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Abstract

We study bilateral cross-licensing agreements among N (> 2) competing �rms. We �nd

that the fully cooperative royalty, i.e., the one that allows them to achieve the monopoly

pro�t, can be sustained as the outcome of bilaterally e¢ cient agreements, regardless of

whether the agreements are public or private and whether �rms compete in quantities or

prices. We extend this monopolization result to a general class of two-stage games in which

�rms bilaterally agree in the �rst stage to make each other payments that depend on their

second-stage non-cooperative actions. Policy implications regarding the antitrust treatment

of cross-licensing agreements are derived.
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1 Introduction

A cross-license is an agreement between two �rms that allows each to practice the other�s

patents (Shapiro, 2001, and Régibeau and Rockett, 2011). Cross-licensing has been a widespread

practice for a long time. For instance, Taylor and Silberston (1973) report that, in many

industries, cross-licensing accounts for a signi�cant share of all licensing arrangements: 50% in

the telecommunications and broadcasting industry, 25% in the electronic components sector,

23% in the pharmaceutical industry, etc.1 Cross-licensing is therefore likely to have an impact

on competition in a large number of sectors.

Cross-licensing agreements involve both technological and monetary transfers. Technological

transfers are generally perceived as pro-competitive: they can result in goods being produced

at lower costs by potentially more �rms. These transfers are particularly useful in Information

Technology (IT) industries, such as the semiconductor and mobile phone industries, where the

intellectual property rights necessary to market a product are typically held by a large number

of parties, a situation known as a patent thicket (Shapiro, 2001; U.S. DoJ and FTC, 2007;

Galasso and Schankerman, 2010).2 Monetary transfers, however, can be anticompetitive. More

speci�cally, high per-unit royalties can allow �rms to sustain high prices.

A natural question that arises is the following: do cross-licensing partners have incentives

to agree on high royalties? The existing literature (discussed below) provides an answer to this

question in a duopoly setting: in such environment, �rms sign a cross-licensing agreement with

royalties high enough to replicate the monopoly pro�t (see e.g., Fershtman and Kamien, 1992).

This monopolization result can be generalized in a straightforward way to a setting with more

than two �rms signing a multilateral agreement involving all of them (see Section 2.2).

However, in the typical scenario observed in practice, i.e., bilateral cross-licensing in indus-

tries comprised of more than two �rms, it is unclear whether two given �rms would agree on high

royalties. First, this might weaken their competitive positions with respect to their rivals. Second,

if the terms of the cross-licenses are publicly observable and �rms compete in quantities, they

have incentives to agree on low royalties to be perceived as e¢ cient and, therefore, aggressive by

their competitors. We build a model to investigate whether bilateral cross-licensing agreements

can still allow �rms to sustain the monopoly outcome in the presence of these countervailing

e¤ects.

We consider N(> 2) competing �rms owning one patent each. Firms can get access to the

technologies covered by their rivals�patents through cross-licensing agreements, before compet-

1 In particular, cross-licensing in the semiconductor industry has received much attention in the literature
(Grindley and Teece, 1997; Hall and Ziedonis, 2001; Galasso, 2012).

2According to FTC (2011, pp.55-56), "The IT patent landscape involves products containing a multitude of
components, each covered by numerous patents. ... This contrasts with the relationship between products and
patents in the pharmaceutical and biotech industries where innovation is generally directed at producing a discrete
product covered by a small number of patents." Patent thickets raise many concerns and are considered as one
of the most crucial intellectual property issues of the day (Shapiro, 2007; Régibeau and Rockett, 2011).
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ing in the product market. We suppose that the larger the set of patents to which a �rm has

access, the lower its marginal cost.3 In the baseline model, we assume that �rms are symmetric

and engage in Cournot competition and focus on symmetric equilibria where all cross-licensing

agreements specify the same royalty. We show the robustness of our main results by considering

a number of extensions of our basic setup.

We focus on bilaterally e¢ cient agreements. A set of cross-licensing agreements is said to be

bilaterally e¢ cient if each agreement maximizes the joint pro�t of the pair of �rms who signed

it, given all other agreements. Note that a �rm�s overall pro�t is comprised of its downstream

pro�t, i.e., the pro�t it makes from selling its product, and the upstream pro�t generated by

patent licensing. We distinguish between public and private cross-licensing agreements: the

terms of a private agreement are observable only to the parties who sign the agreement while in

the case of a public agreement, the terms are observable to all the �rms in the industry.

Consider �rst the case of public cross-licensing agreements. We show that the royalties that

two �rms in a coalition charge each other have two opposite e¤ects on their joint downstream

pro�t: the Stackelberg e¤ect, which captures the fact that the �rms can in�uence their rivals�

outputs through their choice of royalties, and the coordination e¤ect, which refers to the idea

that two �rms can restrict their joint output by increasing the royalties they charge each other.

We also show that the royalties have two opposite e¤ects on the �rms�joint upstream pro�t:

the royalty-saving e¤ect and the licensing revenue e¤ect. The former refers to the fact that the

royalties paid to each other are transfers within the coalition and hence do not count as a cost

in the joint pro�t, while the latter captures the idea that these royalties in�uence the licensing

revenues collected from the rivals by a¤ecting their output choices.

We show that a two-�rm coalition�s deviation in the (public) cross-licensing stage always

has opposite e¤ects on its downstream and upstream pro�ts. It turns out that these two e¤ects

cancel out when the (symmetric) per-unit royalty charged by �rms is the one that maximizes

the industry pro�t. This implies that the monopoly outcome can always be sustained through

bilaterally e¢ cient agreements. Moreover, we establish that, when the Stackelberg e¤ect dom-

inates the coordination e¤ect, the situation in which all �rms charge each other zero per-unit

royalty (i.e. the most competitive outcome) is also sustainable as a bilaterally e¢ cient outcome.

Consider now the case of private cross-licensing agreements. The only di¤erence with the

scenario of public cross-licensing is that the Stackelberg e¤ect and the licensing revenue e¤ect

are now absent. Using this, we show that the royalty allowing to achieve the monopoly outcome

is the unique bilaterally e¢ cient royalty under private cross-licensing.

Thus, the monopoly outcome can be sustained when cross-licensing agreements are decided

bilaterally, independent of whether the agreements are public or private. We show that this mo-

nopolization result extends to i/ a setting in which the terms of the cross-licensing agreements

3Alternatively, we can assume that the larger the set of patents to which a �rm has access, the higher the value
of its product. We actually show in the supplementary material that our model of cost-reducing technologies can
be equivalently interpreted as a model of value-increasing technologies.
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are agreed upon by coalitions of any size and ii/ an environment in which �rms compete in prices

rather than quantities. We also establish that this �nding holds in a general two-stage model

that allows for all kinds of asymmetries and applies to any situation in which �rms that have

downstream interactions sell inputs to each other through bilateral agreements. Examples in-

clude cross-licensing of patents, two-way access pricing in telecommunications (Armstrong, 1998;

La¤ont, Rey, Tirole, 1998a,b), interconnection among Internet backbone companies (Crémer,

Rey and Tirole, 2000) and interbank payments for the use of ATMs (Donze and Dubec, 2006).

Finally, our analysis generates policy implications for the antitrust treatment of cross-

licensing. Both American and European competition authorities grant antitrust safety zone

to (cross-) licensing agreements signed by �rms whose combined market share is below a cer-

tain threshold. For instance, Article 3 of the EC Technology Transfer Block Exemption Reg-

ulation provides antitrust exemption to bilateral licensing agreements between competitors if

their combined market share does not exceed 20%.4 These policies are implicitly based on the

presumption that market forces can discipline cross-licensing partners regarding the level of

royalties they agree on: �rms with relatively low market power are expected to �nd it unprof-

itable to charge each other high per-unit royalties. However, the existing theoretical literature

on cross-licensing does not allow to analyze the relevance of such exemptions since it studies

bilateral cross-licensing only in a duopoly setting. Our �ndings question those exemptions since

they show that cross-licensing can actually allow �rms in a given industry to implement the

monopoly outcome regardless of their number and their market shares.

1.1 Related literature

Our paper contributes to the literature on the competitive e¤ects of cross-licensing agreements

and patent pools. In a pioneering paper, Priest (1977) shows how these practices can be used

as a disguise for cartel arrangements. Fershtman and Kamien (1992) develop a model in which

two �rms engage in a patent race for two complementary patents and use it to shed light on the

social trade-o¤underlying cross-licensing agreements. On the one hand, cross-licensing improves

the e¢ ciency of the R&D investments by eliminating the duplication of e¤orts. On the other

hand, it favors price collusion between �rms. Eswaran (1994) shows that cross-licensing can

enhance the degree of collusion achieved in a repeated game by credibly introducing the threat

of increased rivalry in the market for each �rm�s product.5 Shapiro (2001) shows that patent

pools tend to raise (lower) welfare when patents are perfect complements (substitutes), an idea

which is generalized to intermediate levels of substitutability/complementarity by Lerner and

4Similarly, according to the US guidelines (U.S. DOJ and FTC, 1995, p.22), "... the Agencies will not challenge
a restraint in an intellectual property licensing arrangement if (1) the restraint is not facially anticompetitive and
(2) the licensor and its licensees collectively account for no more than twenty percent of each relevant market
signi�cantly a¤ected by the restraint."

