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Abstract

Durable purchases require households to forecast future utility �ows, which might be subject to

projection bias. I test for such a bias in a market where weather can be directly linked to decision

utility: the market for residential rooftop solar. I investigate whether short-lived weather events have

an impact on household investment decisions. I �nd evidence that choices are over-in�uenced by the

current state of sunshine, but not by other weather variables. I consider a large range of rational

and behavioral explanations, but only projection bias is able to fully explain the empirical �ndings.

A standard deviation sunshine shock impacts uptake by one installation on average. I �nd evidence

that both positive and negative sunshine anomalies impact aggregate technology uptake. Evidence

for projection bias in the case of solar investment points to the importance of behavioral channels in

explaining low adoption of otherwise pro�table renewable energy technologies.
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1 Introduction

The traditional rational agent framework assumes that people evaluate private costs and bene�ts and make

choices that maximize utility. However recent work in behavioral economics has shown that this is not al-

ways the case. When preferences are context dependent, optimal decision-making involves the prediction

of future tastes. Evidence from the psychological literature suggests that although people understand qual-

itatively how tastes change over time, they systematically underestimate the magnitudes of such changes,

which can lead to misguided purchase decisions. Loewenstein, O’Donoghue and Rabin (2003) label this

phenomenon projection bias.

This paper studies the presence of projection bias in the context of a high-stake household investment

decision: the decision to install a rooftop solar photovoltaics (solar) system. I ask whether variations in

local weather have an impact on household adoption decisions. The rational agent framework suggests

that long-term investments in rooftop solar should not be a�ected by short-term variations in weather. In

contrast, I predict that behavioral agents will respond to variations in sunshine, as sunshine impacts their

expected returns and consequently decision utility. I test for a wide variety of mechanisms, but �nd strong

evidence that household decisions are indeed in�uenced by projection bias. Only a handful of papers have

been able to provide evidence for projection bias using �eld data. The present paper is the �rst to do so

involving a high-stake household investment decision. It is moreover the �rst paper to test for projection

bias in the renewable energy (energy-e�ciency) context, where investment is associated with important

positive externalities, but technology adoption typically happens at sub-optimal levels.
1

The solar market is particularly well-suited for this analysis given its unique institutional features.

First, I take advantage of randomness in local weather, which I use as credible exogenous variation in

perceived investment pro�tability. Second, there is an average time lag of eight weeks between the decision

to adopt solar and the time the installation is connected to the grid, which means that rational agents

should not make investment decisions based on short-term variations in weather. Third, investing in a

rooftop solar system is a large �nancial investment with a long project horizon, meaning that short-term

�uctuations in mood should not a�ect choices. I focus my empirical analysis on Germany, the world’s

largest market in solar deployment, as the presence of renewable energy support policies led to pro�table

and comparable investment conditions over the period 2000-2011.

1
The ‘energy-e�ciency gap’ describes the fact that although investment in energy-e�cient technologies are �nancially at-

tractive and environmentally bene�cial, investors do not adopt them or only at sub-optimal levels. Gerarden, Newell, Stavins

et al. (2015) point out three main explanations for the investment gap: market failures, behavioral biases, and measurement errors

in the quanti�cation of the economic bene�ts.
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I build on the theoretical model of projection bias by Loewenstein et al. (2003) and derive testable

implications for the case of solar investment. The model predicts that behavioral agents respond to vari-

ations in sunshine, but not to other weather variables. Given the average time between decision-making

and completion of the installation, I expect to �nd the main e�ect at a two-month lag. The model more-

over predicts that behavioral agents respond to both positive and negative deviations from the long-term

sunshine mean.

To test these predictions, I construct a unique panel data set by merging administrative data on house-

hold solar installations with o�cial weather data obtained from the German Weather Service (DWD).

My analysis relies on both weather station data and gridded weather data. I use weather station data to

construct long-term weather averages (normals) in 51 German regions and de�ne idiosyncratic weather

shocks as weather realizations outside the standard deviation of the long-term normals.

I �nd strong evidence in favor of the projection bias hypothesis. My results show that residential solar

uptake increases 7-12 weeks after an exceptional sunshine week. This time lag precisely corresponds to

the average installation time. A standard deviation sunshine shock leads on average to one additional

solar installation per county, representing 10% of new installations. While rain and cloud cover lead to less

adoption at a similar time lag, snow a�ects installations only in the same week. The e�ect of snow shows

that the empirical speci�cation is able to capture the short-run response to supply shocks, as snow and ice

hinder installers from site access. Temperature does not a�ect uptake. Testing for a non-linear response

of sunshine reveals that both positive and negative deviations from the long-term sunshine mean a�ect

uptake. In line with projection bias, my results indicate that pro�t expectations at the time of decision-

making are overly in�uenced by the current state of sunshine. This leads to impulse purchases in periods

of exceptionally high levels of sunshine and to under-investment in periods of atypical low sunshine. Even

though the monetary equivalent of an exceptional poor sunshine month is rather low, about 94 Euros or

half a percent of the total investment, it can lead to the observed aggregate impact on technology adoption

through projection.

I attempt to rule out a variety of alternative explanations for my empirical results. In particular, I use

a distributed lag model to show that exceptional sunshine leads to an aggregate e�ect on uptake and that

the �ndings cannot be explained by inter-temporal substitution. Similarly, using data on cloud cover I

exclude the possibility that people make rational choices, but leave their home only in periods when it

is not raining. Data on news coverage shows that while information is positively correlated with uptake,

my main sunshine e�ects are not derogated. Moreover, the eight-week time lag and large-�nancial in-

vestment makes present bias (Laibson, 1997) and consumer myopia a highly unlikely explanation, as it
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would imply households receive their entire weather related utility in the �rst months of purchase. The

non-linear response to sunshine allows me to discard salience (Bordalo, Gennaioli and Shleifer, 2012; Bor-

dalo, Gennaioli and Shleifer, 2013), as salience cannot account for the negative response to exceptionally

low sunshine realizations. Finally, I consider the possibility of supply-side responses to weather. For that

purpose, I obtain detailed installer bid-price data, but �nd no evidence of price downward adjustments. In

addition, I perform an installer survey to exclude the possibility that �rms adapt marketing strategies in

periods of exceptional sunshine.

I perform extensive robustness checks in order to test for the validity of my empirical �ndings. In

particular I split the sample in two sub-periods and include data on Internet information searches. Also, I

compare the ordinary least squares (OLS) estimates with a negative binomial count data model and allow

explicitly for spatial correlation and autocorrelation in the standard errors. In order to show that my

results are not driven by confounding factors, I perform two placebo tests: �rst, focusing on a subgroup

of commercial solar investors, I show that their choices are not in�uenced by current or lagged levels of

sunshine. Second, I look at a market that follows a very similar overall dynamic, but where investment

decisions should not be a�ected by sunshine: wind turbines.

This paper relates to several strands of literature, foremost testing for the presence of behavioral biases

in inter-temporal decision-making. Field evidence for projection bias has been provided only by a handful

of papers. Conlin, O’Donoghue and Vogelsang (2007) look at catalogue orders of cold-weather items and

�nd that people’s choices are over-in�uenced by the weather at the time of decision-making. Simonsohn

(2010) provides �eld evidence for the students’ decision to enroll to college. Documenting evidence that

cloudiness increases the appeal of academic activities, he �nds that an increase in cloud cover of one

standard deviation on the day of the campus visit is associated with an increase in the probability of

enrollment of 9 percentage points.
2

In a recent article Busse, Pope, Pope and Silva-Risso (2015) show that

idiosyncratic variations in weather a�ect people’s choices of vehicle types. In particular, they �nd evidence

that a sunny day leads to more sales of convertibles while a day with snow leads to an increased share of

four-wheel drive vehicles sold. Their �ndings are both in line with projection bias and salience.

The present paper complements these previous studies, providing evidence for projection bias in a

high-stake investment decision. While the empirical �ndings in Conlin et al. (2007) might be a�ected by

cold weather reminding people about the need to buy winter items, this is unlikely to be the case in a

large �nancial investment decision. Moreover, the long time gap of eight weeks allows me to credibly

2
Projection bias has been also documented in �nancial markets (Kliger and Levy, 2008; Mehra and Sah, 2002; Grable, Lytton

and O’Neill, 2004) and health related decision-making (Acland and Levy, 2015; Loewenstein, 2005).
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exclude the possibility of people having biased beliefs about the short-term weather evolution. Finally,

compared to the case of vehicle purchases, the time gap guarantees that investors do not receive utility

in the period of investment. In the case of Busse et al. (2015), people might acquire and drive the vehicle

on the same day. This means that customers might derive utility directly from purchasing a convertible

on a sunny day. Their �ndings might hence be in�uenced by a fraction of consumers with highly myopic

preferences.
3

Myopia implies that consumers bias is a result of non-standard time preferences rather than

non-standard beliefs, as it would be the case for projection bias.

The present article also contributes to the discussion of the energy-e�ciency gap (Gerarden et al.,

2015; Gillingham, Newell and Palmer, 2009; Ja�e and Stavins, 1994), describing the fact that even though

investment in renewable (energy-e�cient) technologies is both �nancially attractive and environmentally

bene�cial, individuals tend to not adopt these technologies, or only at socially sub-optimal rates. Finding

evidence for projection bias in high-stake investment decisions point towards the importance of behavioral

channels in explaining low adoption of energy-e�cient goods. Understanding the precise reasons for

under-investment is key in designing well-targeted policies and information campaigns with the objective

to increase technology adoption.

