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Abstract

This paper sets out a framework to evaluate the welfare impacts of residential energy effi-

ciency programs in the presence of imperfect information, behavioral biases, and externalities,

then estimates key parameters using a 100,000-household field experiment. Several results run

counter to conventional wisdom: we find no evidence of informational or behavioral failures

thought to reduce program participation, there are large unobserved benefits and costs that

traditional evaluations miss, and realized energy savings are only 58 percent of predictions. In

the context of the model, the two programs we study reduce social welfare by $0.18 per subsidy

dollar spent, both because subsidies are not well-calibrated to estimated externality damages

and because of self-selection induced by subsidies that attract households whose participation

generates low social value. However, the model predicts that perfectly calibrated subsidies

would increase welfare by $2.53 per subsidy dollar, revealing the potential of energy efficiency

programs.

JEL Codes: D12, L94, Q41, Q48.
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ysis.

——————————————————————————–—————-

In many settings, market failures such as externalities, transaction costs, and imperfect infor-

mation provide opportunities for socially beneficial policy intervention. In practice, however, it
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may be difficult to identify all relevant market failures, or policymakers may be constrained in their

ability to implement the first-best policy. In these “second-best” settings, well-intentioned policies

may not achieve their full potential, and in some cases may even reduce welfare. This underscores

the importance of carefully measuring market failures and estimating how corrective policies affect

behavior.

Energy efficiency policy is a natural example of these issues. Energy efficiency decisions are

widely believed to be affected by at least two types of market failures. First, most energy use

causes negative environmental externalities, so if Pigouvian taxes are unavailable, subsidizing energy

conservation could be beneficial. Second, imperfect information, credit constraints, and behavioral

biases might cause people to forgo privately beneficial energy efficiency investments.1 Indeed, McK-

insey (2009) argues that adoption of currently available, cost-effective energy efficiency investments

in the U.S. could generate $700 billion in net private cost savings. In this sense, energy efficiency

closely resembles many other settings where consumers and firms appear reticent to make seemingly

beneficial investments, such as better business management, migration to places with higher wages,

fertilizer and high-yielding variety seeds, and preventive health care.2

Motivated by these potential market failures, the U.S. and other countries have dramatically

expanded energy efficiency policy in recent years.3 Indeed, virtually all credible climate change

mitigation plans assign a key role to energy efficiency in reducing greenhouse gas emissions.4 How-

ever, many energy efficiency policies are explicitly second-best: for example, subsidizing energy

efficiency instead of directly pricing externalities or providing information to directly address pos-

sible information imperfections. This opens the door to unintended distortions. Furthermore, the

conventional program evaluation approaches used in practice may not be well-suited to identify

these unintended distortions because they rely on accounting-style approaches instead of empiri-

cally grounded economic models.

This paper formalizes an approach to modeling home energy efficiency investment decisions and

uses this framework to evaluate two large energy efficiency programs in Wisconsin. Like many res-

idential energy efficiency programs nationwide, these programs involved a two-step process. First,

1These privately beneficial but unadopted investments are often referred to as an “Energy Efficiency Gap,” and
they have motivated significant interest in policy circles. For example, the Alliance to Save Energy (2013) writes
that “energy efficiency is increasingly recognized as the lowest cost, most abundant and cleanest “source” of energy,”
offering “a win-win solution for economically and environmentally sustainable growth for America.” This idea dates
at least to the 1970s: Yergin (1979) writes that “If the United States were to make a serious commitment to
conservation, it might well consume 30 to 40 percent less energy than it now does, and still enjoy the same or an even
higher standard of living ... Overcoming [the barriers] requires a government policy that champions conservation ...”

2See Bloom et al. (2013), Bryan, Chowdhury, and Mobarak (2014), Duflo, Kremer, and Robinson (2011), Dupas
(2014), Dupas and Robinson (2013), Foster and Rosenzweig (2010), Suri (2011), and many others.

3For example, the 2009 economic stimulus provided $17 billion for energy efficiency (Allcott and Greenstone
2012). Utility “demand-side management” expenditures grew 80 percent between 2008 and 2013 (CEE 2013, 2015).
Twenty-six states now have Energy Efficiency Portfolio Standards, which require utilities to run energy efficiency
programs.

4For example, the U.S. Energy Information Administration assumes that efficiency will account for 42 percent
of CO2 reductions as part of one of its key mitigation plans (EIA 2015). The International Energy Agency (2015)
projects that efficiency measures will reduce global demand growth to 2040 by 40 percent. The Clean Power Plan,
the Obama Administration’s flagship climate change policy, includes substantial opportunity for compliance through
energy efficiency.
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homeowners decide whether or not to have a home energy audit, during which they learn about

a set of recommended energy efficiency investments, such as improved insulation or new heating

systems. Second, they decide which of the recommended investments to undertake. The programs

subsidized both audits and investments. Our model captures this two-step process, allowing both

observed monetary returns and unobserved benefits and costs to affect takeup. The model ac-

commodates the two key types of market failures introduced above: audit and investment takeup

distortions such as imperfect information and behavioral biases, and uninternalized externalities

that distort retail energy prices.

The model is estimated using the Wisconsin programs’ administrative data, including costs and

predicted energy savings for all investments recommended during the audit, paired with a 100,000-

household randomized experiment. By varying the content of promotional letters across households,

the experiment solves two key identification problems. First, randomly assigned audit subsidies

serve as an instrument to identify self-selection—that is, the correlation between unobservables in

the audit and investment takeup decisions. Second, randomly assigned informational and behavioral

treatments identify the magnitudes of six specific informational and behavioral distortions thought

to reduce audit takeup.

Even before quantifying welfare effects, the program evaluation process generates several impor-

tant empirical results. First, in the randomized experiment, there is no evidence of the hypothesized

informational or behavioral failures. Within the letter variations, only price mattered: while a $100

audit subsidy increased takeup by 32 percent relative to control, all six informational and behavioral

variations had statistically and economically insignificant effects. This suggests that the informa-

tional and behavioral factors we tested are not barriers to takeup, although additional tests would

be valuable. If this finding holds beyond the Wisconsin programs, this would undermine the basis

for energy efficiency programs to subsidize home energy audits.

Second, in addition to observed monetary benefits and costs, energy efficiency investments entail

large unobserved benefits and costs. Non-experimental investment takeup estimates imply that

households that had audits were willing to pay an average of $330 for the unobserved attributes of

a recommended investment, perhaps due to “warm glow” from contributing to externality reduction

or from the improved comfort of a weatherized home. Furthermore, post-audit investment takeup

was remarkably inelastic to monetary benefits and costs: consumers did not take up 40 percent of

investments with private internal rates of return (IRRs) greater than 20 percent, and they did take

up 36 percent of investments with negative private IRRs. This inelasticity implies that consumers

perceive a wide dispersion in unobserved benefits and costs. These results highlight the importance

of using revealed preference approaches to welfare analyses, instead of conventional accounting

approaches that consider only observed monetary factors.

Third, we find strong experimental evidence of self-selection effects in program participation.

Specifically, consumers that were marginal to our experimental audit subsidies were much less likely

to invest than those that were inframarginal. This highlights one potential problem with policy

proposals to expand residential energy efficiency programs by increasing audit subsidies: while
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additional households may be induced to audit, these marginal households could be much less

interested in making subsequent investments, and thus would generate less externality reduction.

Similar self-selection issues arise in many other settings. For example, trading off selection effects

vs. the value of experimentation, should we subsidize college enrollment or college completion

(Manski 1988, Altonji 1993)? When a job training program expands to enroll more people, are

the marginal participants more or less likely to eventually find a job? Our design provides a rare

opportunity to identify such selection effects using experimental variation.

Fourth, we estimate that realized energy savings fell well short of predictions. Specifically,

the programs’ simulation models predicted that the average household that had an audit made

investments that would save $153 per year at retail prices, or about 8.5 percent of baseline energy

expenditures. In contrast, we estimate an average savings of $89 per year, implying a “realization

rate” of 58 percent. The shortfall cannot be explained by temporary weather patterns and is far too

large to be caused by a “rebound effect” (i.e. increased utilization in response to the decreased cost

of energy services). Identifying potential inaccuracies in simulation predictions is crucial because

these predictions are given to consumers during audits (to help decide whether to make investments)

and to regulators and policymakers (to help decide whether to continue funding energy efficiency

programs). This result, along with a similar result from Fowlie, Greenstone, and Wolfram (2015b),

provides important new evidence on the urgency of this issue.5

With these results in hand, we turn to welfare evaluation and counterfactual policy analysis.

In the model, the optimal investment subsidies would exactly equal the reduction in uninternalized

externalities. For example, if an insulation improvement is projected to reduce climate damages and

local air pollution by a present value of $500 more than is internalized into retail energy prices, the

optimal subsidy would be $500. By contrast, the programs subsidized each investment by a round

number multiplier on the share of the household’s energy use that would be conserved. This gen-

erates several types of distortions, the most important of which results from the fact that different

investments reduce natural gas, electricity, and fuel oil in different proportions, and these different

fuels have vastly different uninternalized externalities. Therefore, subsidizing energy savings favors

investments that reduce energy use but don’t necessarily reduce uninternalized externalities.

These distortions may seem subtle, but they turn out to make a very big difference. Using

mainstream estimates of the marginal damages from local air pollution and greenhouse gas emis-

sions, the model predicts that a program with perfectly calibrated subsidies would increase welfare

by $2.53 per subsidy dollar. By contrast, the model suggests that the program subsidies are so

mis-targeted relative to our market failure estimates that they reduce welfare by $0.18 per subsidy

5This paper’s focus and setting are very different from Fowlie, Greenstone, and Wolfram (2015b). They study a
different program, the Weatherization Assistance Program, which provides energy efficiency retrofits to low-income
households at no cost. By contrast, the programs we study are open to households of all incomes and require
participants to pay a meaningful share of costs. Furthermore, Fowlie, Greenstone, and Wolfram (2015b) focus on
estimating energy use and “rebound” effects, while the core of our paper is the theoretical framework, demand
estimation, and revealed preference welfare analysis. Finally, the field experiments differ: Fowlie, Greenstone, and
Wolfram’s (2015b) field experiment is designed to generate a first stage for estimating the effect of weatherization on
energy use, whereas our field experiment is designed to identify self-selection as well as informational and behavioral
market failures.
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dollar. The welfare estimates also highlight the consequences of the self-selection effects discussed

above: counterfactual increases in audit subsidies generate less and less externality reduction per

program dollar, because they induce audits by households that are increasingly unlikely to make

energy efficiency investments. Taken together, these results highlights how potentially beneficial

public programs can leave large social welfare gains on the table when they rely on heuristic judg-

ments about the form of market failures (e.g. that energy use per se is a problem, instead of

measuring the uninternalized externalities that vary by fuel) and do not account for empirical

factors that govern individual behavior (e.g. self-selection).

As a benchmark, the paper also presents welfare estimates using the conventional “accounting

approach.” Consistent with the revealed preference approach, these estimates also suggest that

the upfront audit and investment costs exceed the present value of reductions in energy, local air

pollution, and greenhouse gases. Using the empirical estimates of energy savings, the programs’

social internal rate of return is negative 4.1 percent. To help address the question of whether these

results generalize outside the two Wisconsin programs, Appendix E presents a parallel analysis

using data from 37 Better Buildings program sites nationwide. We find that the national programs

had slightly worse IRRs than the Wisconsin programs.

This paper makes two primary contributions to the literature. First, it sets out a theoretical

framework to evaluate the welfare consequences of residential energy efficiency programs in the

presence of imperfect information, behavioral biases, and externalities, and shows how to estimate

the key parameters using a field experiment. This approach is a departure from conventional

approaches to evaluating energy efficiency programs that exclusively consider monetary net ben-

efits, and it underscores that standard demand estimation, welfare analysis, and counterfactual

simulation can be used in this setting. While researchers have long been interested to include non-

monetary factors when evaluating home energy efficiency programs (see Skumatz (2008) for a list

of 45 “non-energy benefits” studies), this paper demonstrates how they can be measured through

standard revealed preference techniques.

Second, the bulk of the above empirical results run counter to the conventional wisdom among

policymakers and practitioners about energy efficiency programs. While McKinsey (2009) and

similar studies suggest that energy efficiency programs could generate large private and social

benefits, the results imply that at least for the programs we study, this is not the case. This

highlights the importance of additional peer-reviewed research and connects to literature in some

other domains suggesting that low adoption of apparently beneficial technologies may be due to

overestimated private benefits, not market failures.6 At the same time, the results suggest that it

is feasible to design socially desirable energy efficiency programs, but this may require more precise

targeting of policies to market failures and more empirical knowledge of the parameters governing

consumer behavior.

The paper proceeds as follows. Section I provides an overview of nationwide energy efficiency

programs and our case study. Section II presents our theoretical framework. Sections III and IV

6See Hanna, Duflo, and Greenstone (2016) on cookstoves, for example.
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detail the experimental design and data, while Sections V and VI present the empirical strategy

and results for audit and investment takeup. Section VII estimates effects on energy use, Section

VIII presents the welfare analyses, and Section IX concludes.

I Overview: A Case Study of Nationwide Programs

We focus on two energy efficiency programs in Wisconsin that were part of the national Better

Buildings Neighborhood Program (BBNP). We begin by giving an overview of related programs,

followed by more detail on the Wisconsin case study.

I.A Overview of Related Energy Efficiency Programs

The programs we study are called “residential energy efficiency retrofit programs”: they facilitate

and subsidize energy audits and energy efficiency investments, such as improved insulation and

heating and cooling systems, at existing homes. Panel A of Table 1 gives an overview of related

programs.7 As shown in column 1, the Better Buildings Neighborhood Program ran from 2010-2013,

facilitating approximately 119,000 energy efficiency retrofits, mostly at residential buildings. BBNP

allocated $508 million through competitive grants to 41 state and local agencies, including the

Wisconsin programs we study. Most of the $508 million funding came through the Energy Efficiency

and Conservation Block Grant program shown in column 2. In addition to the stimulus-related

programs, there are also longer-running “demand-side management” (DSM) programs shown in

column 3, which help utility customers save energy through retrofits and other approaches. Finally,

column 4 shows the Weatherization Assistance Program, a retrofit program available only to low-

income consumers.

Because these programs are either administered by the government or overseen by regulators,

many program evaluation reports have been written: Billingsley et al. (2014) identify 4,200 eval-

uations of DSM programs alone. The standard evaluation uses a straightforward “accounting

approach”: compare the observed investment costs to the present discounted value of energy sav-

ings. Panel B of Table 1 presents some common assumptions that these evaluations make, based

on a survey by the American Council for an Energy Efficient Economy (Kushler, Nowak, and Witte

2012). Only 30 percent of programs include benefits other than reduced energy use, and we are

not aware of any that measure non-monetary investment costs. Nearly all programs use simulation

predictions instead of empirical analysis to estimate energy savings, and most simulation predic-

tions are from states other than the state where the program was implemented. More than four

out of five do not use empirical analysis to retroactively evaluate programs. Our paper shows how

these assumptions can be relaxed and documents the importance of doing so.

These program evaluation assumptions are particularly relevant given the U.S. Environmental

Protection Agency’s proposed Clean Power Plan. The proposed plan allows states substantial

7The public expenditures and energy savings in this table are included only to give a sense of program magnitudes,
not as a cost-benefit analysis. Public expenditures do not include any consumer investment costs, and value of
predicted energy saved is based on simulation models with varying energy price assumptions.
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leeway in how to comply, and it would allow compliance through energy efficiency programs and

other mechanisms instead of cap-and-trade programs. Indeed, the National Association of State

Energy Officials (2015) believes that “energy efficiency programs ... likely offer the most cost

effective means for compliance under the pending EPA rule,” and the American Council for an

Energy Efficient Economy (2015) has found that “rapidly deployable energy efficiency policies can

achieve nearly 70% of EPA’s required greenhouse gas emissions by 2030.” Compliance through

energy efficiency could result in more (less) greenhouse gas abatement than expected under the

Clean Power Plan if savings are evaluated through approaches that tend to understate (overstate)

energy savings. Similarly, the Clean Power Plan’s overall welfare effects would depend on the

welfare effects of policies that the states choose to implement.

I.B The Madison and Milwaukee Programs

We study programs called Green Madison and Milwaukee Energy Efficiency, which were operated

jointly but branded separately in each city. The programs were managed by the Wisconsin Energy

Conservation Corporation (WECC), a well-respected and highly professionalized program imple-

menter, and they built on the existing design and infrastructure of the Wisconsin Focus on Energy

home energy efficiency program. The two programs received part of a $20 million Wisconsin BBNP

grant. They were wound down after stimulus funds were exhausted in late 2013, although similar

programs continue in Wisconsin and around the country.

From a homeowner’s perspective, program participation involved two steps. The first step

had three sub-parts. First, a homeowner would schedule a free informational visit by an “Energy

Advocate” to explain the program and discuss low-cost conservation opportunities. Second was a

home energy audit by an “Energy Consultant,” a state-certified independent contractor. During

the audit, the Energy Consultant would often put in “direct install measures,” primarily compact

fluorescent lightbulbs (CFLs) and faucet and shower aerators, at no cost to the homeowner. At the

end of the audit, the Energy Consultant would provide an “audit report” with a list of recommended

energy efficiency investments, including projected upfront cost, simulation predictions of annual

energy cost savings, payback period, and lifetime energy savings for each investment. See Appendix

A for an example audit report. Third, homeowners who were interested in making investments

would schedule an initial visit by a program-certified contractor to provide a formal cost estimate.

In the model below, we think of these three sub-parts collectively as the “audit” step.

The second step was for a contractor to actually perform the work in the consumer’s home.

In some cases multiple contractors were required for different type of work, for example one for

insulation and one for HVAC. After the work was complete, the Energy Consultant would return

for a “post-test” to verify that the contractor had done the work properly.

Many residential retrofit programs have a similar structure. While the programs try to make

participation as easy as possible, it is clear that both audits and investments require consumers’

time and effort as well as money. These time and effort costs represent part of the non-monetary

attributes in our model.
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To predict energy savings for the purposes of aiding homeowner decisions and regulatory evalu-

ations, the Wisconsin programs used an engineering simulation model called the Targeted Retrofit

Energy Analysis Tool (TREAT). TREAT is one of several models commonly used by energy effi-

ciency programs nationwide, and 28 percent of audits in the national Better Buildings Neighborhood

Program data used TREAT. TREAT has repeatedly satisfied Department of Energy validation

protocols, “in which results from software programs are compared to results from other software

programs” (PSD 2015a). This suggests that any differences between predicted and empirically

estimated savings might not be limited to this software and to the Wisconsin programs.

The programs offered large investment subsidies. The bulk of payments were tiered subsidies

of $1000, $1500, and $2000, for a homeowner making investments projected to save 15-24, 25-34,

or more than 35 percent of energy use, respectively. There were also less-common subsidies for

correcting health and safety issues, doing air infiltration tests, “completion bonuses” for finishing

projects before particular dates, and a means-tested subsidy for large retrofits. Appendix Table

A.1 presents a breakdown of subsidies paid.

Program participants were also eligible for loans at 4.5 to 5.25 percent interest from a local

credit union of $2,500 to $20,000 (up to 100 percent of installation costs), with terms from 3-10

years. While most people in Madison and Milwaukee probably did not know about this opportunity

if they did not have an energy audit, the Energy Advocates and Energy Consultants would discuss

financing opportunities during the audits, and the audit reports gave financing information in

several places. Thus, for people who have had audits, credit constraints should not be a major

barrier to takeup.

II Theoretical Model of Home Energy Efficiency Investments

Paralleling the program structure detailed above, we model consumers in a two-step process of

audit and investment decisions. We allow for three classes of market failures that motivate en-

ergy efficiency policy, as described in overview articles by Allcott and Greenstone (2012), Jaffe

and Stavins (1994), and Gillingham, Newell, and Palmer (2009). First, imperfect information or

behavioral barriers might distort consumers’ decisions about whether to have an audit. Second,

similar distortions could affect investment decisions. Third, environmental externalities and other

distortions cause an investment’s private benefits to differ from its social benefits.

II.A Setup

Heterogeneous consumers indexed by i engage in a two-step process. First, they decide whether to

have a home energy audit; we represent this decision with Ai = {0, 1}. Second, consumers decide

whether to make each of a set of potential investments Ji, which are indexed by j; we represent

each decision with Iij = {0, 1}. Consumers cannot invest without having an audit. We assume

that investment opportunities are independent in the sense that adopting one does not affect the

benefits and costs of adopting another.
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Audits and investments are provided in perfectly competitive markets at prices cA and cij ,

respectively, where cA is constant but cij varies across consumers and potential investments de-

pending on the specifics of the consumer’s house. Audits and investments have net non-monetary

benefits ξAi and ξij , which are heterogeneous and could be positive or negative. Costs such as

time and hassle during the audit and construction make ξAi and ξij more negative, while benefits

such as a more comfortable home and warm glow from reducing externalities make ξAi and ξij

more positive. In the empirical estimates, ξAi and ξij are interpreted as demand unobservables,

capturing non-monetary benefits as well as all sources of econometric error.