5Relatedly, Kultti, Takalo and Toikka (2006) also view cross-licensing as mechanism to establish multimarket
contact but argue that it can only facilitate collusion in so far as multimarket contact does.
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Tirole (2004), and further explored in the case of uncertain patents by Choi (2010) and Choi

and Gerlach (2014).6 To the best of our knowledge, our paper is the �rst formalized study of

the competitive e¤ects of bilateral cross-licensing agreements in an industry comprised of more

than two �rms.7

Our paper is closely related to the literature on opportunism in a multilateral vertical con-

tracting environment (Hart and Tirole, 1990; O�Brien and Sha¤er, 1992; McAfee and Schwartz,

1994; Rey and Vergé, 2004). This literature mostly focuses on the situation in which an up-

stream monopolist signs bilateral contracts with competing downstream �rms8 and distinguishes

between public and private contracting depending on whether the terms of a given bilateral con-

tract are observed by the rival downstream �rms. An important insight of the existing papers

is that the upstream monopolist achieves the monopoly outcome when contracts are public but

fails to do so when contracts are private. Our paper is similar to this literature in three respects.

First, we also consider a two-stage game in which simultaneous bilateral agreements are followed

by downstream competition. Second, our equilibrium concept of bilateral e¢ ciency is similar

to the concepts of market-by-market bargaining (Hart and Tirole, 1990), contract equilibrium

(O�Brien and Sha¤er, 1992) and pairwise-proof contracts (McAfee and Schwartz, 1994). Third,

we also distinguish between public and private contracting. Despite these similarities, our re-

sults are very di¤erent from those of this literature. We �nd that the monopoly outcome is the

unique equilibrium outcome under private contracting whereas in the case of public contracting,

in addition to the monopoly outcome, the most competitive outcome can be an equilibrium

outcome. In contrast, McAfee and Schwartz (1994) show that the upstream monopolist fails to

achieve the monopoly outcome under private contracting for both passive and wary beliefs.

Our paper is also related to the literature on strategic formation of networks surveyed in

Goyal (2007) and Jackson (2008). In particular, the concept of bilateral e¢ ciency we use is

similar to the widespread re�nement concept of pairwise stability (e.g., Jackson and Wolinsky,

1996). Goyal and Moraga-Gonzales (2001) and Goyal, Moraga-Gonzales and Konovalov (2008)

also study two-stage games where a network formation stage is followed by a competition stage.

However, they examine ex ante R&D cooperation, while we study ex post licensing agreements.

In addition, they do not allow for transfers among �rms while we allow for �xed fees and royalties.

Our paper is also related to Bloch and Jackson (2007) who develop a general framework to

examine the issue of network formation with transfers among players. A crucial di¤erence

however between their framework and our setting is that we allow the agreements among �rms

6Choi and Gerlach (2014) show that in the case of uncertain patents, pooling complementary patents can
decrease welfare by shielding them from potential litigation.

7 In our companion paper (Jeon and Lefouili, 2014), we study bilateral licensing agreements in an industry with
more than two competitors. However, in that paper, licensing contracts are assumed to involve �xed fees only
and we focus on how equilibrium networks of bilateral licensing contracts a¤ect market structure. That paper is
complementary to the current paper as it shows that even when royalties cannot be used to raise prices, bilateral
licensing agreements can reduce welfare by inducing exclusion of some �rms.

8Rey and Vergé (2010) and Nocke and Rey (2014) extend the basic setting in Hart and Tirole (1990) by
considering an environment in which upstream �rms have interlocking relationships with downstream �rms.
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to involve the payment of per-unit royalties in addition to �xed fees while they only consider

lump-sum transfers.

The remainder of the paper is organized as follows. Section 2 describes the baseline model

with Cournot competition. Section 3 (Section 4) characterizes bilaterally e¢ cient public (pri-

vate) cross-licensing agreements. Section 5 discusses two extensions of the basic setup. Section

6 introduces a general model and shows that our monopolization result holds in a wide range of

circumstances. Section 7 derives policy implications regarding the current antitrust treatment

of cross-licensing agreements in the U.S. and E.U. Section 8 gathers concluding remarks. All the

proofs are relegated to the Appendix. A number of extensions are provided in the supplementary

material.

2 The Model

2.1 Setting

Consider an industry consisting of N � 3 symmetric �rms producing a homogeneous good.

Each �rm owns one patent9 covering a cost-reducing technology and can get access to its rivals�

patents through cross-licensing agreements. We assume that the patents are symmetric in the

sense that the marginal cost of a �rm only depends on the number of patents it has access to.

Let c(n) be a �rm�s marginal cost when it has access to a number n 2 f1; :::; Ng of patents with
c(N)(� c) � c(N � 1) � ::: � c(1)(� �c). Let �c � �c� c.

We consider a two-stage game in which, prior to engaging in Cournot competition, each pair

of �rms can sign a cross-licensing agreement whereby each party gets access to the patented

technology of the other one. More precisely, the two-stage game is described as follows:

� Stage 1: Cross-licensing

Each pair of �rms (i; j) 2 f1; :::; Ng2 with i 6= j decide whether to sign a cross-licensing

agreement and determine the terms of the agreement if any. We assume that a bilateral cross-

licensing agreement between �rm i and �rm j speci�es a pair of royalties (ri!j ; rj!i) 2 [0;+1)2

and a lump-sum transfer Fi!j 2 (�1;+1) ; where ri!j (resp. rj!i) is the per-unit royalty
paid by �rm i (resp. �rm j) to �rm j (resp. �rm i) and Fi!j is a transfer made by �rm i to

�rm j (which is negative if �rm i receives a transfer from �rm j).10 All bilateral negotiations

occur simultaneously.

� Stage 2: Cournot competition
9Given that we consider that �rms have symmetric patent portfolios, we can assume, without loss of generality,

that each �rm has one patent.
10We restrict attention to non-negative royalties for two reasons. First, negative royalties are rarely observed

(Liao and Sen, 2005, p. 291). Second, in the presence of monitoring costs, at least small negative royalties are
dominated by zero royalty since zero royalty does not require any monitoring of rivals� output to enforce the
licensing contract (Katz and Shapiro, 1985, p. 508).
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Firms compete à la Cournot with the cost structure inherited from Stage 1.

Depending on the observability of the terms of the agreement between two �rms to their

rivals, we distinguish between public cross-licensing and private cross-licensing. In the case of

public cross-licensing, all �rms observe the terms of all the cross-licensing agreements signed at

stage 1 before they engage in Cournot competition. In contrast, in the case of private cross-

licensing, the terms of the cross-licensing agreement between �rms i and j are known only to

these two �rms and, therefore, each �rm k 6= i; j should form a conjecture about those terms.

We assume that the �rms face an inverse demand function P (�) satisfying the following
standard conditions (Novshek, 1985):

A1 P (�) is twice continuously di¤erentiable and P 0(�) < 0 whenever P (�) > 0:
A2 P (0) > �c > c > P (Q) for Q su¢ ciently high.
A3 P 0(Q) +QP 00(Q) < 0 for all Q � 0 with P (Q) > 0.
These mild assumptions ensure the existence and uniqueness of a Cournot equilibrium

(q�i )i=1;:::;n satisfying the following (intuitive) comparative statics properties, where ci denote

�rm i�s marginal cost (see e.g., Amir, Encaoua and Lefouili, 2014):

i/ @q�i
@ci

< 0 and @q�i
@cj

> 0 for any j 6= i; @Q
�

@ci
< 0 for any i, where Q� =

X
i

q�i is the total

equilibrium output;

ii/ @��i
@ci

< 0 and @��i
@cj

> 0 for any j 6= i, where ��i is �rm i�s equilibrium pro�t.

2.2 Benchmark: multilateral licensing agreement

We consider here as a benchmark the case of a multilateral licensing agreement among all N

�rms. This corresponds to a closed patent pool (Lerner and Tirole, 2004), i.e., a patent pool

whose only customers are its contributors. We focus on a symmetric outcome where all �rms

pay the same royalty r to each other.

Let Pm(c) be the monopoly price when each �rm�s marginal cost is c. It is characterized by

Pm(c)� c
Pm(c)

=
1

"(Pm(c))
: (1)

where "(:) is the elasticity of demand.