The paper proceeds as follows: in the next section I brie�y describe the institutional features of the

German market for solar. Section 3 introduces the theoretical framework of projection bias as developed by

Loewenstein et al. (2003) to the extent relevant for this study, while section 4 introduces the data. Section

5 presents the empirical speci�cation and discusses the identi�cation strategy more in detail. Section 6

presents the main results and alternative potential mechanisms, while robustness is evaluated in section

7. Finally, section 8 concludes.

2 Institutional Market Features

Germany, the largest market for solar deployment in the world, accounts for more than 35% of total solar

operating capacity in 2011.
4

Figure 1 shows the uptake of small-scale household solar installations, de�ned

as solar plants with a nominal production capacity smaller or equal to 10 kilowatt-peak (kWp), both for

newly added installations and cumulatively for the period 2000-2011. The wide di�usion of household

solar in Germany has been mainly attributed to the introduction of the Renewable Energy Act (EEG, for its

letters in German) in 2000 and the related Feed-In tari� (FIT) policy.

3
The recent literature (see for instance Allcott and Wozny, 2013; Busse, Knittel and Zettelmeyer, 2013) points towards mixed

evidence for consumer myopia in the case of car purchases.

4
REN21 (2012), Renewables 2012. Global Status Report
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The EEG guarantees investors access to the electrical grid for a period of 20 years and allows them to

resell electricity produced directly to their provider at a �xed rate, FIT, above the market price for electric-

ity. Selling electricity at a guaranteed tari� allows households to obtain a positive return on investment

over the 20-year project horizon. FITs are downward adjusted once per year for new installations in order

to account for decreasing trends in costs. During the time period 2000-2011, there have been two major

amendments to the original EEG. The �rst amendment in 2004 increased FIT for household solar installa-

tions and removed the initial cap on capacity. The second amendment in 2009 was aimed at counteracting

the increasing cost pressures resulting from technology uptake. Even though there have been reforms to

the original EEG, it was not until 2012 that the law changed importantly, introducing mandatory on-site

consumption and a more aggressive downward revision of FIT. The period 2000-2011 hence provides a

highly homogeneous time-span in terms of pro�tability for solar installations. The expected annual re-

turn for a solar installation of average size is 6-9%.
5

Overall, household solar investment in Germany in

the period 2000-2011 can be characterized by low-risk and high �nancial returns.

FIT are designed as budget neutral to the government and are �nanced through a levy on electricity

prices. Increased deployment of solar and other renewable energy sources led to a sharp increase in the

levy over the years. The total amount spent on the support of solar accounted for 7.7 billion Euros in 2011,

translating to a ‘tax’ on electricity of 3.53 Eurocents per kilowatt-hour (kWh).
6

Even though the market

has grown importantly, by the end of 2011 the total installed capacity accounted for only a small share of

electricity production and there were no signs of market saturation.
7

Weather and the Pro�tability of Solar

Climate and weather conditions have an important impact on the pro�tability of solar. As pointed out by

King, Boyson and Kratochvil (2002), energy produced by a solar module is directly related to the availability

of solar energy and sunshine hours, which is site-dependent but can be in�uenced by factors such as the

module’s orientation relative to the sun. Average solar radiation in Germany ranges from 950 kWh to 1150

kWh per square meter and is higher in the south.

Cloud cover and shading are the enemies of solar production, as they can decrease total output by

5
Individual pro�ts might vary due to site characteristics and rely on factors such as rooftop orientation, technology, and

sunshine radiation.

6
Federal Network Agency (2013), EEG Statistics Report 2011

7
In 2011, the share of solar energy in the German electricity mix was about 3.1%. Household installations represent about 9%

of total installed solar capacity in Germany (2010). Appendix A1 provides a detailed overview on the main market drivers for

solar investment in Germany.
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up to 90%. Other weather variations, such as temperature, rain, and snow have ambiguous e�ects on the

performance of solar plants. They are typically short-lived and have little impact on the overall pro�tability

of the investment. I discuss these potential e�ects more closely in appendix A2.

3 Theoretical Links between Weather and Solar Investment

As variation in local weather has no direct impact on future utility received from solar investments, id-

iosyncratic variation in sunshine should not a�ect the investment decisions of rational agents. However, as

pointed out by the recent behavioral economic literature (DellaVigna, 2009; Huck and Zhou, 2011), many

individual decisions might deviate from the standard economic model. These biases might a�ect the will-

ingness to pay, search, and product quality choices. While biases in search and quality a�ect the choice

set of the customer (which product to buy), changes in the willingness to pay might alter the purchase

decision itself or the timing of the buying decision. This section discusses the main theoretical channels

that might bias consumer’s willingness to pay in inter-temporal decision-making: present-biased pref-

erences (Laibson, 1997), projection bias (Loewenstein and Schkade, 1999; Loewenstein et al., 2003), and

salience (Bordalo et al., 2012; Bordalo et al., 2013). I will also discuss alternative neoclassical mechanisms,

for which I test in the main section of this paper.

A Theoretical Framework for Projection Bias

Based on experiments and previous studies (see for instance Loewenstein and Adler, 1995), Loewenstein

et al. (2003) formally introduce the theory of projection bias to the economic literature. The authors give

evidence that individuals tend to mispredict their future sequence of preferences in that they systematically

exaggerate how future tastes resemble present tastes. Projection bias can have important implications in

the case of durable goods purchases with multiple buying opportunities and irreversibility, where it can

lead to misguided purchase decisions.

Suppose that a person’s instantaneous utility can be written as u(c, s), where c is consumption good

and s is the state that parameterizes the tastes of the decision maker. In case of a simple projection bias,

people with current state s ′ form linear expectations about their future utility in state s. Thus, the person’s

predicted utility lies in between the true future tastes u(c, s) and the current tastes u(c, s ′) which implies

that a person’s behavior needs not to correspond to correct inter-temporal utility maximization.
8

8
Loewenstein et al. (2003) de�ne simple projection bias as: ũ(c, s|s ′) = (1 − α)u(c, s) + αu(c, s ′), where α measures the

degree of projection bias, i.e. α = 0 implies correct prediction of future utility and α = 1 implies fully myopic habits.
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In the speci�c case of durable good purchases, suppose that a person’s valuation in period t is given

by a random variable µt, which is identically and independently distributed across periods and has a �nite

sample mean µ. The realization of µt is known at the beginning of the period and the durable good lasts

M months. Furthermore, without loss of generality Loewenstein et al. (2003) assume that future utilities

are not discounted. More importantly, the good is not consumed in the month of purchase. If a person

decides to buy at period 1, she obtains utility from the purchase, but has to pay price P which implies

forgone consumption of other goods. Assume that the utility for the durable good is additively separable

from utility of other goods and the current state is equal to the random variable, st = µt. Then, in a

one-time buying decision, true expected inter-temporal utility is given by

E1[U1] = E1[

M∑
k=1

µ1+k − P] =Mµ− P.

While in the presence of projection bias we have that

E1[Ũ1] = E1[

M∑
k=1

[(1− α)µ1+k + αµ1] − P] =Mµ+ αM(µ1 − µ) − P.

Clearly, µ1 > µ implies E1[Ũ1] > E1[U1] and vice versa. Thus, if the period 1 valuation is larger than

the average valuation and the consumer predicts this into the future, she will be prone to overvaluation

of the durable good, or in other words, the person’s buying decision will be too sensitive to the valuation

at the purchasing time. In the more realistic case of multiple buying decisions, the consumer can buy at

most once in any period t ε {1,2,...} A rational person would buy the good in period 1 or never, i.e. she

buys if and only if Mµ − P > 0. A high valuation µH > µ, implies that Mµ + αM(µH − µ) − P > 0,

or in other words, projection bias can lead to impulse purchases in the case where the buying decision is

highly irreversible. A low valuation, µL < µ, on the other hand, implies that no purchase is taking place,

although it would be generally pro�table to buy the product.

Projection Bias and Solar Investment

As FIT guarantees a high return-on-invest and low uncertainty, it is not surprising that most house-

hold solar investment decisions are guided by �nancial considerations.
9

The individual household in-

vestment decisions can be modeled as a simple static utility maximization problem based on expected

9
I surveyed installers regarding the main motivations and variables a�ecting the investment decisions of their customers.

Main drivers are savings on the electricity bill and �nancial return considerations. More details on the installer survey can be

found in appendix A3.
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pro�ts.
10

In this simple framework the household chooses to invest if the expected net present value

(NPV) in period p exceeds the total investment cost. The NPV is given by the discounted cash �ow

(CF) over the project horizon (T = 20 years) times the expected units of electricity production (ele),

NPVp =
∑T

t=1 δ
t−1CFp∗E[ele(sun, ·)]. The Cash Flow itself is a function of the FIT rate and the installa-

tion cost, both de�ned by the period of investment p.
11

The expected electricity production E[ele(sun, ·)],

on the other hand, depends on factors such as the size of the installation, location, panel orientation, and

sunshine radiation. As information on long-term sunshine radiation is readily available to agents, I ascribe

a change in investment behavior, induced by idiosyncratic variations in sunshine, to increased pro�t ex-

pectations of the agents.
12

In line with projection bias, agents project their perceived pro�ts into the future

when making purchase decisions, which leads to instantaneous (impulse) purchases in the case of positive

sunshine events, and to non-investment in periods of exceptional low sunshine. The model of projection

bias leads to the following testable implications for the solar market:

1. Behavioral consumers respond to idiosyncratic variations in sunshine.

2. Given the average time lag from decision-making to completion of the installation, I expect to �nd

the main e�ect of sunshine on technology uptake at a two-month lag.

3. Temperature and other weather events do not a�ect installation decisions (or only to a degree in

which they are correlated with sunshine or driven by supply-side considerations).

4. Projection bias predicts that both positive and negative deviations from the long-term sunshine mean

impact investment decisions of behavioral consumers.

Other Potential Mechanisms

Clearly, projection bias is not the only possible behavioral explanation leading to impulse purchases and

over-consumption in decision-making. In the following, I discuss alternative behavioral and neoclassical

explanations for which I test in the main section of this paper.

10
Most installations are either cash purchased or �nanced through interest-free loans o�ered by the German bank for recon-

struction; credit constraints do not play a role in this setting. The fact that FIT are adjusted annually to mimic cost evolution

makes strategic waiting (option value) irrelevant.

