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Abstract

Solar energy production has experienced an exponential growth worldwide over the last
decade, mostly driven by government subsidies and declining solar panels’ production costs.
This is environmentally desirable, but an increasing number of households with solar power
raises two challenges for regulators: network financing and vertical equity. First, these house-
holds still require network energy, leaving the fixed grid maintenance costs unchanged. However,
producing their own energy, they contribute less to grid costs, mostly financed with consumption-
based tariffs. Second, these households are usually richer, shifting the burden of grid costs onto
low income ones. In this paper we address these challenges proposing alternative tariff schemes
that incentivize solar photovoltaic (PV) adoptions, while guaranteeing the sustainability and eq-
uitable distribution of network costs. We use a unique matched dataset on energy consumption,
income, wealth, PV installations, and building characteristics for around 180,000 households in
the Canton of Bern (Switzerland) in 2008-2013 to estimate models of energy demand and PV
installation. Using counterfactual policy experiments we propose an optimal tariff design where
the regulator achieves vertical equity, subject to a minimum green-energy target and a network
financing constraint. We find that it is optimal for the regulator to stimulate PV adoption
subsidising solar panels’ fixed costs, financing this subsidy with an increase in both fixed grid
fees and variable grid charges.
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1 Introduction

The reduction of greenhouse gasses emissions is a global challenge that has become increasingly
important in recent years.1 To meet this goal, policymakers, companies, and individuals worldwide
have contributed to the development of renewable energy systems, with a global investment in
these new technologies of $285.9 billion in 2015. In particular, governments have introduced several
incentive programs to ease the transition towards more green energy. Solar photovoltaic (PV) is
one of the leading technologies among renewables, experiencing a remarkable growth in the last
years. Electricity generated by solar power worldwide went from around 4 GWh in 2005 to over
200,000 GWh in 2015, and in 2014 for the first time PV systems achieved meeting 1% of the world
electricity demand.2 Two main forces have been stimulating this exponential growth. First, until
now 93.6% of the global PV market depends on governmental support schemes, for the most part
being feed-in tariffs. Second, PV modules’ production costs have dropped significantly, from around
7 USD/W in the early 2000 to around 0.5 USD/W in 2015.3

While this trend is desirable from an environmental perspective, the rapid expansion of distributed
generation comes at a cost for utilities worldwide (MIT, 2011, The Economist, 2017). There are two
main challenges that a growing number of PV adoptions poses to regulators. First, households with
PV installations still require network energy, leaving the fixed grid maintenance costs unchanged.
However, as they produce their own energy, these households contribute less to grid costs, as
these are mostly paid with consumption-based tariffs. This is likely to make the sustainability
of network financing problematic. Second, households who can afford installing a solar panel are
usually richer, which can generate a regressive redistributive effect of green energy incentives. While
the first point also applies to companies installing solar panels, the second is mostly relevant for
residential users.

In this paper we address these challenges proposing an optimal tariff design that a regulator can im-
plement to achieve various solar energy targets, while guaranteeing the sustainability and equitable
distribution of network costs. We use a unique matched dataset on energy consumption, income,
wealth, solar panel installations, and building characteristics for around 180,000 households in the
Canton of Bern (Switzerland) in 2008-2013 to estimate models of energy demand and PV installa-
tion. We identify energy demand elasticities using a regression discontinuity design that exploits
price variation at spatial discontinuities between electricity providers, and model PV adoption as
a dynamic single agent optimal stopping problem. Using a counterfactual exercise, we specify the
regulator’s constrained optimization problem that allows us to find the optimal combination of
variable energy prices, fixed energy fees, and subsidies to PV installation costs to achieve a 1%,
3% or 5% solar energy target, guaranteeing network financing and an equitable distribution of grid
costs across the income distribution.

Under the current technology, almost all buildings that install solar panels are still connected to the
electricity grid, but intermittently produce their own energy. This implies that energy distribution
and transmission lines are still indispensable for the supply of energy. In most countries a substan-

1As of December 2016, 192 countries have signed the UNFCCC Paris Agreement, a negotiated effort to limit the
world temperature increase, ”making finance flows consistent with a pathway towards low greenhouse gas emissions
and climate-resilient development”.

2In the Swiss Canton of Bern, for which we have access to detailed data, there was an average yearly growth rate
in PV installations of 60% in the period 2008-2013.

3Sources: International Energy Agency, ”Trends 2015 in Photovoltaic Applications”; International Renewable
Energy Agency.
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tial part of transmission and distribution network costs is recovered through volumetric kilowatt
hour-based (i.e. consumption-based) rates, to promote households’ energy conservation. However,
increased penetration of PV installations implies lower energy demand from the grid, and together
with volumetric charges this leads to lower revenues for electricity and network providers. To give
an example from our data, consider a household with average yearly energy consumption of around
5,000 kWh, and assume that it installs a solar panel producing on average 6,000 kWh annually, of
which around 20% can be used for own consumption. Under this scenario, with a volumetric grid
charge of 0.1 CHF/kWh, the household’s yearly contribution to finance the grid would drop by 24%,
from 500 CHF to 380 CHF.4 As network costs are largely fixed, it is likely to become increasingly
difficult for utilities to recover these costs under volumetric charges and increased PV adoptions.
Furthermore, the solar PV technology creates large variations in the net energy demand, placing
additional stress on distribution feeders not designed for simultaneously accommodating outflows
and inflows of energy, potentially increasing network operation costs (Joskow, 2012).

This increasing trend in solar PV adoptions may therefore even induce a spiral of rising volumetric
rates, distorting consumer incentives and inducing them to switch to alternative energy sources
in an inefficient way (Borenstein, 2014).5 A large share of households’ energy bill comes from
consumption-based tariffs, generating stronger incentives for households with greater electricity
consumption to install solar panels. These are usually richer households, who are more likely to
adopt a PV for two main reasons. First, they have the resources to pay the fixed installation cost.
Second, they are more likely to own the house they live in and own a single house, two conditions
that largely facilitate the adoption decision. As a consequence, the burden of financing the energy
infrastructure is progressively shifted onto non PV owners, who are usually lower income households.
In our data for the Canton of Bern, the average income of households with a PV installation is
45% higher than the average income of households without a solar panel. This highlights the
second issue that a growing number of PV adoptions causes, the vertical equity of the current tariff
design.

This issue also applies to the subsidies for solar panel installations, and to the way these are
financed. Most European Union members, the United Sates, and Switzerland have introduced feed-
in tariff programs for small scale renewable generation. These programs compensate producers for
generating their own energy at a fixed electricity rate, which usually exceeds wholesale energy cost
and is often financed by a surcharge paid on the electricity bill. Under a system of net metering
where end users are allowed to consume the energy they produce, the owners of PV installations
save not only on the per kWh charges that are used to recover fixed network transmission and
distribution costs, but also on the surcharge that finances the feed-in tariff. This differential cost
burden for households of different income levels raises questions about the vertical equity of the
system, which may be discriminatory towards low income households, less able and less incentivized
to finance PV installations.

We propose an optimal tariff design that a regulator can implement to achieve a solar energy
production target, while recovering network costs and preserving vertical equity. We allow the
policymaker to rely on three different instruments, all commonly used in various electricity markets
worldwide: volumetric charges and fixed fees in households’ energy bills, as well as subsidies to solar

4One CHF is around one USD.
5On the other hand, a large increase in energy produced by renewable sources may lead to a reduction in energy

prices, as renewables produce at zero marginal costs. This would in turn reduce the incentive to adopt solar panels,
leading to the so called ”cannibalization effect” of renewables (The Economist, 2017). In our paper we don’t model
this possibility, as we assume that the energy suppliers in the Canton of Bern are too small to affect the wholesale
electricity price they face.
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power installation costs. Volumetric charges are used to generate revenues to finance energy and
grid costs, and represent an incentive for both energy conservation and solar panel adoption. Fixed
fees instead generate no incentive for households’ energy conservation or solar power installation,
but guarantee a steady revenue to recover fixed network costs that doesn’t depend on households’
energy consumption or production. The last instrument is a subsidy to solar panel installation
costs. This is one of the two main incentives historically used by policymakers to foster solar
panels’ adoptions, the other being feed-in tariffs. The main difference between the two instruments
is that the first subsidises up front installation costs, whereas the second subsidises future revenues
from energy production. De Groote, Verboven (2016) are able to show that Belgian households
undervalued future solar panel revenues, concluding that in their setting, where a feed-in tariff was
in place, an upfront investment subsidy would have promoted PV adoptions at a lower budgetary
cost. Based on their findings, and on the recent change by the Swiss government from a feed-in
system to installation subsidies, we decided to just focus on the latter.

We define a framework to model how households respond to fixed and variable energy charges, as
well as subsidy to PV adoption, in their optimal electricity consumption and solar panel installation
decisions. We let households be forward looking and solve a dynamic problem, in the spirit of Hen-
del, Nevo (2006). We estimate the model in three stages. First, we assume that households solve
a static utility maximization problem to choose their optimal energy consumption, conditional on
their solar panel adoption decision. We estimate the parameters of their energy demand function
using a geographical boundary regression discontinuity design, similarly to Black (1999) and Ito
(2014), to address the endogeneity of energy prices and fees. This approach allows us to identify
price elasticities exploiting tariffs variation between neighbouring households, located on opposite
sides of border points between different electricity suppliers. Second, we estimate transition proba-
bilities for the state variables, to determine how households form expectations over the evolution of
the their indirect utilities from consumption, as well as PV installation costs and revenues. Third,
we estimate households’ PV adoption decisions as an optimal stopping problem, following Rust
(1987), where households choose when to install a solar panel, trading off declining subsidies in the
form of decreasing feed-in tariffs, and installation costs that reduce over time due to lower panels’
production costs.

We use the results from these models to conduct three counterfactual exercises. In the first exper-
iment we simulate a benchmark scenario where all home owners in our data install a solar panel,
calculating the increase in variable grid tariff required to guarantee network financing. In the worst
scenario, we find that volumetric charges would need to rise by up to 140% to recover the missing
revenue, and this increase would be borne mostly by low income households. In the second coun-
terfactual we address the regressive nature of fixed fees, simulating a complete decoupling of grid
revenues from energy consumption. We show that a capacity fixed fee would make grid financing
more progressive. In the last experiment we solve the policymaker’s optimization problem, following
Wolak (2016), to find the optimal tariff design in terms of variable prices, fixed fees, and subsidies,
in order to achieve 1%, 3%, and 5% solar energy production targets, while recovering network
costs and preserving vertical equity. To meet each of those targets, we find that it is optimal for
the regulator to subsidize respectively 30%, 44%, and 51% of solar panels’ fixed installation costs,
financing this subsidy with a 6.6%, 20.6%, and 28.3% increase in fixed grid fees, and a 1%, 12.2%,
and 34.7% rise in variable grid charges. We show that these tariff schemes are optimal, as they
guarantee under each scenario that households across the income distribution experience the same
percentage increase in electricity bills.

We have access to a unique panel dataset at the household-year level for the Canton of Bern over
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the 2008-2013 period. We constructed this data matching information from four different sources.
First, the three main energy providers in the Canton provided us with data on households’ energy
consumption and expenditure, electricity prices with detailed breakdown for each component of
the bill charged to users, and households’ PV adoptions. Second, the Tax Office of the Canton
of Bern gave us yearly information on each household’s income, wealth, tax payments, and de-
mographics, including location. To the best of our knowledge, this is the first paper that is able
to match households’ energy consumption with exact income and wealth data. Third, the Swiss
Federal Statistical Office gave us access to cross-sectional information on each households’ building
characteristics, including number of rooms, house/apartment surface, heating and water systems,
and building construction period, all key determinants of households’ energy consumption. Last,
the Swiss start-up company Eturnity AG, which provides an advisory online platform for solar
energy systems, simulated for us a novel dataset on potential energy production of solar panels on
each building in our data, including also estimated installation costs, and households’ consumption
profiles. Eturnity has developed a software that uses building location and characteristics to fore-
cast the potential production of a rooftop solar panel and its installation cost, using local weather
and potential sun exposure, roof surface, and estimates of solar panel installation costs from local
households and suppliers. Moreover, based on an aggregate household consumption measure and
on the feed-in tariff in place, it can recover a detailed household consumption profile to determine
the total savings that a solar panel would guarantee over a 25-years horizon.