Given a symmetric royalty r, each �rm�s marginal cost is c + (N � 1)r. The �rms will
agree on a royalty to achieve the monopoly price. Given a symmetric royalty r, �rm i chooses

its output qi in the second stage to maximize [P (Q�i + qi)� c� (N � 1)r] qi + rQ�i where
Q�i � Q � qi is the quantity chosen by all other �rms. Let rm be the royalty that allows to

achieve the monopoly price Pm(c). Then, from the �rst-order condition associated with �rm i�s

maximization program, we have

Pm(c)� c� (N � 1)rm
Pm(c)

=
1

"(Pm(c))N
: (2)
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From (1) and (2), rm is determined by

Pm(c)� c
N

= rm: (3)

Proposition 1 (Multilateral licensing). Suppose that all �rms in the industry jointly agree on
a symmetric royalty. Then they agree on rm = (Pm(c)� c) =N , which allows them to achieve

the monopoly price Pm(c) as an equilibrium price.

Let us now examine under which condition the multilateral licensing agreement will lead

to a higher downstream price compared to the situation before cross-licensing. Let Q�(N; �c)

represent the industry output when N �rms with the marginal cost �c compete in quantity.

Therefore, the equilibrium price prior to licensing is P (Q�(N; �c)). At P (Q�(N; �c)) we have

P (Q�(N; �c))� c
P (Q�(N; �c))

=
1

"(P (Q�(N; �c)))N
(4)

From (1) and (4), Pm(c) = P (Q�(N; �c)) if and only if

�c = (N � 1) [P (Q�(N; �c))� c] : (5)

Note that the right hand side of (5) does not depend on �c. As the cost reduction from

licensing increases, c is smaller and the monopoly price is smaller. Therefore, we must have

Pm(c) T P (Q�(N; �c)) if and only if �c S (N � 1) [P (Q�(N; �c))� c].

3 Characterization of the bilaterally e¢ cient public agreements

In this section, we consider public bilateral cross-licensing agreements.

3.1 Preliminaries

We �rst de�ne our solution concept.

De�nition 1 A set of public cross-licensing agreements is bilaterally e¢ cient if, for any pair of
�rms (i; j), the bilateral agreement between i and j maximizes their joint pro�t, given all other

bilateral agreements and the (anticipated) equilibrium outcome of the competition stage.

Since any bilateral agreement can specify a �xed fee, we argue that it is reasonable to assume

that any bilateral agreement signed between a pair of �rms maximizes their joint pro�t. Our

solution concept is similar to the concept of contract equilibrium (Crémer and Riordan, 1987;

O�Brien and Sha¤er, 1992) and pairwise-proof contracts (McAfee and Schwartz, 1994). It is

also closely related to the concept of Nash equilibrium in Nash bargains used in the bilateral
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monopoly/oligopoly literature (Horn and Wolinsky, 1988; Collard-Wexler, Gowrisankaran and

Lee, 2014)11.

Notice �rst that any given pair of �rms �nd it (jointly) optimal to sell a license to each

other. To see why, assume that �rm i does not license its patent to �rm j. These two �rms can

(weakly) increase their joint pro�t if i licenses its patent to j by specifying the payment of a

per-unit royalty rj!i equal to the reduction in marginal cost allowed by j�s use of the technology

covered by i�s patent. Such licensing agreement would not a¤ect the level of joint output but

will (weakly) decrease the cost of �rm j. It will therefore (weakly) increase their joint pro�t.

In what follows, we consider a symmetric situation where all �rms sign bilateral cross-

licensing agreements. Let r denote the (common) per-unit royalty paid by any �rm i to have

access to the patent of any �rm j 6= i with i; j = 1; :::; N , and S(r;N) denote the corresponding
set of cross-licensing agreements. We below study the joint incentives of a coalition of two �rms

to deviate from the symmetric royalty r under the assumption that all �rms are active (i.e.,

produce a positive output) no matter what the royalties the deviating coalition chooses.12

The next lemma shows that it is su¢ cient to focus on deviations such that �rms in the devi-

ating coalition pay the same royalty to each other. Indeed, the joint payo¤ from any asymmetric

deviation can be replicated by a symmetric one because the joint payo¤ depends on the royalties

paid by each �rm to the other only through their sum.

Lemma 1 Consider a symmetric set of cross-licensing agreements S(r;N). The joint payo¤ a
coalition fi; jg gets from a deviation to a cross-licensing agreement in which �rm i (resp. �rm

j) pays a royalty ri!j (resp. rj!i) to �rm j (resp. �rm i) depends on (ri!j ; rj!i) only through

the sum ri!j + rj!i.

Proof. See Appendix.
Consider a deviation by the coalition formed by �rms 1 and 2, which we denote by {1,2}.

Let r̂ be the royalty that these �rms charge to each other. For given (r; r̂), let Q�(r; r̂) denote

the total industry output and Q�12(r; r̂) denote the sum of the outputs of �rms 1 and 2 in the

(second-stage) Cournot equilibrium. Let Q��12(r; r̂) � Q�(r; r̂)�Q�12(r; r̂). Then, the considered
set of symmetric agreements is bilaterally e¢ cient if and only if:

r 2 Argmax
r̂�0

�12 (r; r̂)

where

�12 (r; r̂) = [P (Q
�
12(r; r̂) +BR�12(Q

�
12(r; r̂)))� (c+ (N � 2) r)]Q�12(r; r̂) + 2rBR�12(Q�12(r; r̂))

11Also, Inderst and Wey (2003) analyze market structure and technology choice in a bilateral oligopoly setting
using a bargaining procedure that leads to a bilaterally e¢ cient outcome.
12We plan to relax this assumption in another project which focuses on the relationship between cross-licensing

and barriers to entry.
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is the joint pro�t of the coalition and BR�12(:) is de�ned as follows. If N = 3; then BR�12(:)

is the best-response function of �rm 3. If N � 4, then BR�12(:) is the aggregate response of

the coalition�s rivals: for any joint output Q12 = q1 + q2 of �rms 1 and 2, BR�12(Q12) is the

(unique) real number such that BR�12(Q12)N�2 is the best-response of any �rm i 2 f3; :::; Ng to each
�rm k 2 f1; 2g producing qk and each �rm j 2 f3; :::; Ng n fig producing BR�12(Q12)

N�2 :

After observing the coalition�s deviation to r̂ 6= r, its rivals expect it to produce Q�12(r; r̂)

and will best respond to this quantity by producing BR�12(Q�12(r; r̂)) in aggregate. In other

words, from a strategic point of view, the coalition�s deviation to r̂ 6= r is equivalent to its

commitment to produce Q�12(r; r̂) as a Stackelberg leader. For this reason, we below de�ne the

following two-stage Stackelberg game.

De�nition 2 For any r � 0 and N � 3, the Stackelberg game G(r;N) is de�ned by the following
elements:

Players: The games involves N � 1 players : coalition {1,2} and �rms i = 3; :::; N . Each

player has a marginal production cost c (excluding royalties). The coalition pays a per-unit

royalty r to each of the other players. Each �rm i 2 f3; :::; Ng pays a per-unit royalty 2r to the
coalition and a per-unit royalty r to each �rm j 2 f3; :::; Ng n fig.

Actions: Coalition {1,2} chooses its (total) outputQ12 within the interval I(r;N) � [0; Q�12(r; 0)]
and each �rm i 2 f3; :::; Ng chooses an output level qi � 0.

Timing: There are two stages:

- Stage 1: The coalition {1,2} acts as a Stackelberg leader and chooses Q12 within the interval

[0; Q�12(r; 0)] :

- Stage 2: If N = 3, then �rm 3 chooses its output q3. If N � 4, then all �rms i = 3; :::; N
choose simultaneously (and non-cooperatively) their outputs qi.

The following lemma provides an equivalence result that is useful for the subsequent analysis.

Lemma 2 A symmetric set of cross-licensing agreements S(r;N) is bilaterally e¢ cient if and

only if choosing Q�12(r; r) is optimal for the coalition in the Stackelberg game G(r;N):

Proof. See Appendix.

3.2 Incentives to deviate: downstream and upstream pro�ts

We now study the incentives of coalition f1; 2g to marginally expand or contract its output with
respect to Q�12(r; r) in the game G(r;N). Note that the coalition�s marginal cost in that game

is c+ (N � 2) r whereas each of its member�s marginal cost at the Cournot stage of the original
game presented in Section 2 is c+(N � 1) r. The di¤erence between the two has to do with the
royalty payment between �rms 1 and 2. In what follows, we call rQ12 the royalty saving of the

coalition (as compared to a single �rm producing the same quantity Q12).

9



The coalition�s pro�t can be rewritten as

�12 (Q12; r) = [P (Q12 +BR�12(Q12))� (c+ (N � 1) r)]Q12| {z }
�D12(Q12;r)

+ r [Q12 + 2BR�12(Q12)]| {z } :
�U12(Q12;r)

(6)

The term �D12 (Q12; r) represents the coalition�s pro�t in the downstream product market.
13 The

term �U12(Q12; r) represents the coalition�s pro�t in the upstream market of patent licensing.

This pro�t is composed of the royalty saving and the licensing revenues received from all �rms

outside the coalition. We below study the e¤ect of a (local) variation of Q12 on each of the two

sources of pro�t.