Household energy use is determined by an additional optimization problem that we do not need

to model explicitly; see Dubin and McFadden (1984) and Davis (2008). The present discounted

value (PDV) of baseline household energy use without the investment is e0i. The investment would

reduce energy use per unit of energy services and, unless utilization is fully inelastic to the price of

energy services, increase utilization, for a net PDV reduction of eij . Utilization elasticity (sometimes

called the “rebound effect”) enters the model as more positive non-monetary benefits ξij and lower

savings eij .

The policymaker can set an audit subsidy sAi and an investment subsidy sij .
8 We assume that

subsidies are funded through a lump-sum tax T , so there is no additional cost of public funds due

to a deadweight loss of taxation. A consumer with initial wealth yi has utility function

Ui = yi − e0i − T +Ai ·

sAi − cA + ξAi +
∑
j∈Ji

Iij · (sij − cij + eij + ξij)

 . (1)

Define NP as the number of consumers in the population. To maintain a balanced budget, the

lump-sum tax must equal total subsidy disbursements:

T =
1

NP

NP∑
i=1

Ai ·

sAi +
∑
j∈Ji

Iijsij

 . (2)

II.B Audit and Investment Decisions

In a model with no market failures, consumers’ audit and investment decisions would maximize

Equation (1). Our model nests this possibility but also flexibly allows for market failures that

might justify audit and investment subsidies.

In the second step, consumers’ investment decisions maximize utility in Equation (1), except

that there is a reduced-form distortion γij that can drive a wedge between utility and investment

takeup. For example, γij might represent imperfect information that remains even after the audit is

complete, or γij could be zero if the audit fully informs consumers and there are no other distortions.

The investment decision is thus

8The i subscripts indicate that both types of subsidies can vary across consumers. In the actual Wisconsin
programs, the audit subsidy varied across consumers by city and due to our experimentally assigned subsidies, and
the investment subsidy varied across consumers and investments depending on predicted energy savings.
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Iij = 1 (sij − cij + eij + ξij + γij > 0) . (3)

Define λi =
∑

j∈Ji Iij · (sij − cij + eij + ξij + γij) as the perceived private net benefit from

investments that consumer i would make. Before the audit, consumers may be imperfectly informed

about this private net benefit, receiving signal λi+γAi. For example, in a simple rational information

acquisition model in which consumers’ prior is that they will receive E[λ] from investments, γAi =

E[λ] − λi. The audit decision maximizes utility conditional on the signal of perceived private net

investment benefits:

Ai = 1 (sAi − cA + ξAi + λi + γAi > 0) . (4)

More generally, γAi could capture any informational or behavioral distortion affecting audit

takeup. If γAi and γij tend to be positive (negative), this makes consumers more (less) likely to

audit and invest.

II.C Social Welfare

We allow the retail energy price to differ from social marginal cost due to uninternalized externalities

and other pricing distortions. Household i’s baseline energy expenditures are below social cost by a

PDV of φ0i, and investment j reduces these uninternalized negative externalities by a PDV of φij .

Define s as the vector of audit and investment subsidies across all consumers, and notice that Ui,

Ai, Iij , and T are all implicitly functions of s. Social welfare is the sum over consumers of utility

minus the uninternalized externality:

W (s) =

NP∑
i=1

Ui − φ0i +
∑
j∈Ji

Iij · φij

 . (5)

The effect of subsidy vector s1 vs. s0 on social welfare is

∆W = W (s1)−W (s0). (6)

The social welfare maximizing subsidies exactly offset the audit and investment takeup distor-

tions: sAi = −γAi and sij = φij − γij . If energy demand is fully inelastic, the equilibrium under

those subsidies would be first-best.

II.D Empirical Approaches to Welfare Analysis

We compare two approaches to measuring the social welfare effect of an energy efficiency program.

The “accounting approach” counts the monetary costs and benefits, plus uninternalized externality

benefits, from the entire set of investments made at subsidy s1:
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∆Wa =

NP∑
i=1

Ai ·

(−cA) +
∑
j∈Ji

Iij · (−cij + eij + φij)

 . (7)

∆Wa = ∆W under two assumptions: if no investments are made at s0 and if non-monetary net

benefits are mean-zero, i.e. E[ξAi|Ai = 1] = 0 and E[ξij |Iij = 1] = 0. As discussed above, most

energy efficiency programs are evaluated using variants of the accounting approach. This approach

is useful because it is not very informationally demanding: ∆Wa can be calculated using admin-

istrative data on the monetary costs and benefits of investments, which most programs already

record. If empirical data on average energy savings eij are available, as in our setting, then empir-

ical estimates can be substituted in place of simulation predictions. The two required assumptions

may not hold, however. In particular, it would be quite a coincidence for non-monetary benefits to

be mean-zero, and we will show that this is not the case in our data. Furthermore, this approach

does not allow evaluations of counterfactual subsidy structures.

The “revealed preference approach” involves using observed audit and investment takeup de-

cisions to estimate utility function parameters. It requires the same administrative data as the

engineering approach, but introduces two additional identification problems. First, we need to

identify the joint distribution of unobservables in the audit and investment takeup decisions, ξAi

and ξij . Put differently, we need exogenous variation in prices or subsidies to identify the slopes

of audit and investment demand, as well as the self-selection effects that connect the two demand

functions. Second, we need to identify γAi and γij , the wedges between takeup and utility. The

randomized experiment described below helps to solve these two problems.

III Experimental Design

III.A Experimental Population and Randomization

We sent promotional letters by direct mail to a subset of households eligible for the Green Madison

and Milwaukee Energy Efficiency programs. The experimental population included all owner-

occupied single-family homes in Madison and Milwaukee that were built in 1990 or before, had

no lien on the property, and had not scheduled an audit prior to June 2012. The population

includes 101,881 households, of which 31,213 are in Madison and 70,668 are in Milwaukee. 79,994

households were randomly assigned to receive two identical direct mail promotional letters between

June 2012 and February 2013, with the remaining 21,887 assigned to control. We used a max-min

t-statistic re-randomization algorithm to ensure balance, and Appendix Table A.2 shows that this

was successful.9

9The balancing variables were house age, property value, building area, and the Madison indicator. To ensure
unbiased standard errors, we control for the balancing variables when estimating treatment effects (Bruhn and
McKenzie 2009).
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III.B Letter Variations

Appendix Figures A.5 and A.6 present example letters. They were printed on 8 1/2-by-11 paper

and folded in half for mailing. When opened, the top half was a picture with a short headline. The

bottom half includes simple text that describes the program, lays out next steps, and gives a phone

number to call to schedule the home energy audit. We varied the letters along seven dimensions,

including audit subsidies and six non-price treatments that were designed to address key market

failures thought to reduce takeup of home energy audits. These can be roughly categorized into

three “informational” market failures and three “behavioral” failures.

III.B.1 Informational Treatments

Appendix Table A.4 details the treatments designed to address informational market failures.

Benefit Information. The Benefit Info treatments provided hard information on the private

and social benefits of typical investments that could be made through the program. This was

motivated by literature suggesting that imperfect information and biased beliefs could affect energy

efficiency investment.10

Financing. The Financing treatments informed consumers that low-interest financing was

available for investments made through the program. This was motivated by Berry (1984), Gilling-

ham, Newell, and Palmer (2009), and others who propose that credit constraints could reduce

energy efficiency investment.

Comparison. The Comparison treatments put the Benefit Information in context by compar-

ing the program’s energy savings to other tangible energy use decisions. We compared program

non-participation to wasteful actions such as leaving the lights on all day or leaving the door wide

open in the winter, in order to make participation seem like the natural choice. These treat-

ments were designed to address the biased beliefs documented by Attari et al. (2010), who show

that consumers tend to underestimate the savings from large energy efficiency improvements like

weatherization relative to small changes like turning off lights. While we have classified this as an

“informational” treatment, one could equally classify it as “behavioral.”

III.B.2 “Behavioral” Treatments

The top of Appendix Table A.5 details the treatments targeted at potential behavioral failures.

Graphical Prime. We varied the pictures and headlines at the top of the letters to emphasize

four different benefits of weatherization: saving money, local and global environmental protection,

and a more comfortable home. The psychology literature refers to such graphical variations as

“primes”: activating an idea, potentially without providing any information, in a way that affects

subsequent related behavior (Meyer and Schvaneveldt 1971). Prior research suggests that even

subtle graphical primes can be effective. For example, Bertrand et al. (2010) find that showing

10See Allcott (2013), Allcott and Sweeney (2016), Allcott and Taubinsky (2015), Davis and Metcalf (2016), and
Newell and Siikamaki (2013) for recent experimental analyses. See Gillingham, Newell, and Palmer (2009), Jaffe and
Stavins (1994), Sanstad, Hanemann, and Auffhammer (2006) for overview articles discussing imperfect information.
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a female photo increases demand for loans by as much as a two percent reduction in the monthly

interest rate.

Time Frame. The Time Frame treatments varied whether the Benefit Information was framed

as a one-year or seven-year total. These treatments were motivated by Turrentine and Kurani

(2007), who show that consumers have difficulty aggregating savings over time, and Camilleri and

Larrick (2014), who find that aggregating savings over longer periods increases stated preference

for energy efficiency.

Audit Cue. The Audit Cue treatments varied whether the letter used the phrase “home energy

assessment” or “home energy audit” in five different places on the page. Many energy efficiency

experts suggest that using the word “audit” can reduce takeup because it cues negative associations

with taxes. Program staff asked us to randomize only 1/3 of households into the “audit” condition,

because they hypothesized that the word “audit” would reduce takeup.

III.B.3 Subsidy Treatments

The bottom of Appendix Table A.5 details the subsidy treatments.

Subsidy. The Subsidy treatments varied the price of the home energy audit. In the “next

steps” box, the letter read: “Call to schedule a home energy [assessment/audit]. Usual cost:

$400. You pay only X!” Control group households paid the standard program price, which was

X=$200 in Madison and $100 in Milwaukee. Two other groups were randomly assigned to $25 and

$100 additional rebates, so their listed prices were X=$175 and $100 in Madison and X=$75 and

“nothing” in Milwaukee. A fourth group was presented with the standard control group price, but

was also informed that they would receive a $25 Visa cash card after completing the audit. For this

group, a mock Visa cash card was included in the letter, in an effort to make the money salient.

The audit subsidy information was relatively subtle, appearing once in normal font near the

bottom of the letter. By contrast, the Benefit Information was in bold in a larger font, the word

“audit” or “assessment” appeared in five different places, and the Graphical Primes involved the

entire top fold of the letter and a headline in very large font. Thus, when we find in Section VI

that the subsidy has larger effects than the non-price treatments, it is not because the non-price

treatments were more subtly implemented.

IV Data

Table 2 presents summary statistics. Panel A presents data for the 101,881 households in the Wis-

consin experimental population. Of those households, 1.4 percent (1394) had a home energy audit

and 0.8 percent (823) made an investment through the programs during the audit and investment

sample period, which begins in June 2012 and ends as the programs were wound down in September

2013.

The Wisconsin programs’ administrative data include the characteristics of each recommended

and adopted investment at every household. Characteristics include investment type (e.g. insula-
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tion, air sealing, etc.), unsubsidized cost, and simulation predictions of annual energy savings in

physical units of natural gas, electricity, and heating oil per year. Characteristics of adopted in-

vestments can differ from the audit report as contractors refine estimates, although on average they

are very similar and in many cases identical. The most common types of recommended investments

are various kinds of insulation (64 percent of recommendations), air sealing (22 percent), and new

heating and cooling systems (11 percent).

Panel B details the two samples of investments that we construct. “Recommended investments”

comprise households’ choice sets for the investment takeup estimates in Section VI. This is the set of

recommendations on the audit report, plus any investments that were adopted but did not appear

on the audit report. “Adopted investments” are the investments considered in the “accounting

approach” to welfare analysis in Section VIII. These include all subsidized investments.

The costs and predicted savings on the audit reports and in our data assume that investments

are independent. For example, a recommended new heating system will have one row in the data

with one cost and one predicted savings, with no information on how these might depend on whether

the household also installs new insulation. Furthermore, the programs did not retain the data to

exactly reconstruct the tiered investment subsidy that a household would receive with vs. without

each investment.11 Thus, since we do not have data on complementarities and substitutabilities,

we assume in the model and empirical estimates that investments are independent.

Because our study is limited to evaluating energy efficiency investments, we exclude health and

safety projects (improved ventilation and fire risk reduction) and solar photovoltaics from both

the “recommended” and “adopted” investment samples. The recommended investments sample

additionally excludes observations with zero or negative projected dollar savings (these appear

to reflect model input errors), zero-cost and direct install measures (because they are free, there

is no plausibly exogenous price variation), appliances (takeup is imperfectly observed), and new

hot water heaters (the program treated water heaters inconsistently across households). Our final

samples of recommended and adopted investments include averages of 4.4 and 2.8 investments,

respectively, per household audited.

We construct present discounted values of energy savings using standard investment lifetimes

provided by the program; 95 percent of investments in our final recommendations data have a 20

year assumed lifetime. We assume a five percent annual discount rate, approximately consistent

with the real post-World War II returns to the S&P 500 stock market index and with the interest

rates on loans available to program participants.

We calculate energy prices to reflect averages over 2011-2014. In Madison and Milwaukee,

natural gas and electricity are sold by regulated local monopolies, while heating oil is sold by

multiple competing providers. We gathered retail marginal prices for natural gas and electricity

from the Madison and Milwaukee utilities, and we use the Wisconsin average residential heating oil

price from the Energy Information Administration (EIA). At retail prices, 76, 7.7, and 16 percent

11In particular, the program did not retain the household-specific baseline energy use estimates used to determine
investment subsidy amounts.
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of savings from adopted investments are from natural gas, electricity, and heating oil, respectively.

For natural gas acquisition costs, we use Wisconsin wholesale (“citygate”) prices from EIA. For

electricity acquisition costs, we use “all-in” wholesale market prices for the MISO market, which

includes Wisconsin, from Potomac Economics (2011-2014). These “all-in” electricity prices include

quantity-weighted average costs for energy and capacity, plus ancillary services and uplift charges.

For heating oil, we assume that retail price equals marginal cost.

Panel C presents summary statistics for the electricity and gas usage microdata. Wisconsin

law prohibits utilities from sharing energy use data with researchers unless the customer consents.

Customers were asked to sign release forms during the audits, and 90 percent (1258 out of 1394)

agreed, but we do not have energy use data for the larger group of unaudited households in the

experimental population. We drop households that installed solar photovoltaics or are recorded as

having participated in another energy efficiency program for which we do not observe predicted

savings; both of these factors would bias the comparison of empirically estimated savings to pre-

dicted savings from investments made through these programs. The energy use data sample begins

as early as January 2006 and ends in May 2015. We do not have consistent heating oil consumption

data, but only 23 households made investments that were predicted to save heating oil.

Appendix B presents additional information on data preparation, categories of investments and

subsidies, and energy price and externality assumptions.

V Empirical Strategy

We first specify the empirical analogue to Equation (4), the audit takeup equation. SEi is household

i’s experimental audit subsidy (either $0, $25, or $100), Gi is an indicator for the $25 gift card

offer, Ti is the vector of indicators for informational and behavioral treatment groups, and Xi is

a vector of the five household-level covariates from Panel A of Table 2: house age, property value,

building footprint, a Madison indicator variable, and Census tract hybrid vehicle share. In the

context of the model, the treatments Ti can affect γAi, and household characteristics Xi can be

associated with non-monetary preferences ξAi, potential benefit from investing λi, and γAi. Define

VAi = SEi +ϕGi + τTi + βAXi + κA as the observed part of latent utility from auditing, where κA

is a constant, and define εAi as an econometric error. In the model, utility is money-metric, so VAi

and its component parts are in units of dollars.

The empirical analogue to Equation (4) is

Ai = 1 (VAi + εAi > 0) . (8)

We also specify an empirical analogue to Equation (3), the investment takeup equation. Cij

is the investment cost estimate, and Eij is predicted retail energy cost savings over the assumed

investment lifetime using a five percent annual discount rate. Recall that the bulk of investment

subsidies were from tiered subsidies that increased by $500 for every 10 percentage point increase

in energy saved by adopted investments relative to the household’s baseline. Because we do not
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have the data to exactly reconstruct the tiered program subsidies, we impute for each investment

a linearized subsidy with a cap at $3500: Sij = min
{

$5000
Eij

E0i
, $3500

}
, where E0i is the PDV

of household i’s average pre-audit energy use, discounted over the investment lifetime. Let ξij =

βIXi + ξj + εij , where ξj is a constant and εij is an econometric error, and define Vij = Sij −
Cij + Eij + βIXi + ξj as the observed part of latent investment utility. The empirical analogue to

Equation (3) is

Iij = 1 (Vij + εij > 0) . (9)

.

In the theoretical model from Section II, ξij represented non-monetary attributes such as comfort

benefits and time costs. Empirically, these are interpreted as unobserved attributes, capturing non-

monetary attributes, un-modeled monetary attributes, and any other econometric errors, including

discount rates other than five percent and idiosyncratic monetary factors that are known to the

consumer but unobserved on the audit reports. If consumers believe that realized energy savings

will be lower (higher) than predictions presented on the audit report, this enters as lower (higher)

estimated ξij .

We assume that ηAεAi and ηIεij are distributed standard normal, where ηA and ηI are scaling

factors. When estimating Equation (9) and Equation (10) below, standard errors are clustered

by household to allow for arbitrary within-household correlation in εij . Notice that because the

rescaled errors are distributed standard normal, the estimated probit coefficients are the scaling

factor times the coefficient written above. For example, the estimated coefficient on Ti in the

audit takeup equation will be ηAτ , and the estimated coefficient on SEi will be ηA. Dividing the

estimated coefficients on Ti by the estimated coefficient on SEi will give ηAτ/ηA = τ , in units of

dollars. Analogously, the estimated constant term in the investment takeup equation is ηIξj , so

dividing by the price coefficient will give ξj , in units of dollars.

If εAi⊥εij , then probit estimates of Equation (9) are relevant for the full 101,881-household

population. Otherwise, probit estimates of Equation (9) are relevant only to the selected sample

of households that had audits. Our primary specification allows for correlation between εAi and

εij by jointly estimating the audit and investment takeup equations using the maximum likelihood

approach of Van de Ven and Van Praag (1981). Defining ρ = corr(εAi, εij) and Φ2(x, y, ρ) as the

bivariate standard normal cumulative distribution of x and y with correlation ρ, the log-likelihood

function is

lnL =
∑
i

 Ai
∑

j∈Ji [Iij ln Φ2(VijηI , VAiηA, ρ) + (1− Iij) ln Φ2(−VijηI , VAiηA,−ρ)]

+(1−Ai)w ln [1− Φ(VAiηA)]

 . (10)

Inside the brackets, the first line sums over all investment opportunities for the households that

did audit, while the second line sums over the households that did not audit. One feature of our
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data is that there are multiple investment decisions for each audit, which causes the households

that audit to appear multiple times and thus receive more weight in estimating the audit takeup

coefficients. To identify the audit takeup coefficients equally from households that did vs. did

not audit, we weight the non-audited households with weight w equal to the average number of

recommended investments per audit, while weighting each investment observation with weight 1.

Equation (10) delivers the parameters necessary for the revealed preference welfare analysis. We

can now see how our RCT helps solve the two identification problems discussed earlier. First, this is

a sample selection model in the spirit of Heckman (1979) and the literature that follows: we observe

characteristics and takeup decisions for recommended investments only if a household audits. The

randomly assigned subsidies affect audit takeup but do not change investment incentives, which

means that they act as an excluded instrument to identify the correlation between εAi and εij . In

the literature that uses sample selection models, it is rare to have such an instrument. However,

we do not have an instrument for price in the investment equation, so we need to assume that

(Sij − Cij + Eij)⊥εij |Xi, i.e. that monetary characteristics are uncorrelated with unobservables

affecting investment takeup.12

Second, the RCT helps to identify the audit takeup distortion γAi. Intuitively, distortions can

be measured in dollar terms by dividing the effect of removing the distortion by the effect of a price

change. For example, if all consumers have γAi = −$25 due to imperfect information, providing

full information will have the same effect on audit takeup as subsidizing audits by $25. If instead

γAi = −$50, providing full information will have twice the effect of the $25 subsidy. Thus, if ηAτ

is the effect of a treatment that fully removes an informational or behavioral distortion and ηA is

the price effect, the dollar value of the audit takeup distortion is γAi = ηAτ/ηA = τ .13 Thus, our

six informational and behavioral treatments test for particular sources of γAi, although we cannot

rule out the possibility of other audit takeup distortions.

