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Abstract 

We find evidence of significant price manipulation at the stock level by hedge funds on critical reporting 
dates. Stocks in the top quartile by hedge fund holdings exhibit abnormal returns of 30 basis points in the 
last day of the month and a reversal of 25 basis points in the following day. Using intraday data, we show 
that a significant part of the return is earned during the last minutes of the last day of the month, at an 
increasing rate towards the closing bell. This evidence is consistent with hedge funds’ incentive to inflate 
their monthly performance by buying stocks that they hold in their portfolios. Higher manipulations occur 
with funds that have higher incentives to improve their ranking relative to their peers and a lower cost of 
doing so. 

 

 

_____________________ 

* We thank Alessandro Beber, Bruno Biais, YeeJin Jang, Gulten Mero, Tarun Ramadorai, David Thesmar, and 
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“If I were long and I would like to make things a little bit more rosy, I’d go in and 
take a bunch of stocks and make sure that they are higher…. A hedge fund needs 
to do a lot to save itself. ”   

Jim Cramer, ex-hedge fund manager, in an interview to TheStreet.com, December 2006 

 

1. Introduction 

As arbitrageurs, the economic function of hedge funds is to bring prices closer to 

fundamentals. This paper shows that this role is partly betrayed by hedge funds’ incentive to 

maximize fees. In particular, we provide evidence suggesting that hedge funds are likely to pump 

up end-of-month stock prices in order to improve their performance. Based on the holdings data 

of hedge funds in conjunction with daily and intraday stock price data, we find that prices of 

stocks with high hedge fund ownership exhibit abnormal positive returns in the last minutes of 

trading on the last day of the quarter and that they rebound the following morning. To illustrate 

the effect, stocks in the top quartile holdings by hedge funds exhibit an average abnormal return 

of 30 basis points in the last day of the month; these returns slip back by 25 basis points on 

average in the following day. Further, these patterns are strongest when hedge fund owners have 

incentives to manipulate: less diversified funds (for which manipulating is less costly), funds 

experiencing a poor month in terms of absolute returns, and funds that are among the highest 

year-to-date performers and wish to benefit by attracting investors’ attention. 

Hedge funds typically report performance figures to their investors on a monthly 

frequency. Several studies have raised doubts about the reliability of these reports, as hedge 

funds have an incentive to modify their numbers in order to attract greater flows. Specifically, 

investors judge hedge funds according to their risk adjusted performance (Asness, Krail, and 

Liew 2001); a highly negative return will thus leave a lasting stain on a fund’s track-record.  

Hedge funds have a further incentive to manipulate reporting, as their fees are typically tied to 

performance. Consistent with these motives to manipulate, Bollen and Pool (2009) document a 

discontinuity in the total returns distribution of hedge funds around zero, which is suggestive of 

manipulation. Also, Bollen and Pool (2008) present evidence that hedge fund total returns are 

more strongly autocorrelated when conditioned on past performance, potentially suggesting that 

returns are manipulated. Agarwal, Daniel, and Naik (2009) document that the December total 
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returns of hedge funds are significantly higher than returns in other months; they suggest this 

might be a result of manipulation. Cici, Kempt, and Puetz (2010) compare the equity prices that 

hedge funds report on their 13F filings to prices on CRSP, and find that the prices on the 13F 

forms are higher on average.1 The alternative explanation for some of these results is that many 

assets held by hedge funds are illiquid, and therefore their valuations could be imprecise, with 

the autocorrelation due to fundamental reasons, as opposed to mere window dressing 

(Getmansky, Lo, and Makarov 2004).  

Manipulation of end-of-month prices by hedge funds is likely to have wider welfare 

consequences beyond the jamming of hedge fund performance signal. Specifically, many players 

in the economy use end-of-month stock prices in contracting. For example, some executive 

compensation contracts are based on stock price performance. Also, asset manager compensation 

fees and asset manager rankings (e.g., mutual funds) are based on monthly performance. Thus, 

adding noise to stock returns by hedge funds distorts other contract signals and thus imposes a 

negative externality in aggregate. Though the distortion induced by hedge funds’ manipulation is 

shown to revert quickly, we show that it does not net to zero within the month, i.e., a stock 

whose price decreased due to a reversal on the first day of the month is not likely to be 

manipulated again at the end of the month. More broadly, our paper joins prior literature 

documenting end-of-day security price manipulation in other contexts. Carhart, Kaniel, Musto, 

and Reed (2002) document that the prices of stocks owned by mutual funds exhibit positive 

abnormal returns at the end of the quarter. Ni, Pearson, and Poteshman (2005) report that stocks 

tend to cluster around option strike prices on expiration dates. Blocher, Engelberg, and Reed 

(2010) show that short sellers put down pressure on prices at the last moments of trading before 

the end of the year. 

Our study uses a comprehensive dataset of hedge fund holdings. This dataset is a 

combination of 13F mandatory filing of quarterly equity holdings for institutional investors and a 

proprietary list of hedge funds from Thomson-Reuters. In addition, we use hedge fund 

                                                            
1 Other studies examine stock market manipulation through a broader scope. Aggarwal and Wu (2006) discuss 

spreading rumors and analyze SEC enforcement actions to show that manipulations are associated with increased 

stock volatility, liquidity, and returns. Allen, Litov, and Mei (2006) present evidence that large investors manipulate 

prices of stocks and commodities by putting pressure on prices in their desired direction; as a result, prices are 

distorted and have higher volatility. 
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characteristics data from TASS and intraday data from TAQ. Together, these data allow us to 

have a close look at hedge funds’ portfolios at a quarterly frequency and to examine trades on 

these stocks around the turn of the quarter. Note that, while we conjecture that manipulation 

takes place on a monthly frequency when hedge funds report their results, we are bound by the 

quarterly frequency of the data.  

Our study has two parts. First, we document that stocks held by hedge funds at the end of 

the quarter are likely to experience large abnormal returns on the last trading day. This effect is 

statistically and economically significant: stocks at the top quartile of hedge fund ownership 

earn, on average, abnormal return of 0.30% on the last day of the quarter, most of which reverts 

the next day. Moreover, about half of the average increase in prices of stocks that are owned by 

hedge funds takes place in the last 20 minutes of trade, and reverts in the first ten minutes of 

trade in the following day. The effect exists at the monthly level, although our precision is lower 

at this frequency due to data frequency limitations.  

Our evidence suggests that particular stocks are affected more than others. Consistent 

with the idea that limited capital is devoted to pushing stock prices, we find that among stocks 

held by hedge funds, illiquid stocks exhibit larger price increases on the last day of the quarter. 

Importantly, we show that at the stock-month level, the effect does not cancel out; i.e., the stocks 

that experience an end-of-month price surge because of manipulation are not likely to have 

experienced a reversal at the beginning of the same month. That is to say, manipulation does not 

occur on the same stocks every month.  

In the second part of the paper, we analyze the characteristics of hedge funds whose 

equity portfolios exhibit an abnormal positive return at the end of the quarter and a decline on the 

next day. We document that small hedge funds with concentrated portfolios are more likely to be 

associated with manipulation patterns. We find that manipulating hedge funds rank at the top in 

terms of year-to-date performance. These results are consistent with the evidence in Carhart, 

Kaniel, Musto, and Reed (2002) that mutual funds that manipulate stock prices are those with the 

best past performance. They argue that, given a convex flow-performance relation for mutual 

funds (Ippolito 1992, Sirri and Tufano 1998), the best performers have the strongest incentive to 

manipulate. We believe that a similar explanation applies to hedge funds. We also report that 

manipulation patterns are persistent at the fund level, i.e., funds that have manipulated in the past 
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are more likely to do so in the future. Finally, we document that manipulation patterns exist 

consistently throughout the sample period between 2000 and 2009. However, they are stronger in 

quarters in which market returns were low, potentially because these episodes are opportunities 

for hedge funds to demonstrate their skill to investors.  

We run a battery of robustness checks to rule out alternative explanations for our 

findings. First, we perform a feasibility test, in which we show that for stocks in the bottom half 

of the liquidity spectrum, a price change of one percent is associated with volume of less than 

$500,000. This means that manipulation by small hedge funds is potentially plausible for illiquid 

stocks. Second, we test whether our documented effect is not generated mechanically by 

portfolio reallocation, resulting either from asset inflows or rebalancing. When we lag our hedge 

fund holding measure by one month or control for current and future inflows, the relation 

remains strong. Third, there is no overlap with price manipulations by mutual funds such as 

those documented by Carhart, Kaniel, Musto, and Reed (2002). We conclude that the latter two 

alternative explanations are not likely to be responsible for the price regularities. 

The paper proceeds as follows. Section 2 describes the data sources used. Section 3 

develops the hypotheses about the incentive and methods to manipulate security prices, while 

Section 4 presents the daily and intraday empirical evidence about end-of-month manipulations 

and relates it to stock characteristics. Section 5 takes a close look at the determinants of hedge 

fund behavior and investigates cross-sectional heterogeneity in the exposure to these 

determinants. Section 6 assesses the feasibility of stock manipulation using price impact 

regressions, and Section 7 concludes. 

 

2. Data Sources and Sample Construction 

2.1. Hedge Fund Holding Data  

The main dataset used in the study combines a list of hedge funds provided by Thomson-

Reuters, mandatory institutional quarterly portfolio holdings reports (13F), and information 

about hedge fund characteristics and performance (TASS). The same dataset, only for a shorter 

period, was used by Ben-David, Franzoni, and Moussawi (2010).  
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13F mandatory institutional reports are filed with the SEC on a calendar quarter basis and 

are compiled by Thomson-Reuters (formerly known as the 13F CDA Spectrum 34 database).2 

Form 13F requires all institutions with investment discretion over $100 million of qualified 

securities (mainly publicly traded equity, convertible bonds, and options) at the end of the year to 

report their long holdings in the following year.3 Therefore, all hedge funds with assets in 

qualified securities that exceed a total of $100 million are required to report their holdings in 13F 

filings. 13F reporting is done at the consolidated management company level.4 

We then match the list of 13F institutions in Thomson-Reuters with a proprietary list of 

13F hedge fund managing firms and other institutional filers provided by Thomson-Reuters. 