11
Installation costs can be thought to include both capital costs and soft costs. Without loss of generality, annual operating and

maintaining costs are omitted from the pro�t calculations as they are negligible in the case of solar.

12
Solar radiation maps can be obtained Online from sources such as the European Commission or the German Weather Service.

The installer survey moreover highlights that most installers confront their customers with detailed �nancial planning and return-

on-invest calculations, based on long-term regional climatic conditions.
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Present bias and hyperbolic discounting (O’Donoghue and Rabin, 1999; Laibson, 1997) can lead to sim-

ilar implications in the case of repeated consumer purchase decisions. Salience, as in Bordalo et al. (2012),

and Bordalo et al. (2013), refers to the idea that consumers’ attention may be systematically biased towards

certain product features. When consumers make their investment choices, some product characteristics

will receive disproportionate weight, a�ecting �nal purchase decisions. In the present case, an extremely

sunny period might lead to selective perception, making the bene�ts (�nancial return) of solar more salient

or leading to biased perceptions (increased visibility of solar technology).

Possible neoclassical explanations for the e�ect of sunshine on investment include inter-temporal sub-

stitution (harvesting), news and information search that might be correlated with sunshine, supply-side

e�ects, and learning. Harvesting and inter-temporal substitution may arise as consumers make rational

choices, but an exceptional sunny period leads more people to invest that already have decided to do so. In

that scenario sunshine shifts aggregate demand but has no impact on the aggregate number of installations.

Moreover, people might prefer to leave their house only on a nice weather day, leading to a similar data

pattern. Another possibility is that journalists discuss solar energy and climate change more broadly in the

news in an exceptional sunny period and that this is the main underlying driver of investment decisions.

Focusing on equilibrium market outcomes, the number of new solar installations might be furthermore

a�ected by a supply-side response to weather. Suppliers might o�er special price deals or increase their

promotional activity in response to weather events. Finally, learning can be thought to a�ect the uptake

decision in two ways: either in a product-awareness sense, or learning about weather and climate. First,

an extremely sunny month might lead households to realize the bene�ts of investing in solar, which after

all means that their decisions are a�ected by behavioral factors, similar to projection bias and salience.

Second, if idiosyncratic variations in weather carried information about future weather and change in cli-

matic conditions, it might be fully rational for households to invest as new weather related information

becomes available. In that sense, exceptional sunshine might also induce biases in beliefs about future

weather. Learning about preferences, as it is the case with test-driving in car purchases (Busse et al., 2015),

does not apply in the case of a highly irreversible �nancial investment decision.

4 Data

Administrative data on solar installations in Germany is available from the information platform of the

electricity network operator (Netztransparenz.de). The data provides information on all individual instal-

lations that are connected to the electricity grid and provides information on the exact address, size of the

solar system, and date of �rst grid access. Focusing on small-scale (household) installations with a capacity

10

http://www.netztransparenz.de/de/Anlagenstammdaten.htm


smaller or equal to 10 kWp and the sample period 2000-2011, I count with a total of 616,978 installations. I

drop obvious duplicates, i.e. observations with the same plant id (77 observations) or with all identi�ers co-

inciding (9,924 observations), which may arise when an individual plant has been disconnected and newly

registered in case of a change of network operator. As I am interested in household decision-making for

new installations, I furthermore exclude all installations that happen at the same address, as those are ei-

ther extensions of existing plants, or investment decisions that likely have not been made independently.

I aggregate the remaining 441,321 installations at county level at weekly and monthly frequency and con-

struct fully balanced panel data sets. Figure 2 shows the distribution of solar installations across Germany.

In a next step, I combine the solar installations with two distinct weather data sets obtained from the

German weather service (DWD). First, I use weather station data available for 51 locations in Germany,

ranging back until 1971 that provide daily information on sunshine, temperature, rain, snow, and cloud

cover. Sunshine, rain, and snow are cumulative measures. Temperature is available as daily mean, mini-

mum and maximum. Cloud cover is an index describing the percentage of visible clear sky. In addition to

this high-frequency data, I obtain gridded weather data for the entire Republic of Germany. Gridded data is

based on observations from around 400 weather stations, and uses a methodological model to interpolate

weather variables such as sunshine hours, temperature (mean, min, max), and rain at a 1x1 km resolution

at monthly frequency. I use ArcGIS, a commercial Geographic Information Systems mapping software,

to match counties to its nearest weather station and to aggregate gridded weather data at county level.
13

Panel a of Figure A4 provides a graphical illustration of the aggregate sunshine hours at county level,

highlighting the important year-on-year variation. The �gure also shows the distribution of the freely

available weather stations across Germany. Using both gridded data and weather station data allows me

to perform the statistical analysis at di�erent time frequencies and spatial resolutions. More importantly,

the weather station data allows me to test for additional variables such as snow and cloud cover. Finally,

contrasting my main results for both type of weather data helps me to overcome potential pitfalls related

to either data source (Dell, Jones and Olken, 2014; Au�hammer, Hsiang, Schlenker and Sobel, 2013).

I add covariates to the analysis in order to control for time varying di�erences at county level and to

perform additional robustness checks. First, I download o�cial demographics at county level from the

German Statistical Agency. Main covariates include population, household income, education, unemploy-

ment, voting outcomes, agricultural surface, as well as the number of new residential and non-residential

buildings. This data is available at annual frequency. In order to control for possible confounding factors,

13
Each individual climate observation is assigned to a county if the centroid falls inside the county boundaries. I then average

across all data points in a given county to obtain the monthly weather averages.

11

https://www.regionalstatistik.de/genesis/online/logon


I also obtain data from Google trends regarding web searches on solar and climate change, and data from

LexisNexis, an Online database covering news in major German newspapers on the same topic. Finally, I

obtain bid-price data on solar installation prices from an Online consumer portal for the years 2010 and

2011.
14

In addition, I conduct an installer survey in Germany. The survey has three main objectives: �rst,

to obtain precise information on the customer decision-making process, second, to get detailed informa-

tion on the timing in solar installations, and third, to understand if local installers adopt their sales and

marketing strategies to variations in weather. Appendix A3 provides a detailed overview on the survey

design and discusses other data sources more in detail.

De�nition of Weather Shocks

I construct weather shocks in order to test for the impact of exceptional weather periods on solar uptake.

In a �rst step, I de�ne long-term weather averages (normals) of sunshine, temperature, rain, etc. for 51

climate regions in Germany, using weather station data for the period 1990-2011.
15

Figure A6 shows the

distribution of sunshine, temperature, and rain for weather station data and gridded data and provides

evidence that the distribution of the two sources are highly aligned. I am thus con�dent to use weather

station data to de�ne long-term weather normals in the 51 regions. In a second step, I identify shocks as a

county-week (month) weather realization outside the standard deviation bands of the weather normal in

that region. I construct this measure for each of my weather variables and for both positive and negative

deviations.

One potential concern about using local variations in weather is spatial correlation and autocorrelation

of exceptional weather events. The appendix provides evidence that weather shocks, as opposed to weather

levels, are less likely to be a�ected by this critique. Figure A7 shows that the construction of sunshine

shocks does lead to a positive shock probability in every month of the year and in every year of my

sample. In order to test for autocorrelation at county level, i.e. a sunshine shock today carries information

on future sunshine shocks, Table A1 provides summary statistic on the Portmanteau (Q) test statistic for

white noise. I construct the test statistic for each county independently (for di�erent lag structures) and

14
The price data is based on installer bids (o�ers) from an Online solar web portal that allows households to obtain individual-

ized o�ers for comparable installations from local installers. The author would like to thank EuPD Research for making this data

available.

15
Using the period 1990-2011 leads to 22 data points for each station-week (month) combination, and hence a su�ciently

large number of observations to calculate the mean and standard-deviation. I also experiment with the international climate

reference period 1971-2000 for the de�nition of weather normals. However as Figure A5 suggests, the period 1970 to 1990 has

been in�uenced by years of exceptional low temperature (and sunshine) realizations leading to an excessive number of shocks in

the sample period.
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present the percentage of counties where the null hypothesis of no autocorrelation can be rejected at

1% and 5% signi�cance level respectively. The table indicates that autocorrelation, especially in sunshine

shocks, is not of a big concern. Moreover, looking at global spatial correlation of sunshine shocks at each

point in time, I calculate Moron’s I test statistic for each of the 144 monthly time periods separately and list

the percentage of periods for which the null of no spatial autocorrelation can be rejected at the 1% and 5%

signi�cance level, assuming di�erent spatial weighting matrices (Table A2). The table suggests that spatial

correlation of shocks is overall very low. Panel b of Figure A4 provides additional graphical evidence that

spatial correlation and autocorrelation of the sunshine shock should not be of concern.

Summary Statistics

Combining the above data to a fully-balanced panel data set leaves me with 250,848 observations at the

weekly level and 57,888 observations at monthly frequency.
16

Figure A8 shows the evolution of the main

dependent variable, county-month solar installations over time. The �gure clearly suggests an increase

in technology adoption and in volatility over time. The �gure furthermore highlights that announced FIT

adjustments lead to important bunching behavior in the month of the policy change. Figure A9 depicts

the related histogram.

The summary statistic for the main variables of interest as well as demographics is provided in Table

1. While column 1 displays the means and standard deviations for the entire sample, column 2 and column

3 split the sample into high and low sunshine shock counties, according to the median sunshine shock

over the sample period. The sample split reveals that there are more solar installations in counties that

have more sunshine shocks. This �nding can be seen as a �rst indication for projection bias, especially

as the total number of sunshine hours does not di�er signi�cantly across the two subgroups. Moreover,

the summary statistic shows that there are only small di�erences in observables between high and low

sunshine shock counties and shocks are distributed fairly homogeneously across counties.
17

As I do not observe the precise moment in time when the investment decision is made, but rather

the moment in time when the installation is completed, I perform an Online survey with installers to

understand the exact timing of decision-making. Figure A10 shows the distribution of the average declared

time gap between customer decision-making and completion of the installation. The median is 8 weeks (9

week mean with a standard deviation of 5 weeks).
18

16
There are a total of 402 counties (2011 county boundaries) for the period 2000-2011.

17
The shock discretization leads to distinct number of observations for each of the subgroups. The large di�erence in population

emerges from the presence of city states (Berlin and Hamburg) that are classi�ed as counties in my data.