Our paper is related to various strands in the literature. First, it contributes to the debate on
network financing and vertical equity posed by the growth in solar power installation.6 Borenstein
(2008) shows that the costs of adopting the PV technology exceed its market benefits, contradicting
the argument that solar panels have reduced the costs of energy transmission and distribution, since
power is generated at the end-user’s location. Bushnell (2015) highlights how volumetric charges
imply that the more efficient energy consumption becomes, the less households contribute to the
infrastructure costs of national energy utility distributors. Consequently, increasing distribution
rates may provide even larger incentives to reduce energy consumption, shifting costs to third
parties (MIT, 2011). Picciariello, Ramirez, Guillén, Marin, and Söder (2014) show that cross
subsidization from customers without self generation to those with self generation is likely to arise
in case volumetric tariffs and net metering is adopted.7 As suggested by Joskow (2012), a potential
solution to these issues is an alternative financing scheme that provides for the separation of the
cost recovery from energy consumption, known as ”revenue decoupling”. This could take the form
of a fixed charge faced by all customers, or of a demand charge based on individual consumers’
peak load on the distribution system.

Connected to this literature, we rely on various contributions in public finance to motivate the
vertical equity concern of a policymaker in the design of energy tariffs. While Atkinson, Stiglitz
(1976) argue that redistribution should only be achieved via income tax, Stiglitz (1982), Naito
(1999), and Cremer, Ghavari (2002) support the use of a second instrument to achieve income
redistribution, and a number of papers promotes the redistributive role of public utility pricing.8

6This debate and our approach are also valid for the diffusion of any energy efficient technology. In fact, under a
system of volumetric charges households have an incentive to adopt any technology that allows them to consume less,
which reduces energy demand and erodes utilities’ revenues to finance the grid. For the same reasons explained for
PVs, richer households are more likely to invest in these technologies, shifting the grid financing burden onto poorer
households.

7This problem has also been acknowledged in further studies, such as Pérez-Arriaga, Ruester, Schwenen, Battle,
and Glachant (2013), and Eid, Guillén, Marin, and Hakvoort (2014).

8See for instance Feldstein (1972a), Feldstein (1972b), Munk (1977), Saez (2002), Hellwig (2007). We explore this
question further in a follow-up paper.
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This literature on public utility pricing commonly assumes that the regulator is constrained in the
design of income taxation, one of the reasons being the political cost of changing income taxes.
This provides an argument for vertical equity that is particularly relevant in Switzerland, where
direct democracy implies that changes in income tax can only be achieved via national referenda.
Based on this principle, a number of other European countries (Italy and the UK for example) have
separate budgets for energy versus other types of government spending, avoiding cross-subsidization
between different areas.

Second, our work is part of a large literature estimating price elasticities of residential electric-
ity demand.9 Reiss and White (2005) use energy consumption cross-sectional survey data for
1,300 households, evaluating the effect of different tariff structures on energy demand. Ito (2014)
has access to a household-level panel on energy consumption from two major Californian energy
providers. He exploits price variations at spatial discontinuities between these operators to identify
price elasticities, finding that despite the non-linear price schedules offered, consumers only respond
to average instead of marginal prices. A common feature of these papers, as others in the literature,
is that they can only imperfectly match households’ energy consumption with income census data,
using aggregate zip code information.

Our data has two fundamental advantages compared to the existing literature. First, it covers
almost the whole population of the Canton of Bern, the second largest Canton in Switzerland, as
opposed to previous papers only having access to a representative sample of households. Second,
we have a perfect match of households’ yearly energy consumption to their yearly income and
wealth, as well as to detailed building characteristics and potential PV costs and production. We
are not aware of any other paper exploiting this detailed household-level information on income
and wealth. The richness of our data allows us to precisely estimate heterogeneous price elasticities
across the income distribution. Ignoring this dimension of heterogeneity in price elasticities may
underestimate the variance of the impact of energy price changes across consumers, distorting the
welfare impacts of policy simulations.

Last, our work contributes to a recent literature on reduced form and structural models of house-
holds’ solar panel adoption, the latter mostly based on Rust (1987). Using data on residential
PV installations in California, Borenstein (2015) finds that income distribution of PV adopters
is skewed towards wealthier households, showing that the increasing-block pricing (IBP) scheme
generates greater incentives for households with higher energy consumption to adopt a PV system.
Burr (2014) estimates a household level dynamic PV installation model for California, showing
that upfront capacity-based subsidies result in lower welfare costs and more solar adoptions than
production-based subsidies (feed-in tariffs). Reddix (2014) estimates a similar model, allowing for
product differentiation in PV systems, to show that in California in the absence of government
subsidies over 54% of all PV installations would have not occurred, with the largest share of lost
adoptions originating from larger capacity installations. Last, De Groote and Verboven (2016)
estimate a dynamic model of PV adoptions using market share data for small local markets in
Belgium, recovering households’ discount factor, and showing that an upfront investment subsidy
is more effective than feed-in tariffs at promoting PV adoptions.

None of these papers has detailed data on households’ energy consumption, expenditure, and

9Papers using aggregate data, typically at the U.S. state level, are: Herriges and King (1994), Maddock, Castano
and Vella (1992), Kamershen and Porter (2004), Alberini, Gans, and Velez-Lopez (2011), Alberini and Filippini
(2011) or Bernstein and Griffin (2006). Papers focusing on European energy markets include Filippini, Blazquez,
and Boogen (2012) (using Spanish data), Mohler and Müller (2012), and Boogen, Datta, and Filippini (2014) (both
focusing on Switzerland).
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income. This allows us to specify a richer model, where households decide both their optimal
electricity consumption and PV adoption, subject to their budget constraint.10 In particular,
when choosing whether to install or not, households trade-off the indirect utility from optimal
consumption with and without a solar panel, as well as the different electricity bills. Moreover,
from a regulator’s perspective, we can simulate alternative tariff designs making sure that the
network and subsidies’ costs are recovered through the electricity bills. Last, with data on PV
production and households’ energy consumption we can simulate several solar energy targets that
a policymaker can achieve.

Our paper is structured as follows. Section 2 introduces the institutional features of the Swiss
energy market and describes the data. In Section 3 we present the model, and in Section 4 we
describe the estimation strategy and the identification. Section 5 shows the results, Section 6
presents the counterfactuals, and Section 7 concludes.

2 Data and Swiss Electricity Market

Switzerland is a federal state, divided into 26 Cantons and roughly 3,000 municipalities of varying
size and population. The supply of energy is decentralized and is organized by each Canton. Within
each Canton one or more utilities have a local monopoly when it comes to households’ energy
provision. Large scale consumers with an annual energy consumption exceeding 100 MWh can
choose their provider since 2009, but households will only be able to do so from 2018. This means
that even within the borders of a Canton residential customers can be assigned different energy
providers, depending on their location. Utility providers can have the legal form of purely private
companies, but in most cases they are still at least partially public monopolies. In the Canton of
Bern for example, 52% of the main utility (BKW Energie AG) is owned by the Canton of Bern.
This implies that these utilities are not profit oriented and cannot set their prices independently,
but have to follow the requirements of the regulatory agency ELCom.

We constructed a unique dataset for the Canton of Bern (Switzerland) that combines yearly house-
hold level energy consumption, income, wealth, PV installations, and buildings’ characteristics.
With an area of around 6,000 km2 and just over 1 million inhabitants the Canton of Bern is the
second largest Swiss Canton in terms of population. The three main energy providers in the Canton
are BKW Energie AG (BKW), Energie Wasser Bern (EWB), and Energie Thun (ET). The major
provider is by far BKW, supplying more than 7,500 GWh of energy to around 200,000 households
in 400 municipalities in the Canton. EWB supplies energy to around 70,000 households and is
mainly responsible for the city of Bern, whereas ET serves only 20,000 households in the city of
Thun. These three main energy providers made available to us their data on household energy con-
sumption, on household PV installations, and infrastructure network costs and tariffs. The map
in Figure 1 shows the geographical distribution of households and the coverage of the respective
energy providers in the Canton of Bern. The dark blue area represents the city of Thun, the blue
area the city of Bern, and the larger light blue area the rural part of the Canton, where households
are supplied by BKW. This map highlights the clear spatial discontinuities between providers that
we will exploit to identify price elasticities.

10Related to our work, Dubin, McFadden (1984) propose a static model to jointly estimate households’ electricity
consumption and appliance holdings. We differ from their approach as we have a dynamic model of PV adoption,
but estimate our two models sequentially rather than jointly for tractability.
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Households in the Canton of Bern receive the electricity bill once a year. This is divided into
a fixed fee, charged to recover network costs, and a variable price, which consists of four major
components. First, a variable energy price defined by the individual supplier, reflecting the costs
of internal production and of procurement of electricity on the market. Second, a variable price
for grid usage, covering the energy distribution network costs and again varying between providers.
Third, a uniform surcharge levied by the federal state used to promote renewable energy. Fourth,
taxes levied by the communal, cantonal, and federal authorities. As opposed to Californian utilities
which usually resort to IBP schemes, Swiss utilities apply a constant price per kWh irrespective of
the amount of electricity consumed. Residential customers of two of the three operators (BKW and
EWB) can only choose between a uniform tariff and a day-night tariff, with higher rates during the
day. All households in the jurisdiction of Energie Thun, the third main operator in the Canton,
are subject to a two part tariff. Table 1 reports the detailed price components for BKW for the
years 2008-2013.11

Table 1: Energy Prices, Network Tariffs and Taxes - BKW

Variables 2008 2009 2010 2011 2012 2013

Double Tariff
Energy Price HT (Rp/kWh) 11.57 11.57 11.57 12.16 12.2 11.88
Energie Price LT (Rp/kWh) 7.21 7.21 7.21 7.21 7.24 7.78
Grid Price HT (Rp/kWh) 10.48 11.29 11.29 11.13 9.18 9.18
Grid Price LT (Rp/kWh) 3.77 4.2 4.2 5.54 4.59 4.59
Grid Basic Fee (CHF) 180.67 180.66 180.64 141.97 123.08 123.12

Uniform Tariff
Energie Price (Rp/kWh) 11.03 11.03 11.3 11.78 11.83 11.77
Grid Price (Rp/kWh) 10.49 11.3 11.3 10.6 8.91 8.91
Grid Basic Fee (CHF) 142.03 142.03 142.03 122.66 103.68 103.68

Both Tariffs
Swissgrid (Rp/kWh) 0 0 0 0 .43 .33
KEV (Rp/kWh) .16 .48 .48 .48 .49 .49
Municipal Tax (Rp/kWh) 1.59 1.59 1.59 1.59 1.6 1.6

Note: The table shows average prices in the sample. HT stands for ”High Tariff” and LT stands for ”Low Tariff”. Rp means
Rappen, that is one-hundredth of a Swiss franc (CHF). Some municipalities refrain from levying a municipal tax. All prices
include the value-added tax.

11The corresponding numbers for EWB and ET are presented in Appendix 2.
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Figure 1: Map Canton Bern (Households)

Note: The figure depicts the Canton of Bern and the coverage of the three main energy providers. The dark blue area represents
the customers of Energie Thun and hence the city Thun. The blue area consists of the customers of Energie Wasser Bern and is
equivalent to the city of Bern. The light blue area corresponds to the customers of the BKW and therefore most of the Canton
besides the two mentioned cities. Note that only households matched to the income information are shown in the figure.

Table 2 presents descriptive statistics of households’ energy consumption annual expenditures,
with a breakdown for the different components of the electricity bill. As displayed in the first
row of Table 2, the annual household energy consumption is on average 4,942 kWh. Rows 5-12
in Table 2 display summary statistics for the different expenditure components of the electricity
bill. The average annual household expenditure is CHF 1,059, most of which goes to energy price
expenditures (46%) and network charges (45%).

Detailed household income and wealth yearly data are provided by the Tax Office of the Canton
of Bern, and cross-sectional information on building characteristics is obtained from the Swiss
Federal Statistical Office.12 Table 3 provides summary statistics for different measures of income
and household tax payments.

12The process of matching energy consumption and income data led us to the final sample of around 180,000
households. We describe in detail in Appendix 1 the assumptions we made during the data merging process.
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Table 2: Energy Consumption and Expenditure

Variables N Obs Mean Std Dev 5th Perc Median 95th Perc

Energy Consumption (kWh) 789,098 4,942 5,289.5 877 3,261 15,054
Consumption HT 495,915 2,820.7 2,432.9 591 2,161 7,417
Consumption LT 496,000 3,588.2 4,352.6 318 2,436 11,664.8
Consumption UT 306,654 2,352 1,721.5 702 1,931 5,308.4

Energy Expenditure (CHF) 789,098 1,058.9 872.9 293.6 791.9 2,821.4
Energy Price Expenditure 789,098 484 461.6 98.1 343.7 1,394.7

Price Expenditure HT 495,916 328.7 269.3 71 257.6 838.7
Price Expenditure LT 496,001 266 318.8 26.7 181.7 856.3
Price Expenditure UT 306,656 265.9 194.5 79 217.9 603.2

Grid Expenditure 789,098 481.6 345.5 146.7 382.3 1,184.8
Tax Expenditure 789,098 70.3 72.2 2.5 51.5 201.7
KEV Expenditure 789,098 21.6 24.4 2.9 13.9 67.1

Note: The descriptive statistic is pooled over all companies and years. The sample includes households with up to three grid
connections (with potentially double and uniform tariff expenses on their bill). Consumption and expenditure are further
differentiated by high tariff shares (HT), low tariff shares (LT) and uniform tariff shares (UT). High and low tariffs are part of
the double tariff scheme.