Relative to the self-reported industry lists that are commonly used to identify hedge funds, the 

Thomson-Reuters list is certainly more comprehensive, as it classifies all 13F filers.5 Moreover, 

                                                            
2 According to Lemke and Lins (1987), Congress justified the adoption of Section 13F of the Securities Exchange 

Act in 1975 because, among other reasons, it facilitates consideration of the influence and impact of institutional 

managers on market liquidity: “Among the uses for this information that were suggested for the SEC were to 

analyze the effects of institutional holdings and trading in equity securities upon the securities markets, the potential 

consequences of these activities on a national market system, block trading and market liquidity….” 

3 With specific regard to equity, this provision concerns all long positions greater than 10,000 shares or $200,000 

over which the manager exercises sole or shared investment discretion. The official list of Section 13F securities can 

be found at: http://www.sec.gov/divisions/investment/13Flists.htm. More general information about the 

requirements of Form 13F pursuant to Section 13F of the Securities Exchange Act of 1934 can be found at: 

http://www.sec.gov/divisions/investment/13Ffaq.htm. 

4 13F filings were used intensely in research concerning the role of institutional investors in financial markets. 

Brunnermeier and Nagel (2004) explore the behavior of hedge funds during the Internet bubble. Campbell, 

Ramadorai, and Schwartz (2009) combine 13F filings with intraday data to explore the behavior of institutional 

investors around earnings announcements. 

5 This comprehensiveness depends on Thomson’s long-lasting and deep involvement with institutional filings. The 

SEC has long contracted the collection of various institutional data out to Thomson-Reuters, even when those 

reports were paper filings or microfiche in the public reference room. They also have directories of the different 

types of institutions, with extensive information about their businesses and staff. The list of hedge funds to which we 

have access is normally used by Thomson-Reuters for their consulting business and, to the best of our knowledge, 

has not been provided to other academic clients. References to Thomson-Reuters (or the companies that it acquired, 

such as CDA/Spectrum, formerly known as Disclosure Inc. and Bechtel) can be found at:  

1. http://www.sec.gov/rules/final/33-8224.htm (search for Thomson);  
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the Thomson-Reuters hedge fund list identifies hedge funds at the disaggregated advisor level, 

not at the 13F report consolidated level. For example, for Blackstone Group holdings in 13F 

data, Thomson-Reuters provided us with a classification of each of the advisors within 

Blackstone that reported their holdings under the same filing.6,7 Overall, our access to Thomson-

Reuters’ proprietary list of hedge funds puts us in a privileged position. 

The 13F data available to us range from 1989Q3 to 2009Q4. Before applying the filters 

described below, the number of hedge funds in the Thomson-Reuters list varies from a few 

dozen in the early years to over 1,000 at the 2007 peak. We cross-check our list of hedge funds 

with the FactSet database and we find it congruent with the FactSet LionShares identification of 

hedge fund companies. With some caveats that we mention below, an additional advantage of the 

13F filings is that they are not affected by the selection and survivorship bias that occurs when 

relying on TASS and other self-reported databases for hedge fund identification (Agarwal, Fos, 

and Jiang 2010).  

Data in the 13F filings have a number of known limitations. First, small institutions that 

fall below the reporting threshold ($100 million in qualified 13(f) securities, which include US 

equities, ADRs, ETFs, convertible bonds, and equity options) at the end of the year are not in the 

sample in the following year. Second, we do not observe all positions that do not reach the 

threshold of $200,000 and 10,000 shares. Third, short equity positions are not reported. Fourth, 

the filings are aggregated at the management company level, but as mentioned above, the 

                                                                                                                                                                                                
2. SEC Annual Reports, 1982, http://www.sec.gov/about/annual_report/1982.pdf (page 37, or 59 of the pdf file);  

3. http://www.sec.gov/rules/final/33-7432.txt (search for contractor); 

4. http://www.sec.gov/about/annual_report/1989.pdf (search for contractor). 

6 There are three advisor entities within Blackstone Group L.P. that report their holdings in the same consolidated 

Blackstone Group report. Among the three advisors included, GSO Capital Partners and Blackstone Kailix Advisors 

are classified by Thomson-Reuters as Hedge Funds (which an ADV form confirms), while Blackstone Capital 

Partners V LP is classified as an Investment Advisor. See the “List of Other Included Managers” section in the 

September 30, 2009, Blackstone 13F reports filed on November 16, 2009: 

http://www.sec.gov/Archives/edgar/data/1393818/000119312509235951/0001193125-09-235951.txt  

7 For brevity, we will from now on refer to the observational unit in our data set as a ‘hedge fund’. It should be clear, 

however, that 13F provides asset holdings at the management firm level or at the advisor entity level. Each 

firm/advisor reports consolidated holdings for all the funds that it has under management. 
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Thomson classification allows us to separately identify the advisors within a management 

company. Fifth, we only observe end-of-quarter snapshots on hedge fund holdings. In spite of 

these limitations, it must be stressed that our data is not plagued by survivorship bias as it also 

contains the filings of defunct hedge fund firms. 

Because many financial advisors manage hedge-fund-like operations alongside other 

investment management services, we need to apply a number of filters to the data to ensure that, 

for the institutions captured in our sample, the main line of operation is a hedge fund business. 

To this end, we drop institutions that have many advisors who have a majority of non-hedge fund 

business, even though they have hedge funds that are managed in-house and included with their 

holdings in the parent management company’s 13F report. Thomson-Reuters’ hedge fund list 

also provides the classification of non-hedge fund entities that file under the same 13F entity. We 

use this list to screen out all companies with other reported non-hedge fund advisors that file 

their 13F holdings along with their hedge funds. Additionally, we manually verify that large 

investment banks and prime brokers that might have an internal hedge fund business are 

excluded from our list (e.g., Goldman Sachs Group, JP Morgan Chase & Co., American 

International Group Inc.). As a further filter, we double-check the hedge fund classification by 

Thomson-Reuters against a list of ADV filings by investment advisors since 2006, when 

available.8 We match those filings by advisor name to our 13F data. Then, following 

Brunnermeier and Nagel (2004) and Griffin and Xu (2009), we keep only the institutions with 

more than half of their clients classified as “High Net Worth Individuals” or “Other Pooled 

Investment Vehicles (e.g., Hedge Funds)” in Item 5.D (Information About Your Advisory 

Business) of Form ADV. Therefore, we believe that our final list of hedge funds contains only 

institutions with the majority of their assets and reported holdings in the hedge fund business, 

which we label these “pure-play” hedge funds. 

                                                            
8 ADV forms are filed by investment advisors. In these forms, advisors provide information about the investment 

advisor’s business, ownership, clients, employees, business practices, affiliations, and any disciplinary events for the 

advisor or its employees. The ADV filings were mandatory for all hedge funds only for a short time in 2006. In the 

later period, they were filed on a voluntary basis. All current advisor ADV filings are available on the SEC’s 

investment advisor public disclosure website: 

http://www.adviserinfo.sec.gov/IAPD/Content/Search/iapd_OrgSearch.aspx.  
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We augment our data with hedge fund characteristics and monthly returns from the 

Thomson-Reuters’ Lipper-TASS database (drawn in July 2010).9 We use both the “Graveyard” 

and “Live” databases.10 We use hedge fund company names in TASS and map them to the 

advisor company name that appears in the 13F filings. The Lipper-TASS database provides 

hedge fund characteristics (such as investment style and average leverage) and monthly return 

information at the strategy level. We aggregate the TASS data at the management company 

level, on a quarterly frequency, and match it to the 13F dataset using the consolidated 

management company name.11 We exclude hedge funds with total assets under management of 

less than $1 million, in order to ensure that our results are not driven by hedge funds with 

insignificant holdings. As argued in the introduction, we focus on the years surrounding the 

recent financial crisis and let our sample start in the first quarter of 2004. The sample-end 

coincides with the end of 13F data availability (2009Q4). Finally, for the fund level regressions, 

we winsorize fund flows and changes in hedge fund equity holdings at the 5th and 95th percentiles 

within each quarter, as the distributions of these variables have fat tails.  

We refer to Panel A of Table 1 in Ben-David, Franzoni, Moussawi (2010) for annual 

statistics on our sample of hedge funds. 

 

2.2. Daily Stock Returns and Stock Characteristics 

For daily stock returns and stock characteristics we use standard databases: CRSP and 

Compustat. We limit our sample to January 2000 through September 2010.  

 

                                                            
9 While we use the most recent TASS data feed for hedge fund information (July 2010), we use an older version 

(August 2007) to identify firms (as it included hedge fund names).  

10 TASS starts retaining information on ‘dead’ funds only from 1994, while our analysis starts in 1990. We have run 

the regressions that use TASS data excluding the period before 1994; the results are largely unaffected. The reason 

for this is likely because most of our crisis periods occur after 1994. 

11 We used strategy assets under management as weights in aggregating fund characteristics and total reported 

returns. 
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2.3. NYSE TAQ Data for Intraday Trades 

We use the TAQ intraday trades dataset to calculate intraday return and volume 

information during several intervals within each trading day. We have 30 minute intervals 

between 9:30AM and 3PM, and 10 minute intervals between 3PM and 4PM. To do that, we first 

drop the corrected trades and all trades with conditions O, B, Z, T, L, G, W, J or K (e.g., bunched 

trades, trades outside trading hours). Then, we keep only the trades without missing size and 

price information, as long as they are made before 4pm or before a closing price (trade condition 

of 6, @6, or M) is generated. Interval returns are computed as the difference between the price of 

the last trade during the interval, and the last trade price before the start of the interval. If there 

were no trades during the interval, then the interval return is set to zero. Interval volume is 

computed as the sum of all dollar volume for all trades during the interval, and is equal to zero if 

there were no trades. 

For the price impact of trading analysis (Section 6), we use TAQ trading data for January 

2000 until September 2010. We keep only data for the last day of the month and the last ten 

seconds of trade. Over each second, we consolidate the dollar amount of trades, as well as 

compute the return. 