18
As the survey was conducted in 2015, but my main analysis refers to the years 2000-2011, I explicitly ask if the time gap has
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5 Empirical Strategy and Identi�cation

The causal e�ect of sunshine and other weather variables on solar adoption is identi�ed given the ran-

domness of local weather. I make use of the unique institutional features of the solar market in Germany

to test for the theoretical predictions as developed in section 3 and to identify projection bias. Employing

county-week data, I construct an indicator variable Ic,t equal to one if there has been at least one solar

installation in county c at week t.19
First, I estimate the following reduced form model by ordinary least

squares (OLS),

Ic,t = α+

W∑
i=0

βiweatherc,t−i + δf,w + γwI(FITadjust) + θc,y + εc,t (1)

where weatherc,t−i represents a vector of current and lagged weather variables such as sunshine,

temperature, rain, snow, and cloud cover. I control for the seasonal sales pattern by introducing a �exible

set of weekly dummies that is allowed to vary with the three main FIT policy periods δf,w.
20

In addition, I

include a dummy for each two-week period prior to an announced change in the FIT schedule to account

for observed bunching of installations. Finally, I include a set of �exible county-year �xed e�ects, θc,y,

which allows me to relax the parallel trend assumption of the standard �xed-e�ect model. Second, using

county-month data, I rede�ne my main dependent variable as Installationc,t, the total number of solar

installations in county c in month t, and use the following empirical model,

Installationc,t = α+

M∑
i=0

βiweatherc,t−i + δf,m + γmI(FITadjust) + θc,y + εc,t (2)

where weatherc,t−i now includes current and lagged weather variables for sunshine, temperature,

and rain. As in speci�cation (1), I account for the seasonality in sales, δf,m, which is allowed to vary

with the three main FIT periods. In addition, I include a dummy for each period of FIT adjustment,

I(FITadjust), and take into account a �exible set of county-year �xed e�ects θc,y. Given the count nature

of my main dependent variable, I estimate the model using both OLS and a negative binomial count data

model. In case the main identi�cation assumption, the conditional exogeneity of weather shocks holds,

OLS should lead to unbiased and consistent estimates. Given the time lag in installations, weather this pe-

riod does not directly a�ect the pro�tability of the investment in the same period and is uncorrelated with

the error term. All standard errors are clustered at weather station level to allow for spatial correlation

changed over recent years. I do not �nd such evidence.

19
In about half the county-week observations (46.39%), there are zero installations.

20
The three main FIT periods are January 2000 - March 2004, April 2004-December 2009, and January 2010 - December 2011.
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within region over time. This choice takes into account that weather observations might be correlated at a

very �ne grid. Moreover, using a small number of clusters (50 is considered the minimum in applied work),

leads to more conservative inference. As additional robustness, I explicitly allow for spatial correlation and

autocorrelation in the error term applying Driscoll and Kraay (1998) and Conley (1999) standard errors in

the robustness section.

6 Main Results

This section focuses on my main regression results for both weekly and monthly data. I �rst evaluate the

predictions from the theoretical model and then discuss potential alternative channels more in detail.

Figure 3 is based on regression speci�cation (1) and displays the point estimates and 95% con�dence

intervals for the four main weather variables. It shows the current and lagged impact of sunshine, temper-

ature, rain, and snow at weekly frequency. The dependent variable is an indicator equal to one if there has

been at least one installation in county c in week t. All standard errors are clustered at weather station

level. The upper panel shows the regression coe�cients for sunshine and mean temperature. It indicates

that sunshine is positively and signi�cantly correlated with household solar installations between lag 7

and lag 12, in line with prediction one and two from the theoretical model. Earlier lags are generally not

signi�cant but lag 1 and lag 2 which show the same magnitude but opposite signs, leading to a zero cumu-

lative e�ect. This short-term response might be driven by a substitution of installations, as suppliers likely

schedule more site visits if the current week is sunny. Temperature does not lead to a similar data pattern

as sunshine. Higher lags of the temperature variable show negative coe�cients which are likely driven by

negative correlation between sunshine and temperature in the winter months. Looking at rain and snow,

I �nd that rain does not have any signi�cant impact on uptake, with the exception of lags 5 and 7 that are

negative and signi�cant. However, in line with projection bias, lags 7 to 11 show negative point estimates.

The negative and signi�cant e�ect of snowfall at impact provides a good �rst check for the validity of my

empirical model. As a week of snow and ice disrupts installer rooftop access, a negative impact in a week

with more snow that is counterbalanced in the following weeks is in line with inter-temporal substitution

due to supply-side limitations. In general, this �rst set of results provides strong support to the hypothesis

that sunshine is the main weather variable a�ecting household investment decisions.

In a second step, I test for the impact of positive weather shocks on adoption. Figure 4 shows the

e�ect for sunshine, temperature, rain, and snow shocks on uptake. While sunshine shocks lead to a very

similar pattern as sunshine levels, with lags 7 to 10 being positive and signi�cant, temperature shocks are

generally not signi�cant. Looking at rain and snow shocks, I �nd an e�ect similar to those in Figure 3;
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however with larger magnitudes. Rain shocks show a negative and signi�cant impact for lags 7 to 12. An

exceptional week of snow leads to a large decrease in installation probability in the week of the shock and

the week thereafter. The e�ect is o�set by a positive response in week three. Further lags, from week 9

onwards are generally positive and signi�cant. This is a mechanic response, as snowfall in Germany is

seasonal. Generally, the use of weather shocks con�rms my �ndings regarding a strong behavioral impact

of sunshine on decision-making. I also include a lead in the regression model to see if weather events can

be forecasted, i.e. serial correlation in weather might lead to predictability of exceptional weather events.

It would hence be rational for decision makers to respond to sunshine shocks at shorter lags. While this

hypothesis can be clearly rejected for sunshine, temperature, and rain shocks, only snow shocks display

some degree of predictability. Again, this �nding is in line with the seasonality of snow.

Aggregating the data at monthly frequency, Table 2 compares di�erent regression models following

speci�cation (2). The dependent variable in column 1 is the number of new solar installations at county-

month level, column 2 uses a �rst-di�erence transformation of the same. Column 3 estimates the original

speci�cation employing a negative binomial model to account for the count nature of the main dependent

variable. The results in column 1 show a strong and positive e�ect for sunshine shocks at lags 2 and 3

that are in line with my previous �ndings. In column 2, a sunshine shock relates to the change in new

installations from period t−1 to period t, conditional on year and FIT-month �xed e�ects. The speci�cation

includes further county covariates to account for time-varying observable di�erences across counties. I

�nd that both results are highly aligned with my previous �ndings, pointing towards an aggregate impact

of a sunshine shock of 0.7 - 1.1 additional installations per county. Employing the negative binomial count

data model in column 3 con�rms these �ndings further. In order to compare the estimated coe�cients

to the marginal e�ects of OLS, I transform the coe�cients exponentially. The main e�ect at lag 2 hence

translates to 1.2 additional installations. This is further evidence that my main identifying assumption,

conditional exogeneity of weather shocks holds, and OLS leads to valid estimates. Evaluating this e�ect

at the mean number of new installations in my sample period, I �nd that a sunshine shock accounts for

roughly 10% of new installations.
21

Figure 5 shows the main e�ects for jointly including sunshine, temperature, and rain shocks at monthly

frequency. While sunshine shocks show the expected size and sign, temperature shocks do not have any

signi�cant impact on uptake. Rain shocks have a negative impact at lags 2 and 3, which is compensated

at lag 4. Finally, testing for the prediction that both positive and negative deviations from the sunshine

21
The quantitative �ndings are in line with Simonsohn (2010), who uses standard deviation weather shocks as credible exoge-

nous variation to identify projection bias in college enrollment decisions.
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mean a�ect adoption decisions, Figure 6 shows the main regression coe�cients with negative sunshine

shocks, de�ned as a sunshine realization below the weather normal in a given region. The �gure reveals

that sunshine shocks at lags 2 and 3 are negatively and signi�cantly correlated with new installations.

Negative temperature shocks, on the other hand, do not a�ect uptake from lag 1 to lag 4. Figure 7 in-

vestigates possible non-linear e�ects, showing the coe�cients for lag 2 of demeaned sunshine on uptake.

The regression follows main speci�cation (2), but uses bins for demeaned sunshine hours rather than the

binary shock variable. The �gure shows point estimates together with 95% con�dence intervals and is

normalized with respect to the sunshine mean, which is omitted from the regression. The �gure indicates

that both positive and negative deviations from the long-term sunshine mean a�ect investment decisions.

While all positive deviations lead to a positive and signi�cant e�ect, for negative deviations, I �nd that

only very large deviations are statistically di�erent from zero. The estimated e�ect for negative deviations

is furthermore smaller in absolute magnitudes.

To summarize, the empirical results reveal that there exists an important impact of sunshine on solar

adoption. My �ndings are in line with the theoretical predictions of projection bias. The remainder of this

section discusses alternative neoclassical and behavioral explanations for these �ndings. If not mentioned

otherwise, all results refer to monthly data aggregation.

Potential Alternative Channels A�ecting Solar Adoption

Harvesting: In order to directly address inter-temporal substitution of purchases, I analyze the coe�cients

related to the distributive-lag model. Similar to Jacob, Lefgren and Moretti (2007), Deschenes and Moretti

(2009), and Busse et al. (2015), I add up all lagged coe�cients and verify that the aggregate e�ect is di�erent

from zero. A zero aggregate e�ect would imply that an exceptional sunshine month displaces the timing in

the decision to install (harvesting), but has no impact on aggregate technology adoption. The main results

report regression coe�cients up to 5 month after a sunshine shock. In all speci�cations, the positive and

signi�cant impact of sunshine on adoption does not cancel out at higher lags.