Table 3: Income, Wealth and Tax Payments

Variables N Obs Mean Std Dev 5th Perc Median 95th Perc

Total Income 789,098 99,061 125,027 26,416 82,428 209,727
Taxable Income 789,098 76,100 114,195 19,339 63,556 161,909
Total Wealth 789,098 542,563 2531557 0 259,016 1,696,888
Cantonal Tax 789,098 7,507 13,989 213 5,559 19,228
Municipal Tax 789,098 3,869 6,769 113 2,915 9,801
Federal Tax 789,098 1,788 9,206 0 499 6,530

Note: The table shows descriptive statistics for the sample pooled over all years. All variables are measured in Swiss francs
(CHF). Negative income observations have been excluded from the sample. Taxable income is defined as total income (in
the form of labor income or income from self-employment) plus rental value of owner occupied housing less mortgage interest
payments and commuting and living expenses. Given the federal structure of Switzerland, households are subject to three
different income taxes levied by the three different levels of government (Cantonal, Municipal, and Federal).

Table 4 reports the average energy consumption, energy expenditure, and the share of taxable
income spent on energy by income decile. The table also displays the proportion of owner occupied
housing, the average household size in each decile, the fraction of households with retirees, as well
as the share of households who own a PV installation in each income decile. The last four rows
report building or apartment characteristics relevant for energy consumption: the number of rooms,
the apartment surface, and whether electricity is used for heating or hot water. The unconditional
means in Table 4 suggest that the annual average electricity consumption as well as energy ex-
penditures rise monotonically with income. Households in the lowest income decile consume on
average 3,443 kWh per year, whereas those in the highest one have an yearly consumption of 7,817
kWh.
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A more disaggregate version of this trend is presented in Figure 2, which shows the average energy
consumption for each percentile of the income distribution.13 Supporting evidence of our argument
that richer households are more likely to install a solar panel is given by the home ownership and
one-apartment building dummy variables. Among households in the first income decile, only 23%
are home owners and 15% live in a single house, whereas among households in the top income
decile 76% are home owners and 51% live in a single house. Moreover, these two proportions
are monotonically increasing across the income distribution. Figure 3 presents the share of each
component of the electricity bill across the distribution of electricity consumption. For low levels of
annual energy consumption, corresponding to low income deciles, the fixed grid charge represents
the largest share of the bill. For the median level of energy consumption instead (3,261 kWh) the
share of the fixed grid charge is below 20%, whereas the variable grid charge is around 30%, and the
variable energy price represents over 40% of the bill. The contributions of taxes and on renewable
energy financing are very limited.

Figure 2: Annual Electricity Consumption by Income

Note: Each dot corresponds to the average energy consumption for a percentile of the distribution of taxable income. The
higher energy consumption for the lowest percentiles could be a consequence of the definition of taxable income, as it is possible
to reach an extraordinary low income through tax deductions. A similar picture emerges if we use household wealth instead of
taxable income.

13Figures with the distributions of taxable income and annual electricity consumptions are in Appendix 1.
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Figure 3: Expenditure Share of Tariff Elements by Consumption

Note: GridFixExpend corresponds to the yearly fee households are billed to be connected to the grid irrespective of energy
consumption. GridVarExpen is the volumetric charge to finance the energy grid. EnergyPriceExpend is the volumetric charge
for energy. KEVExpend and TaxExpend are taxes. The graph shows the average share of these different components for each
level of energy consumption in the sample.

2.1 Solar Power in Switzerland

Between 2005 and 2013 PV production in Switzerland increased by 40 times, from 21 GWh to 500
GWh.14 A key driver of this growth was the introduction in 2008 of the feed-in tariff remuneration
system. The incentive scheme was designed to last for 25 years, with tariffs varying depending on
the type of PV installed (ground-mounted, rooftop or building integrated), and its size, ranging
between 10 kW and 10,000 kW. Since 2008 the compensation has been progressively reduced,15

both because the pre-determined budget couldn’t match the large number of incentive requests,
and because of the sharp decline in PV installation costs.16 Figure 4 presents the evolution of PV
electricity generation in Switzerland between 1990 and 2014.

14In 2014 the energy produced by PV installations in the EU amounted to 6,953 in 1,000 tons of oil equivalent and
in the United States to 6,201 MW.

15In 2014 tariffs ranged between 0.172 CHF/kWh for ground-mounted installations larger than 1,000 kW to 0.304
CHF/kWh for building integrated PV installations between 10 and 30 kW of size.

16The overall amount of feed-in remuneration paid by the government amounted to around CHF 23 million in 2011,
CHF 45 million in 2012, and CHF 66 million in 2013. Of these amounts, CHF 8 million, CHF 14 million, and CHF
17 million were allocated to households in the respective years. These tariffs were financed by an energy consumption
surcharge. Between 2009 and 2013 the surcharge amounted to around 0.0045 CHF/kWh and it has been steadily
increased since then. Nowadays it amounts to 0.011 CHF/kWh. In 2013 almost 6,000 installations received feed-in
tariffs, and their overall production amounted to 141 GWh (Swiss Federal Office of Energy, 2015).
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Figure 4: PV Electricity Generation in Switzerland (in GWh)

Note: The figure shows the evolution of total photovoltaic electricity production in Switzerland. In 1998 the production
amounted to 8.4 GWh. Source: Swiss Overall Energy Statistic 2014, Swiss Federal Office of Switzerland.

Of the 141 GWh of energy produced by PV installations subject to feed-in remuneration in Switzer-
land in 2013, those in the area supplied by BKW produced 46 GWh, so around one third. In Table
5 we show various moments of the distribution of data on PV installations. In total 1,080 house-
holds in our dataset own PV installations. 986 of them are BKW customers, 19 EWB, and the rest
Energie Thun.

Table 5: PV Energy Production and Remuneration

Variables N Obs Mean Std Dev Min Median Max

PV Production (kWh) 2,785 6,304 6,537 0 4,800 94,100
PV Income (CHF) 2,785 2,481 2,308 0 2,064 27,327
PV Owner 2,568 .593 .491 0 1 1

Note: The descriptive statistic is pooled over all companies and years. The dataset of the BKW does not contain data on
actual production of PV installations. The authors make use of an estimated production of the BKW for each installation. PV
Income is constructed as the estimated production times the remuneration fees of the respective year. The KEV subsidized
installations of the BKW were additionally matched with an official KEV list of the Bundesamt für Energie (BFE). For all
successful matches the data corresponds to actual production and income. In contrast, the data of Energie Thun and Energie
Wasser Bern did contain actual production and income. However, there is no data for installations subsidized by the KEV as
the PV owner directly sells his energy to the BFE. Matching to the KEV list was not possible (due to all installations having
the same post code).

Figure 8 depicts the distribution of the PV installations in the BKW dataset by income decile. We
notice an almost monotone increase in the frequency of PV installed over the income distribution.
The density almost quadruples between the second and 10th income deciles, where the frequency
of PVs installed for households earning more than CHF 130,000 is 24%.

Finally, we assembled a novel dataset on potential energy production of solar panels, estimated

14



installation costs, and on households’ consumption profiles with the support of Eturnity AG, a
Swiss startup company that provides an advisory platform for solar energy systems. Eturnity
has developed a software that uses building location and characteristics to forecast the potential
production of a rooftop solar panel and its installation cost, using local weather and potential sun
exposure, roof surface, and estimates of solar panel installation costs from local households and
suppliers. Moreover, based on an aggregate household consumption measure and on the feed-in
tariff in place, it can recover a detailed household consumption profile to determine the total savings
that a solar panel would guarantee over a 25-years horizon.17

Figure 5: Distribution of PV Installations by Income

Note: The graph shows the distribution of PV installation by income. The height of the bars corresponds to the percentage of
PV installation in the sample for each taxable income decile.

Eturnity simulated for us potential household consumption profiles depending on a combination
of heating system and hot water system, which can be both either electric, with heat pump, or
with oil/gas/wood/coal, and decile of yearly energy consumption in kWh. These consumption
profiles include average household-type specific day and night consumption, which we will use
when estimating households’ energy demand to weight households’ day vs night marginal prices,
as well as monthly consumption peaks, that we will use to simulate a capacity fixed fee in the
counterfactuals.18 Eturnity then simulated the potential production of a rooftop solar panel for
each building in our data, based on an approximate size of the PV given the building surface, as well
as on the zip code of the building, which Eturnity can match to detailed local weather information.
This last piece of data will be useful when estimating households’ PV adoption decision.

Table 6 summarizes a selection of variables supplied by Eturnity. Capacity is defined as the max-
imum energy consumption of a household in a fifteen minutes interval based on buildings charac-
teristics and appliances. It varies widely across households ranging from 1.6 kW up to 81.7 kW.
Average yearly energy production of solar panels amounts to 17,090 kWh, which corresponds to

17See Appendix 4 for a template of the kind of price and production quotes that Eturnity can provide to a household.
For more information visit www.eturnity.ch.

18A monthly consumption peak is defined as the 15-minutes interval within that month with the highest recorded
kilowatt use.
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more than three times the energy consumption of an average household. It is directly proportional
to the peak power of the solar panel. This variation is essentially driven by rooftop area that leads
to the installation of solar panels of different sizes. Of this energy production only 18.2 percent can
be directly consumed by a household, while the rest is necessarily fed into the grid. On average,
households can produce roughly 50% of the energy they consume themselves. Last, Table 7 displays
the feed-in tariff (KEV) remunerations and the estimated installation costs across time and across
size in kWp of solar panel. The time series variation shows the trade-off that households faced,
between declining feed-in tariffs and declining installation costs.

Table 6: Simulated Capacity and Energy Production

Variables N Obs Mean Std Dev 5th Perc Median 95th Perc

Capacity (kW) 735,148 11.9 19.9 1.6 5 81.7
PV Prododuction (kWh) 730,149 17,090.4 13,821.2 5,408.4 14,789.5 35,879
% for Own Consumption 735,143 18.2 22.5 .2 9.5 79.8
% Autonomy 735,143 45.4 15 16 46.3 62.5

Note: The variables show simulated capacity and potential energy production across households. Values are simulated based
on roof size, appliances and geographic location.

Table 7: Feed-In Remuneration and Average Installation Cost

2009 2010 2011 2012 2013

Feed-In Remuneration (CHF/kWh)
kWp ≤ 10 0.75 0.62 0.48 0.4 0.33
10 < kWp ≤ 30 0.65 0.53 0.47 0.37 0.27
30 < kWp ≤ 100 0.62 0.51 0.42 0.35 0.25
kWp > 100 0.60 0.49 0.38 0.32 0.23

Installation Cost (CHF/kWp)
kWp ≤ 2 9,117 7,805 5,259 3,103 2,831
2 < kWp ≤ 5 8,448 6,837 5,188 3,189 2,664
5 < kWp ≤ 10 8,274 6,013 5,096 3,118 2,665
10 < kWp ≤ 15 8,748 6,048 4,942 2,938 2,627
15 < kWp ≤ 20 6,861 6,043 4,874 3,016 2,555
20 < kWp ≤ 30 6,836 5,899 4,687 2,660 2,423
30 < kWp ≤ 50 6,949 5,679 4,616 2,590 2,403
50 < kWp ≤ 75 - 5,420 4,182 2,723 2,331
75 < kWp ≤ 100 6,040 4,668 4,158 2,505 2,200
kWp > 100 5,830 4,622 3,936 2,423 1,836

Note: The upper part of the table shows remuneration fees for on-roof solar panels in Switzerland, source Swiss Federal Office
of Energy (SFOE). The lower part depicts average installation costs collected by an annual survey published by the company
PhotovoltaikZentrum für Solarmarketing (http://www.photovoltaikzentrum.de/).
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3 The Model

We define a framework to model how households respond to fixed and variable energy charges, as
well as subsidy to PV adoption, in their optimal electricity consumption and solar panel installation
decisions. We let households be forward looking and solve a dynamic problem, in the spirit of
Hendel, Nevo (2006). Estimating the structural parameters of this model will allow us to simulate
a counterfactual scenario, in which the policymaker finds the optimal tariff design to achieve a
renewable energy target, while preserving vertical equity and network financing. We model the
supply side as a regulator’s constrained optimization problem, adapting Wolak’s (2016) approach
for water utilities. We will now describe the household’s problem, and introduce the regulator’s
problem in Section 6.

In our model a household i = 1, ..., N decides every period t = 1, ...,∞ the amount of energy in
kWh to consume cit, its consumption of the outside good qit, and whether to install a solar panel
PV it = {0, 1}, such that:

PV it =

{
1, install the solar panel,
0, don’t install the solar panel.