 

3.  Development of the Hypotheses 

  Contract theory predicts that agents try to strategically manipulate to their advantage the 

signals that are used by principals to evaluate their talent or their real performance (Holmström 

1999, Holmström and Milgrom 1991). Hedge funds report monthly returns to their current 

investors; the track record they use to attract new capital is also based on monthly returns. It 

follows that they have incentives to manipulate their short-term performance as long as the 

expected costs do not exceed the benefits. Manipulating stock prices at month-end in order to 

boost monthly performance could be beneficial for some hedge funds because it allows them to 

avoid a highly negative return that would tarnish their track-record or because, by being ranked 

higher, they can potentially attract more capital and thus collect more fees. The costs of 

manipulation presumably include primarily transaction costs and the risk of detection and legal 

indictment. Since the signal that hedge funds try to manipulate to their advantage is their 

monthly return, manipulation could be expected to happen at the very end of the month. This 



10 
 

timing derives from two sources: first, to be effective, the manipulation needs to last until month 

end; beginning a manipulation earlier would be unnecessarily costly. Moreover, funds know only 

toward the month-end whether manipulating in a given month is advantageous (e.g. depending 

on their monthly performance), and thus should exercise the option to manipulate later rather 

than sooner. 

There is some anecdotal evidence for manipulation in the hedge funds industry. In an 

interview with TheStreet.com (cited as the epigraph),12 ex-hedge fund manager Jim Cramer 

describes how his hedge fund used to manipulate security prices in order to improve performance 

towards paydays. Importantly, Mr. Cramer suggests that $5 or $10 million dollars are sufficient 

to move stock prices substantially enough to achieve profit goals and “foment the impression” 

that the fund is successful. 

Our first hypothesis, therefore, is that stock prices held in hedge funds’ portfolios exhibit 

returns that are abnormally higher towards the end of the month. Since the returns are a result of 

price pressure, we conjecture that prices revert following the turn of the month: 

H1: Stocks held by hedge funds exhibit: 

a. Abnormal positive returns towards the end of the month, 

b. Abnormal negative returns following the turn of the month. 

We propose that manipulated stocks are more likely to be relatively illiquid. For these 

stocks, the bang-for-the-buck is higher, and therefore can be manipulated at lower cost. This 

prediction is consistent with Comerton-Forde and Putnins (2010), who suggest that illiquid 

stocks with a high degree of information asymmetry are most prone to manipulation. Therefore: 

H2: Illiquid stocks are more likely to be manipulated. 

Next, we wish to characterize those hedge funds that engage in manipulation activity. We 

conjecture that manipulation is more likely for hedge funds with less diversified portfolios. For 

these hedge funds, the payoff for manipulating stocks has a higher impact on performance 

results. Further, we speculate that small hedge funds are more likely to engage in manipulation, 

as it is easier for them to improve portfolio results by limited, undetected, manipulation.  

                                                            
12 http://www.liveleak.com/view?i=b1b_1237128864 
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H3: Manipulation is more likely for: 

a. Hedge funds with undiversified portfolios, 

b. Small hedge funds. 

We also analyze the incentives that lead hedge funds to manipulate stock prices. For 

hedge funds, the month’s, quarter’s, and year’s ends are important dates for two reasons. First, 

hedge fund fees are paid based on past performance, typically measured at the end of these 

periods. Second, hedge funds, like mutual funds, care deeply about their performance ranking, as 

investors often select funds based on their past performances. Empirically, it is difficult to 

separate the two incentives in the data because fees are increasing in performance for all firms.  

Nevertheless, there are hedge funds that value improved rankings more than others: top 

performing funds may manipulate stock returns more than others, potentially because they are 

competing for the highest positions on the list. This conjecture follows Carhart, Kaniel, Musto, 

and Reed (2002), who find similar results for mutual funds. More finely, within the top 

performers, hedge funds that were bad performers in a previous quarter but that had caught up 

with their peers might have more incentives to attract investors’ attention. Funds that had a low 

YTD (Year-to-Date) ranking in the past quarter but that now have a high YTD ranking might be 

especially eager to boost earnings in order to get noticed by investors and potentially be 

“recategorized” from losers to winners. 

Certain circumstances are likely to make investors’ impression of a fund more elastic, 

and to increase the sensitivity of their flows to prior performance. For example, investors’ belief 

regarding young funds might be more elastic to performance due to the funds’ shorter track 

records. Thus young funds should be more prone to manipulate when they are doing well, so as 

to maximize investors’ reaction to a good performance. In addition, earlier in the year, relative 

year-to-date performance rankings are more elastic to monthly performance. Finally, hedge 

funds may gain more exposure if they exhibit an atypical performance when the market performs 

poorly. This is consistent with Asness, Krail, and Liew (2001), who conjecture that hedge funds 

attempt to appear to be performing well in a down market to signal their skill.  

We explore the hypothesis that the magnitude of the manipulation is related to recent 

performance of the stock market, as investors may benchmark hedge fund performance relative 
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to the performance of the market. Specifically, a major reason for institutional investors to invest 

in hedge funds is to diversify away from systematic risk. Thus, to attract and keep capital, hedge 

funds need to prove that they can offer strong protection against market downturns. It is thus 

valuable for them to display relatively stronger returns when the market is doing poorly. For this 

reason, we expect that on average, hedge funds will be more prone to manipulation in months 

when the market performs poorly. 

To summarize, we conjecture that: 

H4: Manipulation aimed at boosting performance rankings is stronger for: 

a. Top performing hedge funds, 

b. Hedge funds with currently good but a poor past relative performance, 

c. Young hedge funds, 

d. Earlier in the calendar year, 

e. When market returns are low.  

We expect to observe persistence in manipulating behavior over time. Persistence may 

arise for several reasons. The first is purely statistical: it is likely that only some (rather than all) 

funds engage in this practice. For instance, some funds might have internal risk-management 

standards that ban it. For the econometrician, a blip observed in a given quarter is a signal that a 

fund is more likely to belong to the “manipulating” category. Thus, conditional on observing a 

“blip” at quarter-end t, a fund is statistically more likely to exhibit a “blip” next period. A second 

reason for persistence is that once a fund has manipulated returns for strategic purposes, it might 

be tempted to continue to “undo” the negative impact of the previous quarter’s manipulation on 

this quarter’s performance. 

H5: Manipulation activity is persistent over time at the hedge fund level. 

Finally, we conduct a feasibility analysis. In keeping with the Cramer’s interview, we 

propose that the manipulation must be feasible for small hedge funds, i.e., moving stock prices 

before the closing does not require much capital. 

H6: Traders can move prices at the end of the month by investing relative small amounts 

of capital. 
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 In the next sections, we analyze the data and seek confirmation for these hypotheses. 

 

4.  Evidence of End-of-Quarter Manipulation 

4.1.  Evidence from Daily Returns 

Our goal is to test whether hedge funds manipulate the price of the stocks in their 

portfolio at the end of the quarter. Using 13F information, for each stock and quarter we compute 

the fraction of market capitalization that is held by hedge funds. Next, we construct an indicator 

variable which equals one if, for a given stock-quarter, the share of hedge fund ownership is 

above the median. The median ownership by hedge funds across quarters is 1.3%.  

Our initial approach focuses on the four months that correspond to quarter ends (March, 

June, September, and December) so that the 13F information is mostly up to date in terms of 

hedge funds’ end-of-month ownership. In Table 2, we regress the daily stock return in the four 

days around the quarter end (the second-to-last, last, next-to-last, and second-after-the-last days 

of the quarter) onto the high hedge fund ownership dummy. Percentage returns are risk-adjusted 

using the Daniel, Grinblatt, Titman, and Wermers (1997, DGTW) approach. Standard errors are 

clustered at the date level in these regressions as well as the other stock level regressions in this 

section. 

Panel A of Table 2 shows a strong pattern in the last day of the quarter as well as a 

reversal in the following day (the first day of the following quarter). Stocks at the top ownership 

quartile increase on average by 30 bps (basis points) on the last day of the quarter, and decrease 

by 25 bps in the following day. The panel shows that there is no effect in the second-to-last day 

of the quarter or in the second day of the next quarter. This is the first piece of evidence 

consistent with Hypothesis H1a, indicating that hedge funds may be pumping up the price of 

stocks they own. Consistent with the reversion of a pure price pressure effect, the return is 

significantly more negative for the same stocks on the following day (consistent with Hypothesis 

H1b). Panel B performs a similar analysis, where the stock universe is split by half according to 

the ownership by hedge funds. Stock with hedge fund ownership of above the median experience 

an average increase of 18 bps on the last day of the quarter and an average reversal of 14 bps in 

the following day. 
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In Table 3, we break down the previous result by quarter. The end-of-month price surge 

for high hedge fund ownership stocks seems to increase over the course of the year. However, 

the fund level evidence which we present below indicates that the impact on fund returns 

remains stable throughout the year (see Table 7). 

The relation between end-of-month returns and hedge fund ownership raises a few 

concerns about omitted variables. Table 4 presents robustness tests for some of these 

possibilities. One potential interpretation of our results is that the observed price spikes for 

stocks that are owned by hedge funds are due to portfolio reallocation at the end of the month 

rather than intentional price manipulation. Hence, it could be that high hedge fund ownership 

(recorded on the last day of the quarter) depends on purchases that occurred on that very day for 

reasons unrelated to price manipulation, and that these stock purchases consequently push the 

price temporarily up.  

To rule out this possibility, we relate end-of-quarter ownership to returns at the end of the 

next month. For example, we associate end-of-April returns with ownership measured at the end 

of March. Table 4, Panel A has the results from regressions in which ownership is lagged by one 

month relative to the returns. Following a similar logic, Panel B presents regressions in which 

hedge fund ownership is lagged by two months. The end-of-month jumps and the reversals on 

the next day are still significant for stocks with high hedge fund ownership, however the 

magnitude of the price swings is smaller than in Table 2. This change is easily explained by the 

fact that, in the last regressions, the ownership variable reflects stale information relative to the 

returns. In the course of the month between the measurement of ownership and returns, the 

portfolios of hedge funds may have changed considerably. It is therefore reassuring that we still 

find a significant end-of-month effect for stocks with high ownership, which tends to rule out the 

alternative explanation based on a mechanical link between portfolio reallocation and price 

impact. Importantly, this evidence is consistent with the idea that manipulation takes place on the 

monthly level, despite the fact that our ability to detect it on this frequency is limited due to the 

quarterly frequency of the holdings data. 