Sunny day hypothesis: A related concern is that individuals decide rationally, but it happens to be a bad

weather period and they prefer to leave their home only on a day when it is not raining. Using data on

cloud cover helps me to eliminate this potential concern, as I can compare rainy periods to periods that are

cloudy, but do not impede people from leaving their homes. Projection bias predicts that an exceptional

cloudy period has a negative impact on technology uptake, independent from rain. Figure A11 regresses

solar adoption on ‘bad’ weather shocks such as rain, snow, and cloud cover. I �nd that rain has a negative

impact on uptake, which is in line with both projection bias and the sunny day hypothesis; however I �nd
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that cloud cover shows an additional e�ect at lags 8 to 11, which is statistically signi�cant. This evidence

suggests that it is indeed cloud cover (missing sunshine) a�ecting household investment decisions.

News and information: Households might not respond to sunshine shocks themselves, but rather to

information that becomes available in sunny periods. One possible explanation is that in periods of excep-

tional sunshine journalists are more likely to report on solar installations and climate change. In order to

test for this possibility, I obtain data on print media news coverage from the Online database LexisNexis

and create a monthly time series aggregating the number of articles that appear in the press for solar (990

entries), and climate change (922 entries). The time series is plotted together with the series of new solar

installations in Figure A12. Table 3 shows the regression results for my main model, including data on

news, column 1, as well as climate change, column 2. While both variables have a statistically signi�cant

impact on technology uptake at a one to two month lag, the main e�ect of sunshine shocks remains un-

changed. The estimates for lag 2 are also robust to the inclusion of both types of information (column

3).

Supply side response: As my analysis is based on equilibrium market outcomes, the number of new

solar installations, the main �ndings might be a�ected by both a demand and supply response to weather

shocks. To test for the possibility that solar installers observe a good weather period and adopt their pricing

strategy, I obtain solar bid-price data from EuPD Research. Price data is available for the years 2010 and

2011 at quarterly frequency. One major advantage of the bid-price data is that it is locally disaggregated

(at zip code level), and includes also the size of the installations. This allows me to construct a county-

quarter panel dataset of solar installations, prices and sunshine shocks.
22

As I do not observe a sale for

each county-quarter pair, I interpolate missing observations using a �exible regression model that includes

a nationwide price trend, county intercepts as well as variation by state half-year. Table 4 shows the

main results regressing equilibrium solar prices on lagged solar installations as well as current and lagged

sunshine shocks. While column 1 uses the original sample, columns 2 and 3 employ the interpolated

data. The overall results indicate that the number of lagged solar installations have a negative impact

on prices, which is in line with learning-by-doing in the solar industry (Van Benthem, Gillingham and

Sweeney, 2008; Bollinger and Gillingham, 2014). Lagged household installations show a negative point

estimate in the same quarter; however are not statistically signi�cant. As learning-by-doing in the industry

is likely a�ected by total installed capacity rather than household systems alone, column 3 uses as main

regressor the total number of added solar systems in Germany. In line with this conjecture, I �nd that

22
The original price data consists of 8,881 observations for household solar installations (system prices) that I aggregate to

county-quarter prices per kWp installed.
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prices decrease with more installations. Focusing on the sunshine shock, I do not �nd evidence that prices

are downward adjusted in periods of exceptional sunshine. On contrary, there is limited evidence that

prices are higher with all point estimates in the same quarter being positive and signi�cant at 10%. This

e�ect might be driven by an increase in demand related to exceptional weather periods. In order to further

investigate the possibility of supply responses to weather shocks, I perform an Online survey with local

installers in Germany.

The survey reveals that most installers are small businesses that do not have speci�c sales and market-

ing personnel for promotional activities. Installers mention that in most cases customers approach them

directly with the aim to install a solar system and that their marketing outreach is rather limited. One third

of respondents mention that they adjust their sales strategies seasonally (summer versus winter) or due to

an upcoming change in the FIT scheme. Investigating the possibility of current weather having an impact

on marketing and sales activities, only 7 installers (13%) respond that weather a�ects their sales activities

directly. The main reason is that poor weather conditions limits on-site visits. Only 3 installers (5.8%) men-

tion that sunshine has a positive impact on business. To conclude, the survey suggests that most installers

are not aware of the possibility that customers have biased perceptions in their decision-making due to

current levels of sunshine and do not use this information strategically to increase their sales volumes.

Present bias: In the case of a one-time investment decision, fully myopic preferences or present bias

would imply that households receive their entire weather related utility in the �rst months of product

purchase. This is unlikely for an investment that involves a large �nancial stake (see also Busse et al., 2015).

The model of projection bias accommodates the possibility of myopia in preferences.

Learning: Customers might learn from exceptional sunshine periods about future weather and climate

conditions. However, as pointed out in the data section, short-lived weather �uctuations do not carry

information on future climate conditions and information on average solar radiation is easily accessible

to customers. Alternatively, learning might take place in a technological (product) sense, i.e. households

learn about the existence of the technology due to exceptional weather periods. This type of learning,

however, implies a behavioral response that is very closely linked to salience.

Salience: Salience implies that sunshine-rich periods draw people’s attention to the bene�ts of solar, or

the technology itself, a�ecting investment decisions. Testing for both positive and negative shocks as well

as non-linear responses to sunshine clearly indicates that the main results cannot be driven by salience

alone. While projection bias predicts that the current levels of sunshine impacts investment decisions,

salience is more likely associated with extremes (Busse et al., 2015). In the particular case of solar invest-

ment, positive weather shocks might lead to a biased perception of the technology, i.e. over-emphasizing
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the �nancial return component. Evidence that negative sunshine deviations a�ect uptake, Figures 6 and

7, indicates that salience cannot be the only explanation for the empirical �ndings.

Climate change beliefs: One additional concern might be that the results are a�ected by wrong beliefs

about climate change in�uenced by current weather. Recent papers in the behavioral climate change

literature (Li, Johnson and Zaval, 2011; Deryugina, 2013) have shown that the current temperature can

have an impact on climate change beliefs. Deryugina (2013) shows that especially long-term �uctuations

(of several months) can impact people’s beliefs about the occurrence of climate change. However, this

literature points to a relationship between exceptional hot weather and climate change. As I do not �nd

a signi�cant response in uptake behavior due to temperature, I can credibly exclude this possibility in the

case of solar investment. In addition, scienti�c research points out that climate change is likely to a�ect

climate extremes in Central Europe, such as heavy rain, storms, and droughts, which do not necessarily

lead to an increase in average sunshine duration.
23

Biased weather forecast: A related issue is that current weather might lead to biased weather forecasts.

However, given the eight-week time lag between decision-making and installation, this is a rather hypo-

thetical possibility. An indirect test for this hypothesis would be to see by how much people are able to

predict their local weather patterns. Krueger and Clement (1994) ask students at Brown University in the

United States to predict average high and low temperatures in their region for given days of the year and

found that students are generally able to forecast the weather accurately. For the speci�c case of Germany,

Burger-Scheidlin (2014) investigates the local weather perception of farmers related to climate change and

long-term climatic evolutions. Her results clearly show that farmers have an ample knowledge about how

the weather should be at a given time of the year. The main information sources for farmers are inherited

knowledge, observational data, and o�cial weather information. Although it is save to assume that farm-

ers pay more attention to local weather patterns than the general public, o�cial weather information is

available to both audiences. Besides, the discussion of weather (small-talk) is a large social phenomenon

(Johnson, 2009). Taken these points together, it is unlikely that investment decisions are consistently biased

due to wrong short-term weather forecasts.

7 Robustness

This section performs additional robustness concerning the econometric speci�cation and results. In a �rst

attempt, I split the sample in two equal periods and verify that my main �ndings are not driven by any

speci�c sub-sample. Table 5 presents these results, including variables on information search behavior.

23
See for instance IPCC (2014), 5th Assessment Report.
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Columns 1 and 2 show the results for the two separate sub-periods and indicate that lag 2 remains positive

and signi�cant with a coe�cient highly aligned with the main results. For the later sub-period, 2006-2011,

I additionally include data from Google to proxy for customer information search behavior. I �nd that

increased search behavior leads to more installations with a two to three month lag. Column 4 interacts

sunshine shocks with information searches, and �nds that the interaction term at lag 2 is positive and

signi�cant, meaning that an exceptional sunny period leads to more interest in solar. Column 5 con�rms

these results by regressing the number of Internet searches in a given region on sunshine shocks. I �nd

that a month of exceptional sunshine leads to signi�cantly more Internet searches for solar systems.

The design of the EEG allows me to perform two additional robustness tests to validate my empirical

model. First, there exists a sharp discontinuity in FIT rates for plants above 30 kWp. As small-scale in-

stallations are more expensive on average, they receive higher FIT rates. The cuto� is clearly visible in

the histogram of installed capacity (Figure A13), as it leads to bunching of installations just below the size

threshold of 30 kWp. I look at the group of strategic (pro�t maximizing) installers that invests precisely

in a plant of size 29-30 kWp and hypothesize that their investment decisions should not be a�ected by

projection bias. Figure 8 shows the regression coe�cients for the group of all household installations,

as before, and the group of pro�t maximizers. Indeed, I �nd that pro�t maximizers are not a�ected in

their investment decisions. Second, in an additional attempt to test for my empirical model, I look at a

related renewable investment decision, that follows a similar market dynamic that is dominated by insti-

tutional investors and where current weather should not impact decision-making: wind turbines. Figure

A15 provides this evidence.
24

Finally, I preform a series of robustness tests concerning the regression speci�cation and standard

errors. First, I verify that my main results are not driven by any speci�c German region. For this purpose,

I estimate the main regression model excluding each of the 16 states separately. The results are depicted

in Figure 9 and show that the main e�ect for lag 2 is consistently estimated ranging from 0.77 to 1.19. In

order to test for the possibility that the installation basis in a given county has an impact on uptake and

might bias my �ndings, as second robustness, I include lagged installations at time t− 1 in the regression

speci�cation.
25

Third, as sunshine shocks are de�ned as a deviation from the mean and are correlated with

sunshine levels by construction, I include sunshine levels and sunshine shocks in the same speci�cation.

