(Mis)understanding prices: How consumers respond to nonlinear electricity tariffs

Presented by: Blake Shaffer, University of Calgary

June 6, 2017

Motivation

Policies are set based on expectations of behaviour.

... but what if our expectations are wrong?

What is the Research Question?

How do consumers respond to nonlinear tariffs?

What is the Research Question?

How do consumers respond to nonlinear tariffs?

Do consumers ...

- ... respond to marginal cost?
 ... respond to average cost?
 Ito (2014, AER)
- ... misunderstand complex tariffs?

What is a nonlinear tariff?

• Residential Increasing-Block Tariff

Figure: Costs under a RIB Tariff

The Setting

- BC Hydro changed to a RIB in October 2008
- City of New Westminster did not.

5 / 24

Empirical Strategy

- Reduced form analysis
 - Exploit natural experiment
 - 3 approaches (Bunching, IV, DD)
- Simulation and method of indirect inference

Method 1 - Bunching

Figure: BUNCHING THEORY

Adapted from Saez (2010)

Shaffer (UCalgary) Misunderstanding prices June 2017 7 / 24

Bunching cont.

Figure: DISTRIBUTION OF BC HYDRO CONSUMPTION BY HOUSEHOLD

8 / 24

Bunching cont.

Counterfactual methods:

- 2007 BCH
- 2007 Scaled by NW
- 2009 Polynomial

Bunching - Results

Table: BUNCHING ESTIMATES OF PRICE ELASTICITY

(1)	(2)	(3)		
Polynomial	2007 BCH	2007 BCH scaled		
-0.048	-0.041	-0.045		
(0.010)	(0.012)	(0.017)		

Bootstrapped standard errors in parentheses.

Key points:

- This is local to the area near the threshold
- This is only response to marginal cost, not average cost
- Ito (2014) found 0 elasticity by bunching

Method 2 - IV Panel Regression

- Monthly panel regression
- Exploits time and spatial variation in nonlinear tariffs
- Uses simulated instrument as IV

Figure: BC Hydro and New Westminster electricity rates

IV Panel - Results

Table: ELASTICITY ESTIMATES USING IV METHOD

Dependent variable: $\Delta \ln dailykwh$

			•
	(1)	(2)	(3))
$\Delta \ln MP$	-0.136		-0.141
$\Delta \ln MP$	(0.007)	•	(0.010)
$\Delta \ln AP$,	-0.133	0.010
	•	(0.009)	(0.013)

Standard errors clustered at the household level are shown in parentheses.

Key points:

- 1 Estimated effect of AC insignificant once MC accounted for
- 2 Ito (2014) found the opposite

Method 3 - Conditional Difference-in-differences

- Compare BCH vs NW, before and after the policy change
- But... common trend violation!
- Solution: Compare separately for each decile of usage

Conditional Difference-in-differences Results

$$\begin{split} \ln x_{it} &= \alpha I[BCH_i] + \beta I[Post2008_t] + \delta I[Post2008_t] \times Decile_{id} + \\ & \gamma_d I[BCH_i] \times I[Post2008_t] \times Decile_{id} + \eta_i + \phi_t + \epsilon_{it} \end{split} \tag{1}$$

Figure: Demand

Figure: Prices

Key points:

DD coefficients not consistent with either MC nor AC

Shaffer (UCalgary) Misunderstanding prices June 2017 14 / 24

Conjecture

What if (at least some) consumers misperceive the tariff?

Hypothesis

Three "types" of households:

- Rational respond to MC
- Lazy respond to AC
- Confused respond to misperceived AC
 - ▶ (*Misperception*: the price of electricity increases for *all* usage once the threshold is crossed, not just incremental units)

Simulated Distributions

Figure: Actual data

Figure: Lazy

Figure: Rational

Figure: Confused

Simulated DD Results

Figure: Actual data

Figure: Lazy

Figure: Rational

Figure: Confused

Simulated Mix

- Use indirect inference to find optimal mix of "types" that best rationalizes the data
- Best fit: 85% lazy, 7% rational, 8% confused

Figure: Actual data

Figure: Simulated Mix

Numerical simulation stability

• Minimum is identified; more precision around amount of confused

Simulated Mix (Elasticity Estimates)

Bunching Estimates

Counterfactual	Actual	Simulated Mix		
D	0.040	0.000		
Polynomial	-0.048 (0.007)	-0.098 (0.032)		
2007	-0.041	-0.078		
	(0.007)	(0.020)		
2007 Scaled	-0.045	-0.083		
	(0.007)	(0.021)		

Standard errors in parentheses, using bootstrap method.

IV Estimates

	Actual			Simulated Mix		
$\Delta \ln MP$	-0.136	•	-0.141	-0.133	•	-0.137
	(0.007)	•	(0.010)	(0.008)	•	(0.011)
$\Delta \ln AP$		-0.133	0.010		-0.130	0.006
		(0.009)	(0.013)		(0.010)	(0.014)

Standard errors in parentheses, clustered at premise level.

Conclusion

- Households largely responding to average cost
- Small number of households likely misperceiving tariff
- The combination makes it appear there is marginal cost responsiveness to the nonlinear tariff

⇒ Misperception masking an otherwise weak response

Contributions

- Methodological:
 - Develop a strategy to uncover misperception
 - Highlight risk of spurious conclusions from standard empirical techniques
- Policy:
 - Quantify the role of misperception in affecting outcomes
 - ★ In the short run, more conservation (due to misperception)
 - ★ In the longer run, weak average cost response
 - Suggest alternative policy
 - ★ Policy goals (conservation) better achieved by flat rate

Thank you! (Questions?)