VI Empirical Results

We begin with descriptive results on the field experiment, investment takeup, and self-selection into

audits. We then present formal estimates of Equation (10).

12The unobservable εij would be positively correlated with Eij if more energy savings bring more warm glow utility
or are associated with more in-home comfort. Furthermore, εij would be negatively correlated with Cij if higher-cost
projects also require more non-monetary effort to implement, e.g. if larger home construction jobs are both more
costly and more of a hassle for the homeowner. The likely directions of these possible correlations would bias η̂I
upward, which would only reinforce our empirical finding that investment takeup is highly inelastic. We explore these
issues in Appendix C.B, although we find little evidence of bias in η̂I .

13More precisely, Mullainathan, Schwartzstein, and Congdon (2012) show that if γAi is homogeneous, a first-order
approximation to γAi is the ratio of the information effect to the price effect. Allcott and Taubinsky (2015), Chetty,
Looney, and Kroft (2009), and Bronnenberg et al. (2015) use variants of this approach to identify informational and
behavioral distortions in other markets.
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VI.A Effects of Randomized Variations in Promotional Letters

VI.A.1 Effects of Letter and Subsidy Treatments

Column 1 of Table 3 presents probit estimates of Equation (8), the effects of the experiment on

audit takeup. We first present estimates replacing Ti with an indicator Ti for being mailed a letter.

We present marginal effects, with coefficients multiplied by 100 for readability.

Receiving a letter with zero monetary incentives increased the probability of auditing by 0.158

percentage points, or about 13 percent of the control group mean. This relatively small effect

that is at the margin of conventional significance levels suggests that basic lack of awareness of

the program was not a major barrier to takeup. The gift card had no effect, perhaps because of

perceived transaction costs in activation.

Money does matter, however: a $100 subsidy increases the probability of an audit by 0.525

percentage points, or 32 percent of the control group takeup.14 Even after heavy subsidies, demand

for audits is remarkably low: households in the $100 subsidy group in Milwaukee (Madison) needed

to pay a net-of-subsidy price of only $0 ($100) for an audit, compared to a typical market price

of $400. Despite this, only 1.8 (2.2) percent of households in Milwaukee (Madison) in the $100

subsidy group had audits.

Column 2 presents analogous probit estimates of whether household made any investment. The

point estimates suggest that a relatively small share of consumers that were marginal to the letters

and experimental subsidies eventually invested. In the 21,887-household control group that did not

receive informational letters, 64 percent of households that audited followed through with some

investment. If consumers marginal to the treatments followed through at the same rate, then the

ratio of estimates in column 2 to column 1 would also be 0.64. By contrast, the point estimates

suggest that the average letter without experimental subsidy increased investments by about 26

percent of the increase in audits (0.041/0.158), and the experimental subsidies increased investments

by 29 percent of the increase in audits (0.152/0.525). The fact that the marginal auditors are less

likely to invest implies that εAi is positively correlated with observable or unobservable investment

attributes. We further explore this issue below.

The X covariates are associated with audit and investment takeup in intuitive ways. Takeup

increases in house age: because building codes and construction techniques have improved and

houses’ efficiency depreciates over time, older houses can benefit more from weatherization retrofits.

Takeup is positively correlated with hybrid vehicle share, perhaps because environmentalists benefit

more due to warm glow. Takeup is also positively correlated with wealth, as measured by property

value and building footprint.

14Additional estimates of both audit and investment takeup show that the effect of the $100 subsidy is not statis-
tically distinguishable from four times the effect of the $25 subsidy.
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VI.A.2 Effects of Informational and “Behavioral” Treatments

We also estimate a version of Equation (8) with the full set of Ti indicators; the full set of estimates

are reported in Appendix Table A.7. In summary, the only treatments that affect takeup are the

monetary incentives. Furthermore, Wald tests in Appendix Table A.8 show that none of the six

groups of informational or behavioral treatments jointly affected audit or investment takeup.

How precisely estimated are these zero effects? Figure 1 presents the point estimates and

confidence intervals for each informational and “behavioral” treatment scaled by the effect of a $1

subsidy, i.e. ηAτ/ηA = τ . This translates the coefficient estimates into units of dollars, the same

units as utility and γAi. All 90 percent confidence intervals include zero, and the average confidence

interval bounds the effect at no more than the effect of a $30 to $40 price change.15

This normalization of treatment effects into dollar terms is useful for two reasons. First, it

provides an estimate of the monetary magnitude of any informational distortions under the as-

sumption that γAi = τ , as discussed above. In our experiment, one should not interpret any given

treatment as removing all distortions, both because it is unlikely that our treatments fully ad-

dressed the hypothesized distortions and because there are other possible distortions that we could

not test. Notwithstanding, the bounds on the information effects suggest that the magnitudes of

the informational and behavioral audit takeup distortions that motivated our six treatments are at

least an order of magnitude smaller than the programs’ $200-$300 audit subsidies.

Second, the normalization addresses the fact that many people don’t read unsolicited mail.

Imagine that share r < 1 of consumers who were mailed the letters actually read them, and the

true treatment effect on letter readers is τ ′, so τ = rτ ′. Then τ could be small either because the

treatments had little effect on the letter readers (τ ′ is small) or because few people read the letters

(r is small). Taking the ratio of the information effect to the subsidy effect divides out the r, giving

the ratio of effects within the group of letter readers assuming that people read the entire letter.

This issue is crucial to interpreting our results, as these economically small coefficient ratios cannot

be explained by people not reading the letters: if nobody read the letters, then the experimental

subsidies would also have no effect. This discussion also clarifies that all coefficients and ratios are

“local” to the subset of people who read the letters, and these people could in be systematically

more or less informed or “behavioral” than the people who do not read the letters.

VI.B Descriptive Evidence on Investment Takeup

Figure 2 illustrates the identification of investment takeup in Equation (9). The vertical bars are a

histogram of predicted net monetary benefit (Sij−Cij +Eij) in the sample of recommended invest-

15For comparison, the three statistically significant advertising treatments in Bertrand et al. (2010) affected demand
by the equivalent of a two percent change in monthly interest rate. At a median loan size of $150, a two-percent
interest rate change is worth $3 per month, or $12 total for their four-month loans. This is about 2.5 percent of
their population’s $470 median gross monthly income. By contrast, our population’s median gross monthly income
is $4000, so 2.5 percent of median income is $100. Thus, after accounting for population income differences, we can
bound the price-scaled effects of all our non-subsidy treatments at about 30-40 percent as large as the Bertrand et
al. (2010) estimates.
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ments. We truncate the graph at ±$3000 for readability, plotting all smaller (larger) investments

in the far left (right) bins. The dots illustrate the takeup rates within each bin.

Figure 2 has three striking features. First, many of the recommended investments are disad-

vantageous from a purely financial perspective, even at subsidized investment costs and marked-up

retail energy prices and assuming that the simulated savings and 20-year lifetimes are correct. At a

five percent discount rate, one quarter of recommended investments lose $638 or more, the median

recommendation loses $47, and 53 percent do not pay back. Second, takeup rates are increasing in

monetary net benefit, meaning that consumers clearly consider monetary incentives. Third, while

takeup clearly increases in projected monetary benefit, the slope is quite gradual: a $1000 increase

in projected monetary benefit is associated with only about a five percentage point increase in

takeup. Consumers did not take up 40 percent of investments with private internal rates of return

(IRRs) greater than 20 percent, and they did take up 36 percent of investments with negative

private IRRs. This inelastic demand implies that the estimated slope of takeup with respect to

monetary benefit, η̂I , will be small: there must be wide dispersion in unobserved attributes to

rationalize these takeup decisions. This finding of large unobserved benefits or costs highlights

the importance of incorporating unobserved attributes into welfare analysis using the “revealed

preference approach” instead of the “accounting approach.” The inelasticity also implies that in

Section VIII’s analyses of counterfactual policies, increases in investment subsidies will generate

only limited increases in investment takeup.

VI.C Evidence of Self-Selection into Audits

Figure 3 illustrates the effects of self-selection into audits. The figure presents takeup decisions

for households that received the marketing letter and were offered a $0, $25, or $100 experimental

audit subsidy; the $25 gift card group is excluded. The left panel shows the audit probability as a

function of the audit subsidy. The $100 experimental subsidy increases audit takeup from 1.3 to

1.9 percent. The light (gray) bars on the right panel show the average investment probability by

subsidy group, conditional on auditing. The $100 subsidy group is about 13 percentage points less

likely to invest.

Using the average investment probabilities and the share of marginal vs. inframarginal con-

sumers implied by audit takeup in the left panel, we back out the investment probability for house-

holds marginal to each subsidy increase.16 Even before calculating the exact numbers, we know

that the marginal auditors must have markedly lower investment probabilities for higher subsidies

to cause such a large decrease in average investment probability. Indeed, the dark (red) bars in

16Specifically, conditional on auditing at subsidy SA = s,

Pr(I = 1) = Pr(I = 1|M = 1) · Pr(M = 1) + Pr(I = 1|M = 0) · (1− Pr(M = 1)), (11)

where M = 1 is an indicator for being marginal to an audit subsidy increase from s0 to s: M =
1 (−s < τTi + βAXi + κ+ εAi < −s0). Re-arranging gives an equation for Pr(I = 1|M = 1), the investment proba-
bility for marginal consumers. Pr(M = 1) is from audit takeup rates illustrated in the left panel, and Pr(I = 1) and
Pr(I = 1|M = 0) are from investment takeup rates in the light bars in the right panel.
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the right panel show that marginal investment probabilities drop sharply as the subsidy increases.

While 54 percent of households that audit at zero experimental subsidy make some investment, the

point estimates imply that only 25 percent of households that are marginal to the $25 subsidy do

so. Remarkably, the point estimates imply that among the households that audit at a $100 subsidy

but do not audit at a $25 subsidy, only three percent make an investment.

One policy implication is that programs interested in maximizing investments per subsidy dollar

should think carefully about what to subsidize. In this setting, subsidizing audits draws in prover-

bial “tire kickers”: households that are interested in audits, perhaps because they have a low value

of time or want free CFLs, but are not interested in making energy efficiency investments. This

strong self-selection will play a key role in Section VIII’s counterfactual analysis of higher audit

subsidies.

VI.D Joint Estimates of Audit and Investment Takeup

The counterfactual policy analyses presented below require demand parameters relevant for the

full population. The above finding that the marginal auditors are much less likely to invest makes

clear that a joint model of audit and investment takeup is necessary to estimate parameters for the

full population, rather than investment parameters specific to the small subset of households that

audit.

Table 4 compares independent and joint estimates of the audit and investment takeup equations.

Columns 1 and 2 present the independent probit estimates of Equations (8) and (9), while columns

3 and 4 present estimates of Equation (10). Columns 1 and 3 present stripped-down estimates,

excluding household covariates Xi, while columns 2 and 4 include Xi and replace the constant ξj

with separate indicators for all six investment categories: air sealing, insulation, heating/cooling

systems, windows, pipe and duct sealing and insulation, and programmable thermostats. The top

panel of column 2 is the same as column 1 of Table 3, except that we now present probit coefficient

estimates, not marginal effects.

The experimental audit subsidy SEi, gift card indicator Gi, and letter treatment indicator

Ti are included in the audit takeup equation but excluded from the investment takeup equation,

thus identifying the correlation between εAi and εij .
17 The estimated ρ̂ ≈ 0.94 is remarkably

high, driven by the sharp decrease in investment probability at higher subsidy levels illustrated in

Figure 3. Comparing the independent and joint estimates (i.e. columns 1 vs. 3 and 2 vs. 4), the

audit takeup parameters are all statistically indistinguishable. This is not surprising, because both

approaches use the full sample of households.

The investment takeup parameters, however, are all statistically different across the two ap-

proaches. The starkest difference is that the “constant” terms η̂Iξj are much more negative in

the joint estimates in column 3 compared to the independent estimates in column 1. This reflects

self-selection, i.e. the positive correlation between εAi and εij . In column 1, the independent pro-

17We could also use the full set of non-price treatment indicators Ti as excluded variables, but they reduce precision
because they do not significantly affect takeup.
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bit estimate of investment takeup using data from the subset of audited households identifies the

constant η̂Iξj relevant for those selected households. By contrast, the joint estimate in column 3

returns the constant relevant for the full sample of 101,881 households. The subsample of audited

households have high draws of εAi, and because ρ is large, they also have high draws of εij . Thus,

the constant η̂Iξj for the audited sample is much larger (i.e. more positive) than for the full sample.

In practical terms, this again underscores that the households that audited are a self-selected group

that is significantly more interested in making investments.

An illuminating way to summarize these self-selection issues is to transform the unobserved

attributes into dollar terms. Dividing the estimated constant term η̂Iξj by η̂I gives ξ̂j , the mean

unobserved investment attribute in units of dollars. In the sample of audited households in column

1, the mean unobserved investment attribute is slightly positive: ξ̂j ≈ 0.0485/0.147 ≈ $329. This

indicates that on average, audited households positively value recommended energy efficiency in-

vestments above their financial net present value, perhaps due to warm glow or the expectation of

a more comfortable weatherized home. While not dispositive, this result suggests a violation of one

of the required assumptions for the “accounting approach” to welfare analysis introduced earlier:

E[ξij |Iij = 1] = 0, i.e. that the mean unobserved attribute of adopted investments is zero.

Self-selection implies that the dollarized unobserved investment attributes are much more neg-

ative in the full sample of 101,881 households than in the sub-sample of auditors. While $329 is

the mean unobserved investment attribute in audited sample, the estimates in column 3 imply that

$329 is just above the 99th percentile of unobserved investment attributes in the full sample, and

the 98th percentile is approximately -$5,000. This distribution’s steep slope is pinned down by the

inelasticity of investment takeup illustrated in Figure 2, and its low mean is pinned down by the low

audit and investment takeup in combination with the self-selection effects illustrated in Figure 3. In

Section VIII’s counterfactual policy simulations, this will mean that even very large counterfactual

investment subsidies cannot induce households to make more than about one percent of the total

possible investments.

VII Effects on Energy Use

VII.A Empirical Strategy

The private and social benefits of energy saved are a crucial part of the welfare evaluation. What are

the empirical estimates of energy savings, and how do they compare to the simulation predictions?

Define Yit as natural gas or electricity use (in therms/day or kWh/day) for household i for the

billing period ending in date t. Pit is a pair of post-audit indicators: to distinguish shorter-term

from longer-term effects, we allow different coefficients on Pit for the first six months vs. later.

For the billing period that includes the audit date, we pro-rate Pit on [0, 1] to reflect the share of

days after the audit. Wit is a vector of two weather controls: average heating degrees and average

cooling degrees in the household’s city (Madison or Milwaukee) over the billing period ending in

t, from NOAA (2015). νi is a household-by-calendar month fixed effect, and µm is the set of
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month-of-sample indicators for all months m in the sample.18 The estimating equation is

Yit = αPit + ωWit + νi + µm + εit. (12)

Standard errors are robust and clustered by household to allow for arbitrary serial correlation

in εit.

To compare empirical estimates to the simulation predictions, we also fit Equation (12) with

predicted savings as the dependent variable. Denote Eit as the total predicted daily savings (in

therms/day or kWh/day) for all observed investments made by household i as of the billing period

ending in date t. (Eit = 0 before the first investment is made, and thus Eit = 0 before the audit.)

If the investment install date occurs in the middle of the billing period ending in date t, we pro-rate

predicted savings over the billing period.

The simulated savings are for average weather conditions. If the empirically realized weather

conditions differ, this could make the empirical results differ from predictions even if predictions

are unbiased in average weather. We thus weather-adjust the predictions assuming that savings

scale proportionally in degree days.19 The “realization rate” for natural gas or electricity will be

the ratio of the α̂ for actual energy use to the α̂ for predicted savings.

If Pit⊥εit|(Wit, νi, µm), then α is the average causal effect of the audit and ensuing invest-

ments. Even under this assumption, however, there are two reasons to interpret α carefully. First,

households may simultaneously change utilization behaviors, so α would differ from causal effect of

investments under constant utilization. This is important for interpreting the realization rate be-

cause TREAT and other simulation models predict savings under constant utilization. A realization

rate less than 100 percent could thus reflect either a utilization increase, which the simulation mod-

els are explicitly not trying to capture, or systematic modeling bias, which the simulation models

should be trying to avoid. This is also important for interpreting the accounting welfare analy-

sis, because a utilization increase generates an increase in consumer welfare that the accounting

approach does not capture.

Second, households may make unobserved investments, such as purchasing CFLs or appliances

through retailers not affiliated with the programs. This is clearly important for the realization

rate, because the simulation models only predict savings from observed investments, and for the

accounting welfare analysis, because we do not include the costs of investments we do not observe.

18For example, there is one µ indicator variable that takes value 1 for all bills t where the midpoint of the billing
period occurs in January 2012, then another µ for all bills where the midpoint occurs in February 2012, etc. Then,
there is one fixed effect ν for all bills of household i with midpoint in January of any year, a second fixed effect for
all bills of household i with midpoint in February of any year, etc.

19Specifically, we classify investments into four seasonality categories: constant (hot water and lighting), cooling
(cooling system improvements), heating (heating system improvements), and cooling or heating (all others, such
as insulation, air sealing, etc.). For cooling (heating) categories, Ew

it = Eit · Wit
W̄i

, where Wit is the mean base-65

cooling (heating) degree days for billing period t and W̄i is the average cooling (heating) degrees for household i’s
city (Madison or Milwaukee) between 2000 and 2011. The equation for Ew

it for the “cooling or heating” seasonality
category is identical except that Wit and W̄it are the sum of heating plus cooling degrees. Appendix Table A.10
presents robustness checks without the weather adjustment; it turns out to make little difference.
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We discuss these issues more below.20

VII.B Empirical Results

VII.B.1 Graphical Results

Figure 4 is a standard event time graph, which illustrates effects and allows a visual test for pre-

trends. To make the figure, we estimate Equation (12) replacing Pit with indicators for each two-

month period within an event window extending 18 months before and after the audit. The figure

combines separate estimates for natural gas and electricity, weighting each two-month period’s

coefficients by sample average retail prices and multiplying by 365 to transform units to annualized

retail energy cost savings.

Figure 4 shows that there are no pre-audit trends in energy use. Immediately after the audit,

energy use decreases. By about six months post-audit, energy use has stabilized at almost $100

less than the pre-audit annual average. Relative to a pre-audit average of about $1800 per year,

this represents a five percent reduction.

The light gray lines are the simulation predictions, from using Eit instead of energy use as

the dependent variable in the same regression. Predicted energy use decreases immediately after

the audit as “direct install” measures (primarily CFLs and low-flow showerheads) are put in, then

decreases gradually over the first six months post-audit as consumers make larger investments. By

about six months post-audit, predicted energy use has stabilized at approximately $150 less than

baseline. Appendix D presents separate figures for natural gas and electricity, as well as a series of

other graphical robustness checks.

VII.B.2 Formal Results

Table 5 presents formal estimates of Equation (12). Columns 1 and 2 are for natural gas, while

columns 3 and 4 are for electricity. Columns 1 and 3 use the weather-adjusted simulation predictions

Eit as the dependent variable, while columns 2 and 4 use energy use Yit. Since the typical investment

is predicted to last 20 years and Figure 4 shows savings stabilizing only after about six months

after the audit, we focus on the coefficients for ≥ 6 months.

After six months, the simulations predict 0.444 therms/day natural gas savings and 0.408

kWh/day electricity savings, or about 19 and 1.9 percent reductions relative to pre-audit mean

gas and electricity use, respectively. By contrast, the actual savings were 0.128 therms/day and

1.013 kWh/day, each of which represents about a five percent reduction. Figure 5 summarizes these

results. Natural gas savings amount to only 29 percent of predictions, while electricity savings are

248 percent of predictions. In total, the average household that had an audit saves $89 per year in

retail gas and electricity costs. The total predicted savings are $153 per year, so the realization rate

20Neither of these two problems is solved by a randomized encouragement research design. Such a design credibly
identifies the causal impact of the encouragement, but households could also change utilization behaviors or make
unobserved investments.
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is 58 percent at retail prices. We have done extensive additional analysis and robustness checks;

interested readers should see Appendix D.

Because the realization rates are so different between natural gas and electricity (29 vs. 248

percent), the relative weight given to the two fuels matters for the overall realization rate. For

example, because electricity has a higher retail markup over acquisition cost than natural gas,

combining the two fuels at acquisition costs increases the weight on natural gas. Valuing energy

at acquisition cost, the average audited household reduces gas and electricity use by $38 per year,

and the realization rate is 41 percent.