The results remain robust to these tests. Forth, given the large dispersion of my main dependent variable,

I reestimate the main regression model, limiting the dependent variable at the 99th percentile. Again,

24
The aggregate market dynamic for wind turbine investments is depicted in Figure A14.

25
Given the time lag in decision-making, installations in the previous month do not have a direct impact on uptake this period

and are uncorrelated with the error term.
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the e�ects for lags 2 and 3 remain signi�cant and highly aligned with the main �ndings. Finally, given

concerns about spatial correlation and autocorrelation in the error term, I test for robustness in inference

using standard errors that are robust to autocorrelation and heteroskedasticity following the approaches

by Driscoll and Kraay (DK, 1998) and Conely (1999). Both DK and Conley standard errors lead to signi�cant

point estimates for lag 2 of the sunshine shock.
26

Putting Projection Bias in Context

In an attempt to quantify the impact of projection bias on consumer demand, in a back-of-the-envelope

calculation, I determine the monetary equivalent of a sunshine shock. I use the freely available Online

tool from the European Commission to calculate the electricity production of one hour of sunshine for

a solar installation of average size in Germany, equal to 3.67 kWh.
27

Using the average FIT over my

sample period, weighted by the probability of a sunshine shock happening in a given year, I �nd that

a negative sunshine shock has a monetary equivalent of roughly 94 Euros. According to the projection

bias hypothesis, fully myopic households (α = 1) would predict that their �nancial return will be 94

Euros lower in every month of the investment horizon, leading to negative return expectations and non-

investment. Even though the expected return di�erence of 94 Euros is small compared to the total average

installation cost of 20,100 Euros, about 0.5%, the inter-temporal nature of the decision problem makes this

bias relevant for the investment decisions of behavioral agents. Although the reduced form results do not

allow me to make a precise statement on the exact magnitude of the bias and the forecast horizon, my

results indicate that behavioral agents are strongly in�uenced in their investment decisions.
28

8 Conclusion

This paper provides evidence that an important household investment decision is a�ected by projection

bias. Using data from solar installations in Germany, I show that both positive and negative deviations

from the long-term sunshine mean in a given region have a signi�cant impact on the number of new

26
For DK I estimate the model with both county and year �xed-e�ects and allow for autocorrelation in the error of degree one.

The Conley standard errors are estimated with the same set of covariates and allow for 100km of spatial correlation and up to 4

lags of autocorrelation. Depending on the speci�cation, only lag two of the sunshine variable remains signi�cant.

27
Given seasonal di�erences in returns, I calculate for each month the expected return per hour of sunshine and take the

average of this series. The mean di�erence between an average sunshine month and a month that I label negative sunshine shock

is 67 hours.

28
Conlin et al. (2007) develop a structural model to recover the projection bias parameter in the case of catalogue orders and

�nd α ∈ [0.3, 0.5].
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solar installations. While neoclassical theory and alternative behavioral mechanisms fail to explain the

empirical results, my �ndings are in line with projection bias.

Evidence for projection bias in a high-stake �nancial investment decision implies that likely also other

important consumer decisions are a�ected by projection bias. As pointed out by Busse et al. (2015), so far

no clear recipe exists on how to de-bias consumers, which leaves an interesting �eld for future research.

On the other hand, in the case of environmental goods, technology adoption su�ers from the so-called

energy-e�ciency gap. Even though investments are privately pro�table and socially bene�cial, they �nd

little adoption. The present study points towards the importance of behavioral mechanisms in explaining

this investment gap. Targeted information campaigns could help to overcome this biased perception and

increase product uptake. In the speci�c case of solar di�usion, installers should adapt their sales activities

to the current state of sunshine. According to my �ndings, de-biasing consumers in exceptionally bad

weather periods can lead to additional installations at little cost. As solar investments are pro�table for

households as well as bene�cial for the society, these interventions can be overall welfare improving.

It remains challenging to provide �eld evidence for projection bias. Future research concerning the

exact magnitude of the bias in distinct contexts and regarding the projection horizon would be bene�cial

to fully understand its impact on decision-making. Moreover, distinct subpopulations might be a�ected

di�erently by projection bias. So far no convincing evidence exists testing for this heterogeneity using

�eld data. Understanding heterogeneous responses can make targeted policy interventions more e�ective

and can shed further light on the way projection bias a�ects market outcomes.
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Figure 1: Household solar installations and cumulative technology uptake in Germany (2000-2011).
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Figure 2: Total number of solar installations by county (December 2011). Darker areas represent more

installations. The graph depicts the location of the 51 weather stations that are used to de�ne the long-

term weather averages.
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Table 1: Summary statistics

All High Low

New solar installations 9.52 10.00 9.15

(17.59) (18.14) (17.14)

Sunshine hours 139.66 139.13 140.07

(77.38) (77.02) (77.65)

Mean temperature (C) 9.45 9.56 9.37

(6.62) (6.59) (6.65)

Sunshine shock 0.17 0.20 0.15

(0.38) (0.40) (0.36)

Distance to weather station (km) 36.06 39.14 33.71

(31.65) (33.81) (29.68)

Population 204019 243982 173522

(228264) (309659) (128620)

Household income per capita (2010) 18823 18826 18822

(2304) (2184) (2391)

Vocational training (%) 62.50 61.78 63.05

(6.04) (6.05) (5.97)

University degree (%) 8.43 8.85 8.11

(3.93) (4.07) (3.79)

Unemployment rate (%) 9.77 9.87 9.69

(4.62) (4.36) (4.82)

New residential buildings /population 0.18 0.18 0.17

(0.11) (0.11) (0.10)

Agricultural surface (%) 0.47 0.48 0.47

(0.16) (0.16) (0.15)

Green voters (%) 7.69 7.93 7.51

(3.49) (3.41) (3.53)

Vote participation (%) 76.66 77.02 76.38

(5.53) (5.47) (5.55)

Former Eastern Germany (excl. Berlin) (%) 18.91 17.24 20.18

(39.16) (37.77) (40.13)

Observations 57888 25056 32832

Note: Summary statistics for county-month observations in the period 2000-2011. Column 1 (all) refers

to the full sample, while column 2 and 3 split the sample according to the median value of the sunshine

shock in high (column 2) and low (column 3) sunshine shock counties. A sunshine shock is de�ned as a

sunshine realization outside the standard deviation of the long-term sunshine average in a given region.

Standard deviations in parentheses.
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Figure 3: Main regression results following speci�cation (1). Data aggregated at county-week level for the period 2000-2011. The dependent variable

is an indicator equal to one if there is at least one solar installation in county c in week t. Lags indicate leads and lags of the main weather variables.

All weather variables are included jointly in the regression, but plotted in two graphs for ease of representation. R
2

= .415 , N = 244,014 . Point

estimates with 95% con�dence interval. All standard errors are clustered at weather-station.
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Figure 4: Main regression results following speci�cation (1). Data aggregated at county-week level for the period 2000-2011. The dependent variable

is an indicator variable equal to one if there is at least one solar installation in county c in week t. Lags indicate leads and lags of weather shocks.

All variables are included jointly in the regression model, but represented in two graphs for ease of representation. R
2

= .412 , N = 244,014. Point

estimates with 95% con�dence interval. All standard errors are clustered at weather-station.
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Table 2: Model comparison

New installations OLS FD NB-reg

Sunshine shock –0.658*** –0.845*** –0.033

(0.184) (0.163) (0.024)

Lag Sunshine shock 0.399 0.282 0.015

(0.285) (0.223) (0.025)

Lag 2 Sunshine shock 0.939*** 0.825*** 0.111***

(0.261) (0.230) (0.022)

Lag 3 Sunshine shock 0.840*** 0.697*** 0.046**

(0.198) (0.194) (0.019)

Lag 4 Sunshine shock –0.084 –0.219 0.040**

(0.155) (0.131) (0.020)

Lag 5 Sunshine shock 0.307 0.174 0.050***

(0.187) (0.137) (0.019)

Observations 55878 55878 55878

R
2

0.688 0.462

County-Year FE Y N N

FIT-Month FE Y Y Y

Year FE N Y Y

Covariates N Y Y

Note: Main regression results following speci�cation (2). Data aggregated at county-month level for the

period 2000-2011. The dependent variable is the number of solar installations in county c in month t.

Column 1 estimates the main model by OLS. Column 2 transforms the main dependent variable in �rst-

di�erences and relaxes the �xed-e�ect structure. Column 3 estimates the main speci�cation employing

a negative binomial count data model. * p < 0.1, ** p < 0.05, *** p < 0.01. Clustered standard errors at

weather-station in parentheses.
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Figure 5: Main regression results following speci�cation (2). Data aggregated at county-month level for the period 2000-2011. The dependent variable

is the number of solar installations in county c in month t. All variables are included jointly in the regression model, but presented in two graphs

for ease of representation. R
2

=.688, N= 55,878. Point estimates with 95% con�dence interval. All standard errors are clustered at weather-station.
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Figure 6: Main regression results following speci�cation (2). Data aggregated at county-month level for

the period 2000-2011. The dependent variable is the number of solar installations in county c in month t.