Another concern is that the end-of-month price surge originates from the impact caused 

by hedge funds’ attempts to scale up existing positions after positive flows of money. To rule out 

this possibility, we first identify hedge funds that are in the top tercile of the flow (in percentage 
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of assets under management) for that quarter. Then, we create an indicator variable for stocks 

with above-median ownership by high-flow funds. We include this dummy in the original 

specification, which also has the above median ownership by all hedge funds. Finally, we add an 

interaction between the two ownership dummies. If the price impact is especially strong for 

stocks owned by high-flow funds, the interaction should be positive and significant. Table 4, 

Panel C, shows that in the last day of the quarter, the interaction is negative and statistically 

insignificant, while the coefficient on the above-median ownership by all hedge funds retains its 

significance. We conclude that high-flow funds are not behind the observed price surge. Further 

corroborating evidence is shown in Section 5 using a fund level analysis. 

Another possibility is that hedge fund holdings are correlated with mutual fund holdings 

and therefore our results are a manifestation of the prior evidence by Carhart, Kaniel, Musto, and 

Reed (2002) about mutual funds manipulation of stock prices at the end of the quarter. To rule 

out this possibility, we add a control for stocks with above-median ownership by mutual funds 

(Table 4, Panel D). We also present specifications that only include mutual fund ownership. The 

results show that hedge fund ownership retains its significance and magnitude when controlling 

for mutual fund ownership. Consequently, hedge funds seem to add another layer of 

manipulation independent of what has already been found for mutual funds.13 

Finally, there is a concern about the economic importance of the effect. In particular, 

while the increase in prices on the last day of the quarter is sizeable, it reverts on the following 

day. Thus, there is a possibility that the aggregate effect of hedge fund trades on monthly returns 

cancels out within the month, because the same stock might have low returns on the first day of 

the month and higher returns on the last day of the month. In other words, inflated returns at the 

last day of the month may come at the expense of a previous return decline at the beginning of 

the month due to downwards price pressure following stock manipulation in the previous month. 

To check this, we rerun the regressions from Table 1, controlling for the stock’s returns on the 

first day of the month (Table 4, Panel E). The regression shows that the correlation between the 

returns on the first and the last day of the month is practically zero. Further, the correlation 
                                                            
13 Incidentally, it is worth noting that the mutual fund ownership variable is associated with a negative end-of-month 

effect and a reversion on the first day of the month, although these effects are not statistically significant. This 

evidence would seem to suggests that the Carhart, Kaniel, Musto, and Reed (2002) effect is not present in this 

sample period. 
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between the returns around the turn of the month and hedge fund ownership remains unchanged. 

We conclude that manipulation has a non-zero impact on monthly prices. This evidence speaks 

to the negative welfare implications of hedge funds’ behavior as far as price informativeness is 

concerned. 

 

4.2.  Intraday Returns 

To minimize the cost of inflating the stock price, hedge funds have an incentive to 

purchase stocks towards the end of the last trading day of the month. Inflating the price earlier in 

the day can be more expensive because the market has time to absorb the liquidity shocks, which 

may make further purchases necessary. The likelihood of this occurrence is minimized when the 

pumping-up occurs at the end of the day. To verify this conjecture, we compute stock returns for 

each thirty-minute interval between 9:30AM and 3PM and for each ten-minute interval between 

3PM and 4PM. Then, we regress intra-day returns onto the above-median ownership dummy. 

Ownership is measured in the same month in order to maximize power. We expect to see the 

strongest effect of ownership on returns at the end of the day.  

In Table 5, columns are labeled by the start time of the time interval; the results confirm 

the validity of our conjecture. The price impact of hedge fund ownership becomes significantly 

different from zero in the interval that begins at 2PM. Consistent with our prediction, the price 

impact is the strongest in the last ten minutes of the trading day. The magnitude is large. Stocks 

with high hedge fund ownership have higher returns in the last twenty minutes of the day by 

roughly 10 basis points, which constitute about half of the daily increase (compare with the 18 

bps in Table 2, Panel B). 

Figure 1 summarizes the results. Figure 1a shows the cumulative return over the last day 

for stocks with above- and below-median hedge fund ownership. The figure shows the departure 

of returns of stocks with above-median hedge fund ownership in the last minutes of trade. Figure 

1b shows that on the first day of the month high hedge fund ownership stocks display lower 

returns, which start materializing right at the opening bell. In other words, as would reasonably 

be expected if the price changes are a pure liquidity effect, the reversal begins as soon as the 

market opens. 



17 
 

 

4.3.  Which Stocks Are Prone to Manipulation? 

Next, we explore the characteristics of stocks that exhibit manipulation patterns. 

According to Hypothesis H2, stocks are more likely to be manipulated by hedge funds if they are 

relatively illiquid. To test this hypothesis, we regress daily returns around the turn of the month 

on an interaction of high hedge fund ownership indicator and high Amihud (2002) illiquidity 

indicator, as well as the main effects. We also control for size indicator and its interaction with 

hedge fund ownership indicator. The results in Table 6 are strongly consistent with the prediction 

of Hypothesis H2. Above-median illiquid stocks with above-median hedge fund ownership 

exhibit an abnormal return of 17 basis points relative to the abnormal return of all stocks; instead 

we find no effect of market capitalization and its interaction with hedge fund ownership. 

 

4.4.  Hedge-Fund-Level Evidence of Quarter-End Manipulation 

Having provided evidence of manipulation at the stock level, we now turn to fund-level 

evidence by looking at the behavior of portfolios of stocks held by hedge funds at quarter end. 

For each hedge fund in the intersected dataset of 13F and TASS, we calculate ret(last day), the 

returns of the fund’s long equity portfolio, weighted by dollar holdings as reported in the fund’s 

13F for that quarter end. Similarly, we define the returns of that same portfolio on the next day 

(ret(last day + 1)) and previous day (ret(last day – 1)) to the last trading day of the quarter. 

A useful measure to identify manipulations is the “blip” of each fund’s equity portfolio at 

the end of the quarter: 

௜,௧݌݈݅ܤ ൌ ሻ௜,௧ݕܽ݀ ݐݏሺ݈ܽݐ݁ݎ െ ݕܽ݀ ݐݏሺ݈ܽݐ݁ݎ ൅ 1ሻ௜,௧ 

Indeed, if a fund pushes its returns upwards at the end of a quarter, we expect a high 

ret(last day) followed by quick reversal, i.e. a low next-day returns, and thus a high blip. The 

blip can thus be used to identify potential manipulations. Since more volatile portfolios are more 

likely to experience a “blip” (for purely statistical reasons), a more accurate signal of 

manipulation is the volatility-adjusted blip: 

௜,௧ݕݐ݈݅݅ݐ݈ܽ݋ݒ/݌݈݅ܤ ൌ  ௜,௧ݕݐ݈݅݅ݐ݈ܽ݋ܸ/௜,௧݌݈݅ܤ
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where Volatilityi,t is the volatility of daily returns of fund i’s portfolio estimated using daily 

returns of the quarter (and the quarter-end weights). This volatility-adjusted variable, which will 

be used to detect manipulation in the data, is distributed independently of volatility and, absent 

manipulations or other end-of-month anomalies, would be centered on zero. For the purpose of 

describing the variable we adjust returns by the market value-weighted portfolio. Using self-

explanatory notations, we call Adj ret(last day), Adj ret(last day + 1), Adj ret(last day - 1), and 

Adj Blip the market-adjusted variables. 

As a starting point, we wish to confirm at the hedge fund level the anomaly we reported 

earlier at the stock level. In Table 7, we report descriptive statistics of these last four variables, 

calculated at the hedge fund level and averaged at the quarter level. In line with what one would 

expect if a fraction of the funds were engaging in monthly return upward manipulations on their 

long equity holdings, we find significantly positive adjusted returns at the end of the quarter 

followed by negative adjusted returns on the next quarter’s first day. This abnormal adjusted blip 

is 52 bps on average and is not specific to December (the level is fairly constant among calendar 

months). The market-adjusted blips are significant for all of the 4 quarter-end months at the 2% 

level, clustering by date. The time-series of the average adjusted blip for each date appears to be 

positive for roughly 90% of the months of the sample. The 95% confidence interval for the 

average cross-sectional adjusted blip implied by this time-series is (36bps, 80bps). 

Thus, we confirm at the fund level the anomaly documented at the stock level: that the 

portfolio of long equity holdings of hedge funds experience abnormal positive returns on average 

at the end of the month, followed by reversal on the next trading day. This is consistent with 

some hedge funds pumping up stock-prices at month-end. As we have done for the stock-level 

evidence, we will address other possible explanations, such as end-of-month rebalancing, in the 

section below.  

 

5.  Characteristics of Manipulating Hedge Funds  

5.1.  Link with Incentives to Improve Returns 

In order to better understand the economics of stock manipulation, we try to identify the 

hedge funds that exhibit the strongest manipulation patterns. Having described the blip measure 
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for each fund-quarter, we now examine the fund-level characteristics related to high levels of 

blip. In Table 8, Columns (1) to (4), we perform panel regressions of the fund-level volatility-

adjusted blip on a set of hedge funds characteristics. Our regressions include time fixed effects 

and standard errors are clustered at the fund level. We examine a number of explanatory 

variables: log(AUM)t is the log of the assets under management (AUM) by the fund at the end of 

quarter t, log(Equity portfolio size)t is the log of the number of stocks held by the fund as a 

measure of diversification. Both variables are constructed using the funds’ 13F filings. Using 

TASS data, we compute the percentage of flows out of lagged assets under management Fund 

flows / lag(AUM) (%).  

The results in Table 8 show that hedge funds with less diversified portfolios have higher 

blips, in line with the view that it is easier (less costly) for them to move their portfolio 

performance. In contrast, a highly diversified fund cannot generate a high impact on its returns 

by pushing a small number of stocks (Hypothesis H3a). Moreover, stocks owned by small hedge 

funds experience a larger blip (Hypothesis H3b). 