What could explain the difference between simulated and empirically estimated savings? For

natural gas, additional analyses in Appendix Table A.12 show smaller or statistically zero short-

falls for households that made large and common investments (insulation and new heating/cooling

systems) but particularly large empirical shortfalls associated with smaller and less common in-

vestments. For electricity, the additional analyses suggest that the excess savings could result from

unobserved actions such as appliance replacement that would not be recorded in the programs’ ad-

ministrative data. When adjusting the accounting welfare analysis in Section VIII for empirically

realized savings, we assume that the excess electricity savings accrue only due to the observed in-

vestments. If there were also costly unobserved investments, this would cause us to understate total

costs; addressing this would only strengthen our finding that program costs outweighed benefits.

The simulation models assume constant utilization before vs. after the investment, and one

natural explanation for the natural gas shortfall could be the “rebound effect,” i.e. that consumers

increase utilization in response to a decrease in the cost of energy services. Appendix D presents

two calculations showing that the rebound effect is highly unlikely to explain the full gas shortfall.

First, a utilization elasticity of -0.98 would be required to explain the full shortfall. By contrast,

the most closely related estimates of energy utilization elasticity are much smaller: -0.06, -0.3,

and -0.22 for washing machines (Davis 2008), home electricity (Dubin and McFadden 1984), and

autos (Gillingham 2014), respectively. Second, a large indoor temperature change of 7.5 degrees

Fahrenheit would be required to explain the full shortfall. By contrast, the Fowlie, Greenstone,

and Wolfram (2015b) find no statistically significant post-weatherization temperature change in a

low-income (and thus likely more price elastic) population in Michigan, and they can reject a post-

weatherization temperature change of more than 1.4 degrees Fahrenheit with 90 percent confidence

in a two-sided test. To the extent that utilization is not fully inelastic, the associated increase

in consumer welfare is excluded from the “accounting approach,” biasing those benefit estimates

downward. In theory, the revealed preference analysis captures this welfare increase as part of ξij .

A realization rate of less than 100 percent is consistent with other work. Fowlie, Greenstone,

and Wolfram (2015b) find a 40 percent realization rate in their Michigan RCT. They similarly find

that the simulation model overestimates natural gas savings and underestimates electricity savings,

but since gas comprises a larger share of savings, the overall realization rate is far less than 100

percent. The TREAT software developers found median household-level realization rates around

60-70 percent in recent New York study (PSD 2015b), also finding that their model understated
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electricity savings and overstated gas savings.

VIII Welfare Analysis

In this section, we present welfare analyses using the “accounting” and “revealed preference” ap-

proaches. First, we detail assumptions for environmental externalities and market failure parame-

ters φij , γAi, and γij .

VIII.A Assumptions for Externalities and Other Market Failures

In the model, the uninternalized externality reduction φij from investment j at household i rep-

resents the present discounted value of the sum over fuels (electricity, natural gas, and heating

oil) of the amount of fuel conserved times that fuel’s retail price distortion – i.e., the difference

between marginal social cost and marginal retail price.21 In the U.S., there are two main reasons

why marginal retail energy prices are distorted. First, energy use generates pollution and thus en-

vironmental externalities. Second, as Davis and Muehlegger (2010) point out, most utilities mark

up retail marginal prices above marginal acquisition cost in order to cover fixed costs such as meter

reading and overhead, and this can partially or fully offset the environmental externalities.22

Table 6 presents our calculation of the retail markup and environmental externality for each

of the three fuels in our data, in common units of dollars per million Btu of energy use. Rows

1-3 show that under the energy price assumptions described in Section IV, marginal retail prices

exceed marginal acquisition costs by about 300 percent and about 50 percent for electricity and

natural gas, respectively. We assume that in the residential heating oil market, retail prices equal

marginal costs.

Row 4 of Table 6 presents our estimates of the marginal environmental damages from using each

fuel, calculated specifically for homes in Wisconsin. Our estimates include local air pollution (sulfur

dioxide, nitrogen oxides, and particulates) and greenhouse gas emissions (both carbon dioxide and

methane leakage from natural gas systems). We take standard emission rates and marginal damage

estimates from existing literature, including $39 social cost of carbon (Interagency Working Group

on the Social Cost of Carbon 2013) and a $6 million value of a statistical life. Natural gas is relatively

clean, whereas heating oil and electricity consumed in Wisconsin both involve emissions—primarily

of carbon dioxide and sulfur dioxide—that are estimated to have large marginal damages. See

Appendix B.C for details on this calculation. Row 5 then presents our estimate of the per-unit

uninternalized externality for each fuel—that is, the difference between marginal retail price and

marginal social cost, taking into account both the environmental externality and the retail markup.

21Formally, φij =
∑T

t=1

∑
f δ

t · Energy Savedijf · (Marginal Social Costf −Marginal Retail Pricef ), where
f ∈ {natural gas, electricity, fuel oil}, δ is the discount factor, t indexes time, T is the investment lifetime, and
Marginal Social Cost is the per-unit acquisition cost plus the per-unit gross environmental externality.

22While rate structures that embed fixed costs in marginal retail prices may be desirable on equity grounds (see
Borenstein and Davis 2012), they distort marginal prices. A more economically efficient pricing structure would be
to pass through fixed costs as fixed monthly charges and then set marginal retail prices equal to marginal costs.
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The table’s key result is that the per-unit uninternalized externality varies significantly across

the three fuels. For natural gas and especially heating oil, one household’s conservation generates

a net benefit for others in society, as the environmental externality reductions are not fully off-

set by the loss of any retail markups. Electricity is actually the opposite—the retail markup is

so large that it exceeds the environmental externality, and a household’s electricity consumption

thus imposes a net burden on others in society. As we shall see in detail, this means that the

Wisconsin programs’ approach of subsidizing energy efficiency investments based on the Btus of

energy reduction (regardless of fuel) is highly inefficient relative to subsidies that scale in each fuel’s

uninternalized externality.

The revealed preference welfare analysis also requires estimates of γAi and γij , the audit and

investment takeup distortions, and in our base case, we assume that γAi = γij = 0. We assume that

γAi = 0 in the base case because the RCT found statistically and economically zero treatment effects

of variations designed to identify six informational and behavioral barriers to audit takeup. We

assume that that γij = 0 in the base case because, in the context of the Wisconsin programs, most

of the investment takeup market failures that have been discussed in the energy efficiency literature

are not relevant. The home energy audits and written audit reports provide clear information about

the costs and benefits of possible investments. There is no credit constraint, as consumers have

full financing available. Credit availability also reduces any potential role of present bias: allowing

consumers to borrow means that investment does not require a reduction in current consumption.

Further, our sample includes only owner-occupied homes, so there is no landlord-tenant distortion

discussed by Davis (2012), Gillingham, Harding, and Rapson (2012), and Myers (2015). Due to the

inherent uncertainty in these parameters, we will also present welfare estimates under alternative

assumptions for γAi and γij .

VIII.B Welfare Effects Using the “Accounting Approach”

Table 7 presents welfare effects using the “accounting approach.” Costs comprise audit and invest-

ment costs, while benefits comprise energy savings (valued at acquisition cost, i.e. from row 2 of

Table 6) plus environmental externality reduction (i.e. from row 4 of Table 6). We assume that the

unsubsidized audit cost is cA = $400, based on typical market prices. Column 1 uses the simula-

tion predictions to calculate energy and externality reductions. Column 2 multiplies the simulation

predictions by realization rates of 2.48 for electricity and 0.29 for natural gas and heating oil, on

the basis of Table 5 and Figure 5.23

Under the assumptions of the accounting approach, the programs reduce welfare. Using the

simulation predictions, the Wisconsin programs have a benefit/cost ratio of 0.92 at a five percent

discount rate, with an internal rate of return of 4.0 percent. After adjusting for the empirical

shortfall, the benefit/cost ratio is 0.43, and the IRR is negative 4.1 percent.

23The vast majority of heating oil savings are from oil-to-gas heating system conversions. Although we do not have
empirical estimates of the realization rates for heating oil, we need to adjust heating oil savings by the natural gas
adjustment factor to avoid predicting artificial decreases in total energy use.
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Is it possible that we happened to evaluate two programs with unusually low returns? In

Appendix E, we analyze data from all 37 Better Buildings Neighborhood Programs nationwide that

reported data to the U.S. Department of Energy (DOE). While we were unable to run experiments or

gather recommended investment data from these other sites to carry out the full revealed preference

analysis, we can replicate this accounting evaluation. In aggregate, the 37 programs performed

worse than the Wisconsin programs. Using the simulation predictions, the national programs have

a benefit/cost ratio of 0.75 at five percent discount rates, with an IRR of 1.5 percent. After adjusting

with the DOE’s own estimate of the empirical shortfall, the benefit/cost ratio is 0.38 and the IRR

is negative 5.2 percent. By these metrics, the result is not just that the returns are low—society

would have been better off without these programs.

Very different assumptions about energy prices or environmental externalities would be required

to make the programs welfare enhancing in Table 7: for empirically adjusted benefits to exceed

costs, energy acquisition costs would need to be 4.2 times larger, or all environmental externality

damages would need to be 3.3 times larger, or the social cost of carbon would need to be $239 per

ton. While those alternative parameters seem unlikely, there is certainly scope for more moderate

disagreement. For example, the U.S. Energy Information Administration (2015) Annual Energy

Outlook predicts that the benchmark Henry Hub natural gas price will average $1.01 higher in real

terms over 2013-2032 than it was over 2011-2014. When passed through to citygate prices, this

would increase acquisition costs (and thus the value of natural gas savings) by 19 percent, slightly

increasing net benefits. We could also proxy for the social marginal cost of electricity using the

cost of a new combined cycle natural gas plant. Using the Annual Energy Outlook levelized cost

estimates from EIA (2015) and our same per-unit externality damage assumptions, we calculate

an electricity social marginal cost of $0.106 per kilowatt-hour, which is 16 percent lower than our

main assumptions in Table 6. This is lower because while the levelized production cost is higher

than 2011-2014 market prices, this is more than offset by the natural gas plant’s relatively low local

air pollution emissions. Using this lower electricity cost would slightly reduce net benefits.

VIII.C Welfare Effects Using the “Revealed Preference Approach”

VIII.C.1 Simulation Procedure

We now evaluate the welfare impacts of a subsidy change from s0 to s1 using the “revealed preference

approach.” We first show how to determine the welfare effect conditional on one draw of each εAi

and εij , and we then simulate draws over the joint distribution of εAi and εij . In our base case

estimates, we use the simulation predictions of energy savings, but we subsequently explore the

implications of the estimated energy savings shortfall.

We must first define several terms. We denote household i’s vector of εAi and εij draws as εi,

and we denote the vector of all households’ εAi and εij draws as ε. We denote the vector of program

subsidies as sp. We use “hats” to signify that a variable depends on empirical estimates, which we

take from the joint estimates in column 4 of Table 4. For example, λ̂i(s; εi) =
∑

j∈Ji Îij(s; εij) ·
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(V̂ij(s) + εij).
24

The empirical analogue to the utility function in Equation (1) is

Ûi(s; ε) = yi − E0i − T̂ (s; ε) + Âi(s; εi) ·

{ (
V̂Ai + εAi

)
+
(
λ̂i(s; εi)− λ̂i(sp; εi)

)
−γAi −

∑
j∈Ji Îij(s; εij) · γij

}
. (13)

To understand the terms inside the brackets in Equation (13), recall that V̂Ai + εAi is the

empirical analogue to sAi − cA + ξAi + λi + γAi, the perceived utility from the audit and potential

investments. The λi in our empirical estimate of V̂Ai is λ̂i(sp; εi), corresponding to existing program

subsidies sp. Therefore, to simulate Ûi for a counterfactual subsidy s, we subtract λ̂i(sp; εi) and add

λ̂i(s; εi). If we did not do this, utility would be unaffected by a change in investment subsidies. The

final two terms account for possible differences between observed takeup and utility from Equation

(1). We subtract γAi if consumer i audited, to account for misperceived audit benefits, and we

subtract γij if consumer i made investment j, to account for misperceived investment benefits. In

our base case, where we assume γAi = γij = 0, Equation (13) provides a standard estimate of

consumer surplus based on observed market decisions.

We define Ŵ (s; ε) as the empirical analogue to social welfare from Equation (5) conditional on

a draw of ε. The empirical analogue to the welfare change in Equation (6) is

∆Ŵ =

∫
Ŵ (s1; ε)− Ŵ (s0; ε) dΦ2(εAi, εij , ρ̂). (14)

We simulate the integral over 250 draws of ε and present the mean of results across draws. Because

the sample is so large, results are very similar even with many fewer draws.25

The next two subsections present alternative sets of welfare calculations. Because we have

estimated the parameters of the utility function, we are able to estimate welfare effects under

a broad array of counterfactual policies and alternative assumptions. In Section VIII.C.2, we

evaluate the program subsidies and counterfactual policies under the base case assumptions for

market failures φij , γAi, and γij . In Section VIII.C.3, we evaluate the program subsidies under

alternative market failure assumptions.

24When fitting Âi and V̂Ai, we make two modifications. First, the latent utility from auditing did not include a
term for the (non-experimental) program audit subsidy offer, as this would have been collinear in the estimation.
To simulate counterfactuals at different subsidy levels, we re-write the audit takeup intercept as a function of the
program audit subsidy sAi offered to household i: κA = κ̃Ai + sAi. Second, to reflect conditions in the absence of our
RCT, we set SEi = Gi = Ti = 0.

25When simulating ∆Ŵ , any household in the sample could be predicted to audit when it receives high simulation
draws of εi, but we do not have characteristics of recommended investments for households that did not audit.
For these households, we simulate monetary characteristics of recommended investments with a random draw of
the Ji for a household that did audit. We find no evidence against this approach: as shown in Appendix Table
A.15, the costs, energy savings, and count of a household’s recommended investments are uncorrelated with the
household’s experimental audit subsidy. The simulation results are effectively identical when we simulate investment
characteristics for 100 percent of households, instead of only the 99 percent that did not audit.
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VIII.C.2 Results: Program Subsidies and Alternative Policies Under Base Case As-

sumptions

Table 8 reports the simulated effects of alternative residential energy efficiency programs with

different audit and investment subsidies. These counterfactual policy exercises rely on the joint

estimation results reported in column 4 of Table 4, and they extrapolate along the audit and

investment demand curves, which assume a particular functional form for the joint distribution of

εAi and εij . Panel A details the specific program subsidy assumptions, Panel B reports the impacts

on households and uninternalized externalities, and Panel C presents welfare impacts. Throughout

the table, we use the base case assumptions for market failures, i.e.γAi = γij = 0 and φij from the

uninternalized externality assumptions from Table 6.

Column 1 reports on the case where audit and investment subsidies are equal to zero. This

counterfactual indicates that the market for home energy audits and retrofits would almost entirely

disappear in the absence of government intervention. For example, the results suggest that over

the sample period, only 0.008 percent of households would have an audit, and only 0.005 percent of

possible energy efficiency investments would be adopted. Across all 101,881 households in the sam-

ple, the mean investment expenditures are $0.20, and the mean value of uninternalized externality

benefits φij from adopted investments is $0.02.

Column 2a presents the revealed preference welfare evaluation of the Wisconsin programs at

the subsidy levels employed in these programs. Panel A restates that the audit subsidies were

$200 and $300 in Madison and Milwaukee, respectively, and that we use the linearized investment

subsidy of $5000
Eij

E0i
, i.e. 5,000 times the predicted share of savings in household energy use (up

to a cap of $3500). The estimates in Panel B suggest that the program subsidies effectively create

this market, increasing audit and investment takeup rates to 1.17 and 0.65 percent, respectively.

The costs of creating the market are also evident: $14.48 per sample household to fund audit and

investment subsidies, or about $1.5 million in total across all 101,881 sample households. Under

these subsidies, the average sample household spends $40.34 on energy efficiency investments, which

sums to $4.1 million in the full sample. The investments are projected to produce around $9.67 of

uninternalized externality reductions over their lifetimes per sample household, or about $0.67 per

dollar of subsidies.

Panel C presents the simulated social welfare effects of subsidies compared to the zero-subsidy

counterfactual in column 1. The first two rows of Panel C consider the two components of social

welfare. The first row reports the change in consumer utility. Per Equation (13), this depends

on subsidy amounts, the monetary benefits and costs of investments, draws of εAi and εij , and

the resulting takeup decisions and lump-sum taxes to fund the subsidies. In this scenario, the

existing Wisconsin programs reduce consumer utility (ignoring externalities) by $12.25 per sample

household. Any scenario that uses the base case assumption that γAi = γij = 0 will naturally

involve a decrease in consumer utility, because households are being taxed to induce themselves

to make decisions that they would not otherwise make, thus distorting choices from the private

optimum. Of course, these losses can be offset with social gains from uninternalized externality
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reduction. The second row of Panel C shows that relative to the no subsidy counterfactual, the

program subsidies induce investments that reduce uninternalized externalities by an average of

$9.65 per sample household.

The social welfare change is the consumer utility change plus the uninternalized externality

reduction. In total, the program subsidies generate a social welfare loss of $2.60 per household, or

about $265,000 in aggregate in our sample. This amounts to a social loss of $0.18 for every $1 in

subsidy. Thus, from the perspective of our model, the program subsidies are worse than having no

subsidies at all.

Large increases in residential energy efficiency investments play an important role in virtually

all climate mitigation plans. Column 2b probes the feasibility of achieving this goal by tripling

both audit and investment subsidies. To be clear, this scenario is relatively extreme. It involves

$600 and $900 audit subsidies in Madison and Milwaukee, respectively, so given a market price of

$400, households would receive $200 and $500 to have an audit. Thus, it is not surprising that this

causes 9.94 percent of households to audit over the sample period, or about nine times more than

the program subsidies in column 2a.

However, this increase in audits is not matched by an increase in investments: only about one

percent of possible investments in the sample are adopted, and the average investment across all

households is just shy of $69. This finding of a much smaller investment response is largely ex-

plained by the earlier evidence that audit subsidy increases draw in households that are increasingly

negatively selected in their interest in making investments. This alternative policy would cost more

than $140 per household in subsidies and would produce only 30 cents of externality reduction per

subsidy dollar, significantly lower than in column 2a. Overall, our model implies that such a sub-

sidy would reduce welfare by about $39 per sample household, meaning that this sort of program

expansion is not justified by this metric.

Columns 3a and 3b explore a different approach to structuring the investment subsidies. Specif-

ically, column 3a considers investment subsidies set to exactly offset the uninternalized externality

φij , while column 3b considers investment subsidies of 2φij . (To parallel the program subsidies,

we also cap these subsidies at $3500 per investment.) In both columns, there is no audit subsidy.

Except for the $3500 cap, the column 3a subsidies are socially optimal in our model if γAi = γij = 0

and energy use is fully price inelastic.

There are three differences between the programs’ investment subsidies and the “socially opti-

mal” subsidies in column 3a. First, and most importantly, the program subsidies scale in energy

savings (in physical energy units such as million British thermal units (mmBtu)) instead of un-

internalized externality reductions. As we saw in Table 6, the per-unit uninternalized externality

varies substantially between the three different fuels, with heating oil priced substantially below

social marginal cost and electricity actually priced above social marginal cost. Thus, the program

subsidies induce investments that save more electricity and less heating oil compared to subsidies

that are precisely calibrated to the uninternalized externality. Put differently, the subsidies induce

investments that save energy but do not necessarily reduce uninternalized externalities.
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Second, the program subsidies scale as a percentage of household energy consumption, rather

than the level of energy savings. The consequence is that low-usage and high-usage households re-

ceive very different subsidies for investments that reduces energy consumption by the same amount;

this distorts investment decisions away from the social optimum. Third, the program subsidies are

relatively generous: they cover an average of 24 percent of cost, compared to 16 percent in column

3a. This induces more energy efficiency investment than would be optimal under our uninternalized

externality assumptions.

These three factors matter a lot. The subsidies in column 3a generate a social welfare gain of

$21.93 per sample household, or $2.2 million across the full Wisconsin sample. This welfare gain

is accomplished with only $8.68 per household in subsidies, and there is $3.05 in uninternalized

externality benefit per dollar of subsidy. The primary driver of this improved performance is the

stronger targeting of subsidies toward investments that reduce more heating oil and less electricity.

Even in column 3b, with subsidies that are double the “social optimum” in our model, the welfare

effect is positive, although this is naturally less positive than in 3a because subsidies exceeding φij

induce some investments with social costs larger than social benefits.

Columns 4a and 4b focus on the effects of audit subsidies in isolation. Specifically, they present

results for counterfactual programs with zero investment subsidies and audit subsidies equal to

the actual program amounts (column 4a) and twice the program amounts (column 4b). At both

amounts, audit subsidies substantially reduce social welfare because we have assumed that γAi = 0

. Subsidizing audits is an inefficient way to reduce uninternalized externalities compared to simply

subsidizing uninternalized externality reduction.

