Introduction	Model	Nash Equilibrium	Analysis	Extensions
Mul	-	Supply funct ^{Vork in Progress}	ion equilibria	
Dä	r Ualmhara ¹	Keith Ruddell ²	Port Willoms ³	

Researcher of the Electricity Policy Research Group, University of Cambridge. ²Department of Engineering Science, University of Auckland.

¹Research Institute of Industrial Economics (IFN), Stockholm. Associate

³Tilburg University (CentER, TILEC), Toulouse University (TSE)

11 May 2017

INTRODUCTION	Model	Nash Equilibrium	Analysis	Extensions

INTRODUCTION	Model	Nash Equilibrium	Analysis	Extensions

Overview

Introduction

Model

Nash Equilibrium

Analysis

Extensions

Multi-product Auctions

- Many auctions deal with heterogenous but closely related goods:
 - Spectrum auctions for different regions
 - Government bonds with different maturities
 - Electricity delivery at different time periods
 - Landing slots at an airport
- Both the auctioneer and bidders have non-separable preferences for goods
 - Goods can be substitutes or complements for consumers
 - Economies of scope in production

How to deal with those multi-product auctions?

- Simultaneously operating simple auctions
 - European power markets (hourly markets for different regions)
 - U.S. spectrum auctions: simultaneous multi-round ascending auctions
- Complex auction where firms submit their preference on bundles or packages
 - PJM-market: Bid-based, security-constrained, economic dispatch with nodal prices
 - U.S. Spectrum auctions: Hierarchical package bidding
 - Block bids in European electricity market

How to deal with those multi-product auctions?

- Simultaneously operating simple auctions
 - European power markets (hourly markets for different regions)
 - U.S. spectrum auctions: simultaneous multi-round ascending auctions
- Complex auction where firms submit their preference on bundles or packages
 - PJM-market: Bid-based, security-constrained, economic dispatch with nodal prices
 - U.S. Spectrum auctions: Hierarchical package bidding
 - Block bids in European electricity market

This paper: Procurement Auction

- Two heterogeneous goods
 - goods are divisible
- Demand: competitive
 - goods can be substitutes or complements
 - demand is stochastic
- ► Supply: duopoly
 - ► (dis)economies of scope
 - can produce multiple units of each good

This paper: Procurement Auction

- Supplier submit a bid function for each good
 - ► for each price level how much the firm is willing to supply
 - quantity for one good depends not only that good's price, but also of the other
 - *i.e.* each firm chooses $s_1(p_1, p_2)$ and $s_2(p_1, p_2)$
- Market equilibrium Uniform Price Auction
 - ► combine supply bids & particular realization of demand
 - ► market clearing → equilibrium prices, production quantities
 - Infra-marginal incentives matter

INTRODUCTION	Model	Nash Equilibrium	Analysis	Extensions

Related Literature

Multiple-good oligopolies

- Product interactions might soften or weaken competition between oligopoly producers
- ► Bülow, Geanakoplos, and Klemperer (1985), Cabral and Villas-Boas (2005)
- Our contribution: Introduce demand uncertainty and allow for a larger strategy space

Combinatorial auctions

 Ausubel and Cramton (2004), Ausubel, Cramton, and Milgrom (2006), Milgrom (2000), Ausubel (2004)

INTRODUCTION	Model	Nash Equilibrium	Analysis	Extensions
Literature				

Supply function equilibria (SFE)

- ► Firms compete by a choosing **supply function** *s*(*p*)
- ► Seminal paper by Klemperer and Meyer (1989)
 - Demand uncertainty pins down supply functions by differential equation
 - Unbounded support unique symmetric equilibrium
- ► Many applications i.a. in electricity markets
 - (Hortaçsu & Puller, 2008; Sioshansi & Oren, 2007; Holmberg & Newbery, 2010)
- Our contribution: We look at multiple products

INTRODUCTION	Model	Nash Equilibrium	Analysis	Extensions
-				

Rest of presentation

- Derive 2-Dimensional version of SFE-model of Klemperer and Meyer
 - Similar first and second order conditions
- Bundling goods (equivalent to coordinate transformation)
 - Decouple demand, costs and bid functions either locally or globally
 - Apply results of standard 1-Dimensional SFE-model