(1)

We assume that installing a PV is an absorbing state, so if a household adopts one at time t, it can-
not substitute it or install another one in the future. This makes the framework a non-regenerative
optimal stopping problem. Omitting subscript i for simplicity, we represent a household’s problem
as follows:

V (S1) = max
c(St),q(St),PV(St)

∞∑
t=1

ρt−1E
[
u
(
ct, qt,PVt, St; Λ

)
− C

(
PVt, St; θ

)
+ ε(PVt)

∣∣∣S1

]
s.t. ct > 0, qt ≥ 0, Ptct + qt + ft ≤ It + τtYt

(2)

where u(.; θ) is a household’s utility from energy consumption ct, C(.; θ) represents a household’s
cost to install a solar panel, ρ > 0 is the discount factor, Λ, θ are the structural parameters we
want to estimate, and ε(PVt) are independently and identically distributed type 1 extreme value
shocks to the solar panel adoption choice, a state variable unobserved to the econometrician. We
assume that the state variables observed by the econometrician St evolve following an exogenous
first-order Markov process. Among these state variables are the variable price Pt and the fixed
fee ft for energy consumption, and a household’s income It. Note that the variable price is the
sum of the three components described in Section 2, that is energy price, grid price, and taxes.
Other state variables that we include are household and building characteristics Xt that are likely
to determine energy consumption, such as household size and wealth, home ownership, electric
and water heating, house surface and number of rooms. Moreover, we include as state variables
determining solar panel adoption the PV installation cost Ft, the solar panel production Yt in kW,
and the feed in tariff τt, at which the electricity produced by the solar system can be sold back to
the grid. Last, we normalize the price of the outside good to 1.
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4 Estimation

We estimate our model by maximum likelihood with the nested fixed point algorithm developed by
Rust (1987), which nests the numerical solution of the dynamic model at each step of the search
over the structural parameters. We face two main challenges in this estimation strategy. First,
the large dimensionality of the state space is very likely to make the problem computationally
intractable. Second, letting households solve the dynamic model with respect to both consumption
and solar panel adoption further complicates the estimation. To overcome these issues, we sim-
plify the estimation of the structural model in three steps, following the example of Hendel, Nevo
(2006).

In the first stage, we assume that households solve a static utility maximization problem to choose
their optimal energy consumption, conditional on their solar panel adoption decision. We specify
a quasilinear utility function,19 with the budget constraint defined in equation 2, that gives us the
following energy demand function:

cit(PV it, Sit; Λ) =

{
P βut(Iit − fut + τtYit)

γeα+X′itω+νit if PV it = 1

P βut(Iit − fut)γeα+X′itω+νit if PV it = 0
(3)

where Put and fut are respectively the electricity variable price and fixed fee charged by energy
utility u ∈ {BKW,EWB,ET} at time t, νit are shocks to energy demand, and Λ = {α, β, γ, ω} are
the parameters of the demand function that we want to recover. We estimate these parameters with
the following regression model, similar to Reiss, White (2005) and Wolak (2016), postponing to the
next section the discussion on the details of the model and of the identification strategy:

ln(cit) = α+ β ln(Put) + γ ln(Iit − fut + τtYit) +X ′itω + νit. (4)

We use the estimates of this model to compute the indirect utility from energy consumption
vit(PV it, Sit; Λ̂) that households would get with and without a solar panel, that is:

vit(PV it, Sit; Λ̂) =

 Iit − fut + τtYit − 1

β̂+1
Putĉ

1
it if PV it = 1

Iit − fut − 1

β̂+1
Putĉ

0
it if PV it = 0,

(5)

where ĉ1
it and ĉ0

it are predicted energy consumptions for households, respectively with and without a
solar panel, based on equation 3. To simplify households’ dynamic decision to install a solar panel,
we assume that the indirect utilities from consumption with and without a PV, defined respectively
as v1

it and v0
it, are two of the state variables that households keep track of when choosing whether

to adopt or not.20 In particular, we divide the indirect utility from adopting into two components,
which households keep track of separately. First, households form expectations over the revenues
they derive from installing a PV v1R

it = τtYit, to capture the idea that households are aware of
the decline in feed-in tariffs over time. Second, households form expectations over the evolution of
electricity costs v1C

it = − 1

β̂+1
Putĉ

1
it. This substantially reduces the state space, as it implies that

19In Appendix 5 we show the functional form of the utility function, deriving energy demand and indirect utilities.
20In the estimation we actually eliminate the term Iit − fut from each indirect utility, as this is invariant to the

adoption decision.
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instead of forming expectations over the evolution of Put, Iit, fut, τt, Yit, Xit, households just consider
vt, such that F (vt|St−1) can be summarized by F (vt|vt−1). This assumption, also used in terms
of inclusive values by Gowrisankaran and Rysman (2012), Melnikov (2011), and Schiraldi (2011),
rests on the idea that consumers are boundedly rational and only use a subset of the information
available to them to form expectations. We assume that the PV installation cost function is linear
in the fixed installation cost Fit, such that C

(
PV it, Sit; θ

)
= θFit.

Based on this, in the second stage we estimate the transition probabilities of all the state variables
in the simplified model S̃t with an autoregressive process of order one for each, using the estimated
parameters of these processes δ̂ = {δ̂v1R, δ̂v1C , δ̂v0, δ̂F } as inputs for the dynamic model in the next
step.

In a standard regenerative optimal stopping problem, as in Rust (1987), the present discounted
value (PDV) of future utilities is determined using estimates of the transition probabilities of the
state variables and value function iteration. We differ from this setting because installing a solar
panel is an absorbing state, which implies that the PDV of future utilities from not adopting a PV
is still obtained by value function iteration, but the PDV from adopting is not, and we need to
compute it. Therefore, using the estimates of the transition probabilities, we construct the PDV
of household i from adopting at time t as follows:

PDVit =

Feed-in period︷ ︸︸ ︷
25∑
s=1

ρs(1− ζ)sτtYit +

Post feed-in period︷ ︸︸ ︷
∞∑
s=26

ρs(1− ζ)sδ̂sv1CPutYit +
∞∑
s=1

ρsδ̂sv1C

[
− 1

β̂ + 1
Putĉ

1
it

]
, (6)

where δ̂v1C is the parameter of the AR(1) for v1C
it , ρ is the discount factor, and ζ is the panel’s

degrade factor.21 The part of the v1
it indirect utility that captures the revenue from selling energy

to the grid (v1R
it = τtYit) is divided in two periods. During the first 25 years the household enjoys

the KEV feed-in tariff, and after that the household sells the electricity it produces to the grid at
the same price at which it buys it. Households form expectations about the evolution of PDVit
following δ̂v1R for the revenue during the feed-in period (first term on the right hand side of equation
6), and following δ̂v1C for the other terms.

To summarize, our state variables are S̃ = {v1R, v1C , v0, F}, and all evolve according to a first order
autoregressive process. Following Rust (1987), we assume conditional independence, such that the
Markov transition probability of the state variables can be expressed as:

p(S̃′, ε′|S̃, ε; δ, λ) = p1(S̃′|S̃; δ)p2(ε′|S̃′;λ) (7)

In the third stage we define the Bellman equation of the simplified problem as:

V (S̃t) = max
PVt

{
vt(PVt) + ε(PVt) + PVt

(
PDVt − θFt

)
+ (1− PVt)ρE

[
V (S̃t+1|S̃t)

]}
, (8)

21We set the degrade factor to 3% for the first year and 0.7% for the following years, up to 25 years. We take this
values from the guidelines of a popular European panel manufacturer at: http://www.kiotosolar.com/de/assets/

media/downloads/produktdatenblaetter/strom/power60/KIOTO_SOLAR_DB_POWER60_DE_250416.pdf.
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where θ represents the disutility from the installation cost F . Under conditional independence we
can write the following alternative specific expected value functions, describing a non-regenerative
optimal stopping problem:

EV(S̃,PV) =

{
v(1) + PDV − θF + ε(1) if PV = 1

v(0) + ε(0) + ρ
∫
S̃′ EV(S̃′)p1(S̃′|S̃; δ̂) if PV = 0.

(9)

Given the extreme value distribution of ε, the probability of installing a solar panel will be:

Pr(PV = 1|S̃; θ, µ) =
exp

[
v(1) + PDV − θF

]
exp

[
v(1) + PDV − θF

]
+ exp[v(0) + ρEV(S̃′, 0)]

. (10)

We recover the parameters of the utility function θ, µ that maximize the following log-likelihood
function:

L(θ) =
∑
i

∑
t

log
[

Pr(PV it|S̃it; θ)
]
. (11)

4.1 Identification

In the first stage we estimate the energy demand model described in equation 4. One of the chal-
lenges we face to correctly identify price and income elasticities, our key parameters of interest,
is understanding what is the price that households actually respond to. Ito’s (2014) work ad-
dresses precisely this question, using a sample of U.S. household-level monthly energy consumption
data. He finds that despite a regime of non-linear tariffs, households actually respond to average
prices instead of marginal ones, which questions the efficacy of Increasing Block Pricing schemes at
encouraging energy efficiency. He also finds that households respond to lagged rather than contem-
poraneous prices, as they receive electricity bills at the end of monthly billing periods. We follow
Ito’s (2014) approach to understand what is the price that households actually respond to.

Households in the Canton of Bern face simpler tariff schemes compared to U.S. ones, which makes
the choice of marginal vs average price less of a concern in our context. In fact, all the three
providers offer a uniform tariff, under which marginal and average prices are equivalent. The only
potential non-linearity in marginal prices comes from the option that BKW and EWB propose
of a dual tariff, with lower charges during the night. We focus on the marginal price for each
customer, corresponding to the sum of all variable tariff components (energy, grid, taxes). For
the double tariff, we assume that the marginal price is a weighted average of the high and low
tariff, with weights given by the household-specific day vs night consumption profiles simulated by
Eturnity.

However, failing to model households’ choice of uniform vs double tariff, and conditional on double
tariff their choice of consumption during the day vs night, is likely to introduce two sources of bias
in our estimation of price elasticities. First a selection bias, as households experiencing a positive
shock to their energy demand are more likely to switch to a double tariff scheme and adjust their
consumption to the lowest tariff, which reduces their marginal price. Second an endogeneity bias,
as conditional on being in a double tariff, a customer hit by a positive shock to energy demand
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may shift consumption from day to night, reducing her marginal price. Both of these would induce
a negative correlation between demand shocks and the energy price, generating a downward bias
in our price coefficient. We do however observe in our data that the choice of uniform vs double
is highly correlated with the type of heating or water systems that households have. For example,
nearly 100% of households that don’t have an electric heating system opt for a uniform tariff. We
therefore assume that controlling for household and building characteristics in our model limits the
extent of the selection and endogeneity bias described above.22

There is another dimension of potential endogeneity that we focus on. In our setting each utility
adjusts prices once a year, which implies that with only 3 utilities and 6 years of data we have
little variation in prices that we can exploit for identification, and cannot include utility-year fixed
effects.23 So if households in the area served by BKW face tougher weather conditions during one
year compared to those served by EWB, then the former will demand more energy, which might
require BKW to import more energy or produce more with its marginal (more expensive) power
plants, driving BKW’s prices up. This will induce a positive correlation between demand shocks
and energy price at the utility-year level, generating an upward bias in our price coefficient.

We address this identification concern with a geographical boundary regression discontinuity design
(RDD), similarly to Black (1999) and Ito (2014), and with a matching boundary discontinuity
design (MBDD), in the spirit of Fack and Grenet (2010). These methods allow us to control for
observable household and building characteristics Xit, as well as for unobservable location-year
specific characteristics, exploiting the exogenous variation in energy prices for similar households
close to the border that divides each energy supplier’s area of control.24 We are able to exploit
time-series and especially cross-sectional variation at the spatial discontinuity of the three different
electricity service regions within the same Canton. Issues such as omitted variable bias or potential
sorting at the border which may be problematic with a RDD (Lee and Lemieux (2010)) are unlikely
to affect our design for two reasons. First, households in the Canton of Bern are not allowed to
choose their energy provider, and it is very unlikely that they will sort based on their energy bill.
Our estimation strategy will account for boundary-year fixed effects to correct for between service
area unobserved heterogeneity. Second, in the MBDD we inverse-weigh our observations such that
households that are close neighbors receive a larger weight, following Gibbons, Machin, and Silva
(2013).

We observe the annual energy consumption of household i in year t falling within the service area
of utility u ∈ {BKW,EWB,ET}. Each household is uniquely assigned to the service area of one
of the three energy providers. Using geographical information in terms of latitude and longitude
we determine for each household its spatial location. Additionally, we define several border points
b at the boundary of two service areas. Each household is assigned to the nearest border point
if it’s located up to 1 km from it on either side of the border.25 Based on this design the new
specification becomes:

ln(cit) = α+ β ln(Put−1) + γ ln(Iit − fut−1 + τtYit) +X ′itω + ξbt + νit, (12)

22We leave for future research modelling households’ choices to improve the energy efficiency of their home other
than PV installation, or to adopt an electric heating system.