Comparing column 4b to column 4a sharply illustrates the impact of self-selection—that is, the

correlation of εAi and εij . The higher subsidy increases audit takeup by a factor of 13, from 0.17

percent to 2.26 percent. However, the investment takeup rate and investment expenditures increase

by only a factor of five. The bottom row of Panel B shows that as a result, this subsidy increase

generates only four cents of externality benefit per subsidy dollar, compared to 17 cents in column

4a. This underscores a core problem that affects efforts to expand energy efficiency programs

by drawing in households with higher audit subsidies: the households that are marginal to these

subsidies are more likely to be “tire-kickers” who are unlikely to make efficiency investments.

These simulations have limitations. For example, the joint normal functional form assumption

determines how demand responds to counterfactual subsidies, so we must be especially cautious

in interpreting these out-of-sample predictions. Additionally, the investment takeup elasticity is

estimated from non-experimental data and is lower than our ex ante expectations. Furthermore,

there is considerable uncertainty in the market failure parameters γAi, γij , and φij , which we explore

in the next section.

Even noting these limitations, two main qualitative conclusions are likely to be robust. First,

it is important to calibrate energy efficiency program subsidies to the market failures that might

justify them, and failing to do so can leave surprising amounts of money on the table. This message

may be even more important outside of the Wisconsin programs: many other programs across the
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country offer investment subsidies that scale as a percentage of investment costs, thus incentivizing

high-cost investments with no regard for either energy savings or environmental benefits. Second,

subsidizing audits can be an ineffective way to reduce externalities, both because audits don’t

directly generate externality reduction and because audit subsidy increases draw in consumers who

are less and less likely to invest.

VIII.C.3 Results: Program Subsidies Under Alternative Assumptions

Table 9 presents welfare evaluations of the existing program subsidies (i.e. those in column 2a of

Table 8) under alternative assumptions for γAi, γij , and φij . Panel A describes the alternative

assumptions for each scenario, including the assumed γAi and the average assumed γij and φij

across all recommended investments. Panel B presents the welfare effects of the program subsidies,

relative to no subsidies, paralleling the bottom panel of Table 8.Column 1 re-prints the base case

assumptions, giving the same welfare results as column 2a of Table 8. Columns 2-5 take into

account the results in Section VII that the simulation predictions overstate natural gas savings and

understate electricity savings.26

In column 2, we empirically adjust only the uninternalized externality φij . This is not the

same as simply reducing all φij by the 58 percent realization rate calculated earlier. Instead, the

empirically adjusted average φij of recommended investments happens to be almost exactly zero

(i.e., -$3), meaning that on average, the energy conserved by recommended investments is priced

very close to social marginal cost. This happens because as Table 6 demonstrated, the retail

marginal price is above social marginal cost for electricity, while it is below social marginal cost for

natural gas. The empirical adjustment weights electricity substantially more, and gas substantially

less, so this re-weighting reduces the average uninternalized externality. Naturally, this reduction

in uninternalized externality benefits worsens the program’s estimated welfare effects.

Column 3 additionally assumes that consumers took the audit report’s energy savings predic-

tions at face value, whereas only the empirically adjusted savings were realized. This misperception

implies deadweight loss, because consumers made investments that they would not have made if

they knew that the true savings were lower. We accommodate this in the model by calculating

the “actual savings” for investment ij (by multiplying the simulation predictions of savings on the

audit report by the fuel-specific realization rates from Table 5), then setting γij equal to the simu-

lation predictions minus the “actual savings.” In practice, this means that the mean γij across all

recommended investments is $489, so consumers overestimate the present discounted retail energy

savings from the average investment by $489. Under this scenario, the program subsidies generate a

large social welfare loss of $1.92 per subsidy dollar, or $2.8 million for the full sample. This starkly

26As another alternative, we could put aside our assumptions for γAi, γij , φij , and energy savings realization rates,
and we instead assume that the program subsidies were optimally calibrated: that is, γAi equals $200 ($300) in
Madison (Milwaukee), and the total investment distortion (φij − γij) equals the program investment subsidy. Under
these assumptions, the existing program subsidies would be socially optimal, and they would achieve the first best
in our model if home energy use were fully price inelastic. The welfare gains amount to $2.17 per sample household,
or $221,000 for the full sample. While this shows the possible welfare gains if market failures happen to equal the
program subsidies, our calibrations in Table 6 imply that this counterfactual is not realistic.
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highlights how important it is for energy efficiency programs to accurately inform consumers about

how much energy they can expect to save.

Column 4 repeats column 3, except after doubling the social cost of carbon. This somewhat

improves the welfare results, although the improvement is attenuated by the fact that the carbon

savings are attenuated by the empirically estimated realization rates.

Column 5 also modifies column 3, considering a scenario in which energy efficiency improvements

are not capitalized into home resale prices due to asymmetric information problems between home

sellers and buyers. While we do not formally model the details of this asymmetric information

problem, we can capture its implications: homeowners that improve energy efficiency effectively

impose positive externalities on the future buyers of their homes, as the buyers receive a more

energy efficient home without paying a higher price. As a benchmark, we add a positive externality

of 40 percent of the present discounted value of empirically adjusted retail energy cost savings;

that increases the mean investment uninternalized externality by $84.27 Relative to column 3, this

increases the net social welfare gain by about $0.59 per subsidy dollar spent, although the net effect

of the program subsidies remains substantially negative.

VIII.D Discussion

Both the “accounting” and “revealed preference” welfare approaches ignore important additional

issues. First, we have used a static instead of dynamic framework. In reality, consumers know

that if they do not audit or invest now, they can do so later, and their ξAi and ξij could vary over

time—for example, as they get a raise or do a major renovation. As a result, some consumers

who did not audit or invest during our June 2012-September 2013 sample period might do so in

the future, although this is less likely in the absence of the program subsidies. Our framework is

appropriate for modeling takeup over our specific sample period, but it would not be appropriate

for modeling takeup over longer or shorter time periods.

Second, the calculations exclude administrative and marketing costs. In total, the Wisconsin

Better Buildings programs (of which the Milwaukee and Madison programs are just a subset)

facilitated $25.4 million in retrofits and also incurred $528,000 in marketing and outreach and

$11.2 million in other program expenses (DOE 2015b). This suggests that overhead costs were

roughly 46 percent of the total retrofit costs. Applying this 0.46 ratio of overhead/retrofit costs to

the investment costs in our experimental sample implies $2.1 million of overhead costs that could

be allocated to our sample. When these overhead costs are included in the accounting welfare

approach, the benefit/cost ratios in Table 7 are now 0.65 and 0.30 with the simulation predictions

and empirical adjustment, respectively. This compares to 0.92 and 0.43, respectively, without

accounting for overhead costs. Analogously, including overhead costs also substantially worsens

the revealed preference welfare calculations; for example, $2.1 million is just slightly less than the

27This is roughly consistent with a homeowner who sells after 10 years and capitalizes none of the investment in
the sale price, giving the buyer another ten years of a 20-year investment lifetime at a five percent annual discount
rate.
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welfare gains from the “socially optimal” subsidies in Column 3a of Table 8.

Third, part of the goal of the Better Buildings programs was to make investments that would

support an economically sustainable home retrofit market. On the basis of their budget records,

WECC staff report that more than $7.9 million of WECC’s $20 million grant for these programs was

spent in ways that continued to support local retrofit markets after the grant ended, including a loan

loss reserve, program design efforts, technical training and mentoring for contractors, and funding

for cities to continue parts of the programs (Curtis 2017). This does not affect the interpretation

of Tables 7 and 8, as those include only direct audit and investment costs, but it means that

the overhead costs discussed in the previous paragraph have additional benefits that we have not

quantified.

Fourth, the Better Buildings programs were funded with economic stimulus dollars, and job

creation was an important motivation.28 Our analysis is designed to ask whether these programs

would be welfare enhancing in the absence of a macroeconomic stimulus benefit.

IX Conclusion

This paper lays out a framework to evaluate the welfare impacts of residential energy efficiency

programs in the presence of imperfect information, behavioral biases, and externalities, and im-

plements the framework with the help of a 100,000-household randomized field experiment. The

exercise demonstrates that standard revealed preference analysis can be used to evaluate residential

energy efficiency programs and that the results can be used to assess a wide range of counterfactual

policies.

The empirical results are remarkable in that they run counter to many aspects of the conven-

tional wisdom about energy efficiency programs. First, the data provide no statistically or eco-

nomically significant evidence of any of the six potential informational and behavioral failures that

were tested. Second, consumer decisions imply large unobserved benefits and costs that conven-

tional accounting-style evaluations do not measure. Third, there is evidence of strong self-selection

in these programs, such that marginal participants are less likely to make externality-reducing

investments; this makes audit subsidies less socially desirable because they attract participants

who are unlikely to undertake energy efficiency investments. Fourth, the estimated energy savings

from energy efficiency investments are only 58 percent of predicted savings. Fifth, the programs

reduced welfare. In the accounting-style evaluation, the programs have an internal rate of return of

negative 4.1 percent. In our revealed preference model, the programs reduce welfare by $0.18 per

subsidy dollar. The welfare results demonstrate the significant implications of even subtle-seeming

policy design issues and underscore both the feasibility and importance of using revealed preference

techniques to understand the consequences of energy efficiency programs.

While these results may not be encouraging for the program structure we evaluated, the coun-

terfactual simulations suggest that if Pigouvian taxes or other more direct approaches are infeasible,

28DOE (2015c) finds that BBNP created or retained net 10,191 full-time-equivalent jobs, or about one job for every
$44,000 in federal outlays.

35



there are significant opportunities for energy efficiency programs to increase welfare. Specifically,

we find that a hypothetical program with perfectly calibrated subsidies could increase welfare by

$2.53 per subsidy dollar. It is apparent that residential energy efficiency programs have significant

potential, but reaching this potential requires restructuring policies to better target the market

failures that motivate them.
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Tables and Figures

Table 1: Overview of Related Energy Efficiency Programs

Panel A: Policy Overview

(1) (2) (3) (4)

Better Buildings Energy Efficiency U.S. and Canada Weatherization

Neighborhood and Conservation Ratepayer-Funded Assistance Program

Program Block Grants Efficiency Programs (per year,

(2010-2013) (total) (year 2013) pre-stimulus)

Number of programs 41 ∼2000 347 ∼400

Public expenditures $508 million $3.2 billion $8.0 billion $250 million

Buildings retrofitted 119,404 86,000 100,000

Value of predicted energy saved $669 million $2.95 billion $453 million

Panel B: Common Program Evaluation Assumptions

Share of programs

Include non-monetary benefits 30%

Use simulation predictions of savings 97%

of which: Use simulation predictions from other states 70%

Do not evaluate programs retrospectively 81%
Notes: “Public expenditures” includes costs of program operation, including administrative costs and subsi-
dies, but not any investment costs paid by consumers. Better Buildings Neighborhood Program information
in column 1 is from DOE (2015b,c). Energy Efficiency and Conservation Block Grant information in column
2 is from DOE (2014). U.S. and Canada ratepayer-funded program information in column 3 is from CEE
(2015), and energy savings are those that accrue in 2013 only. Weatherization Assistance Program informa-
tion in column 4 is from DOE (2011,2015) and Eisenberg (2010). Program evaluation assumptions are from
Kushler, Nowak, and Witte (2012).
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Table 2: Summary Statistics for Wisconsin Experimental Sample

Variable Mean Std.

Dev.

Min. Max.

Panel A: Household Data

(N=101,881 households in experimental population)

House age (years) 67.2 23.0 0 182

Property value ($000s) 156 90.7 0 2816

Building footprint (sq. feet/1000) 1.24 0.43 0 12.1

Madison 0.31 0.46 0 1

Census tract hybrid vehicle share 1.20 1.26 0 8.33

Audited 0.014 0.12 0 1

Invested 0.008 0.09 0 1

Panel B: Simulation Estimates of Monetary Costs and Benefits

Recommended investments (N=6100 at the 1394 households that had audits)

Cost ($) 1493 1472 17.1 43,600

Retail energy cost savings ($/year) 86.1 145 0.01 4359

Invested 0.51 0.50 0 1

Adopted investments (N=3834 at the 1394 households that had audits)

Cost ($) 1206 1208 0.5 14,475

Retail energy cost savings ($/year) 79.9 134 -526 2501

Panel C: Electricity and Natural Gas Usage

N=1212 households (gas); N=1217 households (electricity)

Number of gas bills observed 51.9 14.2 9 88

Average gas use (therms/day) 2.50 0.98 0.20 9.59

Number of electricity bills observed 53.2 14.2 8 88

Average electricity use (kWh/day) 20.6 9.27 4.16 80.6

Notes: House age, property value, and building footprint are from county administrative data. Census tract
hybrid vehicle share is the percent of registered vehicles in the Census tract that are hybrids, potentially
ranging from 0 to 100. Recommended investments in Panel B include only those used for empirical estimates
of investment takeup, and adopted investments in Panel B include only those used for the “accounting
approach” to welfare analysis. Energy bills are observed only if a household had an audit. Energy prices are
averages over 2011-2014. See Appendix B for more details.
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Table 3: Effects of Letter and Subsidy Treatments on Audit and Investment Takeup

(1) (2)
Dependent Variable: Audited Invested

Received letter 0.158 0.041
(0.093)* (0.070)

Experiment audit subsidy ($00s) 0.525 0.152
(0.146)*** (0.119)

Subsidy: $25 gift card -0.006 -0.125
(0.101) (0.081)

House age (years) 0.014 0.009
(0.001)*** (0.001)***

Property value ($millions) 0.750 0.204
(0.439)* (0.376)

Building footprint (sq. feet/1000) 0.326 0.130
(0.076)*** (0.062)**

Madison 0.171 0.018
(0.113) (0.089)

Census tract hybrid vehicle share 0.198 0.122
(0.039)*** (0.031)***

N 101,881 101,881

Dependent variable mean (percent) 1.4 .8

Notes: This table presents estimates of Equation (8), a probit model using the sample of all households in
the Wisconsin experiment. We present marginal effects, with coefficients multiplied by 100 for readability.
Audited is an indicator for whether the household had a home energy audit, and Invested is an indicator
for whether the household made any energy efficiency investment. Robust standard errors in parentheses.
*, **, ***: statistically different from zero with 90, 95, and 99 percent probability, respectively.
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Table 4: Joint Estimates of Audit and Investment Takeup

(1) (2) (3) (4)

Independent Probits Joint Estimates

Audit Parameters

Received letter 0.0470 0.0482 0.0295 0.0318

(0.0279)* (0.0282)* (0.0253) (0.0254)

Experiment audit subsidy ($00s) 0.156 0.160 0.178 0.182

(0.0438)*** (0.0443)*** (0.0436)*** (0.0447)***

Subsidy: $25 gift card -0.00131 -0.00169 0.0376 0.0372

(0.0304) (0.0307) (0.0280) (0.0281)

Constant -2.260 -2.813 -2.265 -2.833

(0.0236)*** (0.0462)*** (0.0224)*** (0.0459)***

Household covariates No Yes No Yes

Investment Parameters

Subsidy - Cost + Savings ($000s) 0.147 0.119 0.0619 0.0497

(0.0150)*** (0.0173)*** (0.0213)*** (0.0182)***

Constant 0.0485 -2.363

(0.0308) (0.141)***

Investment category indicators No Yes No Yes

Household covariates No Yes No Yes

ρ̂ 0.941 0.944

(0.0599)*** (0.0608)***

Notes: Columns 1 and 2 present the independent probit estimates of Equations (8) and (9), while columns
3 and 4 present estimates of Equation (10) using the maximum likelihood estimator of Van de Ven and Van
Praag (1981). These are coefficients, not marginal effects. All estimates exclude outlier investments with net
private monetary benefits larger than $5,000 in absolute value. ρ̂ is the estimated correlation between the
errors in the audit and investment takeup equations. Robust standard errors in parentheses, clustered by
household. *, **, ***: statistically different from zero with 90, 95, and 99 percent probability, respectively.
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Table 5: Post-Audit Energy Use Changes

(1) (2) (3) (4)
Natural Gas (therms/day) Electricity (kWh/day)

Simulation Energy Simulation Energy
Dependent Variable: Prediction Use Prediction Use

Post audit (<6 months) -0.284 -0.093 -0.296 -0.874
(0.026)*** (0.029)*** (0.026)*** (0.238)***

Post audit (≥6 months) -0.444 -0.128 -0.408 -1.013
(0.032)*** (0.036)*** (0.036)*** (0.319)***

N 61,845 61,845 63,655 63,654

Notes: This table presents estimates of Equation (12) with daily usage of natural gas and electricity, re-
spectively, as the dependent variables. Columns 1 and 3 have the simulation predictions as the dependent
variable, while columns 2 and 4 have energy use as the dependent variable. Mean pre-audit natural gas usage
is 2.40 therms/day, and mean pre-audit electricity usage is 21.4 kWh/day. Average marginal natural gas
price is $0.82 per therm, and average marginal electricity price is $0.136 per kWh. All columns control for
heating and cooling degrees, household-by-calendar month fixed effects, and month-of-sample fixed effects.
Robust standard errors in parentheses, clustered by household. *, **, ***: statistically different from zero
with 90, 95, and 99 percent probability, respectively.

Table 6: Energy Price and Externality Assumptions ($/million Btu)

(1) (2) (3)

Natural Heating

Row Electricity Gas Oil

1 Marginal retail price $39.76 $8.19 $25.18

2 Marginal acquisition cost $9.96 $5.44 $25.18

3 Retail markup (row 1 - row 2) $29.80 $2.75 $0

4 Environmental externality $27.26 $4.50 $12.01

5 Uninternalized externality (row 4 - row 3) -$2.54 $1.75 $12.01

Notes: This table presents energy price and externality assumptions for the three main fuels in the data. All
columns are reported in common units of dollars per million Btu. Energy prices are averages over 2011-2014,
and externality savings are based on a $39 social cost of carbon and a $6 million value of a statistical life.
See Appendix B.C for details.
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Table 7: Welfare Effects: Accounting Approach

(1) (2)

Simulation Empirically

Source of energy savings estimates: Predictions Adjusted

Cost ($millions)

Audit costs (at $400 per audit) 0.56

Investment costs 4.52

Total cost 5.08

Energy Savings ($millions present value at 5% discount rate)

Natural gas 1.92 0.56

Electricity 0.07 0.18

Heating oil 0.61 0.18

Total 2.61 0.92

Externality Reduction ($millions present value at 5% discount rate)

Climate (at $39 per ton CO2) 1.37 0.57

SO2/NOx/PM 0.72 0.68

Total 2.09 1.26

Summary

Benefits - Costs ($millions) -0.39 -2.91

Benefit/Cost ratio 0.92 0.43

Internal rate of return (percent) 4.0 -4.1

Notes: Column 1 uses energy savings projected by simulation models, while column 2 adjusts for empirically
observed savings. Column 2 multiplies electricity and gas/heating oil savings from Column 1 by 2.48 and
0.29, respectively, based on the estimates in Table 5. Energy savings are calculated at average wholesale
prices over 2011-2014, and externality reductions are based on a $39 social cost of carbon and a $6 million
value of a statistical life; see Appendix B.C for details.
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Table 8: Welfare Effects: Revealed Preference Approach, with Base Case Assumptions and Alternative Subsidies

(1) (2a) (2b) (3a) (3b) (4a) (4b)

No Program Externality Audit

Scenario: Subsidy Subsidy Subsidy Only Subsidy Only

Panel A: Program Subsidy Counterfactuals

Audit subsidy in Madison/Milwaukee $0 $200/300 $600/900 $0 $0 $200/300 $400/600

Investment subsidy multiplier on share energy saved – 5,000 15,000 – – – –

Investment subsidy multiplier on externality reduction – – – 1 2 – –

Panel B: Program Impacts on Households and Externalities

Audit probability 0.008% 1.17% 9.94% 0.27% 0.70% 0.17% 2.26%

Investment probability 0.005% 0.65% 1.03% 0.11% 0.40% 0.03% 0.16%

Subsidy paid per sample household $0 $14.48 $142.18 $8.68 $17.73 $0.58 $13.27

Investment expenditures per sample household $0.20 $40.34 $68.99 $11.82 $31.42 $1.39 $6.45

Uninternalized externality benefit per sample household $0.02 $9.67 $42.93 $26.47 $30.29 $0.10 $0.55

Uninternalized externality benefit per dollar subsidy -- 0.67 0.30 3.05 1.71 0.17 0.04

Incremental uninternalized externality benefit per incremental 0.67 0.26 0.42 0.04

dollar subsidy (relative to previous column)

Panel C: Program Impacts on Welfare (Relative to the No Subsidy Case in Column 1)

∆Consumer utility (net of tax) per sample household -$12.25 -$82.29 -$4.53 -$10.45 -$0.40 -$10.31

∆Uninternalized externality per sample household $9.65 $42.92 $26.46 $30.27 $0.08 $0.53