Lags indicate lags of the negative sunshine and temperature shocks. R
2

=.688, N=55,878. Point estimates

with 95% con�dence interval. All standard errors are clustered at weather-station.
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Figure 7: Non-linear e�ect for lag 2 of the sunshine variable. The regression follows speci�cation (2),

however uses bins for demeaned sunshine hours. The coe�cients are normalized with respect to the

sunshine normal (zero bin omitted from the regression). R
2

=.689, N = 56,682. All standard errors are

clustered at weather-station.
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Table 3: News on solar and climate change

New installations (1) (2) (3)

Lag Sunshine shock 0.687** 0.634** 0.871***

(0.293) (0.305) (0.310)

Lag 2 Sunshine shock 1.142*** 0.939*** 1.052***

(0.255) (0.252) (0.270)

Lag 3 Sunshine shock 1.318*** 0.642*** 0.983***

(0.205) (0.191) (0.197)

Lag 4 Sunshine shock 0.230 0.447*** 0.404***

(0.148) (0.133) (0.138)

Lag 5 Sunshine shock –0.267* 0.215 –0.364***

(0.148) (0.159) (0.136)

Lag News solar 0.343*** 0.319***

(0.029) (0.027)

Lag 2 News solar 0.444*** 0.445***

(0.039) (0.042)

Lag 3 News solar 0.028 0.063**

(0.021) (0.024)

Lag 4 News solar –0.071*** –0.099***

(0.008) (0.012)

Lag 5 News solar –0.115*** –0.138***

(0.019) (0.021)

Lag News climate change 0.201*** 0.148***

(0.019) (0.016)

Lag 2 News climate change 0.089*** 0.136***

(0.010) (0.015)

Lag 3 News climate change 0.100*** 0.149***

(0.019) (0.024)

Lag 4 News climate change 0.165*** 0.140***

(0.014) (0.014)

Lag 5 News climate change 0.170*** 0.082***

(0.016) (0.009)

Observations 55878 55878 55878

R
2

0.698 0.693 0.702

County-Year FE Y Y Y

FIT-Month FE Y Y Y

Covariates N N N

Note: Main regression results following speci�cation (2). Data aggregated at county-month level for the

period 2000-2011. The dependent variable is the number of solar installations in county c in month t. The

regression additionally controls for lagged news on solar and climate change. * p < 0.1, ** p < 0.05, *** p <

0.01. Clustered standard errors at weather station in parentheses.
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Table 4: Supply side e�ects

Price per kWp installed (1) (2) (3)

Lag Cumulative Hh installations –0.137 –0.173

(0.185) (0.136)

Lag 2 Cumulative Hh installations 0.099 0.051

(0.227) (0.143)

Lag 3 Cumulative Hh installations 0.004 –0.127

(0.181) (0.091)

Lag 4 Cumulative Hh installations –0.282 –0.142

(0.185) (0.111)

Sunshine shock 47.101 19.657 14.844

(32.743) (21.205) (21.273)

Lag Sunshine shock 55.485* 46.974** 41.405*

(27.836) (20.985) (20.731)

Lag 2 Sunshine shock 7.688 –1.948 –6.100

(49.515) (38.835) (38.113)

Lag 3 Sunshine shock 21.316 43.567 39.822

(50.431) (37.691) (36.635)

Lag 4 Sunshine shock –50.428 –4.356 –9.062

(50.254) (51.156) (50.172)

Lag Total cumulative installations –0.101**

(0.045)

Lag 2 Total cumulative installations 0.006

(0.050)

Lag 3 Total cumulative installations –0.087**

(0.035)

Lag 4 Total cumulative installations –0.121***

(0.034)

Observations 1835 3104 3104

R
2

0.620 0.640 0.645

State-by-quarter FE Y Y Y

County FE N N N

Note: Data aggregated at county-quarter level for the period 2010-2011. The dependent variable is the

system cost per kWp for household solar installations. Columns 2 and 3 use an interpolated price dataset

as I do not observe data for each county-quarter pair. * p < 0.1, ** p < 0.05, *** p < 0.01. Clustered standard

errors at weather station in parentheses.
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Table 5: Sample split: Online information search

New installations 6 2005 > 2006 > 2006 > 2006 Google

Sunshine shock 0.069 0.033 0.214 0.232 8.161***

(0.247) (0.361) (0.372) (0.378) (1.756)

Lag Sunshine shock 0.723*** –0.331 –0.232 0.857 1.004

(0.179) (0.530) (0.525) (0.674) (1.158)

Lag 2 Sunshine shock 1.253*** 1.319*** 1.258*** 0.506 –2.287**

(0.407) (0.385) (0.414) (0.477) (1.127)

Lag 3 Sunshine shock 0.232 –0.796*** –0.830*** –0.869*** –2.403***

(0.178) (0.286) (0.300) (0.320) (0.821)

Lag 4 Sunshine shock 0.270 –1.952*** –1.710*** –1.001*** 4.049***

(0.234) (0.187) (0.175) (0.238) (1.253)

Lag Google search 0.003 0.009*

(0.005) (0.005)

Lag 2 Google Search 0.022*** 0.015**

(0.006) (0.006)

Lag 3 Google Search 0.022*** 0.018**

(0.007) (0.008)

Lag 4 Google Search –0.017*** –0.010**

(0.003) (0.004)

Lag Sunshine shock X Google –0.018***

(0.004)

Lag 2 Sunshine shock X Google 0.011***

(0.003)

Lag 3 Sunshine shock X Google 0.002

(0.002)

Lag 4 Sunshine shock X Google –0.014***

(0.003)

Observations 26934 28944 28944 28944 28944

R
2

0.423 0.592 0.597 0.599 0.842

County-Year FE Y Y Y Y N

FIT-Month FE Y Y Y Y Y

Covariates N N N N Y

Note: Main regression results following speci�cation (2). Data aggregated at county-month level for two

sub-periods: 2000-2005 and 2006-2011. The dependent variable is the number of solar installations in

county c in month t. The regression additionally controls for Online searches (Google) in column 3, and

an interaction term between the sunshine shocks and Google (column 4). Column 5 regresses the number

of Google searches for ‘solar’ on current and lagged sunshine shocks.* p < 0.1, ** p < 0.05, *** p < 0.01.

Clustered standard errors at weather station in parentheses.
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Figure 8: Main regression results following speci�cation (2) at county-month level for the period 2000-2011.

The dependent variable is the number of solar installations in county c in month t for two distinct groups:

pro�t maximizers and household installers. I de�ne as pro�t maximizers commercial installers that take

advantage of a discontinuity in the FIT policy design to maximize their expected pro�t. N=55,878. Point

estimates with 95% con�dence interval. All standard errors are clustered at weather station.
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Figure 9: Main regression results following speci�cation (2) at county-month level. Each observation rep-

resents the estimated coe�cient for lag 2 of the sunshine shock excluding one of the federal states from

the regression. BB: Brandenburg; BE: Berlin; BW: Baden-Wurttemberg; BY: Bavaria; HB: Bremen; HE:

Hesse; HH: Hamburg; MV: Mecklenburg-Vorpommen; NI: Lower Saxony; NW: Northrine-Westfalia; RP:

Rhineland-Palatine; SH: Schleswig-Holstein; SL: Saarland; SN: Sachsen; ST: Sachsen-Anhalt; TH: Thurin-

gen. Point estimates with 95% con�dence interval. All standard errors are clustered at weather-station.
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Appendix

A1. The German Market for Solar

Figure A1 summarizes the main phases for solar-support policies in Germany. Overall support for

renewable energy started in 1991 with the Electricity Feed-In Act and the introduction of Feed-In tari�s

(FIT) for large-scale hydroelectric power plants. The �rst important step towards the deployment of solar

energy at household level was accomplished in 1999, with the introduction of the so-called 100,000 rooftop

program. The program had the objective to add a total of 300 Mega Watt (MW) of installed solar capacity

to the electricity grid. It mainly operated through interest free loans o�ered by the German bank for re-

construction in addition to the existing FIT schemes. In 2000, the federal government agreed to introduce

the Renewable Energy Act as part of a larger ‘sustainability’ incentive.

The Renewable Energy Act (EEG for its letters in German) introduced a revised FIT scheme that o�ered

higher incentives for private investments in solar. The EEG guarantees investors access to the electric

grid for 20 years at �xed FIT over the investment horizon. It furthermore set a �xed ‘degression rate’, the

annual rate at which FIT decreases for new installations, to mimic market trends in cost developments. As

Figure A1 depicts, there have been two main amendments to the original EEG: the �rst one enacted in 2004

aimed at increasing deployment of solar, while the second one in 2009 aimed at reforming the bene�ts for

new installations to make the existing policy more cost-e�ective.

Even though the 2009 amendment introduced several changes to the law, such as a degression rate that

responds to the aggregate number of installations (corridor degression) and the option to consume elec-

tricity locally (on-site consumption), the overall incentives for households to invest in solar did not change

considerably. In fact, solar remained a very attractive investment opportunity, leading to a record number

of installations in both 2010 and 2011. It was not until 2012 that the economic incentives for solar invest-

ment changed importantly with a thoroughly revised version of the EEG and the related FIT scheme.
29

!"1999"""""""""""""""""2000""""""""""""""""""""""2004"""""""""""""""""""""""""""""""""""2009"" 2012"
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Figure A1: Evolution of solar support policies in Germany.

29
A detailed discussion of the evolution of Feed-In tari� policies, with focus on Germany is given by Jacobs (2012).
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Figure A2: Feed-In tari�s and solar system prices in Germany. The system price includes both module

costs and soft costs. Source: German Solar Association.

Figure A2 depicts the FIT schedule for the period 2000-2011. FIT are typically adjusted at the 31 of De-

cember, but there have been some periods of inter-annual revisions: the 2004 EEG amendment (August 1),

and two adjustments in 2010. All changes have been previously announced and do not a�ect installations

retrospectively. The evolution of household system prices shows clearly the decrease in costs. Precise data

for small-scale installations is available for the period 2006-2011. Even though FIT led to an important

number of solar installations, the share of solar in the total electricity production in Germany reached

only about 3.1% in 2011. Household capacity accounted for about 9% of total added solar capacity. At the

end of 2011, the household market has been growing at fast rates and the overall market has been far from

saturation.