Introduction	Model	Nash Equilibrium	Analysis	Extensions

Overview

Introduction

Model

Nash Equilibrium

Analysis

Extensions

Introduction	Model	Nash Equilibrium	Analysis	Extensions
Set-up				

- ► Two goods:
 - prices $\mathbf{p} = [p_1, p_2]^\top \in \mathcal{P} \subset \mathbb{R}^2$
 - quantities $\mathbf{q} = [q_1, q_2]^\top \in \mathcal{Q} \subset \mathbb{R}^2$
- \blacktriangleright Stochastic demand function $d: \mathcal{P} \times \mathcal{E} \rightarrow \mathcal{Q}$
 - $\blacktriangleright \ q = d(p, \epsilon)$
 - demand shock ε = [ε₁, ε₂][⊤] joint cumulative distribution function Φ(ε) on ε.
- ▶ Profit of supplier $k \in \mathcal{K}$ = Revenue minus Costs:

$$\pi_k(\mathbf{q},\mathbf{p})=\mathbf{p}^{\top}\mathbf{q}-c_k(\mathbf{q})$$

Introduction	Model	Nash Equilibrium	Analysis	Extensions
Set-up				
D				

BIDDING AND EQUILIBRIUM

Firm k bids supply function s_k : P → Q : q = s_k(p) and maximizes expected profit

$$\Pi_{k} = \int_{\mathcal{E}} \pi_{k}(\mathbf{p}^{eq}(\boldsymbol{\varepsilon}), \mathbf{s}_{k}(\mathbf{p}^{eq}(\boldsymbol{\varepsilon}))) \, \mathrm{d}\Phi(\boldsymbol{\varepsilon}) \tag{1}$$

where the market equilibruim price $p^{eq}(\epsilon)$ is determined by market clearing

$$\mathbf{s}_k(\mathbf{p}) = \mathbf{d}_k(\mathbf{p}, \mathbf{\epsilon}) \equiv \mathbf{d}(\mathbf{p}, \mathbf{\epsilon}) - \sum_{\mathcal{K} \setminus k} \mathbf{s}_{k'}(\mathbf{p})$$
 (2)

Introduction	Model	Nash Equilibrium	Analysis	Extensions
<u> </u>				

Setup: Assumptions

Demand and Cost

- Convex cost $(\partial^2 c_k / \partial \mathbf{q}^2 > 0)$
- Downward sloping demand $(\partial \mathbf{d}/\partial \mathbf{p} < \mathbf{0})$
- Non-crossing demand ($\partial \mathbf{d} / \partial \varepsilon$ has full rank)

Restrictions on Bidding format

- ► Upward sloping supply (∂s_k/∂p > 0) Implies symmetry ∂s_{k,i}/∂p_j = ∂s_{k,j}/∂p_i
- Equivalently, firm *k* submits convex cost function $Z_k(\mathbf{q})$ such that $(\partial Z_k / \partial \mathbf{q})^{-1} = \partial \mathbf{s}_k / \partial \mathbf{p}$.

Introduction	Model	Nash Equilibrium	Analysis	Extensions
Manuar	2			

Market Coupling?

- A firm's supply of good 1 can depend on the price of good 2 because:
 - 1. Economies of scope in production
 - 2. Demand substitutes or complements
 - 3. Correlated demand shocks
 - 4. Strategic considerations

Introduction	Model	Nash Equilibrium	Analysis	Extensions
				(

Overview

Introduction

Model

Nash Equilibrium

Analysis

Extensions

Introduction	Model	Nash Equilibrium	Analysis	Extensions

First Order Conditions

2-dimensional version of Klemperer and Meyer conditions:

$$\mathbf{s}_{k}\left(\mathbf{p}\right)+\frac{\partial \mathbf{d}_{k}\left(\mathbf{p},\boldsymbol{\varepsilon}\right)}{\partial \mathbf{p}}^{\top}\left(\mathbf{p}-\frac{\partial c_{k}\left(\mathbf{s}_{k}(\mathbf{p})\right)}{\partial \mathbf{q}}^{\top}\right)=0 \quad (3)$$

- Non-crossing of demand functions leads to ex-post optimality
 - After realization of demand shock ε firm k has no incentive change its bid
- Note: Correlation of demand shocks does not affect coupling of supply functions

Introductio	0N	Model	Nash Equilibrium	Analysis	Extensions
_	~	~			

First Order Conditions

► First order condition for firm *k* and good *i* rewrites as:

$$\frac{p_i - c_{k,i}}{p_i} = \epsilon_{k,i}$$

with $\epsilon_{k,i}$ the super-elasticity of the residual demand of firm *k* of good *i*

- Firm takes into account own price and cross-price elasticity of demand
- Nash equilibrium: Solve set of Partial Differential Equations and check second order conditions

Introduction	Model	Nash Equilibrium	Analysis	Extensions

Overview

Introduction

Model

Nash Equilibrium

Analysis

Extensions

Introduction	Model	Nash Equilibrium	Analysis	Extensions
Bundling	OF GOODS			

- Consider the procurement of two bundles i' = 1', 2'
- Each bundle is divisible and consists of fixed proportions of goods 1, 2.
- ► Bundle 1' consists of A_{1'1} units of good 1 and A_{1'2} units of good 2, etc...
- So: \tilde{q} bundles contain $q = A\tilde{q}$ goods