∆Welfare per sample household -$2.60 -$39.37 $21.93 $19.83 -$0.32 -$9.78

∆Welfare per dollar subsidy -0.18 -0.28 2.53 1.12 -0.54 -0.74

Incremental ∆welfare per incremental dollar subsidy -0.18 -0.29 -0.23 -0.75

(relative to previous column)
Notes: This table reports averages across 250 simulated draws of ε. “Program Subsidy” refers to an investment subsidy that scales in the share of
household energy saved. “Externality Subsidy” refers to an investment subsidy that scales in uninternalized externality reduction. Both subsidies are
restricted to be between $0 and $3,500 per investment. Investment probability divides the number of adopted investments by the total number of
possible investments that could be made by the 101,881-household sample. “Per sample household” means per household in the 101,881-household
Wisconsin sample. Uninternalized externality reductions are discounted at a five percent discount rate using the programs’ assumed investment
lifetimes and simulation predictions of savings, based on a $39 social cost of carbon and a $6 million value of a statistical life; see Appendix B.C for
details. In Panel C, consumer utility is from Equation (13), and ∆Welfare is from Equation (14).
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Table 9: Welfare Effects of Program Subsidies Under Alternative Market Failure Assumptions

(1) (2) (3) (4) (5)

Empirically Empirically Empirically Empirically

Adjust Adjust Adjust and Adjust and

Base Externality Savings and Double 40% of Savings

Scenario: Case Only Externality the SCC Not Capitalized

Panel A: Market Failure Assumptions

Audit distortion γAi in Madison/Milwaukee $0 $0 $0 $0 $0

Mean investment distortion γij $0 $0 $489 $489 $489

Mean investment uninternalized externality φij $272 -$3 -$3 $159 $243

Panel B: Program Impacts on Welfare (Relative to the No Subsidy Case)

∆Consumer utility (net of tax) per sample household -$12.25 -$12.25 -$27.04 -$27.04 -$27.04

∆Uninternalized externality per sample household $9.65 -$0.80 -$0.80 $4.50 $7.82

∆Welfare per sample household -$2.60 -$13.05 -$27.83 -$22.53 -$19.22

∆Welfare per dollar subsidy -0.18 -0.90 -1.92 -1.56 -1.33
Notes: This table reports averages across 250 simulated draws of ε. Column 2 adjusts uninternalized externalities φij by multiplying electricity and
gas/heating oil savings by 2.48 and 0.29, respectively, based on the estimates in Table 5. Column 3 repeats column 2, additionally assuming that
consumers misperceive energy savings because they do not anticipate the empirical shortfall. Column 4 repeats column 3, except using a $78 social cost
of carbon. Column 5 repeats column 3, except assuming that energy efficiency investments impose an additional positive externality on future home
buyers equal to 40 percent of present discounted retail energy cost savings. “Per sample household” means per household in the 101,881-household
Wisconsin sample. In Panel B, consumer utility is from Equation (13), and ∆Welfare is from Equation (14).
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Figure 1: Audit Takeup Treatment Effects Scaled by Effect of a $1 Subsidy

Subsidy ($00s)
$25 gift card

Audit cue: Assessment
Time: Seven Year

Prime: Environment
Prime: Climate

Prime: Financial
Financing: Incentives

Financing: Credit
Comparison: Car idling
Comparison: Lights on

Comparison: Door open
Info: Combined

Info: Environment
Info: Climate
Info: Comfort

Info: Financial

-50 0 50 100 150
Effect scaled by effect of $1 subsidy ($)

Notes: This figure presents the point estimates and 90 percent confidence intervals for the treatment effect
estimates from the Wisconsin audit takeup experiment, scaled by the effect of a $1 subsidy. The estimating
equation is Equation (8), and formal estimates are in Appendix Table A.7.
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Figure 2: Net Private Monetary Benefit and Investment Takeup
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Notes: Net private monetary benefit is the present discounted value of retail energy cost savings net of
subsidized cost, or (Sij − Cij +Eij) in the notation of the model. Energy cost savings are computed at the
2011-2014 average retail natural gas and electricity prices in the household’s city (Madison or Milwaukee).
Subsidized costs are the upfront cost net of an imputed subsidy of $500 per 10 percentage point projected
decrease in the household’s pre-audit energy use.
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Figure 3: Average and Marginal Investment Probabilities by Subsidy Level
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Notes: The left panel presents audit probability for each experimental audit subsidy group. The light (gray)
bars on the right panel show the average investment probability by subsidy group, conditional on auditing.
The dark (red) bars on the right panel show the investment probability for households marginal to each audit
subsidy increase. Households that were in the letter control group or the $25 gift card group are excluded
from this figure.
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Figure 4: Energy Use in Event Time
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Notes: This figure presents energy use in event time relative to the household’s audit. The figure is con-
structed by estimating Equation (12) separately for natural gas and electricity, replacing Pit with indicators
for each two-month period within an event window extending 18 months before and after the audit. The
excluded category is the month of the audit and the month before. After estimating separate equations for
natural gas and electricity, we combine coefficients and standard errors for each two-month period, weight-
ing fuels by their retail prices and multiplying by 365 to transform units to annualized retail cost savings.
Dashed lines are 90 percent confidence intervals. Mean pre-audit retail energy costs are $1804 per year.
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Figure 5: Simulation Predictions vs. Empirical Estimates of Post-Audit Energy Savings
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Notes: This figure takes the simulated and actual effects on energy use for households ≥6 months post-audit
from Table 5. The regression coefficients are in therms per day (for gas) and kilowatt-hours per day (for
electricity). They are multiplied by 365 × sample average retail energy prices to give mean annual retail
energy cost savings per audit.
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MEASURING THE WELFARE EFFECTS OF RESIDENTIAL ENERGY EFFICIENCY
PROGRAMS
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A Example Audit Report
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Online Appendix Allcott and Greenstone

Figure A.1: Example Audit Report (Page 1)

   

 

   
 
 
 
 
 

 
 
May 21, 2013 
 
Dear Aaron; 
 
You’re on your way to saving energy and money! Your home energy assessment results are in and Milwaukee Energy 
Efficiency (Me2) is here to help. 
 
The enclosed Home Performance with ENERGY STAR® report is your ticket to savings—not to mention a better, 
more comfortable home. The report tells you how your home performed, including: 
 Facts about your home’s insulation levels, ventilation, and air leakage. 
 What’s really going on—the source of your home’s problems. 
 Personalized and proven solutions to improve your home’s performance. 

 
Me2 provides City of Milwaukee residents with access to more financial offers than ever before. Use available 
incentives and watch your savings add up: 
 Me2 incentive—Me2 is giving you $750 to $2,000 when you complete all of the recommended measures. 
 Energy assessment reimbursement—Complete recommended air sealing work or $1,000 in other energy 

efficiency improvements with a Participating Contractor and you’ll get your $100 energy assessment fee back. 
 Health and Safety Grant—You may qualify for a grant up to $1,000 to fix eligible health and safety issues, including 

electrical upgrades of knob and tube wiring and removal of asbestos, vermiculite, or an oil tank. To receive this grant, 
you must also complete the recommended energy-efficiency improvements. 

 Special financing—Take advantage of optional energy-efficiency financing through Summit Credit Union. Flexible 
terms and fixed interest rates lower than average personal loan rates. Visit SummitCreditUnion.com/SummitMe2 or 
call 800.236.5560 to learn more or to get pre-approved.  

 
Plus, you’ll save on energy bills if you complete the improvements recommended in your report. 
 
Next steps 
You’re so close to having an energy-efficient home. KEEP GOING. Decide which recommended projects you’d like to 
pursue. Pull out the Participating Contractor List. Ask for estimates, schedule the work, and reap the benefits. 
 
Questions?  
Your Me2 team is here to help. Don’t hesitate to contact me or your energy consultant. We can help  
answer questions, prioritize projects, and keep things moving forward.  
 
Sincerely, 
  
Margee Foulke-Evans 
Me2 Energy Advocate 
414-333-6245 
mfoulke@weccusa.org 
 
P.S. Enjoy the perks! Having an energy-efficient home is smart. You’ll save energy and money.  
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Online Appendix Allcott and Greenstone

Figure A.2: Example Audit Report (Page 2)

 

  

Reference Home 
The below diagram is provided for reference as you read your personalized report. It 
illustrates common sources of home energy-efficiency issues and associated 
terminology. 
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Figure A.3: Example Audit Report (Page 3)
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Figure A.4: Example Audit Report (Page 4)
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Online Appendix Allcott and Greenstone

B Data Appendix

B.A Wisconsin Experiment and Program Details

Table A.1 presents an overview of subsidies paid by the Wisconsin programs. Audit subsidies
and the tiered investment subsidy based on percent energy savings are by far the most common
subsidies, so these are the two that we model in the paper.

The numbers in the benefit information treatments in the promotional letters were based on
our best ex ante estimates of the value of energy that the average participant would save. Based
on the program’s previous estimates, we assumed that a typical weatherization job would reduce
energy use by 23 percent. We transformed this to private cost savings using average natural gas and
electricity prices. We transformed this into reduced climate damages using emissions factors from
the National Academy of Sciences and a $21 social cost of carbon, which was the current official
estimate at the time of the experiment (Greenstone, Kopits, and Wolverton 2013). We included
no quantitative information about the benefits through local air pollution reduction. Most of the
energy saved is natural gas, and since natural gas generates little local air pollution, we calculated
relatively small damages. Program staff hypothesized that revealing this would reduce takeup and
asked us to remove the quantitative information.

The recipient households were randomly assigned to be mailed letters in one of eight initial
waves in summer and fall 2012, which were June 11, June 25, July 9, July 23, September 10,
September 24, October 8, and November 22. Households were randomly assigned to be mailed a
second letter in one of four final waves, which were mailed on November 12, 2012, and January 7,
January 28, and February 4, 2013. The 1,051 households that signed up for an audit after May 2012
but before their initial or final wave’s mail date were not sent additional letters. These households
are still included in the analysis.

We used a re-randomization algorithm to ensure balance. Specifically, we wrote an algorithm
that carried out 500 randomizations for each city (Madison and Milwaukee) using 500 different seeds
for the random number generator. For each seed, the algorithm regressed house age, property value,
and building area on the set of all treatment group indicators and found the number of p-values
less than 0.1 and the minimum p-value of each t-test. For each city, the algorithm then chose the
randomization with the largest minimum p-value from the subset of randomizations with the fewest
p-values less than 0.1.

Appendix Table A.2 presents tests of balance on observables. Unsurprisingly, F-tests fail to
reject balance, with high p-values. The Census tract hybrid vehicle share, which was not part of
the re-randomization algorithm, is also highly balanced across treatment groups; that F-test has a
p-value of 0.993.

Appendix Table A.3 summarizes costs and benefits by investment category for both the Wis-
consin and national programs.

Appendix Tables A.4 and A.5 detail the treatments in the Wisconsin field experiment, and
Appendix Figures A.5 and A.6 present example letters from the experiment.

7



Online Appendix Allcott and Greenstone

Table A.1: Overview of Subsidies Paid by Wisconsin Programs

Number of Total

recipient value

Type of subsidy households ($000s)

Audit subsidy 1338 352

Tiered investment subsidy based on energy savings 779 1080

Time-limited completion bonus 637 204

Blower door tests 635 92

Low-income Home Performance bonus 266 591

Randomly assigned experiment audit subsidy 115 6

Health and safety 36 29

Solar 9 18
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Table A.2: Test of Balance on Observables in Wisconsin Experiment

(1) (2) (3) (4) (5)
House Property Building Hybrid

Dependent Variable: Age Value Area Madison Share

Received letter -0.238 -0.000 -0.001 0.002 -0.016
(0.349) (0.001) (0.007) (0.007) (0.019)

Info: Financial 0.119 0.001 0.004 -0.002 0.003
(0.296) (0.001) (0.006) (0.006) (0.016)

Info: Comfort 0.160 -0.000 0.001 0.001 0.005
(0.295) (0.001) (0.006) (0.006) (0.016)

Info: Climate -0.094 0.000 -0.006 0.001 0.018
(0.293) (0.001) (0.006) (0.006) (0.016)

Info: Environment 0.399 -0.000 -0.001 0.001 0.013
(0.296) (0.001) (0.006) (0.006) (0.016)

Info: Combined 0.299 -0.001 -0.008 -0.000 0.011
(0.294) (0.001) (0.006) (0.006) (0.016)

Comparison: Door open -0.032 -0.001 -0.000 -0.003 0.001
(0.230) (0.001) (0.004) (0.005) (0.013)

Comparison: Lights on -0.158 0.001 0.004 -0.002 -0.003
(0.231) (0.001) (0.004) (0.005) (0.013)

Comparison: Car idling -0.258 -0.000 -0.001 0.000 -0.000
(0.228) (0.001) (0.004) (0.005) (0.013)

Financing: Credit 0.107 0.001 0.006 0.001 0.012
(0.199) (0.001) (0.004) (0.004) (0.011)

Financing: Incentives 0.142 -0.000 -0.002 0.000 -0.001
(0.199) (0.001) (0.004) (0.004) (0.011)

Prime: Financial 0.185 -0.001 -0.002 0.001 -0.014
(0.230) (0.001) (0.004) (0.005) (0.013)

Prime: Climate 0.101 -0.000 0.004 0.002 -0.012
(0.230) (0.001) (0.004) (0.005) (0.013)

Prime: Environment 0.187 -0.000 -0.001 -0.001 -0.002
(0.230) (0.001) (0.004) (0.005) (0.013)

Time: Seven year -0.066 0.001 0.003 -0.002 0.006
(0.178) (0.001) (0.003) (0.004) (0.010)

Audit cue: Assessment -0.065 0.000 0.002 -0.001 0.001
(0.172) (0.001) (0.003) (0.003) (0.010)

Subsidy: $100 0.111 0.001 0.002 0.002 0.005
(0.355) (0.001) (0.007) (0.007) (0.019)

Subsidy: $25 0.051 -0.001 -0.003 -0.001 -0.001
(0.204) (0.001) (0.004) (0.004) (0.011)

Subsidy: $25 gift card -0.035 0.001 -0.004 0.001 0.003
(0.213) (0.001) (0.004) (0.004) (0.012)

N 101,881 101,881 101,881 101,881 101,881

F-test p-Value .992 .878 .582 1 .993

Notes: Robust standard errors in parentheses. *, **, ***: statistically different from zero with 90, 95, and
99 percent probability, respectively.
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Table A.3: Summary of Adopted Investments in Wisconsin and National Programs

(1) (2) (3) (4) (5) (6) (7)

National

Pro-

grams

Wisconsin Programs

Category Number

of adop-

tions

Number

on

audit

reports

Number

of adop-

tions

Mean

cost ($)

Mean

whole-

sale

energy

savings

($/year)

Median

internal

rate of

return

(%)

Mean

as-

sumed

measure

life

Insulation 50,622 3923 2059 1233 51 -3.4 20.0

Air sealing 27,454 1358 790 951 67 1.9 20.0

Exhaust fan 2,523 839 428 697 0 . 20.0

New heating/cooling system 25,567 707 279 3584 156 -7.7 18.5

New water heater 10,025 461 136 1711 13 -18.1 14.0

Replace lighting with CFLs 11,634 455 301 8.93 9 127 6.0

Aerators/showerheads 9,451 404 186 2.17 5 375.5 20.0

New windows 6,023 110 16 2867 9 -12.7 20.0

Programmable thermostat 5,104 49 61 305 21 -8.3 11.0

Pipe/duct sealing/insulation 11,629 35 6 481 41 1.9 18.3

Appliance replacement 1,959 33 0 . . . .

Chimney liner 1,139 21 0 . . . .

Unspecified weatherization 11,550 . . . . . .

Notes: Adoption counts for national programs reflect the number of households that made an investment in
that category within the 58,418 households that have valid data. Count on audit reports and adoption counts
for Wisconsin programs reflect the number of investments within the category from the 1394 households that
had audits, possibly including more than one per household. Cost is unsubsidized upfront cost, and energy
savings are based on simulation estimates and 2011-2014 wholesale energy price averages. Internal rate of
return is at unsubsidized costs and energy acquisition costs.
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Table A.4: Details of “Informational” Treatments in Wisconsin Experiment

Treatment Share Text

Benefit Info

Financial 1/6 More savings. Using less energy saves you money. Act on recommended energy-

efficiency improvements and you could save around $[340 / 2,400] on your energy

bills over the next [one year / seven years].

Comfort 1/6 Feel better at home. Using less energy can lead to greater comfort and a healthier

home. When done right, energy-efficiency projects can improve indoor air quality

while reducing humidity, drafts, and mold. Plus, you could save around $[340 /

2,400] on your energy bills over the next [one year / seven years].

Climate 1/6 Reduce your carbon footprint. Using less energy reduces greenhouse gas emis-

sions that can contribute to climate change. Climate experts calculate that your

reduced greenhouse gas emissions over the next [one year / seven years] would ben-

efit people across the world by the equivalent of $[60 / 420]. Plus, you could save

around $[340 / 2,400] on your energy bills over that same time.

Environment 1/6 Help the planet. Using less energy reduces local air pollution. Reductions in

air pollution can lead to longer lives and reduced allergies and asthma, creating a

healthier environment for you and your community. Plus, you could save around

$[340 / 2,400] on your energy bills over the next seven years.

Combined 1/6 Savings for you, your community, and our world. Using less energy saves

you money while reducing air pollution and greenhouse gases. Reductions in air

pollution can lead to longer lives and reduced allergies and asthma, creating a

healthier environment for you and your community. Climate experts calculate that

your reduced greenhouse gas emissions over the next seven years would benefit

people across the world by the equivalent of $[60 / 420]. Plus, you could save

around $[340 / 2,400] on your energy bills over that same time.

Control 1/6 Reduce energy use. Reduce your energy use at home and enjoy the many benefits

of energy efficiency. You’ll soon see that conserving energy is great for you, your

family, and the greater community.

Financing

Credit 1/3 Low-interest, flexible term financing is available. Energy savings can help pay off

your loan!

Incentives 1/3 Collect cash incentives!

Control 1/3 Remember, saving energy is smart for everyone!

Comparison Giving up this opportunity . . .

Door 1/6 wastes as much energy as leaving your front door wide open for three hours each

day in the winter.

Light 1/6 wastes more energy than leaving all the lights in your house on all day, every day.

Car 1/6 wastes about as much energy as leaving your car idling outside for an hour every

day.

Control 1/2 is like missing out on the chance to improve your home.
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Table A.5: Details of “Behavioral” and Subsidy Treatments in Wisconsin Experiment

Treatment Share Text

Graphical Prime

Financial 1/4 make BANK. Shrink your energy bills. Get paid.

CASH in. Save energy. Save money.

Environmental 1/4 earth LOVER. Save energy at home. Save the planet.

breathe EASY. Energy-efficient home. Cleaner air.

Climate 1/4 take CONTROL. Save energy. Reduce your carbon footprint.

PEACE of MIND. Energy-efficient home. Brighter future

Comfort 1/4 COMFY. Save energy. Live comfortably.

COZY. Feel better in your home.

Time Frame

Seven years 1/2 Example: “you could save around $2,400 on your energy bills over the next seven

years.”

One year 1/2 Example: “you could save around $340 on your energy bills over the next year.”

Audit Cue

Assessment 2/3 “home energy assessment”

Audit 1/3 “home energy audit”

Subsidy** Call to schedule a home energy [assessment/audit]. Usual cost: $400 ...

$100 Subsidy 0.06 You pay [nothing / only $200]!

$25 Subsidy 0.23 You pay only $[75 / 175]!

$25 Gift Card 0.20 You pay only $[100 / 200]! Bonus! Receive a $25 Visa Reward Card just for

completing an [assessment/audit]!

Control 0.51 You pay only $[100 / 200]!

**: These prices differed by city: the program subsidized the base price of audits (without the additional
experimental subsidy) to $100 in Milwaukee and $200 in Madison.
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Figure A.5: Wisconsin Experiment Sample Letter 1
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Figure A.6: Wisconsin Experiment Sample Letter 2

14



Online Appendix Allcott and Greenstone

B.B Better Buildings Neighborhood Program Data Preparation

The Better Buildings Neighborhood Program (BBNP) website provides household-level microdata
for 75,110 retrofits of single-family homes at 37 different sites.29 For each home, the data include
total unsubsidized cost, simulation estimates of total annual energy savings in dollars (top-coded
at $2500) and in physical quantities of natural gas, electricity, heating oil, propane, kerosene,
and wood, and counts of investments made by category. We combine the physical quantities
with state-specific average energy prices for 2011-2014 (described below) to construct annual cost
savings, then construct present discounted values using five percent discount rates and investment
life assumptions from Heaney and Polly (2015).

Column 1 of Appendix Table A.3 presents counts of adopted investments. The distribution of
investment categories in Wisconsin is similar to in the nationwide program: primarily insulation,
air sealing, and new heating and cooling systems.