� E¤ect on the downstream pro�t

The partial derivative of �D12 (Q12; r) with respect to Q12, when evaluated at Q
�
12(r; r), is

given by

@�D12
@Q12

(Q�12(r; r); r) = P 0 (Q�(r; r))Q�12(r; r)BR
0
�12(Q

�
12(r; r)) (7)

+P 0 (Q�(r; r))Q�12(r; r) + [P (Q
�(r; r))� (c+ (N � 1) r)] :

The term P 0 (Q�(r; r))Q�12(r; r)BR
0
�12(Q

�
12(r; r)) > 0 in (7) captures the (usual) Stackelberg

e¤ect : the leader has an incentive to increase its output Q12 above the Cournot level Q�12(r; r)

because such an increase will be met with a decrease in the aggregate output of the followers

(one can easily check that BR0�12(Q
�
12(r; r)) < 0). It is very useful to rewrite this term as

�2 [P (Q�(r; r))� (c+ (N � 1) r)]BR0�12(Q12), which is obtained from the F.O.C. of �rm i (with
i = 1; 2) in the Cournot game:

P 0 (Q�(r; r))
Q�12(r; r)

2
+ P (Q�(r; r))� (c+ (N � 1) r) = 0: (8)

The term P 0 (Q�(r; r))Q�12(r; r) + [P (Q
�(r; r))� (c+ (N � 1) r)] in (7) represents the marginal

downstream pro�t of the coalition in a setting where it would play a simultaneous quantity-

setting game with its rivals. This term captures a coordination e¤ect : the coalition has an

incentive to reduce output below the Cournot levelQ�12(r; r) since the joint output of the coalition

when each member chooses its quantity in a non-cooperative way is too high with respect to

what maximizes its joint downstream pro�t (in a simultaneous quantity-setting game). Indeed,

using (8), we have:

P 0 (Q�(r; r))Q�12(r; r) + [P (Q
�(r; r))� (c+ (N � 1) r)] = � [P (Q�(r; r))� (c+ (N � 1) r)] < 0:

13The downstream pro�t is de�ned with respect to the individual marginal cost of each member of the coalition
at the second stage of the original game. This facilitates our analysis because we can use each �rm�s �rst order
condition at the Cournot competition stage (see (8)).

10



Therefore, the overall marginal e¤ect of a local increase of Q12 (above the Cournot level

Q�12(r; r)) on the coalition�s downstream pro�t is given by:

@�D12
@Q12

(Q�12(r; r); r) = � [P (Q�(r; r))� (c+ (N � 1) r)] [1 + 2BR0�12(Q�12(r; r))]: (9)

The �rst term between brackets in (9) is positive while the sign of the second term between

brackets in (9) can be either positive or negative.

� E¤ect on the upstream pro�t

Let us now turn to the e¤ect of a local variation in Q12 on the coalition�s upstream pro�t

�U12(Q12): We have:

@�U12
@Q12

(Q�12(r; r); r) = r
�
1 + 2BR0�12(Q

�
12(r; r))

�
: (10)

We identify two opposite e¤ects on the upstream pro�t. On the one hand, a marginal increase

in Q12 results in a larger royalty saving. We call this the royalty-saving e¤ect. On the other

hand, a marginal increase in Q12 induces the rivals of the coalition to reduce their output by��BR0�12(Q12)�� and hence results in a reduction of 2r ��BR0�12(Q12)�� in the licensing revenues that
the coalition gets from its rivals. We call this the licensing revenue e¤ect.

Even if the e¤ect of an increase in Q12 (above the Cournot level Q�12(r; r)) on each of the

coalition�s two sources of pro�ts is ambiguous, it follows from (9) and (10) that the sign of the

e¤ect on the downstream pro�t is always opposite to the sign of the e¤ect on the upstream pro�t.

3.3 Incentives to deviate: four cases

By summing up (9) and (10), the total e¤ect of a marginal increase in Q12 on the coalition�s

pro�t can be described in a simple way as:

@�12
@Q12

(Q�12(r; r); r) = [c+Nr � P (Q�(r; r))] [1 + 2BR0�12(Q�12(r; r))]: (11)

We can distinguish four cases depending on whether the Stackelberg e¤ect is stronger or weaker

than the coordination e¤ect14 and whether the e¤ect of a local deviation on the downstream

pro�t dominates or is dominated by its e¤ect on the upstream pro�t.

� Stackelberg e¤ect vs. coordination e¤ect

Let us �rst examine the term 1 + 2BR0�12(Q
�
12(r; r)) in (11) which determines whether the

Stackelberg e¤ect is stronger or weaker than the coordination e¤ect. The F.O.C. for the maxi-
14This determines not only the sign of the e¤ect of an increase in Q12 on the downstream pro�t but also the

sign of the e¤ect on the upstream pro�t because these two signs are always opposite.
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mization program of any �rm i (i = 3; :::; N), when the coalition produces a given quantity Q12,

can be written as:

P 0 (Q12 +BR�12(Q12))
BR�12(Q12)

N � 2 + P (Q12 +BR�12(Q12)� (c+ (N � 1) r) = 0:

Di¤erentiating the latter with respect to Q12 (and dropping the argument (r; r))) yields

BR0�12(Q12) = �
P 00(Q)BR�12 (Q12) + (N � 2)P 0(Q)
P 00(Q)BR�12 (Q12) + (N � 1)P 0(Q) :

This, combined with P 0(Q) < 0, proves that �1 < BR0�12(Q12) < 0 (a result that will be useful
later), and, when evaluated at Q12 = Q�12, yields

1 + 2BR0�12(Q
�
12) = �

N�2
N P 00(Q�)Q� + (N � 3)P 0(Q�)
N�2
N P 00(Q�)Q� + (N � 1)P 0(Q�)

because the equality BR�12 (Q�12) =
N�2
N Q� holds as the corresponding equilibrium is symmet-

ric. Distinguishing between the two scenarios P 00(Q�) � 0 and P 00(Q�) > 0 and using the fact
that BR�12 (Q�12) � Q�, one can easily show that A3 implies that the denominator is always
negative. Therefore, from P 0(Q�) < 0, it follows that

1 + 2BR0�12(Q
�
12) Q 0()

Q�P 00(Q�)

P 0(Q�)
R �N(N � 3)

N � 2 : (12)

This shows that the coordination e¤ect dominates the Stackelberg e¤ect (1+2BR0�12(Q
�
12) > 0)

if and only if the slope of the inverse demand is su¢ ciently elastic (�Q�P 00(Q�)
P 0(Q�) > N(N�3)

N�2 ). In

particular, for N � 4, underA3, the Stackelberg e¤ect always dominates the coordination e¤ect.

� Downstream pro�t vs. upstream pro�t

Let us now examine the term c+Nr�P (Q�(r; r)) � f(r;N) in (11). The e¤ect of an increase
in Q12 on the downstream pro�t (strictly) dominates the e¤ect on the upstream pro�t if and

only if f(r;N) < 0. For instance, when r = 0, there is no upstream pro�t and we have f(0; N) =

c�P (Q� (0; 0)) < 0. Intuitively, we expect that the upstream pro�t becomes more important as
r increases, which turns out to be true as we below show that @f@r (r;N) = N � dQ�

dr P
0 (Q�) > 0:

Adding the F.O.Cs for each �rm i�s maximization program from i = 1 to i = N yields

P 0 (Q�)Q� +NP (Q�)�N (c+ (N � 1)r) = 0:

Di¤erentiating the latter with respect to r leads to

dQ�

dr

�
P 0 (Q�) + P 00 (Q�)Q�

�
+N

�
P 0 (Q�)

dQ�

dr
� (N � 1)

�
= 0:
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From P 0 (Q�)+P 00 (Q�)Q� < 0 (by A3) and dQ�

dr < 0, it follows that P 0 (Q�) dQ
�

dr � (N � 1) < 0,
which implies that @f

@r (r;N) > 0 for any N � 3. Since f(r;N) strictly increases with r, the

solution in r to f(r;N) = 0 is unique whenever it exists.

Surprisingly, it turns out that the unique royalty r for which f(r;N) = 0 is the fully coop-

erative royalty rm, as de�ned in (3). At r = rm, we have that P (Q�(rm; rm)) = Pm (c) and,

therefore, c + Nrm � P (Q�(rm; rm)) = 0 (from Proposition 1). Thus, for r < rm, the e¤ect

on the downstream pro�t dominates the e¤ect on the upstream pro�t and the reverse holds for

r > rm.

3.4 Bilaterally e¢ cient royalties

From the previous analysis of local deviations, we know that there are four possible cases de-

pending on which of the Stackelberg e¤ect and the coordination e¤ect is stronger and which of

the downstream pro�t e¤ect and the upstream pro�t e¤ect dominates.