Cost and Demand for bundles: $(\tilde{\cdot})$

- Cost $\tilde{c}_k(\tilde{\mathbf{q}}) = c_k(\mathbf{A}\tilde{\mathbf{q}})$
- Demand $\tilde{\mathbf{d}}(\tilde{\mathbf{p}}, \varepsilon) = \mathbf{B} \, \mathbf{d}(\mathbf{B}^{\top} \tilde{\mathbf{p}}, \varepsilon)$ with $\mathbf{B} = \mathbf{A}^{-1}$.

BUNDLING OF GOODS: INVARIANCE

Theorem

- ► So, Supply Function Equilibria are invariant to bundling.
- We can think of bundling as a coordinate transformation.

Introduction	Model	Nash Equilibrium	Analysis	Extensions
Linear pro	OBLEM			

With linear demand, additive shocks, quadratic costs and symmetric firms:

$$\mathbf{d}(\mathbf{p}, \boldsymbol{\varepsilon}) = \mathbf{D}\mathbf{p} + \boldsymbol{\varepsilon}$$
$$c(\mathbf{q}) = \frac{1}{2}\mathbf{q}^{\top} \mathbf{C}\mathbf{q}$$

with *D* and *C* matrices.

Theorem (Diagonalization)

 \exists bundling A such that $\tilde{D} = ADA^{\top}$ and $\tilde{C} = B^{\top}CB$ are diagonal matrices

Introduction Model Nash Equilibrium Analysis Extensions

LINEAR PROBLEM: DIAGONALIZATION

 Diagonalization Theorem implies that the demand and cost for bundles are fully decoupled:

$$egin{aligned} & ilde{d}_1(ilde{\mathbf{p}}, ilde{\mathbf{\epsilon}}) = ilde{D}_{11} ilde{p}_1 + ilde{arepsilon}_1 \ & ilde{d}_2(ilde{\mathbf{p}}, ilde{\mathbf{\epsilon}}) = ilde{D}_{22} ilde{p}_2 + arepsilon_2 \ & ilde{arepsilon}(ilde{\mathbf{q}}) = rac{1}{2} ilde{q}_1 ilde{C}_{11} ilde{q}_1 + rac{1}{2} ilde{q}_2 ilde{C}_{22} ilde{q}_2 \end{aligned}$$

LINEAR PROBLEM: MARKET DECOUPLING

Theorem (Full Decoupling)

If demand and cost are fully decoupled, then in equilibrium also the supply functions are decoupled:

$$\partial s_i(\mathbf{p})/\partial p_j = 0.$$

- ► Consequence of requiring ∂s/∂p to be symmetric. Proof is not fully straightforward.
- Hence, there are no strategic considerations to couple supply if demand and costs are separate.

Linear problem: Equilibria

- Bundle markets such that each
- ► Market for each bundle can be considered separately.
- All results of the standard Klemper and Meyer SFE-model hold for each bundle.
- ► We can derive the SFE for the individual goods by doing the inverse transformation A⁻¹.

Corollary

With unbounded shocks, linear demand and quadratic costs, the linear supply function $\mathbf{s} = S\mathbf{p}$ is the unique SFE.

Introduction	Model	Nash Equilibrium	Analysis	Extensions
General	PROBLEM			

- In general it is not possible to find a linear bundle that decouples markets *globally*
- However, a bundle that decouples markets *locally* always exist (Taylor expansion of demand and costs)
- ► It can be shown that with this bundle also the supply functions are locally decoupled.
- This means that:
 - local properties of the one-dimensional SFE model carry-over (such as around origin).
 - ► once a single point p₀, q₀ is known on the supply function, the SFE is uniquely defined and can be integrated numerically

Introduction	Model	Nash Equilibrium	Analysis	Extensions

Overview

Introduction

Model

Nash Equilibrium

Analysis

Extensions

Introduction	Model	Nash Equilibrium	Analysis	Extensions
Extensions				

- ► Generalization
 - ► All results hold directly for *N* products and *M* firms
 - Demand functions that cross / higher dimensional demand shocks (> N) = Work-in-progress
 - Re-parameterize demand with *N* dimensional demand shock such that demand doesn't cross.
 - Private cost-types (as in Vives).
 - Currently only feasible without correlation of cost types
- Adding examples
 - Study effect of substitutes and complements
 - Compare complex bid auctions (∂s_{k,i}/∂p_j ≠ 0) and simple bid auctions (∂s_{k,i}/∂p_j = 0)