Because the data were reported by 37 different agencies, there are some inconsistencies and
implausible observations. We drop observations with:

• missing or negative costs,

• missing or negative constructed cost savings,

• reported energy cost savings that are not top-coded and differ from our constructed cost
savings by more than a factor of two, if either the reported or constructed annual energy cost
savings exceed $1000,

• payback periods faster than one year and costs greater than $2500 (these are primarily air
sealing, insulation, and windows, not CFL replacement, so a one-year payback strongly sug-
gests misreported data), or

• constructed cost savings less than the 1st percentile or larger than the 99th percentile, similar
to the Heaney and Polly (2015) approach.

This leaves 58,418 valid retrofits in our sample.

B.C Energy Price and Externality Assumptions

All fuel prices are means for 2011-2014. We observe the state for each home retrofitted in the
national Better Buildings Neighborhood Program data, so we match in state-specific average fuel
prices for 2011-2014.30 We use natural gas “citygate” prices as wholesale prices.

29The data are available from http://energy.gov/eere/better-buildings-neighborhood-program/downloads/better-
buildings-neighborhood-program-data-1, with documentation at http://energy.gov/eere/better-buildings-
neighborhood-program/downloads/better-buildings-neighborhood-program-data.

30For retail electricity, these are from the EIA “Electricity Data Browser,” available from
http://www.eia.gov/electricity/data.cfm. Quantity-weighted “all-in” wholesale electricity prices for 2011-2014
in the ERCOT, New York, New England, PJM, Midcontinent, and California power markets are from data
reported by market operators to Potomac Economics and presented in Figure 4 of Potomac Economics (2015b).
These prices include energy prices, ancillary services and uplift charges, and capacity costs where applicable,
so they reflect the long-run marginal cost of electricity. We map each US state to one of these markets, and
we impute the national average price for states that are not in one of the markets. Citygate natural gas prices
are from http://www.eia.gov/dnav/ng/ng pri sum a epg0 pg1 dmcf a.htm. Residential retail natural gas prices
are from http://www.eia.gov/dnav/ng/ng pri sum a epg0 prs dmcf a.htm. Residential heating oil prices are
from http://www.eia.gov/dnav/pet/pet pri wfr a epd2f prs dpgal w.htm, and residential propane prices are from
http://www.eia.gov/dnav/pet/pet pri wfr a epllpa prs dpgal w.htm.

15



Online Appendix Allcott and Greenstone

For electricity and retail natural gas in the Wisconsin programs, we gathered marginal retail
prices from staff at the Madison and Milwaukee utilities. Both utilities use time-invariant resi-
dential electricity prices, except that Madison charges higher prices during the June-September
summer peak. We construct a consumption-weighted average price using 2011-2014 monthly aver-
age electricity consumption data for Madison Gas and Electric reported on the EIA Form 826. For
natural gas, both utilities have prices that vary by month. We construct consumption-weighted
average retail prices using Wisconsin 2011-2014 monthly average retail natural gas consumption
from EIA.31 For citygate natural gas, wholesale electricity, and residential heating oil prices, we
use the Wisconsin data from the same EIA sources as for the national program.

Externality damage assumptions build primarily on Holland, Mansur, Muller, and Yates (2015),
who graciously shared their data with us. Their key assumptions are a $6 million value of a
statistical life and a fine particulate dose response function from Pope et al. (2002). For electricity,
Holland et al. (2015) provide estimates of average marginal damages by pollutant, NERC region,
and hour. We weight the hours by residential load shapes from the Integral Analytics DSMore model
and sum across pollutants to get average marginal damages by state per kilowatt-hour conserved.
Holland et al. also provided county-by-pollutant marginal damages for non-point sources, which
are relevant for natural gas and heating oil combustion from sources such as homes that do not
have smokestacks. We inflate these to 2013 dollars, collapse these to the state level, weighting by
2011 population, and multiply the state average marginal damages by pollutant-specific emission
factors for natural gas, heating oil, propane, kerosene, and wood from the AP-42 database (EPA
1995). We use a $39 social cost of carbon, based on estimates from the Interagency Working Group
on the Social Cost of Carbon (2013) for 2013 and inflated to real 2013 dollars.

Drawing on Howarth et al. (2012) and Abrahams et al. (2015), we assume that three percent
of natural gas leaks as methane during drilling and transportation before arriving in homes. We
translate this to carbon dioxide equivalents using a methane global warming potential of 34 from
the Intergovernmental Panel on Climate Change (Myhre et al. 2013). This increases the natural
gas climate change externality by 38 percent, or $0.10/therm for residential natural gas.32

For heating oil sulfur content, we assume 2500 parts per million, except in Connecticut, Delaware,
Maine, Massachusetts, New Hampshire, New Jersey, New York, and Pennsylvania, which are phas-
ing in maximum fuel oil sulfur content regulations by 2018. In these states, we construct the present
value of average sulfur content over 2013-2032, using a five percent discount rate and maximum
allowable fuel sulfur content reported by the New England Fuel Institute (2014). We assume that
maximum fuel oil sulfur content restrictions larger than 2500 ppm are non-binding.

Appendix Table A.6 summarizes the energy price and externality assumptions. Climate exter-
nality refers to carbon dioxide emissions, plus methane leakage for residential natural gas. Column
1 presents averages for the Wisconsin experiment population. Retail gas and electricity prices differ
only slightly between Madison and Milwaukee, and the table presents the average weighted by the
share of the audited population in each city. Column 2 presents averages across all households in
the national sample.

The table highlights three key issues. First, retail prices substantially exceed wholesale prices
for both electricity and natural gas. Indeed, consistent with Davis and Muehlegger (2010), the
retail natural gas markup more than exceeds the externality damages for the national programs,
meaning that it may be optimal to tax investments that conserve natural gas. This is not the case

31This is available from http://tonto.eia.gov/dnav/ng/hist/n3010wi2m.htm.
32Although this leakage also affects climate damages from electricity consumption, we do not include this because

our data from Holland, Mansur, Muller, and Yates do not include whether natural gas was on the margin. If natural
gas were on the margin 50 percent of the time, the electric power climate externality in Appendix Table A.6 would
be 38% × 50% × 2.3 cents/kWh ≈ 0.45 cents/kWh larger.
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in Wisconsin, as the retail markup is lower. Second, the SO2/NOx/PM externality for electricity is
more than twice the climate externality. This is largely driven by the SO2 component. Of course,
reducing sulfur content in coal and fuel oil and/or using post-combustion controls would be more
direct approaches to sulfur emission abatement than reducing energy use. Third, the retail price
distortion per unit of energy use (in the bottom row of each panel) differs markedly between the
three fuels. As discussed in the body of the paper, this means that subsidizing physical units of
energy reduction is very different than subsidizing to correct uninternalized externalities.

Table A.6: Energy Price and Externality Assumptions

(1) (2)

Wisconsin National

Programs Programs

Electricity ($/kWh)

Retail price 0.136 0.139

Wholesale price 0.034 0.049

Climate externality 0.024 0.023

SO2/NOx/PM externality 0.069 0.048

Retail price-social cost 0.009 0.019

Retail price-social cost ($/mmBtu) 2.54 5.57

Natural gas ($/therm)

Retail price 0.82 1.10

Citygate price 0.54 0.53

Climate externality 0.35 0.35

SO2/NOx/PM externality 0.10 0.09

Retail price-social cost -0.17 0.13

Retail price-social cost ($/mmBtu) -1.75 1.30

Heating oil ($/gallon)

Price 3.50 3.82

Climate externality 0.48 0.48

SO2/NOx/PM externality 1.19 1.14

Retail price-social cost -1.67 -1.62

Retail price-social cost ($/mmBtu) -12.01 -11.65
Notes: This table presents household-weighted averages of prices and externality damages per unit of energy.
Energy prices are averages over 2011-2014, and externality savings are based on a $39 social cost of carbon
and a $6 million value of a statistical life. The bottom row of each panel uses the fact that there are 293
kWh, 10 therms, or 7.19 gallons of electricity, natural gas, or heating oil per million British thermal units
(mmBtu), respectively.

17



Online Appendix Allcott and Greenstone

C Appendix to Audit and Investment Takeup Estimates

C.A Additional Experimental Results
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Table A.7: Effects of All Treatment Variations on Audit and Investment Takeup

(1) (2)
Dependent Variable: Audited Invested

Info: Financial 0.148 0.149
(0.138) (0.109)

Info: Comfort 0.080 0.103
(0.138) (0.108)

Info: Climate -0.090 -0.086
(0.142) (0.114)

Info: Environment 0.035 0.148
(0.140) (0.108)

Info: Combined -0.072 -0.034
(0.142) (0.113)

Comparison: Door open -0.027 0.070
(0.108) (0.083)

Comparison: Lights on -0.176 -0.076
(0.112) (0.087)

Comparison: Car idling -0.025 -0.007
(0.108) (0.085)

Financing: Credit 0.009 0.047
(0.094) (0.074)

Financing: Incentives 0.050 0.067
(0.094) (0.074)

Prime: Financial -0.122 -0.108
(0.109) (0.086)

Prime: Climate 0.008 0.055
(0.107) (0.083)

Prime: Environment -0.098 -0.099
(0.108) (0.086)

Time: Seven year -0.002 -0.009
(0.084) (0.066)

Audit cue: Assessment -0.100 -0.018
(0.081) (0.064)

Subsidy: $25 gift card -0.005 -0.124
(0.100) (0.081)

Experiment audit subsidy ($00s) 0.521 0.153
(0.145)*** (0.118)

N 101,881 101,881

Notes: This table presents estimates of Equation (8). We present marginal effects, with coefficients multiplied
by 100 for readability. Audited is an indicator for whether the household had a home energy audit, and
Invested is an indicator for whether the household made any energy efficiency investment. All regressions
include controls for house age, property value, building footprint, city, and hybrid share. Robust standard
errors in parentheses. *, **, ***: statistically different from zero with 90, 95, and 99 percent probability,
respectively.
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Table A.8: Tests of Whether Groups of Treatments Jointly Affect Takeup

(1) (2)

Dependent Variable: Audited Invested

Benefit info treatments 0.45 0.11

Comparison treatments 0.47 0.58

Graphical prime treatments 0.52 0.16

All “informational” treatments 0.63 0.24

All “behavioral” treatments 0.58 0.38

All non-subsidy treatments 0.67 0.24

Subsidy treatments 0.001 0.07

Notes: This table presents p-values of Wald tests of whether groups of coefficients in Appendix Table A.7
jointly differ from zero. Audited is an indicator for whether the household had a home energy audit, and
Invested is an indicator for whether the household made any energy efficiency investment.
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C.B Investment Takeup Estimates

Appendix Figure A.7 re-creates Figure 2 with internal rate of return instead of net benefit on the
x-axis. Because IRR and net benefit are closely connected, the figure looks very similar.

Appendix Table A.9 presents marginal effects from probit estimates of Equation (9). Except for
in column 4, we limit the sample to observations with ‖(Sij − Cij + Eij)‖ ≤ $5000 to reduce the
influence of outliers. Column 1 presents estimates excluding household covariates Xi. Consistent
with Figure 2, takeup increases by 5.9 percentage points for every $1000 increase in projected
monetary benefit.

As discussed in the body of the paper, because (Sij−Cij +Eij) is not randomly assigned, we can
only cautiously interpret η̂I as a demand slope. The unobservable εij would be positively correlated
with Eij if energy savings bring warm glow utility or are associated with more in-home comfort.
Furthermore, εij would be negatively correlated with Cij if higher-cost projects also require more
non-monetary effort to implement, e.g. if larger home construction jobs are both more costly and
more of a hassle for the homeowner. Both of these possible correlations would bias η̂I upward,
meaning that investment takeup might be even more inelastic than we estimate.

Columns 2 and 3 explore these concerns. Column 2 adds the Xi covariates to column 1; the
marginal effect of η̂I does not change. Column 3 allows separate η̂I coefficients on future savings
Eij vs. net upfront costs Cij − Sij . The coefficients are economically and statistically similar to
each other and to the η̂I coefficients in columns 1 and 2. Thus, either the ηI coefficient does not
have large bias, or εij happens to have very similar correlations with Eij vs. Cij − Sij .

Column 4 includes the additional 110 recommended investments with ‖(Sij − Cij + Eij)‖ >
$5000. These estimates could be more heavily driven by outliers – for example, there are four rec-
ommendations with ‖(Sij − Cij + Eij)‖ ≥ $25, 000. The η̂I coefficient is smaller, further reinforcing
the finding of inelastic demand.

The theoretical framework and welfare analysis allow for various market failures that might
affect demand for audit and investments. One potential example is asymmetric information prob-
lems that could prevent investments’ full benefits from being capitalized into home resale prices.
If people have some foresight into their possible future moves, such a market failure would cause
households that move sooner to be less likely to invest. However, column 5 shows that the 37 au-
dited households that close their utility accounts more than six months post-audit but during our
sample are no less likely to invest. This provides no evidence that this potential market failure is
relevant for investment decisions, although it could in principle affect whether people have audits.

Column 6 includes an additional control for the experimental audit subsidy offered to household
i, in units of $100s. This subsidy does not affect investment incentives conditional on auditing, but
it does cause selection into auditing. Households that audited under a $100 larger audit subsidy
are a remarkable 12.9 percentage points less likely to invest, conditional on Xi and Sij −Cij +Eij .
This reinforces our discussion of the positive correlation between εAi and εij .

Different types of home energy efficiency investments entail substantially different unobserved
net benefits. Appendix Figure A.8 presents the estimated ξ̂j from a regression that is identical to
the investment takeup probit in column 1 of Appendix Table A.9, except that it allows the constant
term to vary by investment category. The close correspondence between takeup rates (against the
right axis) and ξ̂j (against the left axis) emphasizes that takeup rates identify ξ̂j : if many consumers
adopt an investment after being informed about its costs and benefits, we infer that they must derive
more utility from it. Air sealing, insulation, and programmable thermostats have the most positive
ξ̂j , while windows and pipe and duct sealing/insulation have the most negative.
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Figure A.7: Private Internal Rate of Return and Investment Takeup in Wisconsin
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Notes: Internal rates of return are computed at the 2011-2014 average retail natural gas and electricity prices
in the household’s city (Madison or Milwaukee). Subsidized costs are the upfront cost net of an imputed
subsidy of $500 per 10 percentage point projected decrease in the household’s pre-audit energy use. These
are annualized IRRs, assuming that energy savings accrue in equal monthly installments until the end of the
investment’s projected life.
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Table A.9: Post-Audit Investment Takeup Estimates

(1) (2) (3) (4) (5) (6)

Subsidy - Cost + Savings ($000s) 0.059 0.059 0.028 0.059 0.059
(0.006)*** (0.006)*** (0.007)*** (0.006)*** (0.006)***

Constant 0.019 0.132 0.134 0.111 0.133 0.151
(0.012) (0.056)** (0.056)** (0.056)** (0.056)** (0.056)***

Energy Savings PDV ($000s) 0.056
(0.007)***

Subsidy - Cost ($000s) 0.062
(0.007)***

Closed account 0.026
(0.083)

Experiment audit subsidy ($00s) -0.129
(0.046)***

N 5,990 5,990 5,990 6,100 5,990 5,990

Household covariates No Yes Yes Yes Yes Yes
Exclude outliers Yes Yes Yes No Yes Yes

Notes: This table presents marginal effects estimates of Equation (9), a probit model using the sample of
recommended investments in the Wisconsin experiment. All columns except for column 4 exclude outliers
with net private monetary benefits larger than $5,000 in absolute value. The additional variable in column
5, Closed account, is an indicator for the 124 investments at 37 households that closed their gas and elec-
tric accounts more than six months after the audit but before our data end. Robust standard errors in
parentheses, clustered by household. *, **, ***: statistically different from zero with 90, 95, and 99 percent
probability, respectively.
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Figure A.8: Mean Unobserved Attribute of Recommended Investments
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D Appendix to Estimates of Effects on Energy Use

D.A Additional Figures

Figure 4 combines event time estimates for natural gas and electricity. In this appendix, we present
the separate estimates for each fuel. To parallel Appendix Table A.11 below, we also consider using
the first investment date as the event, instead of the audit. Note that even in the post-investment
figures, simulation model savings continue increasing (in absolute value) after month 0 because
that month marks the first investment, which for many households is a “direct install” measure
put in during the audit, and many of these same households later make larger investments through
a contractor.

Appendix Figures A.9 and A.10 present the natural gas and electricity estimates underlying
Figure 4. In each figure, Panel (a) presents the estimates relative to the audit date, while Panel
(b) presents the estimates relative to the first investment date. There are no significant pre-audit
or pre-investment trends in either gas or electricity use. Immediately after the audit or investment,
energy use decreases. By the end of the first year post-audit, natural gas usage averages 0.09
therms/day lower, and electricity usage averages about 1.6 kWh/day lower. Relative to pre-audit
averages of 2.40 therms/day and 21.4 kWh/day, these represent approximately four and seven
percent reductions.

Relative to the empirical estimates, the simulations predict much larger natural gas savings,
both post-audit and post-investment. By contrast, the empirical estimates for post-audit elec-
tricity savings are much larger than predicted, and the post-investment estimates are noisy and
indistinguishable from the prediction. Note that although Eit = 0 for all t before the audit, the
coefficient estimates are not exactly zero before the audit and investment due to the inclusion of
month-of-sample effects µm.

Appendix Figures A.11 and A.12 present analogues to Appendix Figures A.9 and A.10, except
limiting the sample to a “balanced” set of households whose energy bills are observed over the entire
event window of 18 months before to 18 months after. (For the investment figures, households that
made no investments are also included as controls.) This eliminates the possibility of compositional
effects, i.e. that systematically different sets of households would identify treatment effects for
different months. The “balanced” group of households turns out to have made larger investments:
on average, they were projected to save 17 percent more gas and 36 percent more electricity than
the non-balanced group by the end of the first year post-audit. Thus, the energy savings in Figures
A.11 and A.12 are somewhat larger than for the full sample. Otherwise, the figures look very
similar.

Appendix Figures A.13 and A.14 present analogues to Figures A.11 and A.12, except over a
shorter time window. Because these figures limit to the “balanced” set of households observed over
the entire window in order to eliminate compositional effects, limiting to a smaller window allows
us to include additional households that are observed only over a shorter period. This and other
time windows all give essentially the same pictures as Figures A.11 and A.12.

Appendix Figure A.15 presents the audit event studies for households with no recorded in-
vestments. Again, there are no discernible pre-trends. The point estimates suggest a slight but
imprecisely estimated post-audit increase in natural gas use.
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Figure A.9: Natural Gas Usage in Event Time
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(b) Post-Investment
Notes: This figure presents energy use in event time relative to the household’s audit or investment. Dashed
lines are 90 percent confidence intervals. Mean pre-audit natural gas usage is 2.40 therms/day.
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Figure A.10: Electricity Usage in Event Time
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(b) Post-Investment
Notes: This figure presents energy use in event time relative to the household’s audit or investment. Dashed
lines are 90 percent confidence intervals. Mean pre-audit electricity usage is 21.4 kWh/day.
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Figure A.11: Natural Gas Usage in Event Time in Balanced Sample
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(b) Post-Investment
Notes: This figure presents energy use in event time relative to the household’s audit or investment. Dashed
lines are 90 percent confidence intervals. Mean pre-audit natural gas usage is 2.40 therms/day. This parallels
Figure A.9 but includes on the “balanced” sample of households.
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Figure A.12: Electricity Usage in Event Time in Balanced Sample
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(b) Post-Investment
Notes: This figure presents energy use in event time relative to the household’s audit or investment. Dashed
lines are 90 percent confidence intervals. Mean pre-audit electricity usage is 21.4 kWh/day. This parallels
Figure A.10 but includes on the “balanced” sample of households.
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Figure A.13: Natural Gas Usage in Event Time in Balanced Sample over Shorter Win-
dow
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(b) Post-Investment
Notes: This figure presents energy use in event time relative to the household’s audit or investment. Dashed
lines are 90 percent confidence intervals. Mean pre-audit natural gas usage is 2.40 therms/day. This parallels
Figure A.11 but covers a shorter time window.
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Figure A.14: Electricity Usage in Event Time in Balanced Sample over Shorter Window

-3
-2

-1
0

1
E

le
ct

ric
ity

 u
sa

ge
 (

kW
h/

da
y)

-15 -10 -5 0 5 10
Months after audit

Empirical estimate Simulation prediction

(a) Post-Audit

-3
-2

-1
0

1
E

le
ct

ric
ity

 u
sa

ge
 (

kW
h/

da
y)

-15 -10 -5 0 5 10
Months after first investment

Empirical estimate Simulation prediction

(b) Post-Investment
Notes: This figure presents energy use in event time relative to the household’s audit or investment. Dashed
lines are 90 percent confidence intervals. Mean pre-audit electricity usage is 21.4 kWh/day. This parallels
Figure A.12 but covers a shorter time window.
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Figure A.15: Energy Use in Event Time for Households with No Recorded Investments
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Notes: This figure presents energy use in event time relative to the household’s audit, for the subsample
of households that made no recorded investments. Dashed lines are 90 percent confidence intervals. Mean
pre-audit natural gas usage is 2.40 therms/day, and mean pre-audit electricity usage is 21.4 kWh/day.
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D.B Extensions to Table 5

Appendix Table A.10 presents robustness checks and extensions to Table 5. As with Table 5,
columns 1 and 2 present natural gas estimates, while columns 3 and 4 present electricity estimates.
Columns 1 and 3 limit the sample to households that made no observed investments, paralleling
Appendix Figure A.15. Three of the four coefficients on the post audit indicators are statistically
insignificant, which would suggest that these households do not make significant unobserved in-
vestments. For natural gas, however, the coefficient on Post audit (≥6 months) is positive and
significant with 90 percent confidence.33

Columns 2 and 4 repeat columns 1 and 3 of Table 5, except with weather-unadjusted simulation
estimates as the dependent variable. The estimates are similar to but slightly smaller than the
estimates using weather-adjusted predictions. This implies that the post-audit and post-investment
samples include slightly more extreme temperatures, in which more savings would be expected
relative to prediction. The ≥ 6 month gas realization rate using the weather-unadjusted results
in column 3 is -0.128/-0.409≈31 percent. For comparison, the weather-adjusted figure reported in
Figure 5 was 29 percent.