Consider �rst the case in which the Stackelberg e¤ect is stronger than the coordination

e¤ect. Then, if the downstream pro�t e¤ect dominates the upstream pro�t e¤ect (i.e., r belongs

to [0; rm)), the coalition has an incentive to decrease its royalty15 in order to induce the rivals

to reduce their outputs, which generates r = 0 as the unique potential bilateral e¢ cient royalty

among royalties r in [0; rm). If the upstream pro�t e¤ect dominates the downstream pro�t

e¤ect (i.e., r > rm), the coalition has an incentive to increase its royalty to boost the rivals�

production and thereby the licensing revenues it receives from them. At r = rm, the downstream

pro�t e¤ect is equal to the upstream pro�t e¤ect and the coalition has no incentive to deviate

locally. In summary, when the Stackelberg e¤ect dominates the coordination e¤ect, there are

two potential bilaterally e¢ cient royalties: r = 0 and r = rm.

Now let us consider the case in which the coordination e¤ect is stronger than the Stackelberg

e¤ect. Then, if the downstream pro�t e¤ect dominates the upstream pro�t e¤ect (i.e., r belongs

to [0; rm)), the coalition has an incentive to increase its royalty in order to boost its downstream

prices. In a symmetric way, if the upstream pro�t e¤ect dominates the downstream pro�t e¤ect

(i.e., r > rm), the coalition has an incentive to decrease its royalty. In summary, when the

coordination e¤ect is stronger than the Stackelberg e¤ect, we have a unique potential bilaterally

e¢ cient royalty: r = rm.

The local analysis above allowed us to identify candidates for bilaterally e¢ cient royalties.

It remains to perform a global analysis (i.e., to examine global and not only local deviations) in

order to con�rm that the candidates are indeed bilaterally e¢ cient. The following proposition

follows from our global analysis:

Proposition 2 (public bilateral cross-licensing) Consider the two-stage game of public cross-
licensing followed by Cournot competition.

15By this we mean the royalty that the members of the coalition pay each other.
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(i) If the Stackelberg e¤ect dominates the coordination e¤ect
�
QP 00(Q)
P 0(Q) > �N(N�3)

N�2

�
, then

S(r;N) is bilaterally e¢ cient if and only if r 2 f0; rmg.
(ii) If the coordination e¤ect dominates the Stackelberg e¤ect

�
QP 00(Q)
P 0(Q) < �N(N�3)

N�2

�
, then

S(r;N) is bilaterally e¢ cient if and only if r = rm.

Proof. See Appendix.
This proposition shows that the monopoly outcome is always sustainable through bilaterally

e¢ cient public agreements. Moreover, if the Stackelberg e¤ect is stronger than the coordination

e¤ect then the most competitive outcome (i.e., the one corresponding to r = 0) is also sustainable

through bilaterally e¢ cient public agreements.

4 Private cross-licensing

In this section, we consider private cross-licensing: each bilateral cross-licensing agreement is

only observable to the two �rms involved in it. Hence, at the beginning of the competition stage,

each �rm is only aware of the terms of the contracts it signed itself and should form expectations

regarding the terms agreed on by its competitors. As in the public cross-licensing case, we de�ne

a bilaterally e¢ cient set of agreements as one such that the agreement between any pair of �rms

maximizes their joint pro�ts given all other agreements. However, in contrast to the public cross-

licensing case, a deviation by a two-�rm coalition in the cross-licensing stage is not observed by

its rivals who keep the same beliefs about the agreements made by their competitors. Moreover,

when a coalition of two �rms deviates by changing the terms of the agreement between them,

each of these two �rms maintains the same beliefs about the agreements signed by its rivals. This

assumption is in a sense the counterpart in our setting of the usual passive-belief assumption in

the literature on vertical contracting (Hart and Tirole, 1990; McAfee and Schwartz, 1994).

We can show that Lemma 1 continues to hold in the case of private cross-licensing and,

therefore, restrict attention to deviations involving a symmetric royalty (within the deviating

coalition). Moreover, a result similar to Lemma 2 holds: the symmetric set of cross-licensing

agreements S(r;N) is bilaterally e¢ cient if and only if choosing to produce Q�12(r; r) is optimal

for coalition f1; 2g when all other �rms produce the individual equilibrium output corresponding
to a symmetric royalty r. The major di¤erence between public cross-licensing and private

cross-licensing is that the Stackelberg e¤ect and the licensing revenue e¤ect are absent under

the latter because of the unobservability of the deviations in the private cross-licensing stage:

formally speaking, the analysis under private cross-licensing can be derived from that under

public cross-licensing by setting BR0�12(Q12) equal to zero when considering the e¤ect of a

coalition�s deviation (in the �rst stage of the game) on its pro�t. This implies that S(rm; N) is

the unique bilaterally e¢ cient set of symmetric agreements.
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Proposition 3 (private bilateral cross-licensing) In the two-stage game of private cross-licensing
followed by Cournot competition, S(rm; N) is the unique bilaterally e¢ cient set of symmetric

cross-licensing agreements.

Therefore, the result that �rms are able to sustain the monopoly outcome through bilateral

agreements is even stronger in the case of private cross-licensing: in this scenario, the monopoly

outcome is always the unique symmetric outcome.

Before discussing the robustness of our monopolization result, we provide the main intuitions

behind it. Consider �rst the case of private cross-licensing agreements. The monopoly output

Qm is de�ned by the following �rst-order condition:

P 0(Qm)Qm + P (Qm) = c: (13)

Moreover, since rm allows to achieve the monopoly outcome, the �rst-order condition with

respect to qi for a single �rm i is given by:

P 0(Qm)
Qm

N
+ P (Qm) = c+ (N � 1) rm: (14)

Thus, an increase in a �rm�s perceived marginal cost by (N � 1) rm makes it act as if it were

internalizing the e¤ects of its decision on its (N � 1) rivals. Therefore, the payment of a per-unit
royalty rm to each rival has the same e¤ect as internalizing the impact of a price reduction on

that rival. Formally, this amounts to writing

�P 0(Qm)Q
m

N
= rm;

which follows immediately from (13) and (14).

Suppose now that two �rms (i; j) contemplate a joint deviation in the cross-licensing stage.

By agreeing on some royalties (ri!j ; rj!i), they can choose a joint output qi + qj di¤erent from

2Qm=N . However, it turns out that the �rst-order condition for the coalition�s maximization

program is satis�ed exactly at qi + qj = 2Qm=N :

P 0(Qm)
2Qm

N
+ P (Qm) = c+ (N � 2) rm; (15)

which is easily derived from (14) by adding P 0(Qm)Q
m

N to its LHS and substracting rm from

its RHS. The intuition behind this result is as follows. On the one hand, a two-�rm coalition�s

marginal cost is lower than a single �rm�s marginal cost by rm; which gives the coalition an

incentive to increase its output. This is the royalty-saving e¤ect. On the other hand, when

two �rms decide jointly the royalties they charge each other, they internalize the competitive

externalities they exert on each other in the competition stage. This is the coordination e¤ect.

Since the payment of rm is equivalent to internalizing the e¤ect of price reduction on one rival,
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these two e¤ects cancel out.

Consider now the case of public cross-licensing agreements. The discussion above shows that

the coordination e¤ect and the royalty-saving e¤ect cancel out when all �rms charge each other

r = rm: It remains to provide an intuition for why the two other e¤ects that appear under public

cross-licensing, i.e., the Stackelberg e¤ect and the licensing revenue e¤ect also cancel out.

Consider the coalition comprised of �rms 1 and 2. When all �rms charge each other r = rm,

a marginal decrease dQ�12 < 0 in the joint output Q�12 of the �rms outside the coalition

(due to an increase in the coalition�s output Q12) induces a variation in the coalition�s pro�t by

P 0(Q)2Q
m

N dQ�12�2rmdQ�12. The �rst term captures the Stackelberg e¤ect: a marginal decrease
in Q�12 increases the market price by P 0(Q)dQ�12 which induces an increase P 0(Q)

2Qm

N dQ�12 in

the coalition�s downstream pro�t. The second term captures the licensing revenue e¤ect: a mar-

ginal decrease in Q�12 results in a reduction in the coalition�s licensing revenues by 2rmdQ�12:

Thus, the coalition internalizes both the positive impact of a decrease in its rivals�output on

its downstream pro�t but also the negative impact of such decrease on its upstream pro�t. The

reason why these two e¤ects cancel out can be seen as the dual of the reason why the coordi-

nation e¤ect and the royalty-saving e¤ect cancel out: charging a per-unit royalty equal to rm

is an indirect way for the members of the coalition to fully internalize the e¤ect of their joint

decision on their rivals.

5 Extensions

In the supplementary material, we show that �rms are able to sustain the fully cooperative

outcome in two extensions of our baseline model which we brie�y discuss below.

5.1 k-e¢ cient agreements

In this extension, we investigate cross-licensing agreements that are k-e¢ cient in the sense that

no coalition of size k 2 f3; :::; N � 1g �nds it optimal to change the terms of the cross-licensing
agreements among its members. Note that the special case k = 2 corresponds to the bilateral

e¢ ciency criterion while k = N corresponds to industry-pro�t maximization.