23This limited time series variation also prevents us from using household fixed effects, which absorb all the cross-
sectional variation and make it hard for us to identify price coefficients out of only 6 time-series data points.

24The maps in Appendix 3 represent respectively the city of Bern and the city of Thun and their surroundings and
highlight the border areas of the two cities which are illustrative for our geographical RDD design.

25We experimented with alternative distances (250 meters, 500 meters, 1.5 km) finding similar results.
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where ξbt are boundary-year fixed effects, absorbing all time varying unobservable determinants of
energy consumption specific to the border point area. These fixed effects will capture location-year
specific unobservables, like weather conditions in the previous example, which are likely to equally
affect households’ consumption at the border, but not equally affect prices. Differently from equa-
tion 4, here we assume that households respond to lagged prices and fees. Following Ito (2014),
we test whether households respond to current or lagged prices including both in our regression
model, and find that conditional on lagged prices current prices are marginally statistically signif-
icant with very small economic magnitude, about 5% the size of the elasticities of lagged prices.
Hence, we infer from this that households mostly respond to lagged prices and fees, as they receive
their electricity bills for the previous year at the beginning of the new year.

When we extend the geographical regression discontinuity design by matching households on oppo-
sites sides of the borders (MBDD), we assume that households that are sufficiently close share the
same time-varying vicinity effect in energy consumption. We follow a two step estimation, where in
the fist stage we regress energy consumption for household i assigned to border point b and utility
u at time t on all covariates but energy price:

ln(cibut) = α+ γ ln(Iit − fut−1 + τtYit) +X ′itω + πt + νibut (13)

We then predict the residuals and use them in the second stage, taking as dependent variable the
difference in residuals between household i and its matched counterpart i′, which is in the same
border point b but served by utility u′. This gives us the following regression model:

ν̂ibut − ν̂i′bu′t = β(lnPuit−1 − lnPu′it−1) + (εibut − εi′bu′t), (14)

where i corresponds to a households of EWB/ET and i′ corresponds to the matched counterfactual
observation of the BKW. Thus, in a first step we regress energy consumption on the full set of
controls for the subsample of all observations within 1 km of the predefined border but exclude
the price as independent variable. Then, we create a counterfactual for each ET/EWB observation
which is a distance-weighted average of the 50 nearest BKW observations26. In a second step
we regress the difference of the unexplained variation in energy consumption (ν̂ibut − ν̂i′bu′t) on
the price difference using OLS. Each pair receives a weight

∑J
j=1

1
dij

, where dij is the distance

between household i and household i′, such that greater weight applies to households that are
closer neighbors.27 Assuming that all other unobservable factors vary continuously at the boundary,
the coefficient β can be interpreted as the unbiased price elasticity of energy demand. If other
determinants were also to vary discontinuously at the border, we would not be able to isolate
the energy price effects. For this reason we eliminate boundaries that coincide with significant
geographical barriers. Differently from equation (12), in specification (??) we eliminate common
area specific trends by spatial differencing, and account for the distance between households on
opposite sides of the border.

Table 8 presents a comparison of means of households’ characteristics across the border for the
two bordering areas in our data, that are the city of Bern and the city of Thun. We can show
that households at 1km from the border between the service are of BKW and EWB are very
similar across all dimensions, and the same is true for households at 1km from the border between

26The observations need to have the same assigned border point.
27In this specification we compute standard errors clustered at the boundary-year level.
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the service area of BKW and ET. These characteristics don’t differ significantly from the same
observables in the full sample.

Table 8: Household Characteristics at City Borders

Variables Full Sample < 1km Border Bern < 1km Border Thun
BKW EWB BKW ET

Energy Consumption (kWh) 4,058 3,229 2,996 4,437 4,239
(3,666) (2,817) (2,950) (3,497) (4,521)

Home Ownership .41 .32 .25 .55 .59
(.49) (.47) (.43) (.5) (.49)

Household Size
1 .43 .47 .53 .38 .4

(.5) (.5) (.5) (.49) (.49)
2 .35 .33 .3 .38 .38

(.48) (.47) (.46) (.48) (.48)
3 .08 .08 .07 .09 .08

(.28) (.27) (.26) (.29) (.27)
4 .1 .09 .08 .11 .11

(.3) (.29) (.27) (.31) (.31)
5 .03 .03 .02 .04 .04

(.18) (.17) (.15) (.19) (.2)
Heating System

Electric .04 .02 .03 .04 .04
(.19) (.13) (.16) (.2) (.2)

Heat Pump .05 .04 .01 .1 .05
(.22) (.2) (.1) (.31) (.21)

Oil/Gas/Coal .91 .94 .96 .86 .91
(.29) (.24) (.19) (.35) (.28)

Water System
Electric .39 .27 .32 .42 .24

(.49) (.44) (.47) (.49) (.43)
Heat Pump .03 .03 .02 .04 .03

(.16) (.18) (.13) (.2) (.18)
Oil/Gas/Coal .58 .7 .67 .54 .73

(.49) (.46) (.47) (.5) (.44)
Number of Rooms 3.74 3.58 3.4 3.9 3.95

(1.14) (1.15) (1.1) (1.08) (1.13)
Apartment Surface (sqmt) 98 93 88 105 103

(40) (38) (34) (40) (41)
Income (CHF) 72,897 80,156 75,680 71,029 75,453

(114,438) (88,183) (82,313) (61,417) (65,702)
Wealth (CHF) 474,057 512,093 436,272 487,087 578,010

(2,144,077) (2,708,309) (1,864,227) (1,004,514) (1,066,666)

N Obs 669,345 58,778 55,281 12,832 11,189

Note: The table shows means with standard deviations in parentheses. Column (1) shows household characteristics for the
full sample. Columns (2) and (3) only include households from BKW and EWB sharing a common border in the city of Bern.
Column (4) and (5) show descriptives for households of BKW and Energie Thun located at the common border in the city of
Thun. We define border households to closer than 1km to the border.
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5 Results

5.1 Energy Demand Model

We report the results of the most basic OLS regression in column (1) of Table 9. In columns (2)
to (3) we include respectively year and household fixed effects. In all specifications we control for
apartment/building characteristics, such as the number of rooms, the apartment’s surface, and the
building’s construction period. We also include fixed effects for whether a household’s dwelling uses
electricity, a heat pump, or other sources (oil/gas/wood) for its heating system or for hot water
heating. Last, we control for household’s income and wealth, its size, and home ownership. We
can see from Table 9 that household fixed effects explain a large part of the variation in energy
consumption, as the R2 increases from 0.49 to 0.97 once we include them. This highlights that
most of the variation in our data is cross-sectional, but as we have little time series variation in
prices we decide to focus on the geographic RDD specification in column (4) as our preferred one.
As expected, we find that richer households consume more energy, as a 1% increase in income
increases electricity consumption by around 1%. We also find that larger and wealthier households,
and households using electricity for heating or hot water, consume more energy. More recent
buildings consume less, as these are likely to have more efficient isolation.

The price elasticity of demand is negative and significant, declining in absolute terms from around
-0.8 to -0.2 only when we control for household fixed effects. In our RDD specification the elasticity
decreases to nearly -0.9, confirming our prior of an upward bias described in Section 4.1. In Figure
6 we plot the price elasticity across the income distribution, estimated using our RDD specification,
which shows that households in lower income deciles are more price elastic. Elasticities vary from
around -1.2 for households in the first income decile to around -0.6 for households in the tenth
income decile.

In columns (4), (5), (6) we report the results of the RDD and MBDD estimation strategies respec-
tively. In these columns we focus only on the subsample of households residing within 1 km on
each side of the border.28 This leads to a smaller sample size, around 20% of the total sample.
Column (4) reports the results for equation (12) including border-year fixed effects. In column
(5) we display the results for the first stage of the matched boundary discontinuity design, as of
equation (13). Column (6) reports the results of the second stage of the MBDD, as of equation 14.
The elasticity reported for the MBDD estimation strategy is -0.31. With this approach however
our sample shrinks considerably, as the number of observations decreases to 38,771, corresponding
to around 7% of the total sample. Given the small sample size of the MBDD estimates, we consider
these results as robustness checks and will instead use the results of column (4) in Table 9 as our
preferred ones for the counterfactual analysis.

28We experimented with other distances, like 250 meters, 500 meters, and 1.5 km, with similar results.
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Table 9: Energy Price Elasticities

Variables (1) (2) (3) (4) (5) (6)
Price -.78∗∗∗ -.81∗∗∗ -.26∗∗∗ -.89∗∗∗ -.31∗∗∗

(0.01) (0.01) (0.01) (0.03) (0.12)
Income -.01∗∗∗ -.01∗∗∗ .01∗∗∗ .01∗∗ -.00

(0.00) (0.00) (0.00) (0.00) (0.01)
Wealth .00∗∗∗ .00∗∗∗ -.00 .00∗∗ .00

(0.00) (0.00) (0.00) (0.00) (0.00)
Home Owner .24∗∗∗ .23∗∗∗ .02∗∗∗ .13∗∗∗ .17∗∗∗

(0.00) (0.00) (0.01) (0.01) (0.01)
Number of Rooms .21∗∗∗ .21∗∗∗ .33∗∗∗ .14∗∗∗ .16∗∗∗

(0.00) (0.00) (0.12) (0.01) (0.01)
Number of Rooms Sq -.01∗∗∗ -.01∗∗∗ -.03∗∗ -.00∗ -.00∗∗

(0.00) (0.00) (0.01) (0.00) (0.00)
Apartment Surface .00∗∗∗ .00∗∗∗ .00 .00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00) (0.00)
Constant 6.57∗∗∗ 6.50∗∗∗ 7.23∗∗∗ 5.97∗∗∗ 7.57∗∗∗

(0.04) (0.04) (0.32) (0.08) (0.07)
Household Size FE Yes Yes Yes Yes Yes No
Heating System FE Yes Yes Yes Yes Yes No
Water System FE Yes Yes Yes Yes Yes No
Construction Period FE Yes Yes Yes Yes Yes No
Year FE No Yes Yes No Yes No
Household FE No No Yes No No No
Border-Year FE No No No Yes No No
N Obs 500,660 500,660 500,660 102,226 102,295 38,771
R2 0.487 0.488 0.965 0.505 0.470 0.015

Note: Significance levels: *** 0.01, ** 0.05, * 0.1. Standard errors in parentheses. Log of total yearly energy
consumption is used as dependent variable. Price and Income variables are in logs, wealth is in levels. Column (4)
shows the results for the RDD model. Columns (5) and (6) show respectively the first and second stage of the MBDD.

Figure 6: Price Elasticities by Income Deciles

Note: The graph shows the estimates of price elasticities with standard errors for each income decile with the specification in
column (4) of Table 9.
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5.2 PV Adoption Model

To estimate the PV adoption model we restrict the sample to the main energy provider (BKW),
which serves 94% of the solar panels installed,29 and to single family houses or buildings with at
most two apartments, for which it is more likely that a single household is making the installation
decision. We calibrate the discount factor to ρ = 0.8788, which is the value estimated by De Groote,
Verboven (2016) for PV adoption decision of Belgian households. Unfortunately we don’t have the
same rich time series variation in feed-in tariff that they have to identify the discount factor in our
setting, but we believe that time preferences of Swiss households for PV installation are likely to
be similar to Belgian ones.

Following Rust (1987), we discretize the state space to make the computation tractable. The four
state variables, indirect utilities without (v0) and with (v1R, v1C) solar panel, and installation costs
(F ) are all discretized to around 70 intervals of length, respectively of 200, 1,500,30 and 1,000 CHF.
We then estimate the parameters of the AR(1) processes for the state variables (δv0, δv1R, δv1C , δF ).
Next, the estimation procedure consists of an inner loop, where the value function for a given
parameter θ is found using the nested fixed point algorithm, and an outer loop, where we search over
parameter values using maximum likelihood. We use bootstrap to derive the standard errors.

Estimation results of the parameters of the AR(1) processes and of the coefficient for fixed installa-
tion costs θ are reported in Table 10. A positive θ implies that households are less likely to install
the higher are fixed installation costs. We find that δv0 and δv1C are very close to 1, so there is not
much variation over time in the indirect utility from not adopting and in the cost component of the
indirect utility from adopting. The coefficients of the AR(1) processes for the other state variables
identify the trade off that households face from adopting a PV versus waiting. A value of δF of
0.74 shows that installation costs are declining over time, whereas a value of δv1R of 0.81 implies
that the revenue component of the indirect utility from adopting is reducing over time, driven by
the decrease in feed-in tariffs.