To test Hypothesis H4, that links the incentives to manipulate with manipulation activity, 

we consider relative and absolute performance measures constructed using the TASS data. We 

call I(Bad month)t a dummy equal to one if the fund’s performance at month t is below -2% (a 

threshold that corresponds to the bottom 15% of the distribution of monthly returns). To assess 

relative performance, we sort funds according to their year-to-date performance: YTD 

performance quintile Xt is an ordinal discrete variable that distributes funds into 5 quintiles of 

year-to-date (YTD) performance as of the end of month t. We focus on YTD performance 

because it is a variable frequently used by investors to compare funds within the year. For 

instance, HSBC’s “Hedge Weekly” report provides “Top list” and “Bottom list” of funds 

according to their YTD performance.  

The results in Table 8 confirm that hedge funds in the highest year-to-date performance 

quintile exhibit higher blips (Hypothesis H4a). This evidence is consistent with the cross-

sectional analysis of Carhart, Kaniel, Musto, and Reed (2002), which shows that mutual funds 

that engage in end-of-month price manipulations are past winners, potentially attempting to take 

advantage of the convexity of investment flow-performance. 
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We also find that funds having a bad month (less than -2%) are more likely to experience 

a blip, which can be explained by the concern that an overly negative return might tarnish the 

fund’s track record (e.g., by increasing volatility). These results are economically sizable. 

Moving from the first to the fifth YTD performance quintile increases the expected volatility-

adjusted blip by more than 7% of the variable’s standard deviation, which is 1.4. The magnitude 

of the effects can also be assessed in Table 8, Columns (5) to (8), where the dependent variable is 

ret(last day), the quarter’s last-day return of the portfolio. These regressions show that funds that 

are experiencing a bad month or that are in the highest quintile of YTD performance have last-

day returns that are around 15 bps higher than others. 

To investigate further the link between incentives to manipulate and observed blips, we 

perform a detailed analysis of the characteristics of manipulating hedge funds. In Hypothesis 

H4b-d, we conjecture that manipulation is stronger for: (i) hedge funds with currently good 

relative performance, but with a poor past relative performance, (ii) young hedge funds, and (iii) 

early months in the calendar year. 

As Table 9 shows, we find supportive evidence for all of these three varying hypotheses: 

hedge funds are more likely to experience a high blip when their YTD performance is high and 

they possess one of the characteristics that we explore. For the first case, Low reputationt is a 

dummy equal to one if the YTD performance as of the last quarter (i.e., at month t – 3) was in the 

bottom two quintiles (similar results hold in magnitude and significance by taking the first 

quintile only in the definition of Low reputation). Funds where Low reputation = 1 were thus 

perceived, as of last quarter, to be substandard performers and were more likely to be included in 

poor-performer lists. If funds have an already-high current YTD return, they might benefit 

relatively more by climbing further on the ranking; for example, in order to make it to the top ten 

list. As for the second part of the hypothesis, Youngt is a dummy equal to one if the fund’s age 

(measured from first date of inclusion in TASS) at month t is below the sample’s median, i.e., 7 

years. In the third part of the hypothesis, which relates stronger manipulation early in the year, 

March is a dummy equal to one if the current calendar month is March. 
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5.2.  Time-Series Evidence 

 Next, we explore the time-series dimension of price manipulation. We first would like to 

verify that manipulation takes place over time and is not limited to a single episode in the decade 

being examined. Figure 2 presents a time series of the DGTW-adjusted equally-weighted 

average last-day-of-the-quarter returns over the sample period, where the stocks sample is split 

for high and low hedge fund holdings. The figure shows that in most quarters the end-of-month 

returns are higher for stocks with high hedge fund holdings. 

To test the hypothesis that manipulation is stronger when stock market returns are low 

(Hypothesis H4e), we compute for each quarter-end month the average market-adjusted blips 

and test whether these aggregate blips are stronger when the market performs poorly. We find 

evidence that this is indeed the case (Table 10): the aggregate adjusted blips are significantly 

negatively correlated to monthly market performance. When the market is below its median, the 

average market-adjusted blip is higher by 44 bps, which is about two-thirds of a standard 

deviation move for this variable (the standard deviation is 67 bps). Since the sample is small, we 

present a scatter plot of the scaled blip, as a function of market returns in Figure 3. The figure 

shows that the result is not driven by outliers, but rather reflects a strong pattern in the data. 

 

5.3.  Robustness and Alternative Explanations 

We now address a few potential concerns regarding the fund-level results’ interpretation. 

First, the link between YTD performance and blips might come from a reverse causal 

relationship, in which the high blips are themselves the cause of the high YTD performance. This 

concern can be alleviated by including in the regression the fund’s relative performance for the 

current month. We report this robustness check in Appendix Table 1: Current performance 

quintile Xt is an ordered discrete variable that breaks funds in five quintiles according to month t 

performance. The baseline results of Table 8 are unaffected by such a control. (They are also 

unchanged when the continuous relative performance variable is included.) 

Another concern is that the results we report might be related to the price impact of trades 

that specifically occur at the end of the month rather than to intentional price manipulations. For 

instance, some funds with a high YTD performance might experience high inflows, leading to a 
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large flow of stocks being bought at the quarter end. To alleviate this concern, we control for the 

percentage net flows in assets received by the fund at quarter end, Fund flows / lag(AUM) (%). 

Following the literature standard (Chevalier and Ellison 1997, Sirri and Tufano 1998, Agarwal, 

Daniel, and Naik 2009, among others), we compute fund flows as the quarterly difference in 

AUM at quarter end minus the dollar return on the previous quarter AUM. Fund flows are then 

scaled by the lagged AUM. Columns (4) and (8) of Table 8 show that the results are unaffected 

by the inclusion of this control. The blip and last-day returns are actually not correlated with 

fund net flows (in unreported regressions, we also included forward and lagged measures of 

monthly net flows, with similar results), relaxing the concern that price-impact at month end is a 

driving force in these regressions.  

 

5.4. Persistence of Manipulation Behavior 

In the final part of the hedge fund-level analysis, we investigate whether manipulation 

patterns are persistent across hedge funds (Hypothesis H5). To this end, we regress the current 

quarterly blip on the lagged blip. Table 11 documents that blips are indeed significantly 

persistent from one quarter to the next: volatility-adjusted blips have an autocorrelation of 

around 0.11. This subsists even when controlling for all the variables that have been seen as 

predictors of manipulation, as Column (3) indicates. This suggests that manipulating returns is a 

“habit” that tends to persist over time at the fund level. 

 

6.  Feasibility Analysis 

We argue that the economic mechanism that drives the end-of-month returns is stock 

manipulation on the part of hedge funds. A necessary condition for this mechanism is that 

manipulation of stock prices is feasible with reasonable amount of capital. That is, we would like 

to see that the amount of money necessary to move prices by the observed magnitudes is 

accessible even to smaller hedge funds.  

We verify that hedge funds can actually manipulate prices by examining the association 

between returns and signed volume. Therefore, the more immediate question is how much 

capital does it take to move the price of a stock by 1%? We focus on the last seconds of trades on 
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the last day of the month. An estimate of the sensitivity of prices to volume around this time is 

likely to provide an upper estimate for the amount of money needed for such trades, as stocks 

have generally high level of volume towards the end of the trading day. 

We begin by splitting the universe of stocks into ten groups according to their Amihud 

(2002) illiquidity measure. Then we extract the last ten seconds of trade (15:59:50 to 15:59:59) 

in addition to the closing trades at 16:00:00 of the last day of the month for all the months from 

January 2000 to December 2009. 

For each stock-second, we both compute returns and aggregate the dollar volume. In each 

Amihud illiquidity group, for each second, we run the following regression for all stock-seconds 

with non-zero dollar volume: 

௜,௧ݐ݁ݎ ൌ ܽ ൅ ܾ ∗ ௜,௧൯ݐ݁ݎ൫݊݃݅ݏ ∗ ௜,௧݈݋ݒ$ ൅ ݁௜,௧ 

As reti,t is expressed in percentage points, the inverse of the coefficient b represents the 

dollar amount associated with a 1% movement in the price. We compute the inverse of the 

coefficient b and present it in Figure 4 (with logarithmic scale). 

The figure shows that during trading hours, changes of 1% in the prices of stocks with 

low liquidity (groups 6 to 10) are associated with dollar volumes lower than $0.5m. Changes in 

prices at the closing trade are associated with much larger amounts of money. At the closing 

(16:00:00), one needs $1m to $10m to move the price of low liquidity stocks by 1%. 

Consistent with Hypothesis H6 and with Cramer’s own admission, we find that with a 

few millions, a trader can move the price of illiquid stocks by a percentage point or more. Thus, 

the manipulation of prices appears to be feasible with moderate resources. 

 

7.  Conclusion 

In this paper, we use hedge fund holdings data to validate the conjecture that hedge funds 

manipulate stock prices before the close of trading at the end-of-month by buying some of their 

illiquid stock holdings before market close. This claim is supported by high end-of-month returns 

and a consequent reversal in the following day, as well as by intraday data, where we find that 
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returns are especially high at the last minutes of trading. We document that manipulations are 

likely to take place in cases where the manipulation is likely to be most effective. 

Our paper joins previous literature that discusses stock price manipulation before the bell 

for other investor populations. Carhart, Kaniel, Musto, and Reed (2002) find similar results for 

mutual funds, Ni, Pearson, and Poteshman (2005) for option traders, and Blocher, Engelberg, 

and Reed (2010) for short sellers. In a sense, our paper complements the latter study, since a 

large fraction of short selling volume is attributed to hedge funds (Boehmer, Ekkehart, and Jones 

2008 and Goldman Sachs 2010). 

The welfare costs induced by hedge funds’ manipulations of monthly returns have the 

potential to be significant: the price effects are large and do not cancel out within the month. A 

major source of the economic costs of these manipulations stems from the fact that many 

contracts and performance measures in the economy are likely to rely on monthly returns. By 

jamming the signals on which their own performance is evaluated, hedge funds add noise to a 

widely used signal, thus exercising a negative externality on the rest of the economy.  
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Table 1. Summary Statistics 

The table reports summary statistics. Panel A presents summary statistics of stock-day observations of the last day 
of the month (summary statistics of other days around the turn of the month are very similar). Panel B presents 
summary statistics at the hedge-fund-quarter level. The sample period is 2000Q1 to 2009Q4. 