Consider �rst the case of public cross-licensing agreements. We show that the set of (sym-

metric) k-e¢ cient royalties depends again on the magnitude of the Stackelberg e¤ect relative to

the coordination e¤ect. If the Stackelberg e¤ect dominates the coordination e¤ect, then there

are two k-e¢ cient royalties: r = 0 and r = rm. However, if the Stackelberg e¤ect is dom-

inated by the coordination e¤ect, then the unique k-e¢ cient royalty is r = rm. Therefore,

in both cases, the fully cooperative outcome is sustainable through k-e¢ cient cross-licensing

agreements. Moreover, our analysis shows that the relative magnitude of the Stackelberg e¤ect

with respect to the coordination e¤ect decreases in the size of the coalition k, which makes the

scenario in which r = 0 arises as a sustainable outcome less likely as k increases. The intuition
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behind this result is that, for a given number of �rms in the industry, the magnitude of the

Stackelberg e¤ect tends to decrease when the size of the coalition increases (because the number

of �rms outside the coalition decreases) while the magnitude of the coordination e¤ect increases

(since it increases in the number of �rms inside the coalition). In the limit case of k = N , the

Stackelberg e¤ect completely disappears.

Consider now the case of private cross-licensing agreements. As in the baseline model, it

turns out that the outcome in this scenario can be formally derived from the one under public

cross-licensing by considering the special case in which the Stackelberg e¤ect and the licensing

revenue e¤ect would be absent: the fully cooperative royalty is the unique symmetric royalty

sustainable through k-e¢ cient agreements.

5.2 Bertrand competition

In this extension, we assume that �rms produce di¤erentiated goods and compete in prices.

Again we consider the e¤ects of a deviation by a two-�rm coalition in the �rst stage of the game

on both the downstream and the upstream pro�ts.

Consider �rst the case of public cross-licensing agreements. As in the Cournot case, a varia-

tion in the royalties charged by two �rms to each other has two e¤ects on their joint downstream

pro�t: a Stackelberg e¤ect and a coordination e¤ect. Moreover, the e¤ect of such variation on

the coalition�s upstream pro�ts can also be divided into a royalty-saving e¤ect and a licensing-

revenue e¤ect. However, in the Bertrand case, these two e¤ects are more subtle than in the

Cournot case: beside the direct royalty saving e¤ect and the indirect licensing-revenue e¤ect

(i.e., through the change in the rivals�prices) that appear under Cournot competition, a change

in the royalties also has an indirect royalty saving e¤ect (since the change in the rivals�prices

a¤ects the demand for the products of the �rms in the coalition) and a direct licensing-revenue

e¤ect (since the change in the prices charged by the �rms in the coalition a¤ects each rival�s

demand).

Our analysis shows that the fully cooperative royalty is the unique symmetric royalty sus-

tainable through bilaterally e¢ cient agreements. In sharp contrast to the Cournot case, r = 0

is never a bilaterally e¢ cient royalty under Bertrand competition. The intuition behind this

stems from the fact that the Bertrand game features strategic complementarity (under the stan-

dards assumptions we make) while the Cournot game is a game of strategic substitutes. This

entails that the Stackelberg e¤ect and the coordination e¤ect are reinforcing each other under

the Bertrand case. Therefore, considering a situation in which all �rms charge a royalty of r = 0

to their competitors, a coalition of two �rms would increase its downstream pro�t by increasing

the royalties they charge each other. This, combined with the fact that upstream pro�ts are zero

when all �rms charge r = 0, implies that a coalition of two �rms has an incentive to deviate in

the �rst stage of the game, meaning that r = 0 is not bilaterally e¢ cient.

Consider now the case of private cross-licensing agreements. Again the analysis of private
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agreements can be derived from that of public agreements by putting aside all the indirect

e¤ects. It turns out, as in the Cournot case, that the unique (symmetric) bilaterally e¢ cient

royalty is the fully cooperative royalty.

6 A more general model

In this section, we develop a general model that can be applied to situations di¤erent from

cross-licensing of patents and shows the robustness of our main result.16

Consider the following N-�rm two-stage game:

� Stage 1 (upstream bilateral agreements): Firms agree bilaterally on transfers they make

to each other. More speci�cally, all pairs of �rms (i; j) simultaneously choose a pair of

(real-valued) input prices (ri!j ; rj!i) as well as (real-valued) �xed transfers (Fi!j ; Fj!i).

� Stage 2 (downstream non-cooperative actions): Firms choose non-cooperatively and simul-

taneously (real-valued) actions xi.

Let r = ((ri!j ; rj!i))1�i<j<N , F = ((Fi!j ; Fj!i))i6=j , x = (xi)i. Let x�ij denote the vector

obtained from vector x by removing xi and xj and �i (x;r; F ) player i0s payo¤ function.

We set the following assumptions regarding the e¤ects of transfers on payo¤s:

G1 For any i; there exists a function �i such that, for any (x;r; F ), �i (x;r; F ) = �i (x;r)+P
j 6=i
(Fj!i � Fi!j)

G2 For any i; j such that i 6= j, and any x, �i (x;r) + �j (x;r) does not depend on ri!j .

G3 For any i; j; k such that k =2 fi; jg, and any x, �k (x;r) does not depend on ri!j .

We also make the following technical assumptions:

G4 For any r, there exists a unique Nash equilibrium x� (r) to the second-stage subgame.

G5 For any r, any (i; j) and any
�
r0i!j ; r

0
j!i

�
, the two-player game derived from the N-

player downstream game by �xing the actions of players k =2 fi; jg to x�k (r) has a unique Nash
equilibrium

�
~x�i

�
r0i!j ; r

0
j!i;x

�
�ij (r)

�
; ~x�j

�
r0i!j ; r

0
j!i;x

�
�ij (r)

��
:

G6 There exists a unique vector xm of downstream actions that maximizes the (downstream)
joint payo¤ of all players; moreover the joint payo¤ function is di¤erentiable at xm and the latter

is the unique solution to the corresponding system of FOCs.

This general model can be applied to many economic situations, including:

- Cross-licensing: ri!j is a per-unit royalty paid by patent holder i to patent holder j

and xi is a price or a quantity. Note that the general model applies not only to the case in

16 In particular, when it is applied to cross-licensing, it accounts for asymmetric costs, asymmetric patents, a
larger set of cross-licensing contracts, etc.
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which cross-licensing partners produce substitutable goods (which is the scenario considered

in the cross-licensing model developed previously) but also to the case in which they produce

complementary goods.

- Two-way access pricing in telecommunication networks: ri!j is the access charge paid by

network i to network j and xi is the linear retail price charged by network i to its customers

(see Armstrong, 1998, La¤ont, Rey and Tirole, 1998a, 1998b for a duopolistic setting)

- Interconnection among Internet backbone companies: ri!j is the access charge paid by

backbone company i to j in a transit agreement and xi is the capacity choice made by i (see

Crémer, Rey and Tirole, 2000).

- Interbank payments for the use of ATMs: ri!j is the interchange fee paid by bank i to

bank j and xi is the number of ATMs deployed by bank i (see Donze and Dubec, 2006, for a

setting with multilateral negotiation of the interchange fee).

Note that the general model introduced above is not a generalization of our cross-licensing

model stricto sensu. First, in contrast to the cross-licensing model, input prices can take positive

as well as negative values. This rules out non-interior equilibria, which simpli�es the analysis by

making it possible to rely on �rst-order conditions. Another di¤erence with the baseline model

is that the �rst stage of our general model is slightly di¤erent from that of the cross-licensing

model: there, we assumed that �rms can decide not to sign an agreement in the �rst stage while

in the current model, it is implicitly assumed that each pair of �rms sign an agreement (the only

decision variable is the terms of their agreement). However, this restriction does not entail any

loss of generality when �rms�incentives are such that each pair of �rms �nd it jointly pro�table

to sign a bilateral upstream agreement, as is the case in our cross-licensing model. Moreover,

this assumption is satis�ed for upstream agreements that are made mandatory by regulators as

is typically the case for instance with interconnection among telecommunication companies.

We now introduce the following de�nitions which generalize those adopted in our cross-

licensing model:

De�nition 3 A vector r of input prices is fully cooperative if

r 2 Argmax
r0

NX
i=1

�i
�
x�
�
r0
�
; r0
�
:

De�nition 4 A vector r of privately observable input prices is bilaterally e¢ cient if for any

(i; j) with i 6= j, the following holds:

(ri!j ; rj!i) 2 Argmax
(r0i!j ;r

0
j!i)

�
�ij
�
~x�i
�
r0i!j ; r

0
j!i;x

�
�ij (r)

�
; ~x�j

�
r0i!j ; r

0
j!i;x

�
�ij (r)

�
;x��ij (r) ; r�ij

��
where r�ij denotes the vector obtained from r by removing ri!j and rj!i.
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De�nition 5 A vector r of publicly observable input prices is bilaterally e¢ cient if for any (i; j)
with i 6= j, the following holds:

(ri!j ; rj!i) 2 Argmax
(r0i!j ;r

0
j!i)

�
(�i + �j)

�
x�
�
r0i!j ; r

0
j!i; r�ij

�
; r�ij

��
Let D denote the set of vectors r of input prices such that for any (i; j), x�j (:) and ~x

�
j (:) are

di¤erentiable with respect to all their arguments at r and �i (:; r) is di¤erentiable with respect

to all its arguments at x� (r) :17 The following provides a su¢ cient condition for a vector r 2 D
of input prices to be fully cooperative. This condition also ensures that a multilateral agreement

involving all �rms allows them to achieve the monopoly outcome in the downstream market.