In the body of the paper, we defined Pit as a pair of post-audit indicators, estimating the
effects of audits plus subsequent investments. Appendix Table A.11 parallels Table 5, except adding
post-investment indicators to Pit. Recall that Eit takes value 0 before investments are made and
equals the predicted savings thereafter. Many households audited but did not invest, so the post-
audit indicators from Table 5 represent a diluted effect of investments in the larger population
of households that audited. In Appendix Table A.11, the predicted post-investment savings now
load more heavily onto the post-investment indicators. There are small decreases associated with
the post-audit indicators in column 3 due to the combination of minor compositional effects with
month of sample dummies µm.

These results can be used to construct an alternative realization rate based on the post-
investment coefficients. The natural gas realization rate is 0.458/1.036≈44%, while the electricity
realization rate is 0.199/0.836≈24%. When combined at retail prices, this gives an over realization
rate of 42 percent.

The main interesting feature of this table is that the electricity savings in column 4 are much
more strongly associated with the post-audit indicators than the post-investment indicators. This
suggests that the excess electricity savings may not be attributable to the observed investments,
which in any event are largely projected to save natural gas. Instead, the excess savings could result
from unobserved actions taken after the audit, such as additional CFL installation and appliance
replacement, that would not be recorded in the programs’ administrative data. When adjusting
the accounting welfare analysis in Section VIII for empirically realized savings, we assume that
the excess electricity savings accrue because of the observed investments, which may cause us to
understate total investment costs for the empirically estimated energy savings. This biases against
our finding that program costs outweighed benefits.

To better understand the differences between the simulation and empirical estimates, we con-
struct a “shortfall” variable Yit−Eit, measuring the difference between actual usage and predicted
savings. Columns 1 and 3 of Appendix Table A.12 regress this shortfall on the interaction of
post-audit indicators with indicators for whether the household made made one of the three most

33Additional regressions show that this apparent post-audit gas use increase is unlikely to be driven by unobserved
energy efficiency investments: the increase is no larger at households that received recommendations of new heating
and cooling systems or water heaters. The increase is unlikely to be driven by substitution from electricity to gas:
post-audit gas use changes are not associated with electricity use changes. We do find that the apparent usage increase
is limited to only above-median natural gas users. Our best guess is that the apparent increase is an idiosyncratic
result for a subset of heavy users where the difference-in-differences controls are imperfect.
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common investments: insulation, heating/cooling, and “other,” which includes air sealing, new
water heaters, new windows, pipe and duct sealing and insulation, and programmable thermostats.
Positive coefficients mean that the investment is associated with a savings shortfall, while negative
coefficients mean that the investment is associated with excess savings. Column 1 shows that insu-
lation and heating/cooling are not statistically significantly associated with the shortfall variable,
although the t-statistic on insulation is around 1.3. By contrast, natural gas shortfalls are statisti-
cally significantly associated with investments in the “other” category. (We do not have sufficient
power to further disaggregate the “other” category.) Consistent with our results, a recent report by
the TREAT model developers (PSD 2015b) also finds that air sealing and insulation predictions are
important contributors to low realization rates. The TREAT model is “in close alignment with the
predictions from best-in-class modeling tools” (PSD 2015b), so this finding may be more general
than just TREAT.

Columns 2 and 4 add an indicator for whether a new appliance appears in the household’s
list of recommended measures. The program’s takeup data do not include appliances because
they were not subsidized, but the fact that this last interaction is significant suggests that these
households may have reduced both natural gas and electricity use through unobserved appliance
purchases. However, only 25 households in the energy use data were recommended appliances, so
this is not enough to fully explain the excess post-audit electricity savings relative to the simulation
predictions.

See Blasnik (2010), Nadel and Keating (1991), and PSD (2015b) for more in-depth discussions
of why simulations can systematically overestimate empirically realized savings. One broad class
of explanations has to do with the assumptions and parameters used by the program and its
auditors. For example, a home’s baseline energy use could be overstated, giving excess simulated
savings. This explains most of the empirical shortfall in the PSD (2015b) New York study. In
the Wisconsin programs, however, only 12 percent of pre-audit observations were calibrated with
estimates instead of the audited household’s true baseline energy use, so this particular factor seems
unlikely to explain much of the our estimated shortfall.34 Another factor that could cause excess
simulated savings in Wisconsin and elsewhere is that simulations often assume best-case installation
scenarios that could not be realized except through great effort by the most expert contractors.
This, or any other source of systematic bias, can be addressed (on average) by scaling back all
predictions by some factor less than one.

34The default calibrations were 23 percent lower and 12 percent higher than the average audited household’s
pre-audit usage of gas and electricity, respectively.
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Table A.10: Post-Audit Energy Use Changes: Alternative Estimates

(1) (2) (3) (4)
Natural Gas (therms/day) Electricity (kWh/day)

Non- Weather- Non- Weather
Investors’ Unadjusted Investors’ Unadjusted
Energy Simulation Energy Simulation

Dependent Variable: Use Prediction Use Prediction

Post audit (<6 months) 0.068 -0.225 -0.416 -0.292
(0.043) (0.021)*** (0.395) (0.025)***

Post audit (≥6 months) 0.112 -0.409 -0.145 -0.402
(0.057)* (0.029)*** (0.524) (0.034)***

N 22,455 61,845 23,098 63,655

Notes: This table presents alternative estimates of Equation (12). Columns 1 and 3 present estimates
for households with no recorded investments. Columns 2 and 4 present estimates of Equation (12) with
weather-unadjusted simulation predictions as the dependent variable. Mean pre-audit natural gas usage is
2.40 therms/day, and mean pre-audit electricity usage is 21.4 kWh/day. Average marginal natural gas price
is $0.82 per therm, and average marginal electricity price is $0.136 per kWh. All columns control for heating
and cooling degrees, household-by-calendar month fixed effects, and month-of-sample fixed effects. Robust
standard errors in parentheses, clustered by household. *, **, ***: statistically different from zero with 90,
95, and 99 percent probability, respectively.
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Table A.11: Post-Investment Energy Use Changes

(1) (2) (3) (4)
Natural Gas (therms/day) Electricity (kWh/day)

Simulation Energy Simulation Energy
Dependent Variable: Prediction Use Prediction Use

Post audit (<6 months) 0.010 0.016 -0.082 -0.796
(0.021) (0.030) (0.019)*** (0.259)***

Post audit (≥6 months) 0.013 0.067 -0.045 -0.918
(0.022) (0.037)* (0.023)** (0.340)***

Post investment (<6 months) -0.849 -0.323 -0.626 -0.217
(0.030)*** (0.030)*** (0.037)*** (0.293)

Post investment (≥6 months) -1.036 -0.458 -0.836 -0.199
(0.031)*** (0.037)*** (0.052)*** (0.345)

N 61,845 61,845 63,655 63,654

Notes: This table presents estimates of Equation (12) with daily usage of natural gas and electricity, re-
spectively, as the dependent variables, using data from the Wisconsin experiment. This parallels Table 5,
except adds post-investment indicators. Columns 1 and 3 have the simulation predictions as the dependent
variable, while columns 2 and 4 have energy use as the dependent variable. Mean pre-audit natural gas
usage is 2.40 therms/day, and mean pre-audit electricity usage is 21.4 kWh/day. Average marginal natural
gas price is $0.82 per therm, and average marginal electricity price is $0.136 per kWh. Robust standard
errors in parentheses, clustered by household. *, **, ***: statistically different from zero with 90, 95, and
99 percent probability, respectively.

Table A.12: Associations of Energy Savings Shortfalls with Specific Investments

(1) (2) (3) (4)
Natural Gas (therms/day) Electricity (kWh/day)

Post audit × Insulation 0.179 0.158 -0.997 -1.265
(0.140) (0.138) (1.454) (1.356)

Post audit × Heating/cooling -0.003 0.004 -0.518 -0.432
(0.064) (0.064) (0.539) (0.534)

Post audit × Other 0.348 0.367 1.373 1.607
(0.142)** (0.140)*** (1.489) (1.393)

Post audit × Recommended appliance -0.219 -3.255
(0.069)*** (0.879)***

N 61,845 61,845 63,654 63,654

Notes: This table presents alternative estimates of Equation (12), interacting Pit with indicators for installed
and recommended investment categories. The dependent variable is Yit −Eit, the difference between actual
usage and predicted savings. Mean pre-audit natural gas usage is 2.40 therms/day, and mean pre-audit
electricity usage is 21.4 kWh/day. Average marginal natural gas price is $0.82 per therm, and average
marginal electricity price is $0.136 per kWh. All columns control for heating and cooling degrees, household-
by-calendar month fixed effects, and month-of-sample fixed effects. Robust standard errors in parentheses,
clustered by household. *, **, ***: statistically different from zero with 90, 95, and 99 percent probability,
respectively.
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D.C Can the “Rebound Effect” Explain the Empirical Shortfall?

We present two calculations to test whether the “rebound effect,” i.e. increased utilization in
response to a decreased cost of energy services, can explain the low natural gas realization rate.
For this section, we use the realization rate implied by the post-investment coefficients in Table
A.11, which is 0.458/1.036≈44%. Since this is slightly higher than the realization rate from the
post-audit coefficients, our calculations are “conservative”: it would be even more difficult for the
rebound effect to explain the lower post-audit realization rate.

First, we calculate the price elasticity of demand for energy services that would be implied if all
of the empirical shortfall is due to increased utilization. The change in quantity of energy services
would be

%∆qenergy services =
Actual Post-Investment Usage

Simulated Post-Investment Usage
− 1 ≈ 0.419. (15)

The change in price of energy services is

%∆penergy services =
Simulated Usage Reduction

Baseline Usage
≈ −0.429. (16)

The implied elasticity is thus

%∆qenergy services

%∆penergy services
≈ −0.98. (17)

A utilization elasticity of -0.98 appears to be unrealistically large in this population. For com-
parison, the most closely related estimates of energy utilization elasticity are much smaller: -0.06,
-0.3, and -0.22 for washing machines (Davis 2008), home electricity (Dubin and McFadden 1984),
and autos (Gillingham 2014), respectively.

The second calculation is to determine the change in indoor temperature that would be required
to generate the entire empirical shortfall. To do this, we make two assumptions. First, we assume
that natural gas consumption is a linear function of the difference between indoor and outdoor
temperatures. Second, we assume that households keep indoor temperatures constant as outdoor
temperatures fluctuate, or more weakly that indoor temperatures are not conditionally correlated
with outdoor temperatures. Under these two assumptions, we can estimate the natural gas required
to increase indoor temperatures using variation in outdoor temperatures. We estimate the following
analogue to Equation (12):

Yit = ιPitWit + ω(1− Pit)Wit + νi + µm + εit. (18)

where Yit is natural gas consumption, Pit is a post-investment indicator, Wit is heating and
cooling degrees, νi is a household-by-calendar month fixed effect, and µm are month-of-sample
indicators. The coefficient ι measures natural gas consumption as a function of the difference
between indoor and outdoor temperatures.

In the post-investment sample, we estimate ι̂ ≈ 0.035 therms/cooling degree and ι̂ ≈ 0.099
therms/heating degree. If 1/3 of the year in Wisconsin requires cooling and 2/3 of the year requires
heating, then the average therms per degree of indoor temperature per day is 1

3 · 0.035 + 2
3 ·

0.099 ≈ 0.078. Comparing the ≥ 6 month post-investment simulation vs. empirical estimates
in columns 2 vs. 4 of Table 5 gives an empirical shortfall of 1.036 − 0.458 ≈ 0.578 therms/day.
Thus, to explain the full empirical shortfall, indoor temperatures would have to change (increase in
winter and decrease in summer) by 0.589/0.078 ≈ 7.5 degrees. This would be unrealistically large.
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For comparison, Fowlie, Greenstone, and Wolfram (2015) find no statistically significant post-
weatherization temperature change in a low-income (and thus likely more price elastic) population
in Michigan. They can reject a post-weatherization temperature change of more than 1.4 degrees
with 90 percent confidence in a two-sided test.

In summary, the “rebound effect” is likely to explain only a small fraction of the empirical
shortfall for natural gas.
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E Accounting Welfare Analysis of National Better Buildings Pro-
gram

It is important to know whether our results in Table 7 are specific to the Wisconsin programs,
or whether they generalize more broadly. To test whether the Wisconsin experimental sample
was somehow unusual, we augment the analysis with microdata from all Better Buildings pro-
grams nationwide, representing $435 million in upfront costs across 58,418 households at 37 sites.
We downloaded the data from the DOE website and prepared the data according to the process
described in Appendix B.B.

Table A.13 describes data from the 37 Better Buildings Neighborhood Program sites that re-
ported to the Department of Energy. These data are more limited than for the Wisconsin programs:
for each household retrofitted through the program, we observe the categories of investments made
(as in Wisconsin, typically insulation, air sealing, and heating and cooling), total (unsubsidized)
cost, and simulation estimates of total annual energy savings in physical units. The primary two
fuels saved are electricity and natural gas, but the data also include predicted savings of heating oil,
propane, kerosene, and wood. We group these latter four fuels as “other fuels” for Table A.14. We
translate physical units to dollars and externality reductions using the same process described in
Section IV, with data from the state and electricity market where the site is located. Of the 75,110
households in the original data, 58,418 survive the data cleaning process described in Appendix B.

Table 7 presents welfare effects using the “accounting approach.” Columns 1 and 2 replicate
Table 7, presenting results for the Wisconsin programs, while columns 3 and 4 present the na-
tionwide BBNP results.35 Columns 1 and 3 use the simulation predictions to calculate energy and
externality reductions. Column 2 multiplies the Wisconsin simulation estimates by realization rates
of 2.48 for electricity and 0.29 for natural gas and other fuels, on the basis of Table 5 and Figure
5. Column 4 multiplies the national program simulation estimates by realization rates of 0.59 for
electricity and 0.47 for natural gas and other fuels, on the basis of the DOE’s (2015c) national
BBNP evaluation.

Under the assumptions of the accounting approach, the programs reduce welfare. Even using the
simulation predictions, the Wisconsin and national programs have benefit/cost ratios of 0.92 and
0.75 at five percent discount rates, with internal rates of return of 4.0 and 1.5 percent, respectively.
After adjusting for the empirical shortfall, the benefit/cost ratios are 0.43 and 0.38, and the IRRs
are negative 4.1 and negative 5.2 percent. The projects from the national program with valid data
involved total cost of $435 million, compared to empirically adjusted social benefits of $166 million.

Of course, the results of the engineering approach depend on energy price and externality
assumptions. For empirically adjusted benefits to exceed costs, energy acquisition costs would need
to be 4.2 and 3.9 times larger, all externality damages would need to be 3.3 and 4.7 times larger,
or the social cost of carbon would need to be $239 and $301 per ton for the Wisconsin and national
samples, respectively.

The U.S. Department of Energy (DOE) has conducted an official evaluation of the nationwide
Better Buildings Neighborhood Program (DOE 2015c). The DOE report evaluates BBNP as an
economic stimulus program, which is relevant given that it was funded through the American
Recovery and Reinvestment Act, but does not present a benefit-cost analysis relevant for typical
macroeconomic conditions. By contrast, we do not consider the economic stimulus benefit, so while
our analysis is appropriate under normal economic conditions, we are not evaluating whether the

35We assume that the unsubsidized audit cost is cA = $400, based on typical market prices. The national Better
Buildings program dashboard reports a grand total of 138,323 single-family home audits and 74,493 retrofits. Applying
that 54 percent follow-through rate implies that 108,474 audits were required to generate the 58,418 valid projects
in our data.
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programs increased welfare during the Great Recession. The DOE’s headline benefit/cost ratio of
3.0 is the ratio of economic activity created (i.e. private sector expenditures plus tax revenues)
divided by federal government outlays. This calculation is not comparable to ours. Indeed, it is
mechanically opposite: energy efficiency investment costs count as a cost in our framework, while
they count as a benefit in the DOE framework because they represent additional economic stimulus.
The details of the DOE report suggest that if they had done an analysis like ours, they would have
arrived at similar conclusions: total program costs exceed retail energy savings plus carbon emission
benefits, and their empirical analysis finds a 52 percent realization rate for residential retrofits after
combining electricity and gas.36

Table A.13: Summary Statistics for National Better Buildings Program Data

Variable Mean Std.

Dev.

Min. Max.

Total cost ($) 6705 5711 100 30,000

Retail energy cost savings ($/year) 472 430 12.7 2734

Notes: Sample size is the 58,418 households that made investments and survive the data cleaning process
described in Appendix B. Energy prices are averages over 2011-2014; see Appendix B for details.

36The DOE evaluation reports $669 million in lifetime bill savings and $972 million in total costs, plus 7.2 million
metric tons of CO2 abated, which sums to $274 million at a $39 social cost of carbon. In this sense, costs exceed
benefits by $29.4 million. However, this is not directly comparable to our benefit-cost analysis, because it considers
energy savings at retail prices instead of avoided costs, uses un-discounted future energy and environmental benefits,
and does not include the local air pollution benefits.
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Table A.14: Welfare Effects: Accounting Approach, Including National Programs

(1) (2) (3) (4)

Wisconsin Programs National Programs

Simulation Empirically Simulation Empirically

Source of energy savings estimates: Predictions Adjusted Predictions Adjusted

Cost ($millions)

Audit costs (at $400 per audit) 0.56 43

Investment costs 4.52 392

Total cost 5.08 435

Energy Savings ($millions present value at 5% discount rate)

Natural gas 1.92 0.56 77 36

Electricity 0.07 0.18 43 25

Other fuels 0.61 0.18 68 32

Total 2.61 0.92 187 93

Externality Reduction ($millions present value at 5% discount rate)

Climate (at $39 per ton CO2) 1.37 0.57 81 40

SO2/NOx/PM 0.72 0.68 59 32

Total 2.09 1.26 140 73

Summary

Benefits - Costs ($millions) -0.39 -2.91 -108 -270

Benefit/Cost ratio 0.92 0.43 0.75 0.38

Internal rate of return (percent) 4.0 -4.1 1.5 -5.2

Notes: Columns 1 and 2 present estimates for the Wisconsin sample, and Columns 3 and 4 present estimates
for the 58,418 households that invested under the national Better Buildings program and have valid data.
Columns 1 and 3 use energy savings projected by simulation models, while columns 2 and 4 adjust for
empirically observed savings. Column 2 multiplies electricity and gas/other fuels savings from Column 1 by
2.48 and 0.29, respectively, based on the estimates in Table 5. Column 4 multiplies electricity and gas/other
fuels savings from Column 3 by 0.59 and 0.47, respectively, based on estimates from DOE (2015c). Energy
savings are calculated at average wholesale prices over 2011-2014, and externality reductions are based on a
$39 social cost of carbon and a $6 million value of a statistical life; see Appendix B for details.
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F Appendix to Revealed Preference Welfare Analysis

Table A.15: Association Between Recommended Investment Characteristics and Audit
Subsidy

(1) (2) (3) (4)
Subsidy - Cost Energy Savings Subsidy Number of

+ Savings ($000s) PDV ($000s) - Cost ($000s) Recommendations

Experiment audit subsidy ($00s) -0.083 -0.014 -0.069 0.136
(0.152) (0.114) (0.109) (0.184)

N 6,100 6,100 6,100 1,394

Household covariates Yes Yes Yes Yes

Notes: This table presents regressions of characteristics of recommended investments on the household’s
experimental audit subsidy. The sample for columns 1-3 is all recommended investments; the sample for
column 4 is all households that audited. Robust standard errors in parentheses. Standard errors are clustered
by household in columns 1-3. *, **, ***: statistically different from zero with 90, 95, and 99 percent
probability, respectively.
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