Panel A: Stock-Day Level Summary Statistics 

 

 

Panel B: Hedge Fund-Quarter Level Summary Statistics 

 

  

N Mean Std Dev Min p25 p50 p75 Max
Return last day (%, DGTW adjusted) 128841 0.021 3.772 -74.251 -1.361 -0.067 1.260 14.469
Return first day (%, DGTW adjusted) 128868 -0.126 3.728 -81.250 -1.539 -0.072 1.398 14.469
Return second day (%, DGTW adjusted) 128800 -0.059 3.612 -94.788 -1.451 -0.070 1.358 14.469
Return second-to-last day (%, DGTW adjusted) 128844 -0.019 3.484 -71.286 -1.288 -0.060 1.224 14.469
HF ownership (%) 128910 2.615 3.803 0.000 0.440 1.258 3.246 100.000
Mutual Fund ownership (%) 128910 13.637 9.481 0.000 6.095 12.303 19.656 100.000
Ownership by high-inflow funds (%) 128910 0.640 1.829 0.000 0.000 0.043 0.456 100.000
Amihud 128910 0.310 0.974 0.000 0.001 0.008 0.072 5.000
Market capitalization 125861 4.08E+09 1.77E+10 -1.03E+09 1.60E+08 5.40E+08 1.89E+09 5.71E+11

N Mean Std Dev Min p25 p50 p75 Max
Adj ret(last day) 6649 0.368 1.558 -8.527 -0.400 0.063 0.725 14.743
Adj ret(last day + 1) 6649 0.002 0.020 -0.138 -0.007 0.003 0.012 0.118
Adj ret(last day - 1) 6649 0.001 0.020 -0.167 -0.002 0.002 0.010 0.091
Adj Blip = Adj ret(last day + 1) - Adj ret(last day) 6649 0.008 0.044 -0.553 -0.006 0.008 0.022 0.746

log(AUM) 6649 5.439 1.742 -5.163 4.498 5.490 6.512 10.915

log(# Stocks in equity portfolio) 6649 3.885 1.281 0.000 3.219 3.892 4.575 7.839
Fund flows / lag(AUM) (%) 5741 0.010 0.041 -0.311 -0.003 0.003 0.019 0.237
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Table 2. End-of-Quarter Returns for High HF Ownership Stocks 

The table reports results from OLS regressions in which the dependent variable is the daily percentage return 
adjusted using the Daniel, Grinblatt, Titman, and Wermers (1997) (DGTW) approach. Four specifications are 
reported for which the dependent variables are the stock return in the second-to-last, last, next-to-last, and second-
after-the-last days of the quarter, respectively. In Panel A, the explanatory variable is an indicator for stocks’ hedge 
fund ownership (by quartile) for that same quarter. In Panel B, the explanatory variable is an indicator for whether 
stocks’ hedge fund ownership is above the median for that same quarter. t-statistics are reported in parentheses. 
Standard errors are clustered by date. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, 
respectively. The sample period is 2000Q1 to 2009Q4. 

Panel A: Regression on Hedge Fund Ownership Quartiles 
 

 

 

Panel B: Regression on Hedge Fund Ownership Halves 
 

 

  

Day of the month: last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4)

HF ownership Q2 -0.012 0.044 -0.018 -0.019
(-0.425) (1.350) (-0.626) (-0.749)

HF ownership Q3 0.043 0.119** -0.088* -0.018
(1.506) (2.687) (-1.984) (-0.321)

HF ownership Q4 0.003 0.299*** -0.245*** -0.097
(0.069) (6.802) (-4.175) (-1.606)

Constant -0.028 -0.092*** -0.033 -0.016
(-1.379) (-2.989) (-1.218) (-0.617)

Observations 128844 128841 122804 122802

Adjusted R2 0.000 0.001 0.001 0.000

Dep. variable: DGTW adjusted return

Day of the month: last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4)

HF ownership (top half) 0.034 0.184*** -0.140*** -0.046
(1.185) (6.398) (-3.440) (-0.993)

Constant -0.039** -0.065** -0.051** -0.036
(-2.684) (-2.237) (-2.059) (-1.491)

Observations 126630 126627 122326 122324

Adjusted R2 0.000 0.001 0.000 0.000

Dependent variable: DGTW adjusted return
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Table 3. End-of-Quarter Returns for High HF Ownership Stocks, by Quarter 

The table reports results from OLS regressions in which the dependent variable is the daily percentage return 
adjusted using the Daniel, Grinblatt, Titman, and Wermers (1997) approach. For each quarter, the dependent 
variable is the stock return on the last day of the quarter and on the first day of the next quarter. The explanatory 
variable is an indicator for stocks for which hedge fund ownership is above the median for that quarter. t-statistics 
are reported in parentheses. Standard errors are clustered by date. ***, **, and * denote statistical significance at the 
1%, 5%, and 10% levels, respectively. The sample period is 2000Q1 to 2009Q4. 

 

 

  

Quarter:
Day of the month: last day last day + 1 last day last day + 1 last day last day + 1 last day last day + 1

(1) (2) (3) (4) (5) (6) (7) (8)
HF ownership (top half) 0.141 -0.155* 0.185** -0.280** 0.348*** -0.133 0.407*** -0.207**

(1.808) (-1.871) (3.004) (-2.395) (4.673) (-1.513) (5.468) (-2.766)
Constant 0.017 -0.141* 0.019 -0.067 -0.068 -0.125** -0.076 0.015

(0.498) (-2.148) (0.414) (-1.705) (-0.768) (-2.415) (-1.030) (0.318)

Observations 32366 32172 31838 31657 31289 31062 31134 27435

Adjusted R2 0.000 0.000 0.000 0.001 0.001 0.000 0.002 0.000

Q1
Dependent variable: DGTW adjusted return

Q2 Q3 Q4
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Table 4. Robustness of Daily Return Analysis 

The table reports results from OLS regressions in which the dependent variable is the daily percentage return 
adjusted using the Daniel, Grinblatt, Titman, and Wermers (1997) approach. Four specifications are reported in 
which the dependent variables are the stock return in the second-to-last, last, next-to-last, and second-after-the-last 
days of the month for January, April, July, and October end-of-months. The explanatory variable in Panels A and B 
are a one and two, respectively, quarter-lagged indicator for stocks for which hedge fund ownership is above the 
median at the end of the previous quarter. The explanatory variables in Panel C is an indicator for stocks for which 
hedge fund ownership is above the median at the end of the previous quarter, and the DGTW-adjusted return of the 
first day of the month. In Panel D, the explanatory variables include: an indicator for stocks for which hedge fund 
ownership is above the median for that same quarter, an indicator for stocks with above median ownership by high-
flow hedge funds (which are in the top tercile of the flow distribution in the quarter), and the interaction between 
these two variables. In Panel E, the explanatory variables are two indicators for stocks for which mutual and hedge 
fund ownership are above the median for that same quarter, respectively. t-statistics are reported in parentheses. 
Standard errors are clustered by date. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, 
respectively. The sample period is 2000Q1 to 2009Q4. 

Panel A: Regressions of Returns around the Turn of the Month on One-Month-Lagged 
Hedge Fund Ownership 

 

 

Panel B: Regressions of Returns around the Turn of the Month on Two-Month-Lagged 
Hedge Fund Ownership 

 

  

Day of the month: last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4)

lag(HF ownership (top half)) -0.014 0.065** -0.077** -0.042
(-0.318) (2.113) (-2.441) (-1.392)

Constant 0.006 0.031 -0.000 0.009
(0.363) (1.668) (-0.019) (0.499)

Observations 130664 130108 130005 129975

Adjusted R2 -0.000 0.000 0.000 0.000

Dependent variable: DGTW adjusted return

Day of the month: last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4)

lag2(HF ownership (top half)) -0.010 0.116*** 0.036 -0.031
(-0.338) (3.793) (0.853) (-0.766)

Constant 0.015 0.024 0.012 0.006
(0.721) (1.622) (0.580) (0.352)

Observations 129970 129341 129249 129209

Adjusted R2 -0.000 0.000 0.000 0.000

Dependent variable: DGTW adjusted return



31 
 

Table 4. Robustness of Daily Return Analysis (Cont.) 

Panel C: Controlling for Stocks Owned by Hedge Funds with High Flows 

 

 
Panel D: Controlling for Mutual Fund Ownership 

 

 
Panel E: Regressions of Returns around the Turn of the Month on Hedge Fund Ownership, 
Controlling for Returns of the First Day of the Month 

Day of the month: last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4)

HF ownership (top half) 0.033 0.185*** -0.140*** -0.048
(1.164) (6.432) (-3.436) (-1.050)

First-day-of-the-month DGTW return 0.010 -0.011 0.013 -0.012
(0.738) (-1.055) (1.125) (-0.685)

Constant -0.039** -0.065** -0.052** -0.036
(-2.642) (-2.236) (-2.080) (-1.489)

Observations 126626 126623 122276 122324

Adjusted R2 0.000 0.001 0.001 0.000

Dependent variable: DGTW adjusted return

Day of the month: last day - 1 last day last day + 1 last day + 2 last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4) (5) (6) (7) (8)

HF ownership (top half) 0.034 0.185*** -0.146*** -0.046
(1.156) (6.401) (-3.390) (-1.012)

MF ownership (top half) 0.106 -0.103 0.101 -0.016 0.106 -0.104 0.102 -0.016
(1.620) (-1.583) (1.255) (-0.172) (1.615) (-1.601) (1.271) (-0.167)

Constant -0.091 0.095 -0.192** -0.050 -0.108* 0.005 -0.122* -0.027
(-1.490) (1.614) (-2.524) (-0.568) (-1.980) (0.085) (-1.793) (-0.360)

Observations 126630 126627 124066 124064 126630 126627 124066 124064

Adjusted R2 0.000 0.000 0.000 -0.000 0.000 0.001 0.001 0.000

Dependent variable: DGTW adjusted return

Day of the month: last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4)

HF ownership (top half) 0.083 0.244*** -0.207*** -0.110
(1.289) (4.715) (-3.411) (-1.151)

Ownership by high-inflow funds (top half) 0.072* 0.058 0.056 -0.017
(1.814) (1.386) (1.305) (-0.450)

HF ownership  ownership by high-inflow funds -0.095 -0.102* 0.101* 0.109
(-1.364) (-1.796) (1.708) (1.145)

Constant -0.073** -0.101** -0.088** -0.028
(-2.230) (-2.116) (-2.125) (-0.756)

Observations 128871 128868 128349 128347

Adjusted R2 0.000 0.001 0.001 0.000

Dependent variable: DGTW adjusted return
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Table 5. Intraday Returns 

The table reports results from OLS regressions in which the dependent variable is the percentage return in the 
relevant time interval for which we report the beginning time. We consider both thirty minute and ten minute 
intervals. We report results for four different days: the second-to-last, last, next-to-last, and second-after-the-last 
days of the quarter, respectively. The explanatory variable is an indicator for stocks for which hedge fund ownership 
is above the median for that same quarter. Adjusted R2 is zero in all regressions. t-statistics are reported in 
parentheses. Standard errors are clustered by date. ***, **, and * denote statistical significance at the 1%, 5%, and 
10% levels, respectively. The sample period is 2000Q1 to 2009Q4. 