Table 10: PV Adoption Results

Parameters

δv0 .99∗∗∗

(0.00)
δv1R 0.81∗∗∗

(0.00)
δv1C 0.99∗∗∗

(0.00)
δF 0.74∗∗∗

(0.00)
θ .99∗∗∗

(0.03)

N Obs 64,808

Note: Significance levels: *** 0.01, ** 0.05, * 0.1. Standard errors in parentheses.

29PV systems are more likely to be adopted in non-urban areas, which are the ones served by BKW.
30We actually discretized the present discounted value variable PDV , which is the sum of current and future

indirect utilities from adopting v1R, v1C .
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6 Counterfactuals

We propose an optimal tariff design that a regulator can implement to achieve a solar energy
production target, while recovering network costs and preserving vertical equity. We allow the
policymaker to rely on three different instruments, all commonly used in various electricity markets
worldwide: volumetric charges and fixed fees in households’ energy bills, as well as subsidies to solar
power installation costs. Volumetric charges are similar to an energy tax, as they generate revenues
to finance energy and grid costs, but also discourage households’ excessive energy consumption.
These variable tariffs represent an incentive to adopt a solar panel, as households with a PV can
save on their energy bill by consuming the electricity they produce. However, the combination of
volumetric charges and a growing number of solar power installations can have a regressive effect on
households’ energy bills, for the following reason. High income households generally consume more,
paying a higher share of the fixed network cost, in line with the principle of progressive taxation.
Richer households are however also more likely to install a solar panel, as they commonly are home
owners of single houses and have the resources to pay the installation costs. This implies that rich
households with a PV could end up contributing less to the fixed network costs, while still using
the grid to consume and sell energy, in turn making poorer households bear an increasing share of
fixed network costs.

The second instrument, a fixed fee, is equivalent to a lump-sum tax to finance grid costs. Being fixed,
these fees generate no incentive for households’ energy conservation or solar power installation,31 but
guarantee a steady revenue to recover fixed network costs that doesn’t depend on households’ energy
consumption or production. The reason why fixed network costs are not decoupled from energy
consumption, i.e. fully financed with a fixed fee, is the lack of incentives for energy conservation and
the regressive effect this would have on households’ electricity bills. The argument for progressive
households’ contribution to network costs is also supported by what actually constitutes a grid
maintenance cost for energy providers. In fact, what is typically more costly for the network is not
the average energy consumption of a household over time, but the variance of it, as large spikes
can generate costly imbalances for a network, which always needs to balance demand and supply.
A way to address this is to substitute uniform fixed fees with capacity fixed fees, which still allow
to decouple grid financing from energy consumption, but are set based on the maximum amount of
energy a household is able to consume from the grid during a fixed time span (usually 15 minutes).32

For these reasons, in our simulations we also allow the regulator to choose between a uniform and
capacity fixed fee.

The last instrument is a subsidy to solar panel installation costs, set as a share of total PV adoption
costs.33 This is one of the two main incentives historically used by policymakers to foster solar
panels’ adoptions, the other being feed-in tariffs. The main difference between the two instruments
is that the first subsidises up front installation costs, whereas the second subsidises future revenues
from energy production. De Groote, Verboven (2016) are able to show that Belgian households
undervalued future solar panel revenues, concluding that in their setting, where a feed-in tariff was
in place, an upfront investment subsidy would have promoted PV adoptions at a lower budgetary
cost. Based on their findings, and on the recent change by the Swiss government from a feed-in
system to installation subsidies, we decided to just focus on the latter. In line with the case of

31According to our estimates changes in fixed fees do not significantly alter energy consumption and have no impact
on PV adoption.

32The energy providers in the Canton of Bern already apply a capacity fixed fee to business users, but not to
household users.

33Since 2015 Switzerland provides a subsidy of 30% of installation cost for smaller solar panels.
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Switzerland and of other countries, we assume that the revenue to finance the subsidy is recovered
from households’ electricity bills.

We conduct three counterfactual exercises using data from the last year in our sample (2013) for the
main provider (BKW). In the first experiment we simulate a benchmark scenario where all home
owners in our data install a solar panel, calculating the increase in variable grid tariff required to
guarantee network financing, based on our energy demand model. This exercise aims at quantifying
the extent of the decline in revenues to finance the grid from a large increase in PV installations,
as well as the regressive effect that the increase in volumetric charges could have. In the second
counterfactual we address the regressive nature of fixed fees simulating a complete decoupling of
grid revenues from energy consumption. Thus, we analyse redistribution when the regulator only
relies on a combination of uniform and capacity fixed fees to recover grid costs. In the last policy
experiment we allow the policymaker to find the optimal tariff design, in terms of variable prices,
fixed fees, and subsidies, in order to achieve various renewable energy production targets, while
recovering network costs and preserving vertical equity. For each scenario we calculate the change
in households’ welfare and contribution to grid costs between the current and the counterfactual
tariff scheme.34

For the first and last counterfactual exercise we separate the marginal price into its energy com-
ponent PE and its grid component PG, and only allow the latter to vary. Moreover, we allow
households with a PV to consume a share OCi (Own Consumption) of the energy they produce Yi
with their solar panel,35 which implies that the households’ consumption from the grid that we’ll
use in our simulations can be expressed as:

ĉi(PV i, PG, f) =

 P β̂i(Ii − f + τYi)
γ̂eα̂+X′iω̂+ξ̂b −OCiYi if PV it = 1

P β̂i(Ii − f)γ̂eα̂+X′iω̂+ξ̂b if PV it = 0,
(15)

where we’ll keep everything fixed, apart from PV adoption status, variable grid prices PG (where
P = PE + PG + PT ), and fixed fees f . We use this to define each household’s contribution to grid
costs as the following grid expenditure GEi:

GEi(PG, f) = f + ĉi(PV i, PG, f)PG, (16)

Energy providers in our setting are cost-plus regulated, implying they recover total grid cost without
making any additional profits. Hence, using our data on households’ grid expenditure under the
current tariff scheme, we can recover the baseline total grid cost GC0 that the regulator recovered
from BKW in 2013, which we assume will need to be recovered under every scenario, as:

GC0 =

N∑
i=1

GEi0(PG0, f0) = Nf0 +

N∑
i=1

ciPG0 (17)

34We define welfare as consumer surplus, as the utility is a non-profit oriented institution. We calculate welfare
change as ∆W =

∫ P1

P0
ci(P )dP +f0−f1, where P0 and P1 correspond to the variable price before and after the change

in tariffs, ci(.) is the energy demand function of household i, and f0 and f1 are the fixed fees before and after the
change in tariffs.

35Eturnity provided us with simulated data on own consumption, according to which on average a household can
use for own consumption 18% of the energy it produces.
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where N is the total number of households, ci is households’ consumption from our data, and f0

and PG0 are fees and prices in the current tariff scheme.

6.1 Exogenous Increase in PV Adoption

We first consider the effects on volumetric charges only of a benchmark increase in penetration of
distributed energy. In particular, we simulate a scenario where all home owners of single houses in
our data have a solar panel. We focus on these households as it’s likely that for them adopting a
PV is easier compared to households renting or living in apartments. To isolate the effect that this
increase would have on the variable grid price PG, we assume that the regulator only relies on this
instrument to recover the missing grid revenue, holding fixed fees constant for now. We calculate
the counterfactual optimal variable grid price under this scenario solving the following regulator’s
cost minimization problem:36

min
PG

∣∣∣GC0 −
N∑
i=1

GEi(PG, f)
∣∣∣ (18)

In Table 11 we present the energy expenditure and consumer surplus changes per household under
two different scenarios. In the first scenario we assume that households consume the share of energy
they produce as predicted by Eturnity (18% on average), as reported in Table 6. In the second case
we assume the limit case in which households consume 100% of the energy produced, simulating the
case where households with a PV also install a battery. The first two rows show the change in the
variable grid price in CHF and percentage terms. Allowing for current potential own consumption,
as reported in column (1), variable grid tariffs rise by over 50%, from approximately 0.095 CHF
to 0.145 CHF. With 100% own consumption, as reported in column (2), they increase by almost
140% to 0.225 CHF.

Looking at the distributional effect of this price change, we find that under both scenarios house-
holds above the sixth income decile benefit from lower grid expenditures, as reported under the
∆GEi columns. We also find that this increase is for households that don’t adopt a PV, whereas
those that install a solar panel experience a substantial reduction in their grid expenditure. This
confirms the regressive effect of volumetric charges under an increased number of PV adoptions.
The corresponding consumer surplus changes are presented under the ∆CSi columns, and outline
a similar picture.

36We use a numerical minimization as ci(PG) is a nonlinear function of PG.
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Table 11: Grid Expenditure and Consumer Surplus % Change

Variables Eturnity OC 100% OC

CHF Price (PG) Increase .0457 .13
% Price (PG) Increase 53 137

% Change by PV Installation ∆GEi ∆CSi ∆GEi ∆CSi

No PV Installed 26.1 -29.3 68 -77.5
PV Installed -18.8 15.1 -49.1 38.1

% Change by Income Decile
1st decile 5.5 -7.6 13.3 -19.2
2nd decile 4.1 -6.1 9.4 -15.2
3rd decile 3.7 -5.6 8.2 -13.9
4th decile 3.3 -5.3 7.9 -13.6
5th decile 2.2 -3.8 4.6 -9.6
6th decile 0.7 -2.6 1.4 -7.1
7th decile -3.6 -1.6 -1.8 -3.8
8th decile -1.4 -0.5 -4.0 -1.5
9th decile -3 1.2 -7.1 1.9
10th decile -6.8 5 -14.1 8.8

Note: The table illustrates the effect of all home owners of single houses having a solar panel and consuming their
own energy on variable grid tariffs while keeping the fixed tariff constant.

6.2 Capacity Fixed Fee

An alternative solution to the missing grid revenue coming from households’ decentralised energy
production is a capacity fixed fee, which allows an energy provider to decouple grid revenue from
energy consumption while preserving vertical equity. The downside of this instrument is that it
eliminates the incentive to adopt a solar panel that volumetric charges instead provide. For the
remainder of the paper, we allow the fixed fee to be household specific as follows:

fi = σ0 + σ1kWi (19)

where kWi is the capacity of a household in kilowatt (kW), σ0 is a uniform contribution and σ1 a
contribution per kilowatt. Capacity is defined as the maximum amount of energy a household is
able to consume through the grid during a fixed time span (usually 15 minutes). Loosely speaking,
capacity relates to the ’size’ or ’strength’ of the grid connection.37 In order to isolate the distribu-
tional effects of fi, in this counterfactual we don’t simulate any adoption of solar panels, eliminate
volumetric charges PG, and assume that the regulator only decides on the share of total grid costs
recovered with the capacity fee (sharecf ). Thus, total grid costs GC0 are spread among households
as follows:

37One efficiency argument to rely on capacity fixed fees is that buildings with greater capacity usually necessitate
higher local grid investments. From a distributive perspective, they host households with a larger number of appliances
(and a higher energy consumption).
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fi =
(1− sharecf )GC0

N︸ ︷︷ ︸
uniform fee

+
sharecf ∗ kWi ∗GC0∑

i kWi︸ ︷︷ ︸
capacity fee

(20)

Table 12 reports shares of total grid costs for each income decile under the current scenario (variable
price and fixed fee), as well as under two counterfactual scenarios: a capacity fixed fee and a combi-
nation of uniform and capacity fixed fees. We also report the percentage change in grid expenditure
and consumer surplus, under the ∆GEi and ∆CSi columns, across the income distribution. In the
current tariff scheme lower income deciles bear a smaller share of total grid costs. This implies that
switching to a uniform fixed fee (sharecf = 0) would have adverse effects on poorer households,
as can be seen in the last three columns. We show instead in the columns under ”Capacity Fee”
that a capacity fixed fee (sharecf = 1) leads to lower expenditures for households up to the 7th

income decile. Last, we consider a combination of uniform and capacity fees (0 < sharecf < 1), as
reported in the columns under ”Uniform & Capacity Fee”. Here we calculate the optimal share of
uniform vs capacity minimising the sum of each household’s squared expenditure changes between
the current and the counterfactual scenario. We find that it is optimal for the regulator to finance
sharecf = 30% of the grid cost with a capacity fee and the rest with a uniform fee, which leads to
an increase in expenditure for households up to the 5th income decile, and a reduction for richer
ones.38

Table 12: Grid Expenditure and Consumer Surplus % Change

Income Deciles Current Capacity Fee Uniform & Capacity Fee
Share Share ∆GEi ∆CSi Share ∆GEi ∆CSi

1st decile 8.2 7 -14.6 38 9.2 12.2 -32.2
2nd decile 8.4 7.2 -14.3 37.1 9.2 9.5 -29.4
3rd decile 8.6 7.6 -11.6 35.2 9.3 8.1 -27.1
4th decile 9 8.2 -8.9 32.2 9.5 5.6 -22.9
5th decile 9.4 8.9 -5.3 29.4 9.7 3.2 -18.2
6th decile 10 9.8 -2 25.9 9.9 -1 -12.7
7th decile 10.5 10.4 -1 23.9 10.1 -3.8 -8.8
8th decile 11 11.3 2.7 20.7 10.4 -5.5 -4.7
9th decile 11.5 12.4 7.8 15.5 10.7 -7 -1.8
10th decile 13.3 17.2 9.3 -2.5 12 -9.8 3.4

Note: The table illustrates the redistributive effect of switching to grid financing through fixed fees. The ”Capacity
Fee” columns show the effect of a capacity based fixed fee, while the ”Uniform & Capacity Fee” columns include
two different kinds of fixed fees, a uniform and capacity based fixed fee. Under the scenario with two fixed fees it is
optimal to gain roughly 70% of total grid costs through a uniform fixed fee.