Lemma 3 A su¢ cient condition for a vector r 2 D of input prices to be fully cooperative is

that for any j 2 f1; :::; Ng ;
NX
i=1

@�i
@xj

(x� (r) ; r) = 0: (16)

Moreover, when this condition is met, the fully cooperative upstream agreements allow �rms to

achieve the fully cooperative downstream outcome.

Proof. See Appendix.

6.1 Private agreements

We now provide a necessary condition for a vector of privately observable input prices in D to

be bilaterally e¢ cient.

Lemma 4 Assume that, for any r 2 D and any (i; j) 2 f1; :::; Ng2with i 6= j, we have������
@~x�i
@ri!j

@~x�j
@ri!j

@~x�i
@rj!i

@~x�j
@rj!i

������ 6= 0; (17)

where the argument
�
ri!j ; rj!i;x��ij (r)

�
is omitted. Then a necessary condition for a vector

of privately observable input prices r 2 D to be bilaterally e¢ cient is that

@�i
@xj

(x� (r) ; r) = 0;

for any (i; j) 2 f1; :::; Ng2such that i 6= j.
17Note that in applications where the second-stage subgame is a competition game, the subset of r =2 D is

typically of zero measure.
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Proof. See Appendix.
Condition (17) means that ri!j and rj!i are independent instruments in the sense that any

local downstream deviation can be obtained through a local upstream deviation. Let us show

that this condition is satis�ed, for instance, in the simple context of the previous cross-licensing

model with a downstream Cournot oligopoly featuring (potentially asymmetric) linear costs and

linear (inverse) demand p = a�Q. Then we have������
@~x�i
@ri!j

@~x�j
@ri!j

@~x�i
@rj!i

@~x�j
@rj!i

������ =
������
@~x�i
@ci

@~x�j
@ci

@~x�i
@cj

@~x�j
@cj

������ = 1

9
> 0:

Note that in environments in which the second stage takes the form of a Cournot game and

the input prices a¤ect only the marginal cost of production (such as our cross-licensing example),

Condition (17) means that own cost e¤ects (on output) are not equal to cross cost e¤ects. In

fact, in imperfect competition models, the property that own cost e¤ects strictly dominate cross

cost e¤ects is quite standard (see e.g., Vives, 1999).

Using the previous two lemmas, it is straightforward to get the following result about the

cooperative potential of private bilateral agreements.

Proposition 4 (private bilateral agreements) Under Condition (17), a bilaterally e¢ cient vec-
tor of privately observable input prices r 2 D is necessarily fully cooperative.

6.2 Public agreements

We now provide a necessary condition for a vector of publicly observable input prices in D to

be bilaterally e¢ cient.

Lemma 5 Assume that, for any r 2 D,

detMpublic 6= 0; (18)

where Mpublic is a N2 �N2 matrix whose elements are de�ned as follows

Mpublic
N(i�1)+j;N(l�1)+k =

8>>>><>>>>:

@x�k
@ri!j

if l = i and i 6= j
@x�k
@ri!j

if l = j and i 6= j
1 if l = k = i = j

0 otherwise

for any i; j; l; k 2 f1; :::; Ng : In the matrix, the subscripts (i; j) refer to ri!j and the subscripts
(l; k) refer to @�l

@xk
.
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Then a necessary condition for a vector of publicly observable input prices r 2 D to be

bilaterally e¢ cient is that
@�i
@xj

(x� (r) ; r) = 0;

for any (i; j) 2 f1; :::; Ng2such that i 6= j.

Proof. See Appendix.
Condition (18) is the counterpart of Condition (17) for publicly observable input prices.

Similarly to the case of privately observable input prices, this condition ensures that any local

downstream deviation can be obtained through a local upstream deviation. The reason why

Condition (18) has a less simple form than Condition (17) is that now a coalition that contem-

plates a deviation has to take into account the responses of its rivals in the second stage of the

game.

Combining Lemmas 3 and 5, we get the following result about the cooperative potential of

public bilateral agreements.

Proposition 5 (public bilateral agreements) Under Condition (18), a bilaterally e¢ cient vector
of publicly observable input prices r 2 D is necessarily fully cooperative.

Thus, under mild conditions, bilaterally e¢ cient upstream agreements allow �rms to achieve

the fully cooperative outcome regardless of whether their terms are private or public.

In the supplementary material we show that the ability of �rms to sustain the fully cooper-

ative outcome through bilateral agreements holds in two extensions of our general model. The

�rst one deals with situations in which some of the bilateral agreements are private while others

are public. The second one examines the case in which only a subset of �rms sign bilateral

agreements in the �rst stage of the game.

7 Policy implications

We now derive from our results some policy implications regarding the antitrust treatment of

bilateral cross-licensing agreements between competitors.

Competition authorities usually prohibit the use of royalties that are disproportionate with

respect to the market value of the license.18 For instance, according to the Guidelines on

the application of Article 81 of the EC Treaty to technology transfer agreements (European

Commission, 2004), �. . . Article 81(1) may be applicable where competitors cross license and

impose running royalties that are clearly disproportionate compared to the market value of

the licence and where such royalties have a signi�cant impact on market prices.� However,

18This would amount in our model to setting an upper bound on the level of royalties that cross-licensing
partners can agree on.
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the Technology Transfer Block Exemption Regulation (TTBER) of the European Commission

grants antitrust exemption to bilateral cross-licensing agreements between competitors if their

joint market share does not exceed 20%. In a similar vein, the competition authorities in U.S.

grant safe harbor to cross-licensing agreements (not necessarily bilateral) among partners whose

joint market share is below 20% (U.S. DoJ and FTC, 1995, p.22). This policy relies on market

forces to discipline cross-licensing partners when it comes to the level of royalties they agree on

and presumes that �rms with relatively low market power will not �nd it pro�table to charge

each other high per-unit royalties.

Our analysis shows that this disciplining e¤ect of market forces can arise only under a limited

range of circumstances: the most competitive outcome (i.e., r = 0) is one of the sustainable

outcomes only if i/ agreements are public19, ii/the Stackelberg e¤ect dominates the coordination

e¤ect, and iii/ �rms compete in quantities. Moreover, we show that �rms can always sustain

royalties that are high enough to implement the monopoly outcome (i.e., r = rm), regardless of

the information structure (i.e., whether the licensing terms are public or private) and the mode

of downstream competition (i.e., Cournot or Bertrand). This result clearly questions the current

antitrust treatment of cross-licensing agreements in the U.S. and the EU. Consider for instance

the speci�c example of an industry comprised of ten symmetric �rms. In such setting, any

bilateral cross-licensing agreements would bene�t from an antitrust exemption since the joint

market share criterion used by American and European antitrust authorities would be satis�ed.

However, our �ndings show that such legal agreements allow �rms to achieve the monopoly

outcome, which will make consumers worse o¤ if the cross-licensed technologies are relatively

substitutable (see Section 2.2). This suggests in particular that multiple bilateral cross-licensing

agreements involving the same �rm should not be treated separately by antitrust authorities.

8 Concluding remarks

The main message of this paper is as follows: under a wide range of circumstances, bilateral

upstream agreements among competing �rms can allow them to achieve the same outcome as

under full upstream cooperation. This result has been shown to hold independently of the

nature of downstream interactions, and regardless of whether the agreements are public or

private and whether �rms are symmetric or not. Our result does not necessarily imply that

bilateral upstream agreements reduce social welfare. First, if �rms produce complements rather

than substitutes, full upstream cooperation and hence bilateral upstream agreements are socially

desirable. Second, even if �rms produce substitutes, the outcome of full upstream cooperation

can be superior to the outcome of no upstream agreement at all. For instance, cross-licensing

of patents can reduce �rms�costs such that the �nal price can be lower than the price without

cross-licensing (see Section 2.2). Third, in the case of cross-licensing of patents, one should also

19Anecdotical evidence strongly suggests that the vast majority of cross-licensing agreements are private.
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take into account how cross-licensing a¤ects �rms�incentives to invest in innovation.

It is possible to extend our setting to study some policy issues related to cross-licensing.