A2. The Impact of Weather on Solar Pro�tability

In addition to sunshine, di�erent weather variables can a�ect the pro�tability of solar, at least in the

short-run.
30

The main variables to consider are temperature and cloud cover:

Temperature - High temperature can a�ect the performance of solar cells negatively. Both the electric

current generated and its voltage are in�uenced by the operating temperature. However as the positive

change in current is o�set by a negative change in voltage, and given the fact that solar modules are typ-

ically made up of a number of cells connected in series, the output voltage decrease due to temperature

may become signi�cant. Especially very hot days in the summer can lead to signi�cantly less electricity

production. These e�ects are typically short-lived and should not a�ect the overall performance of a so-

lar installation over its lifespan. Generally, temperature is a factor bene�tting electricity production from

solar in a country like Germany compared to other countries with more solar radiation but hat also have

higher temperatures.

30
See for example the EEPQRC (2011) Guide for Small Scale Domestic Rooftop Solar.
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Cloud cover - Cloud cover and shade can be considered the enemies of solar production, as they di-

minish electricity production by solar cells signi�cantly. A rainy day, with thick cloud cover, can reduce

the production from solar energy by as much as 90%. Short-term electricity production from solar may

however peak on mixed days, when the sun moves between the clouds, as then solar cells will receive

direct sunlight plus the one re�ected from the clouds.

Other - Similarly, other weather events such as snow and ice can a�ect the quantity of sunlight absorbed

by the solar panels, but their e�ects are typically short-lived and should not a�ect the average pro�tability

of solar investments over the project horizon.

A3. Additional Data Sources

In addition to the two main data sources, solar installations and weather, I consider the following co-

variates:

Demographics - Data on population, household income, education, unemployment, buildings, surface,

and voting can be obtained from the regional statistical database (‘Regionaldatenbank’) of the German

statistical agency. Annual data is available at county level (‘Kreis’ and ‘kreisfreie Stadt’).

LexisNexis - Provides detailed data on news and media coverage in speci�c geographic markets. I ob-

tain data on news related to solar (‘Photovoltaik’) and ‘climate change’, that has been published in major

German print media. The data is aggregated at monthly frequency.

Google trends - Can be accessed through Google. I download the time series of search intensity (num-

ber of searches) for solar (‘Photovoltaik’) in each of the 16 German states separately. Data is collected for

the period 2006-2011 at monthly frequency.

Price data - On solar installations comes from EuPD Research, and is based on con�dential installer

bid-price data from a German solar webforum which allows potential customer to compare installation

prices locally.

Installer Survey - I conduct an Online survey among solar installers to obtain additional information on

marketing and sales activities as well as information on the main consumer decision variables. The survey

covers three main areas: motivation and decision variables a�ecting customer investment decisions, time

gap in decision-making, and the impact of weather and climate on installer sales activities.
31

I use an automated Python script (web crawler) to obtain a large database of German solar installers

from the Online solar website Photovolatik.info. I extract a total of 3,217 contacts, for which I observe

name, address, email and website. Using the address information allows me to assess the geographical

representativeness of this sample. I �nd that the states with most solar installations also represent the

largest share of my installer data: 21% Bavaria, 19% Baden-Wurttemberg, 19% North-Rhein Westfalia, 9.2%

Lower Saxony, etc.

I use the Online survey tool Qualtrics to send out the questionnaire in August 2015. In addition to

the original email, all installers receive one survey reminder two weeks after the �rst contact. Survey

participation was voluntary and not related to any forms of payment or other bene�ts. Following this

31
The full questionnaire can be obtained from the author upon request.
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protocol, I am able to collect a total of 56 complete answers, representing a sampling share of 1.7%. Even

though the response rate is low, the geographical representation of the installer sample mimics the one

from my universe of installers: 25.4% Bavaria, 18.2 % North-Rhine Westfalia, 16.4% Lower Saxony, 14.6%

Baden-Wurttemberg, etc. I am hence con�dent that regional selection is not of concern.

Analyzing self-reported company demographics reveals that most businesses are specialized solar in-

stallers (60%). My sample also includes 12% of electricians and 12% of heating & water installers that

install solar panels as secondary business activity. Most of the companies are small with 1-5 employees

(52%), while 20% have more than 20 employees. More than half of my sample reports that they have been

installing solar panels for at least 10 years. Thus, they can make credible statements about the market

conditions in the early 2000s. I also �nd that installer markets are rather local: 60% of businesses state

that their main commercial activity is concentrated either in the same county or adjacent counties. Even

though the survey is not fully representative, the business demographics indicate that my sample cov-

ers a large variety of installer types. The collected responses should be indicative for the overall market

conditions in Germany. The main insights from the survey are:

1. Customers acquisition e�ort is low: typically customers contact installers directly with the aim to

install a solar system.

2. The household investment decisions are mainly driven by �nancial return considerations.

3. The average time lag between �rst customer contact and completion of the installation is 8 weeks.

4. Installers do not adopt their marketing and sales strategies due to idiosyncratic variations in weather.

Figure A3 shows the main factors playing a role in the solar investment decision. The main motivations

are economical, either related to the electricity bill (due to the 2012 FIT reform, on-site usage has become

mandatory and investment pro�tability depends on the evolution of the electricity prices), or �nancially

motivated. Environmental concerns are only mentioned by about 40%. Panel b of Figure A3 shows the

main decision variables a�ecting the investment choice of customers. Again, economic variables domi-

nate the discussion. Financing and weather, on the other hand, are not considered to be important factors.

Panel c of the same �gure shows the main marketing channels used to promote solar. Most installers rely

on word-of-mouth and local events. Advertisement, both in Online and print media is only used by about

30-40%. As most of the installers are small businesses it is furthermore not surprising that only 25% of

them have speci�c personal involved in sales and marketing activities.

In order to understand to what extend installers respond to idiosyncratic variations in weather, in a

�rst step I ask if their overall marketing strategies are a�ected by seasonal variations in climatic conditions

(winter versus summer). This is the case for 35% of all installers. In a second step, I ask if current weather

a�ects the marketing and sales activities. Only 7 (13%) of all answers respond that weather has an impact

on sales activities. The main reason is limited site access due to poor weather conditions and only 3 installer

(5.8%) mention that sunshine has a positive impact on business actities.
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Note: Solar PV installer survey, August 2015.
Author's calculation. N = 55. 
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(a) Main motivation to invest in solar
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Note: Solar PV installer survey, August 2015.
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(b) Main decision variables a�ecting choices
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Note: Solar PV installer survey, August 2015.
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(c) Main marketing channels used by installers

Figure A3: Solar installer survey: main factors a�ecting household choices and marketing channels.
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A4. Additional Tables and Figures

(a) Mean sunshine hours by county, 2000 and 2004 (rhs). Lighter areas represent more sunshine.

(b) Mean of sun shock by county, 2000 and 2004 (rhs). Darker areas represent more shocks.

Figure A4: Spatial distribution of sunshine hours and sun shocks in 2000 (left hand side) and 2004 (right

hand side).

Temperature	Shock
12	lags	 24	lags 40	lags 40	lags

Percent	counties	with	Q-statistic	at	1% 0.022 0.054 0.067 0.154
Percent	counties	with	Q-statistic	at	5% 0.089 0.176 0.189 0.268

Sunshine	Shock

Table A1: I calculate the Q-(Portmanteau) test for white noise for each of the 402 counties separately. The

table displays the percent of counties in which the null hypothesis of no autocorrelation can be rejected

at the 1% and 5% signi�cance level. Lags indicates the number of lags considered for the calculation.
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(b) Long-term mean temperature: 1971-2011

Figure A5: Sunshine hours and mean temperature trends in Germany. Source: DWD
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(a) Kernel density: sunshine hours
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(b) Kernel density: mean temperature
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Figure A6: Distribution of key weather variables for gridded data and weather station data.
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Figure A7: Mean of the sun shock variable over months and years.

full
median	
distance

median	
binary full

median	
distance

median	
binary

Percent	counties	with	Moran's	I	at	1% 0.083 0.076 0.09 0.067 0.067 0.133
Percent	counties	with	Moran's	I	at	5% 0.027 0.027 0.042 0.012 0.012 0.06

Sunshine Sunshine	shocks

Table A2: I calculate Moran’s I statistic of global spatial correlation for every month of my sample. The

table displays the percent of periods where the null of no spatial correlation can be rejected at the 1% and

5% signi�cance level. The spatial weighing either takes into account that all counties are correlated (full),

or that correlation is possible up to the median distance. Binary assumes 0/1 weights.
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Figure A8: Time series of solar installations at county-month level.
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Figure A9: Histogram of solar installations at county-month level.
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Figure A10: Average time gap from purchasing to completion of the installation (weeks).
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Figure A11: Main regression results following speci�cation (1). Data aggregated at county-week level for the period 2000-2011. The main dependent

variable is an indicator equal to one if there has been at least one installation in county c in week t. All weather variables are included jointly in the

regression but displayed in two separate graphs for ease of representation. R
2

= .412 , N =237,945 . Point estimates with 95% con�dence interval. All

standard errors are clustered at weather-station.
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Figure A12: Time series for news on ‘solar’ and ‘climate change’ plotted together with the time series for

solar installations.
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Figure A13: Histogram of solar installations in Germany (6 100 kWp).
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Figure A14: Mean of wind turbine installations at county-month level and cumulative technology uptake

over time.
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Figure A15: Main regression results following speci�cation (2). Data aggregated at county-month level for

the period 2000-2011. The dependent variable is the number of new wind turbines in county c at time t.

Point estimates with 95% con�dence interval. All standard errors are clustered at weather-station.

49


	Introduction
	Institutional Market Features
	Theoretical Links between Weather and Solar Investment
	Data
	Empirical Strategy and Identification
	Main Results
	Robustness
	Conclusion