38In Appendix 6 we extend this result for the case where the regulator is also able to finance part of the total grid
costs through volumetric charges. In the table we report the respective expenditure and welfare changes for two-part
tariffs which include both a variable and a fixed tariff component.
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6.3 Optimal Tariff Design

In the last counterfactual we find the optimal tariff design that a regulator can implement to achieve
a solar energy production target, while recovering network costs and preserving vertical equity. We
let the regulator solve a constrained optimisation approach, in the spirit of Wolak (2016), to find
the optimal combination of variable prices, fixed fees, and subsidies. In this counterfactual we use
the estimated parameters of both energy demand and PV adoption model, but modify some state
variables in the latter. In fact, we estimated the PV adoption model under a feed-in tariff system
in which households were feeding all the energy produced back to the grid, and still buying from
the utility all the energy they consumed. However, grid financing is not threatened if households
with a PV don’t directly consume the energy they produce.39

During the last few years in various countries there has been a switch from feed-in based to subsidy
based solar incentives. In Switzerland, since 2015 solar panels with capacity below 10 kW, which
represent most of the PVs in our data, do not receive feed-in remuneration anymore, but are instead
entitled to a subsidy covering 30% of the investment costs. Moreover, energy providers must allow
households to directly consume the energy they produce, and the excess energy households produce
is remunerated by the energy provider based on the market price for energy. In our counterfactual
scenario we therefore assume no feed-in remuneration, allowing households to consume their PV
produced energy directly and to feed only excess energy back into the grid (at the market price of
energy). Under this scenario, higher variable grid tariffs incentivise PV adoption, as households
save on variable grid costs by consuming their own energy.

The regulator minimises an objective function taking the current households’ grid expenditure GEi0
as the desired benchmark from an income distribution perspective, accounting for a grid financing
and a solar energy target constraint:

min
PG,fi,s

∑
i

[
GEi(PG,fi)−GEi0

]2
Ii

=
∑

i

[
ĉi(PVi,PG,fi)PG+fi−GEi0

]2
Ii

s.t. GC0 +
∑

i sFi Pr(PV i = 1|PG, fi, s) =
∑

i

[
fi + ĉi(PV i, PG, fi)PG

]
(network financing)

s.t.
∑
i Yi Pr(PVi=1|PG,fi,s)∑

i ĉi(PVi,PG,fi)
≥ SET (solar energy target)

(21)

where Pr(PV i = 1|PG, fi, s) is a function of the variable grid tariff and the parameters estimated in
the model of Section 5.2, and SET is the Solar Energy Target, expressed as a the lower bound of
the ratio of energy produced from solar panels over total energy consumed by households.40

In Figure 7 we present three graphs, showing how the share of energy consumed coming from solar
panels changes as we vary each of the three instruments. In these graphs we vary one instrument
at a time, holding the other two fixed to the current values. From these figures we can conclude
that the probability of adopting a solar panel is increasing in the variable price and in the subsidy
to installation costs, whereas it’s not affected by changes in the fixed fee. As the graphs show,
subsidising the fixed installation costs is the most effective way to stimulate solar panels’ adoption.
The results are robust to various levels of the green energy target and to alternative specifications
of the regulator’s objective function.

39Assuming PV installations do not mandate extensive additional grid investments.
40See Appendix 7 for a detailed description of how we solve the regulator’s optimization problem.
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In Table 13 we present the optimal tariff design for the three solar energy targets, one for each
column. In the top part of the table we show the percentage increase in variable price and fixed
fee, as well as the share of installation cost that the subsidy should cover, in order to achieve each
of the targets. In the bottom part of the table we show the percentage increase in households’ grid
expenditure needed to achieve each target, with a breakdown by income decile. As the results show,
our constrained optimisation approach guarantees that the increase in grid expenditure to finance
the transition to more solar energy is equally spread across the income distribution, preserving
vertical equity.

Figure 7: Share of Solar Energy Induced by Variable Price, Fixed Fee, Subsidy

Note: These figures show how the share of energy consumed coming from solar panels changes as we vary variable price (left),
fixed fee (middle), and subsidy as share of installation cost (right). The scale of the vertical axis is from 0% to 10%.

Table 13: % Change in Variable Price, Fixed Fee, Subsidy, Grid Expenditure

Solar Energy Target
Variables 1% 3% 5%

% Price (PG) Increase 1 12.2 34.7
% Fixed Fee (f) Increase 6.6 20.6 28.3
Subsidy (s) as % of Installation Cost 30 44 51

% Change GEi by Income Decile
1st decile 2.6 13.8 29.9
2nd decile 2.5 13.8 29.9
3rd decile 2.5 13.7 29.9
4th decile 2.4 13.6 29.9
5th decile 2.4 13.5 30
6th decile 2.3 13.3 29.9
7th decile 2.2 13.2 30
8th decile 2.2 13.1 29.9
9th decile 2.1 12.9 29.8
10th decile 1.9 12.5 29.4

Note: The table illustrates the change in variable price, fixed fee, subsidy required to achieve a 1%, 3%, 5% solar
energy targets, preserving grid financing and vertical equity. It also shows the percentage change in households’ grid
expenditure across the income distribution for the three targets.

33



7 Conclusion

In this paper we propose an optimal tariff design for residential electricity markets facing an in-
creasing penetration of PV installations and substantial fixed network costs. We derive this optimal
design specifying a regulator’s optimization problem that aims at guaranteeing vertical equity, un-
der the constraints of both network financing and achieving a minimum green-energy target, in
order to encourage a sustainable and equitable diffusion of distributed renewable energy genera-
tion. We consider alternative tariff schemes, because the increasing penetration of PV installations
combined with a system of net metering and kWh based rates may not guarantee the financing of
the energy infrastructure network in the long run. We propose a financing scheme decoupled from
consumption, showing its welfare effects across households’ income distribution.

To calculate these welfare changes we estimate models of energy demand and PV installation using
a detailed dataset with 180,000 Swiss households in the Canton of Bern for the years 2008-2013.
We adopt a regression discontinuity design to identify price elasticities, and estimate a structural
dynamic model of PV adoption. We use the estimates of these models in a regulator’s constrained
optimization approach, in order to find the optimal tariff design to achieve a renewable energy
target, while preserving network financing and vertical equity. We conduct three counterfactual
simulations. First, we show that a benchmark increase in PV adoptions would generate a sub-
stantial missing revenue, which would require an increase in volumetric charges with regressive
consequences. Second, we show that decoupling grid financing from energy consumption with a
capacity fixed fee would make the tariff structure more progressive, at the cost of reducing house-
holds’ incentives to install a solar panel. Last, we find the optimal combination of variable prices,
fixed fees, and subsidies to installation costs that would allow a policymaker to achieve a 1%, 3% or
5% solar energy target, guaranteeing network financing and an equitable distribution of grid costs
across the income distribution.
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Appendix A1: Data Cleaning Process

We obtained a list of grid connections (i.e. energy meters) with their respective energy usage,
energy infusion, customer information and some other household specific variables from all three
energy providers. These datasets contain both households and businesses. We collapse the data
by customer as some households may have more than one meter. With the support of the Tax
Office of the Canton of Bern we were able to match the energy customer information with the tax
data and the building characteristics data. This ultimately allows us to create the final data set,
which combines energy, income, wealth data and building information for each household. The
data provided by the tax administration also includes additional household level information, such
as household size, number of children, marital status, and whether the house is occupied by the
owner.

The original list provided by BKW contains data on about 300,000 grid connections from 2008 to
2013. We first use the imperfect sector identifier of BKW41 and drop customers denominated as
firms, which reduces our sample to about 250,000 grid connections. Collapsing by customer we end
up with a sample of about 210,000 households by year. Of these customers we manage to match
around 110,000 households with tax information (in 2013). The mismatches are mainly due to data
imprecision, different ways to write names and addresses, and the fact that the BKW sample may
still include a number of businesses. As we only have the current address for BKW customers but
historical personal information in the tax data, the matches steadily decline in the earlier years
down to around 85,000 in 2008, as some households relocated during this time period.

For the city of Bern we use a list of about 110,000 grid connections per year from 2008 to 2015.
This data is collapsed to a sample of 85,000 business partners, including both households and
firms. Matching the energy data with the tax data leads to about 40,000 matched households per
year. Beside losses due to data imprecision, all firms drop out in the merging process42. As we
have historical information on names and addresses in the energy data of the EWB the successful
matches only decline slightly to about 36,000 in the earlier years. As to the city of Thun, we start
with a list of about 28,000 grid connections per year between 2009 and 201443. This is equivalent
to about 24,000 Energie Thun customers including both households and firms. During the merging
process this number is reduced to approximately 15,000 households with both energy and tax data.
Again, as we have historical personal information on the energy customers this number is fairly
steady during the relevant period. In the aggregated sample of around 175,000 households per
year we undertake further adjustments. First, we exclude all grid connections with annual energy
consumption below 500 kWh. This number is chosen arbitrarily to exclude abnormal energy meters
and false data. For comparison, a single person household usually with only one grid connection has
a minimum energy usage of over 2,550 kWh per year44. Second, we drop all households reporting
negative income.

41Imperfect as some small businesses are wrongly labelled as households.
42Although there may still be some self-employed people in the data.
43Unfortunately the data prior to 2009 is not available due to a system change.
44See http://www.ewb.ch
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Figure 8: Distribution of Taxable Income

Note: The figure shows the distribution of taxable income in the sample. All observations with a taxable income below zero
have been excluded from the sample. The maximum level of taxable income in this graph has only been chosen for illustrative
purposes.

Figure 9: Distribution of Annual Electricity Consumption

Note: The figure shows the distribution of annual electricity consumption in the sample. All observations with an annual
consumption of less than 500 kWh have been omitted from the sample. Furthermore, the maximum annual consumption is set
to 50,000 kWh in the sample. These limits have been chosen arbitrarily to ensure that only households (not firms) are included
in the sample. In the graph the upper limit is set to 20,000 kWh for illustrative purposes.
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Appendix A2: Energy Prices, Tariffs and Taxes

Table 14: Energy Prices, Network Tariffs and Taxes - Energie Bern

2008 2009 2010 2011 2012 2013

Double tariff
EnergyPriceHT(Rp/kWh) 11.93 11.93 11.92 12.05 11.6 11.21
EnergiePriceLT(Rp/kWh) 7.58 7.58 7.57 7.46 7.19 6.91
GridPriceHT(Rp/kWh) 7.23 8.57 8.05 7.06 6.4 7.11
GridPriceLT(Rp/kWh) 1.69 2.11 1.94 1.88 1.81 3.12
GridBasicFeeDT(CHF) 166.19 142.16 130.64 129.86 121.6 68.1

Uniform tariff
EnergiePriceUT(Rp/kWh) 10.81 10.81 10.85 10.82 10.48 10.09
GridPriceUT(Rp/kWh) 6.65 7.98 7.83 6.85 5.89 6.57
GridBasicFeeUT(CHF) 127.89 104.13 91.96 91.05 85.78 46.79

Both tariffs
Swissgrid(Rp/kWh) 0 0 0 .07 .43 .4
KEV(Rp/kWh) .07 .45 .49 .49 .49 .51
MunicipalTax(Rp/kWh) .04 .27 .29 .29 .63 2.53

Note: The table shows average prices in the sample. However, the underlying tariff structure of Energie Bern is more complex.
Customers can choose between several energy products with different prices. These products distinguish themselves from each
other by their main energy source (e.g. water, solar). In addition, customers are billed yearly but at different times during
the year such that each customer has a unique mixture of prices from two consecutive year. For instance, a customer billed in
March will pay energy his consumption from Januar to March according to the respective year’s prices and the other 9 month
according to last years prices. All prices include the value-added tax.