 

9:30 11:30 13:30 14:00 14:30 15:00 15:10 15:20 15:30 15:40 15:50
Sample: Last Day -1 (N = 139291) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
HF ownership (top half) 0.020 -0.001 0.018 -0.003 0.001 0.002 0.004 -0.001 0.002 0.008 0.016*

(0.970) (-0.138) (1.394) (-0.341) (0.171) (0.436) (0.589) (-0.116) (0.279) (0.945) (1.919)
Intercept -0.160 -0.001 -0.080 0.013 0.010 -0.007 -0.036* -0.013 0.018 0.039* 0.082**

(-1.106) (-0.041) (-1.515) (0.346) (0.305) (-0.375) (-1.756) (-0.506) (1.052) (1.955) (2.639)

Sample: Last Day (N = 139536)
HF ownership (top half) 0.031* 0.009 0.009 0.014* 0.010 0.013*** 0.010* 0.008 0.004 0.024** 0.073***

(1.699) (1.123) (1.315) (1.866) (1.321) (2.950) (1.824) (1.502) (0.537) (2.703) (8.172)
Intercept -0.072 0.030 0.055** 0.030 0.044 -0.044* -0.017 -0.017 -0.037 -0.020 -0.020

(-0.802) (1.198) (2.125) (1.045) (1.469) (-1.975) (-0.736) (-0.774) (-1.248) (-0.739) (-0.804)

Sample: First Day (N = 135010)
HF ownership (top half) -0.076*** 0.001 -0.011* -0.018*** -0.011 0.003 -0.006 -0.011** -0.009 -0.003 0.014*

(-2.896) (0.146) (-1.732) (-2.897) (-1.276) (0.395) (-0.915) (-2.134) (-1.573) (-0.548) (1.997)
Intercept -0.102 0.005 0.002 0.019 -0.030 -0.024 -0.007 0.008 0.011 0.006 0.060**

(-1.027) (0.190) (0.069) (0.527) (-0.809) (-0.854) (-0.523) (0.496) (0.464) (0.362) (2.464)

Sample: Second Day (N = 134942)
HF ownership (top half) -0.022 -0.013 0.022 0.009 -0.010 0.005 0.004 0.001 0.007 0.001 0.017**

(-0.690) (-0.899) (1.241) (0.775) (-0.834) (0.967) (1.028) (0.084) (1.171) (0.229) (2.265)
Intercept -0.167 -0.040 0.069* -0.035 -0.047 -0.018 -0.021 -0.023 -0.007 -0.013 0.036

(-1.178) (-0.675) (1.962) (-0.768) (-1.623) (-0.945) (-0.982) (-0.857) (-0.299) (-0.665) (1.602)

Stock return (half an hour intervals) Stock return (10 minute intervals)
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Table 6. Stock Level Incentives to Manipulate 

The table reports results from OLS regressions in which the dependent variable is the daily percentage return 
adjusted using the Daniel, Grinblatt, Titman, and Wermers (1997) approach. The dependent variables are the stock 
return in the second-to-last, last, next-to-last, and second-after-the-last days of the quarter, respectively. The 
explanatory variables are indicators for above-median hedge fund ownership, above-median market capitalization, 
above-median (2002) price impact measure, and their interactions. t-statistics are reported in parentheses. Standard 
errors are clustered by date. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. 
The sample period is 2000Q1 to 2009Q4. 

 

  

Day of the month: last day - 1 last day last day + 1 last day + 2
(1) (2) (3) (4)

High HF ownership (top half) 0.096 0.089 -0.122 0.016
(1.289) (1.311) (-1.528) (0.263)

    × High mkt cap -0.100 0.004 0.055 -0.052
(-1.267) (0.055) (0.669) (-0.712)

   × High Amihud -0.007 0.174** -0.077 -0.073
(-0.089) (2.319) (-0.926) (-1.054)

High mkt cap (top half) 0.162** -0.082 0.225** 0.077
(2.249) (-0.909) (2.292) (1.016)

High Amihud (top half) 0.025 -0.064 0.144* 0.095

(0.366) (-0.727) (1.817) (1.352)
Constant -0.137** 0.005 -0.237*** -0.111*

(-2.027) (0.052) (-2.777) (-1.715)

Observations 125857 125854 122799 122797

Adjusted R2 0.000 0.001 0.001 0.000

Dependent variable: DGTW adjusted return
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Table 7. Fund-Level Evidence of Abnormal Month-end Returns 

The table reports the average market-adjusted daily returns for equity portfolios held at quarter’s end by hedge 
funds. Adj ret (last day) is the market-adjusted return of this portfolio on the last trading day of the quarter and Adj 
ret (last day - 1) (Adj ret (last day + 1)) are the returns of the same portfolio on the next (previous) trading day Adj 
Blip is defined at the fund level as the difference between Adj ret (last day) and Adj ret (last day + 1). The universe 
is all TASS hedge funds for 2000Q1 to 2009Q4, for which the 13F is known. 

 

 

  

All March June September December
(1) (2) (3) (4) (5)

Adj ret(last day - 1) 0.13% 0.06% 0.15% 0.14% 0.11%
Adj ret(last day) 0.31% 0.30% 0.26% 0.20% 0.31%
Adj ret(last day + 1) -0.20% -0.16% -0.22% -0.27% -0.12%
Adj Blip = Adj ret(last day + 1) - Adj ret(last day) 0.52% 0.46% 0.48% 0.47% 0.46%

Average market-adjusted returns
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Table 8. Which Hedge Funds Manipulate Prices? Volatility-Adjusted Blips 

The table reports fund-level OLS regressions of volatility-adjusted quarter-end “blips” of hedge fund portfolios. 
Specifically, the dependent variable in Columns (1) to (4), Blip/Volatility, is defined for each fund-quarter as the 
difference between ret(last day) and ret(last day + 1) divided by the daily volatility of the portfolio over the quarter. 
The dependent variable in Panel B is ret(last day of quarter), which is the quarter-end daily returns of their equity 
portfolio (based on holdings reported in 13Fs). ret(last day) is the return of this portfolio on the last trading day of 
the quarter and ret(last day + 1) is the return of the same portfolio on the next trading day. The determinants are: the 
log of dollar long equity holdings reported in the 13F (log(AUM)), the log of the number of stocks reported in the 
13F (log(Equity portfolio size)), asset net flows as a percentage of lagged AUM (Fund flows / lag(AUM) (%)), a 
dummy variable (I(Bad month)) for whether the current month’s performance is below -2%, and YTD performance 
(as of quarter’s end) by quintiles (YTD performance quintile X). The universe is all TASS hedge funds for 2000Q1 
to 2009Q4, for which the 13F is known. T-statistics are reported in parentheses. ***, **, and * denote statistical 
significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered at the fund level and time-
fixed effects are included. 

 

  

Dependent Variable:
(1) (2) (3) (4) (5) (6) (7) (8)

log(AUM) -0.001 0.000 -0.001 -0.003 -0.024* -0.023* -0.025** -0.026*
(-0.083) (0.043) (-0.146) (-0.231) (-1.929) (-1.826) (-2.038) (-1.766)

log(# Stocks in equity portfolio -0.030** -0.031** -0.028** -0.030** -0.041** -0.042** -0.038** -0.040**
(-2.126) (-2.239) (-2.026) (-1.975) (-2.334) (-2.372) (-2.133) (-2.146)

Fund flows / lag(AUM) (%) 0.281 -0.002
(0.841) (-0.007)

I(Bad month) 0.062 0.082** 0.086** 0.161*** 0.189*** 0.211***
(1.594) (2.173) (2.123) (3.076) (3.653) (3.663)

YTD performance Q2 0.017 0.033 0.020 -0.032 0.004 0.017
(0.485) (0.976) (0.563) (-0.790) (0.110) (0.394)

YTD performance Q3 -0.015 0.005 0.003 -0.041 0.005 0.025
(-0.433) (0.157) (0.078) (-0.984) (0.125) (0.576)

YTD performance Q4 0.017 0.038 0.015 0.014 0.063 0.071
(0.475) (1.097) (0.399) (0.320) (1.544) (1.593)

YTD performance Q5 0.083** 0.104*** 0.095** 0.090** 0.139*** 0.162***
(2.060) (2.638) (2.198) (2.030) (3.212) (3.403)

Calendar quarter FE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 6,598 6,598 6,598 5,710 6,598 6,598 6,598 5,710

Adjusted R2 0.702 0.702 0.702 0.700 0.549 0.549 0.550 0.542

Blip/volatility ret(last day of quarter)
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Table 9. Manipulations and Incentives to Attract Attention 

The table reports fund-level OLS regressions of volatility-adjusted quarter-end “blips” of hedge fund portfolios. 
Specifically, the dependent variable, Blip/Volatility is defined for each fund-quarter as the difference between 
ret(last day) and ret(last day + 1) divided by the daily volatility of the portfolio over the quarter. ret(last day) is the 
return of this portfolio on the last trading day of the quarter and ret(last day + 1) is the return of the same portfolio 
on the next trading day. The determinants are: the log of dollar long equity holdings reported in the 13F (log(AUM)), 
the log of the number of stocks reported in the 13F (log(Equity portfolio size)), asset net flows as a percentage of 
lagged AUM (Fund flows / lag(AUM) (%)), a dummy variable (I(Bad month)) for whether the current month’s 
performance is below -2%, and YTD performance (as of quarter’s end) by quintiles (YTD performance quintile X). 
Year-to-date performance is interacted with three characteristics: whether the fund’s age is below median (dummy 
Young), whether the YTD performance as of last quarter was in the lower two quintiles (dummy Low reputation) 
and whether the current month is March (dummy March).The universe is all TASS hedge funds for 2000Q1 to 
2009Q4, for which the 13F is known. t-statistics are reported in parentheses. ***, **, and * denote statistical 
significance at the 1%, 5%, and 10% levels, respectively. Standard errors are clustered at the fund level and time-
fixed effects are included.  

