � x1 (X�1) with

dx1
dX�1

= � p0 + x1p00

2p0 + x1p00
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where 2p0 + x1p00 < 0 (SOC) so that

t (X�1) =
J

J � 1

�
1� 1

J"

�
p� J

J � 1�c�
1

J � 1k1 (A7)

with

dt

dX�1
=

J

J � 1

�
1� 1

J"

��
1 +

dx1
dX�1

�
p0

=
J

J � 1
p0

2p0 + x1p00

�
1� 1

J"

�
p0

=
J

J � 1
1

2 + x1p00

p0

�
1� 1

J"

�
p0 < 0 because of SOC (A8)

Note that
Xp0

p
= �1

"

so that

Xp0 +
p

"
= 0

Totally di¤erentiating this w.r.t. X yields:

Xp00

p0
= �

�
1 +

1

"

�
(A9)

Substituting (A9) into (A8) we obtain

dt

dX�1
=

J

J � 1

�
1� 1

J"

�
1

2� x1
X

�
1 + 1

"

�p0 (A10)

A.2.2 Stage 1

Substituting (A7) and (A10) into (16) we obtain

J

J � 1

�
1� 1

J"

�
1

2� x1
X

�
1 + 1

"

�p0xi+ J

J � 1p
�
1� 1

J"

�
� J

J � 1�c�
1

J � 1k1�ki = 0, i = 2; :::I:

Summing over i = 2:::I yields

J

J � 1

�
1� 1

J"

�
p0 (X)

1

2� x1
X

�
1 + 1

"

� IX
i=2

xi +
(I � 1) J
J � 1

�
1� 1

J"

�
p (X) (A11)

�(I � 1) J
J � 1 �c� I � 1

J � 1k1 �
IX
i=2

ki = 0 (A12)
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Note that
IX
i=2

xi = X � x1:

Using (A6) this implies
IX
i=2

xi = X � c1 + k1
p0 (X)

+
p (X)

p0 (X)
;

so that (A11) can be rewritten as

J

J � 1

�
1� 1

J"

�
p0 (X)

1

2� x1
X

�
1 + 1

"

� (X � x1) +
(I � 1) J
J � 1

�
1� 1

J"

�
p (X) (A13)

�(I � 1) J
J � 1 �c� I � 1

J � 1k1 �
IX
i=2

ki = 0: (A14)

Solving for p we obtain

p (X) =
�c+ J�1

J
I

(I�1)k �
J�I
(I�1)J k1�

1� 1
J"

� �
1� 1

(I�1)"

�
1�x1

X

2�x1
X (1+

1
")

��
which for k1 = �k reduces to

pI (X) =
�c+ k�

1� 1
J"

� �
1� 1

(I�1)"

�
1�x1

X

2�x1
X (1+

1
")

�� :
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