Table 15: Energy Prices, Network Tariffs and Taxes - Energie Thun

2009 2010 2011 2012 2013

Double tariff
EnergyPriceHT(Rp/kWh) 12.15 12.13 12.55 12.54 12.54
EnergiePriceLT(Rp/kWh) 9.45 9.43 9.85 9.84 9.84
GridPriceHT(Rp/kWh) 8.62 8.63 9.16 9.06 8.53
GridPriceLT(Rp/kWh) 2.16 2.16 2.48 2.48 2.27
GridBasicFeeDT(CHF) 90.55 90.66 90.92 90.81 84.22
Swissgrid(Rp/kWh) .43 .43 .83 .5 .34
KEV(Rp/kWh) .49 .49 .49 .49 .49
MunicipalTax(Rp/kWh) 4.64 4.62 4.66 3.35 3.24

Note: The table shows average prices in the sample. The underlying tariff structure of Energie Thun is more complex. Customers
can choose different energy sources (e.g. water, solar) with different prices. In contrast to the other companies, Energie Thun
does not offer a uniform tariff. There is also no price information for the year 2008 as the data for this year is not available due
to system changes in the company.
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Appendix A3: Maps - Bern, Thun and surroundings

Figure 10: Map City Bern (Households)

Note: The figure shows a map of the city of Bern and its surroundings. The dark blue area consists of all households in the
sample supplied by Energy Bern, while the light blue area shows the BKW customers.
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Figure 11: Map City Thun (Households)

Note: The figure shows a map of the city of Thun and its surroundings. The dark blue area consists of all households in the
sample supplied by Energy Thun, while the light blue area shows the BKW customers. The white area adjacent to the coverage
of Energy Thun without any households shows the lake of Thun.
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Appendix A4: Example of Eturnity Offer

Erleben Sie Ihre Anlage interaktiv
offerte.eturnity.ch
Code: 456785

Egon Tanner
Feldweg 45
6440 GELTERKIRCHEN
Tel: 079 685 5555
egon.tanner@bluewin.ch

INDEPENDENCE AND 
OWN CONSUMPION

DEGREE OF 
INDEPENDENCE

OWN-
CONSUMPTION

>> Seite 2

IINVESTMENT COST 

One-time investment of

Your Heating System

>> Seite 5

21’960 CHF
incl. Solar panel
incl. battery 
incl. installation
incl. VAT
incl. subsidies

Heating: 
Warm Water: 
Consumption:

Alignment:
Solar Panel:
Battery:

PAYBACK PERIOD 

with battery

12,4 years
37%72%

FREDI GMBH
Reichsgasse 3
7000 Chur
Tel: 0800 00 00 00
info@fredigmbh.ch

annual revenue: 1’383 CHF 

without battery

14,7 years

Heating Pump 
Heating Pump 
9’600 kWh

180°
8,12 kWp
7 kWh

Annual Revenue: 7’955 kWh

>> Seite 3 >> Seite 3
annual revenue: 903 CHF

PERSONAL
OFFER

FREDI GMBH

(a) PV installation investment preview

INDEPENDENCE & 
OWN CONSUMPTION

2
S E I T E

WHERE DOES MY ENERGY COME FROM?

WHERE DOES MY ENERGY GO?

Why do I need energy from the grid?

Even if your solar pannel produces more 
energy in a year than your total annual 
consumption, and despite you battery, 
you might need to rely on energy from 

the grid during winter nights.

Why do I feed energy into the grid?

You  feed your energy, apart from what 
you use directly, into your battery. As soon 
as the battery is full excess energy will be 
automatically fed into the grid.

28% 44
%

Battery 28% Energy grid

Your total energy consumption
3716 kWh

16% 21
%

63% Battery
1273 kWh

Energy grid
5011 kWh

Direktverbrauch
1670 kWh

37%
Your Own Consumpton

How much of your solar energy can you use yourself?

Annual solar energy production

7955 kWh

1023 kWh 1023 kWh

Annual direct  PV consumption 
1670 kWh

72%
Your degree of independence

How much of your energy demand do you supply 
yourselfr?

(b) Description of where the PV energy comes from
and where it goes

PROFITA-
BILITY

INVESTMEN COSTS REVENUE

«SOLARENERGIE LOHNT 
 SICH FÜR SIE»

Solar panel 

Battery system 

VAT 8%

Total exkl. VAT

Total inkl.VAT 

Subsidy

Your Investment 

Expected tax deduction* 

Final costs

23’578 CHF

4’600 CHF

2’254 CHF

28’178 CHF
30’432 CHF

-8’472 CHF

21’960 CHF

-3’294 CHF

19’357 CHF

PRODUCTION COSTS
1 kWh solar energy from your roof costs:

15,7 Rappen
Without battery cost, during the life-time of the solar panel incl. 
capital costs, incl. Iinvestment and maitenance.

Total savings from own consumption and revenue from selling ennergy, 
minus maintenance costs during the life time of solar panel/battery. No 
capital costs.

Internal interest rate describes the average, yearly return of capital across 
the life-time of the PV, assuming the capital revenue is reinvested at the 
internal rate of interest.

INTEREST YIELD
Return of your capital/internal interest rate:

With battery

34’579 CHF
Without battery

22’579 CHF

FUNDAMENTALS
Energy provider: CKW 
Energy product: hydropower 
PV-life span: 25 years 
Inflation energy prices 2,1%
Maintenance PV: 1% Invest. 
p.a.

Capital cost: 1,0%
Maintenance battery 1.5% Invest.

3
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* Assumption marginal tax rate 15% 

2,44%
Only solar with battery

1,03%

(c) Breakdown of PV installation costs and energy sav-
ings

CARBON 
FOOTPRINT

«EIN WICHTIGER BEITRAG
FÜR DIE UMWELT»

Your yearly CO2-savings of 1’000 kg are equivalent to

driving your car 8’132 km around 
the globe

reducing your carbon footprint by 15%

saving as much CO2 as 80 trees 
consume during a year

Berechnungsgrundlagen: Der dargestellte Vergleich basiert auf einem Schweizer «Egal-Strommix».
Quellen: ESU-Services / BAFU: Treibhausgas-Emissionen der Schweizer Strommixe, 2012
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(d) Quantification of CO2 saving
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Appendix A5: Utility and Indirect Utility

We assume that household i in period t maximises its utility from consuming electricity cit and the
outside good qit, subject to a budget constraint. We specify the following household’s constrained
optimization problem, omitting the subscripts for convenience:

max
c,q

u(c, q, I,X)

s.t. q + Pc ≤ I
(22)

where I and X are respectively household’s income and other characteristics (wealth, size, etc..),
P is the energy price. We normalize the price of the outside good to 1. We define the following
functional form for households’ utility:

u(c, q, I,X) = q +
η − 1

η
c

η
η−1 I

γ
1−η e

X′ω
1−η . (23)

The first order conditions lead us to the following energy demand function (c∗) and optimal con-
sumption of the outside good (q∗):

c∗ = P βIγeX
′ω

q∗ = I − P β+1IγeX
′ω,

(24)

where we define β = η − 1. Based on this, the indirect utility function will be:

v(P, I,X) = I − 1

β + 1
P β+1IγeX

′ω = I − 1

β + 1
Pc∗. (25)

In the structural model we distinguish between the two indirect utilities that a household derives
depending on whether it has a solar panel on not. What differentiates the two indirect utilities is
the income that a household has under each case. With no solar panel a household has an income
of I − f , with f being the fixed fee, whereas with a solar panel a household has an income of
I − f + τY , with τ being the feed-in tariff, and Y being the solar panel production. Hence, the
indirect utility we use for the structural model will be the following:

v(P, I,X, f, τ, Y ) =

 I − f + τY − 1
β+1P

β+1
(
I − f + τY

)γ
eX
′ω if PV it = 1

I − f − 1
β+1P

β+1
(
I − f

)γ
eX
′ω if PV it = 0.

(26)
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Appendix A6: Two-Part Tariffs

In the main body of the text we considered two extreme cases: adjusting the variable grid tariff
to make up for lost grid revenue of PV owners, and completely switching to lump-sum fees to
finance the grid. However, energy providers are likely to choose a new combination of variable and
fixed tariff components. In order to compute these optimal two-part tariffs we need to make an
assumption about the distributional goals of the regulator. Following Wolak (2016), we assume
that the regulator takes the current households’ grid expenditure GEi0 as the desired benchmark
from an income distribution perspective, and hence specify the following regulator’s constrained
optimization problem:

minPG,fi
∑

i
[GEi(PG,fi)−GEi0]2

Ii
=
∑

i

[
ĉi(PVi,PG,fi)PG+fi−GEi0

]2
Ii

s.t. GC0 =
∑

i

[
fi + ĉi(PV i, PG, fi)PG

]
(network financing)

(27)

where GEi(PG, fi) is the grid expenditure of household i under the alternative tariff scheme. This
optimization process implies that the regulator sets a combination of variable and fixed tariffs
to minimize the distributional distortion under own consumption, while still satisfying the grid
financing constraint.

Table 16 summarizes the optimal two-part tariffs under different assumptions. The first row corre-
sponds to the status quo where households face a marginal price of approximately 0.10 CHF and
pay a yearly uniform fixed fee of 117 CHF. In row (2) we include the effect of own consumption.
This results in a slight increase in variable grid tariffs and an almost double fixed fee. In rows (3)
and (4) we allow instead for a capacity-based fixed fee. Without own consumption (row (3)), it is
optimal from a redistributive point of view to only charge a variable tariff. With own consumption
instead levying a capacity-based fixed fee becomes optimal, although marginal prices also increase
significantly. To give a more direct interpretation of the capacity fee, the total amount of the fixed
fee ranges from 27 CHF to 1,360 CHF, while a household with median capacity pays 85 CHF an-
nually. Finally, in the last row we look at a case where energy providers can charge both a uniform
fixed fee and a capacity fixed fee. In this scenario it is optimal to keep variable grid prices constant
while combining both types of fixed fees. This suggests that the different redistributional impacts
of both fixed fee designs might cancel each other out.

Table 16: Optimal Two-Part Tariff with Own Consumption (Base year 2013)

Own PG f fi
∑∑∑

c̃i
Scenario Consumption (CHF) (CHF) (CHF per kW) (kWh)
Current No 0.098 117 - 376 Mio

Uniform Fee Yes 0.1025 216 - 374 Mio

Capacity Fee No 0.1264 - 0 366 Mio

Capacity Fee Yes 0.155 - 17 369 Mio

Capacity & Uniform Fee Yes 0.0974 95 18.4 376 Mio.

Note: Optimal tariffs are calculated to minimize the sum of square deviation in grid expenditures (difference between baseline
and counterfactual scenario).

42



Appendix A7: Regulator’s Optimization

We solve the regulator’s optimization problem sequentially. Following the evidence shown in Figure
7, we assume that the fixed fee does not impact the solar energy target constraint. This assumption
allows us to simplify the problem and solve it in three steps. First, we let the regulator define a
bounded set of combinations of variable tariffs and subsidies (PG, s) to achieve the solar energy
target. Second, for each of these combinations the regulator finds the unique fixed fee f necessary
to respect the network financing constraint. Third, for each combination of variable tariff, subsidy
and fixed fees (PG, s, f) we calculate the regulator’s objective function. We define as optimal
instruments the combination of PG, s, f that minimizes equity distortions relative to the status
quo. Here are the details of each step:

1. Solar Energy Target : Knowing that the current variable tariff is around 0.1 CHF/kWh, we
consider as feasible interval of variable tariffs the one between 0 and 0.5 CHF/kWh, discretized
by 0.01 intervals. For each value of the variable tariff we calculate the lowest subsidy needed
to reach the solar energy target, where the subsidy ranges between 0% and 100% with 1%
intervals. Specifically, we increase the subsidy until the share of solar energy reaches the
desired threshold. This gives us 51 combinations of variable tariff and subsidy (PG, s). For
high variable tariffs the generated revenue might exceed total grid costs. In that case we use
the excess revenue to further increase the subsidy percentage, as is implied by the inequality
of the solar energy target and the equality of the network financing constraint. In this first
step we hold the fixed fee constant, although it is a choice variable of the regulator and enters
the solar energy target through the PV adoption probability and energy consumption. We
justify this assumption with the evidence presented in Figure 7.

2. Network Financing : In this step we impose the network financing constraint. For each PG, s
combination we calculate the total sum of fixed fees required by the energy provider to break
even. The allocation of total fixed fees to individual households depends on the design of the
fixed fee. We allow the regulator to choose the share of the fixed fee that is capacity-based vs
uniform-based, as shown in equation 20. We discretize this share using 10% intervals, ranging
from 0% to 100%. Hence, for each combination of variable tariff and subsidy there are 10
different combinations of capacity and uniform fixed fees.. Ultimately, this step results in
510 different feasible combinations of instruments, each including a variable tariff, a subsidy
percentage, and a sum of capacity and uniform fixed fees.

3. Equity Distortion: Last, we calculate the regulator’s objective function for all combinations
of instruments defined in the second step, resulting in 510 values for the objective function.
We select the instruments with the lowest value of the objective function as the regulator’s
optimal tariffs, as those are the ones that minimize equity distortions relative to the status
quo.
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