  

Interaction characteristic: Low reputation Young March
(1) (2) (3)

log(AUM) -0.001 -0.003 -0.001
(-0.109) (-0.261) (-0.116)

log(# Stocks in equity portfolio) -0.030* -0.030* -0.031**
(-1.898) (-1.965) (-2.056)

Fund flows / lag(AUM) (%) 0.193 0.302 0.293
(0.571) (0.911) (0.876)

I(Bad month) 0.093** 0.088** 0.095**
(2.219) (2.160) (2.350)

Characteristic -0.047 -0.074
(-0.749) (-1.375)

YTD performance Q2 0.004 -0.024 0.028
(0.063) (-0.461) (0.644)

YTD performance Q3 -0.028 -0.007 -0.024
(-0.461) (-0.133) (-0.579)

YTD performance Q4 -0.006 0.024 -0.011
(-0.099) (0.469) (-0.250)

YTD performance Q5 0.043 0.009 0.038
(0.687) (0.162) (0.823)

Characteristic × YTD performance Q2 0.005 0.090 -0.021
(0.064) (1.290) (-0.268)

Characteristic × YTD performance Q3 0.049 0.019 0.106
(0.680) (0.273) (1.459)

Characteristic × YTD performance Q4 0.075 -0.018 0.106
(0.859) (-0.260) (1.357)

Characteristic × YTD performance Q5 0.251** 0.177** 0.222***
(2.339) (2.390) (3.126)

Calendar quarter FE Yes Yes Yes

Observations 5,354 5,710 5,710

Adjusted R2 0.708 0.700 0.700

Dependent Variable: Blip/Volatility
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Table 10. Stock Price Manipulation and Market Direction 

The table reports OLS regressions of the monthly average of quarter-end “blips” of hedge fund portfolios (market-
adjusted and volatility and market-adjusted). Specifically, the dependent variable is the monthly average across 
hedge funds of AdjBlip and AdjBlip/Volatility. These variables are constructed for all TASS hedge funds for 2000Q1 
to 2009Q4, for which the 13F is known in the following manner: Adj ret (last day) is the market-adjusted return of 
this portfolio on the last trading day of the quarter and Adj ret (last day - 1) (and respectively Adj ret (last day + 1)) 
are the returns of the same portfolio on the next (respectively previous) trading day. Adj Blip is defined at the fund 
level as the difference between Adj ret (last day) and Adj ret (last day + 1). The right-hand-side variable Qtr market 
returns is the value-weighted market portfolio over the last quarter and I(mkt below median) is a dummy equal to 
one if the market portfolio’s performance is below its median during the sample period (1.06%). t-statistics are 
reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.  

 

(1) (2) (3) (4)
Qtr market returns -0.063*** -2.665**

(-2.786) (-2.419)
I(mkt below median) 0.004** 0.226**

(2.103) (2.305)
Constant 0.006*** 0.004** 0.305*** 0.200***

(5.678) (2.536) (6.241) (2.916)

Observations 39 39 39 39

Adjusted R2 0.151 0.083 0.113 0.102

Dep.: Blip/VolatilityDep.: Adj. Blip
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Table 11. Serial Manipulation? Autocorrelation of Abnormal Quarter-End Blips 

The table reports fund-level OLS regressions of volatility-adjusted quarter-end “blips” of hedge fund portfolios. 
Specifically, the dependent variable, Blip/Volatility, is defined for each fund-quarter as the difference between 
ret(last day) and ret(last day + 1) divided by the daily volatility of the portfolio over the quarter. ret(last day) is the 
return of this portfolio on the last trading day of the quarter and ret(last day + 1) is the return of the same portfolio 
on the next trading day. Lag(Blip/Volatility) is defined for each fund as last quarter’s measure of Blip/Volatility. The 
universe is all TASS hedge funds for 2000Q1 to 2009Q4, for which the 13F is known. t-statistics are reported in 
parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively. Standard errors 
are clustered at the date level and time-fixed effects are included. 

 

(1) (2) (3)
lag(Blip / Volatility) 0.123*** 0.120*** 0.113***

(11.925) (11.509) (6.753)

log(AUM) -0.005 -0.005
(-0.976) (-0.557)

log(# Stocks in equity portfolio) -0.030*** -0.026**
(-4.101) (-2.129)

I(Bad month) 0.092**
(2.512)

YTD performance Q2 0.029
(0.871)

YTD performance Q3 0.013
(0.412)

YTD performance Q4 0.050
(1.460)

YTD performance Q5 0.085**
(2.272)

Constant -0.060*** 0.079*** 0.050
(-7.732) (3.067) (1.020)

Observations 19,799 19,799 6,130

Adjusted R2 0.704 0.704 0.713

Dependent Variable: Blip/Volatility
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Figure 1. Intraday Cumulative Returns 

The figure reports the cumulative intraday returns (expressed as percentages) for stocks that have above- and below-
median hedge fund ownership in the quarter. The two panels focus on the last day of the quarter and the first day of 
the next quarter, respectively. The sample period is 2000Q1 to 2009Q4. 

Figue1a: Last Day of the Month 

 
 
Figue1b: First Day of the Month 
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Figure 2. Time-Series of the Returns in the Last Day of the Quarter 

The chart presents the time series average adjusted returns for stocks with high and low holdings by hedge funds. 
The sample period is 2000Q1 to 2009Q4. 
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Figure 3. Blip and Market Returns 

The figure presents the adjusted blip (last day-of-the-month returns minus first day-of-the-month returns, adjusted 
for market returns) as a function of quarterly stock market returns. The sample period is 2000Q1 to 2009Q4. 
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Figure 4. Dollar Volume Needed to Move the Price by 1% 

The figure presents results from a regression of second-level regressions of returns (expressed as percentages) on the 
signed dollar volume. The regressions are run for each group of Amihud (2002) decile stocks, for each second of the 
last 11 last seconds of trade. Only the last days of the month are included for all months from January 2000 through 
December 2009. The figure presents the inverse of the coefficient on the signed volume. It represents the dollar 
amount associated with a move of one percent in the price. 
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Appendix Table 1. Robustness: Current Relative Performance Control 

The table reports fund-level OLS regressions similar to Tables 8. We add a new control: the current month’s relative 
performance reported by quintiles of monthly performance. For the last month of all quarters, rank5_ytd is the 
quintile of the monthly performance of the fund for this month. The universe is all TASS hedge funds for 2000Q1 
through 2009Q4 for which the 13F is known. T-statistics are reported in parentheses. ***, **, and * denote 
statistical significance at the 1%, 5%, and 10% levels, respectively. T-stats are clustered at the fund level; time 
fixed-effects are included. 

 

 

Dependent Variable:
(1) (2) (3) (4) (5) (6)

log(AUM) -0.001 -0.002 -0.003 -0.023* -0.025** -0.025*
(-0.056) (-0.164) (-0.237) (-1.854) (-2.013) (-1.729)

log(# Stocks in equity portfolio) -0.030** -0.028** -0.030** -0.041** -0.038** -0.040**
(-2.136) (-2.020) (-1.972) (-2.352) (-2.165) (-2.188)

Fund flows / lag(AUM) (%) 0.275 -0.016
(0.823) (-0.042)

I(Bad month) 0.111*** 0.103** 0.211*** 0.227***
(2.606) (2.216) (3.921) (3.745)

YTD performance Q2 0.017 0.027 0.017 -0.025 -0.007 0.005
(0.492) (0.788) (0.457) (-0.618) (-0.167) (0.115)

YTD performance Q3 -0.009 -0.000 0.000 -0.026 -0.009 0.011
(-0.269) (-0.010) (0.013) (-0.620) (-0.212) (0.244)

YTD performance Q4 0.021 0.029 0.011 0.039 0.055 0.066
(0.567) (0.797) (0.261) (0.955) (1.339) (1.467)

YTD performance Q5 0.085** 0.091** 0.089** 0.130*** 0.142*** 0.172***
(2.049) (2.223) (1.979) (2.907) (3.185) (3.501)

Current performance Q2 0.028 0.064* 0.047 -0.013 0.056 0.059
(0.859) (1.953) (1.325) (-0.347) (1.497) (1.478)

Current performance Q3 -0.032 0.019 0.001 -0.030 0.067* 0.066
(-0.962) (0.551) (0.021) (-0.728) (1.711) (1.513)

Current performance Q4 0.007 0.060 0.043 -0.075* 0.026 0.015
(0.192) (1.566) (1.024) (-1.813) (0.678) (0.345)

Current performance Q5 0.002 0.056 0.029 -0.088** 0.014 -0.003
(0.042) (1.347) (0.661) (-2.087) (0.342) (-0.070)

Calendar quarter FE Yes Yes Yes Yes Yes Yes

Observations 6,598 6,598 5,710 6,598 6,598 5,710

Adjusted R2 0.702 0.702 0.700 0.549 0.550 0.542

Blip/Volatility ret(last day of quarter)