First, we can introduce, in addition to incumbent �rms, entrants with no (or weak) patent

portfolios. This would allow us to study whether cross-licensing can be used to raise barriers to

entry (U.S. DoJ and FTC, 2007). Second, we can include in the set of players non-practicing

entities (NPEs) which do not compete in the downstream market. This would allow us to study

the conditions under which NPEs weaken competition and (when these conditions are met)

to isolate the anticompetitive e¤ects generated by NPEs from the e¤ects resulting from cross-

licensing in the absence of them.20 Note that NPEs and entrants involve completely opposite

asymmetries. The former are present in the upstream market of patent licensing but are absent

in the downstream (product) market while the second are absent (or have very weak presence)

in the upstream market but are present in the downstream market.
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10 Appendix: Proofs

Proof of Lemma 1
Assume, without loss of generality, that (i; j) = (1; 2). The joint payo¤ that �rms 1 and 2 derive
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from a deviation to a licensing agreement involving the payment of (r1!2; r2!1) is:

��1 + �
�
2 = [P (Q�)� c� r1!2 � (N � 2) r] q�1 + r2!1q�2 + rQ��12

+ [P (Q�)� c� r2!1 � (N � 2) r] q�2 + r1!2q�1 + rQ��12
= [P (Q�)� c� (N � 2) r] (q�1 + q�2) + 2rQ��12:

which can be rewritten as

��1 + �
�
2 = [P (Q

�)� c� (N � 2) r]
�
Q� �Q��12

�
+ 2rQ��12: (19)

Denoting ci the marginal cost of �rm i (including the royalties paid to the other �rms), the

F.O.C. for �rm i0s maximization program is:

P (Q�)� ci + q�i P 0 (Q�) = 0:

Summing the F.O.C.s for i = 1; 2; ::; N yields:

NP (Q�)�
X
i�1
ci +Q

�P 0 (Q�) = 0

which shows that Q� depends on (c1; c2; ::; cN ) only through
X
i�1
ci: Moreover, summing the

F.O.C.s for i = 3; ::; N yields

(N � 2)P (Q�)�
X
i�3
ci +Q

�
�12P

0 (Q�) = 0

which implies thatQ��12 depends on (c1; c2; :::; cN ) only through
X
i�1
ci and

X
i�3
ci. From (c1; c2; c3; :::; cN ) =

(c+ r1!2 + (N � 2) r; c+ r2!1 + (N � 2) r; c+ (N � 1) r; :::; c+ (N � 1) r), it then follows that
both Q� and Q��12 depend on (r1!2; r2!1) only through r1!2 + r2!1, which, combined with

(19), implies that ��1 + �
�
2 depends on (r1!2; r2!1) only through r1!2 + r2!1:

Proof of Lemma 2
Since Q�12(r; r̂) is strictly decreasing and continuous in r̂, then r 2 Argmax

r̂�0
(��1 + �

�
2) (r; r̂) if

and only if:

Q�12(r; r) 2 Argmax
Q122[0;Q�12(r;0)]

�12 (Q12) �

[P (Q12 +BR�12(Q12))� (c+ (N � 2) r)]Q12 + 2rBR�12(Q12) (20)

which means that Q�12(r; r) is a subgame-perfect equilibrium strategy of the coalition f1; 2g in
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the game G(r;N):

Proof of Proposition 2
Let us �rst show some general preliminary results which will be useful for the subsequent speci�c

analysis of the four considered scenarios. We have:

@�12
@Q12

(Q12; r) = P 0 (Q12 +BR�12(Q12))Q12(1 +BR
0
�12(Q12)) +

[P (Q12 +BR�12(Q12))� (c+ (N � 1) r)] + r
�
1 + 2BR0�12(Q12)

�
= [c+Nr � P (Q12 +BR�12(Q12))]

�
1 + 2BR0�12(Q12)

�
+

2

�
P 0 (Q12 +BR�12(Q12))

Q12
2
+ P (Q12 +BR�12(Q12))� (c+ (N � 1) r)

�
| {z }

�J(Q12;r)

�
1 +BR0�12(Q12)

�
| {z }

�D((Q12;r)
Let us show that J(Q12; r) is decreasing in Q12. We have

@J(Q12; r)

@Q12
=

�
P 00 (Q)

Q12
2
+ P 0 (Q)

� �
1 +BR0�12(Q12)

�| {z }
>0

+
P 0 (Q)

2| {z }
<0

:

Since P 00 (Q) Q122 + P 0 (Q) < max [P 00 (Q)Q+ P 0 (Q) ; P 0 (Q)] < 0 then J(Q12; r) is decreasing

in Q12: This, combined with the fact that the F.O.C. for each �rm i = 1; 2, satis�ed at the

symmetric Cournot equilibrium, is given by J(Q�12 (r; r) ; r) = 0, yields that

J(Q12; r) Q 0() Q12 R Q�12 (r; r) (21)

Since 1 +BR0�1;2(Q12) > 0, it follows that

D(Q12; r) Q 0() Q12 R Q�12 (r; r) (22)

Moreover, from

BR0�12(Q12) = �
P 00(Q)BR�12 (Q12) + (N � 2)P 0(Q)
P 00(Q)BR�12 (Q12) + (N � 1)P 0(Q)

it follows that

1 + 2BR0�12(Q12) = �
P 00(Q)BR�12 (Q12) + (N � 3)P 0(Q)
P 00(Q)BR�12 (Q12) + (N � 1)P 0(Q) (23)
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which can be rewritten as

1 + 2BR0�12(Q12)

= �
N�2
N P 0(Q)

P 00(Q)BR�12 (Q12) + (N � 1)P 0(Q)

�
QP 00(Q)

P 0(Q)

�
N

N � 2 :
BR�12 (Q12)

Q

�
+
N(N � 3)
N � 2

�
Since P 00(Q)BR�12 (Q12)+(N�1)P 0(Q) � max ((N � 1)P 0(Q); P 00(Q)Q+ (N � 1)P 0(Q)) <

0, it follows that

1 + 2BR0�12(Q12) Q 0()
QP 00(Q)

P 0(Q)
R �N(N � 3)

N � 2

�
N � 2
N

:
Q

BR�12 (Q12)

�
(24)

(for anyQ12 such thatBR�12 (Q12) 6= 0). From the fact thatBR�12 (Q12)�N�2
N Q = BR�12 (Q12)�

N�2
N (Q12 +BR�12 (Q12)) is decreasing in Q12 and BR�12 (Q�12 (r; r)) =

N�2
N Q� (r; r) (by sym-

metry of the considered Cournot equilibrium), it follows that

N � 2
N

Q

BR�12 (Q12)
R 1() Q12 R Q�12 (r; r)

In particular we obtain the following result which will be useful for the next steps of the proof:

If QP
00(Q)

P 0(Q) > �N(N�3)
N�2 (for any Q such that P 0(Q) 6= 0) then 1 + 2BR0�12(Q12) < 0 for any

Q12 � Q�12 (r; r) :
- Let us now show that r = rm is bilaterally e¢ cient regardless of whether the Stackelberg

e¤ect dominates or is dominated by the coordination e¤ect.

@�12
@Q12

(Q12; r
m) = P 0 (Q12 +BR�12(Q12))Q12(1 +BR

0
�12(Q12)) +

[P (Q12 +BR�12(Q12))� (c+ (N � 1) rm)] + rm
�
1 + 2BR0�12(Q12)

�
= 2

�
P 0 (Q12 +BR�12(Q12))

Q12
2
+ rm

�
(1 +BR0�12(Q12)) +

[P (Q12 +BR�12(Q12))� (c+Nrm)]

Since c+Nrm � P (Q�(rm; rm)) = 0 then

P (Q12 +BR�12(Q12))� (c+Nrm) = P (Q12 +BR�1;2(Q12))

�P (Q�12(rm; rm) +BR�12(Q�12(rm; rm)))

Moreover, combining c+Nrm � P (Q�(rm; rm)) = 0 with the F.O.C.

P 0 (Q�12(r
m; rm) +BR�12(Q�12(r

m; rm)))
Q�12(r

m;rm)
2 +

P (Q�12(r
m; rm) +BR�12(Q�12(r

m; rm)))� c� (N � 1) rm = 0
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yields

P 0 (Q12 +BR�12(Q12))
Q12
2
+ rm = P 0 (Q12 +BR�12(Q12))

Q12
2
�

P 0 (Q�12(r
m; rm) +BR�12(Q

�
12(r

m; rm)))
Q�12(r

m; rm)

2

Therefore,

@�12
@Q12

(Q12; r
m) = [2P 0 (Q12 +BR�12(Q12))

Q12
2

�2P 0 (Q�12(rm; rm +BR�12(Q�12(rm; rm)))
Q�12(r

m; rm)

2
]
�
1 +BR0�12(Q

�
12(r

m; rm)
�
+

[P (Q12 +BR�12(Q12))� P (Q�12(rm; rm) +BR�12(Q�12(rm; rm)))]

Using the fact that P 0(Q) < 0 and 1+BR0�12(Q12) > 0, it is straightforward to show that both

functions P 0 (Q12 +BR�12(Q12))
Q12
2 and P (Q12 +BR�12(Q12)) are decreasing in Q12, which

implies that
@�12
@Q12

(Q12; r
m) R 0() Q12 Q Q�12(rm; rm)

Therefore, Q�12(r
m; rm) maximizes �12 (Q12; rm) over [0; Q�12(r

m; 0)], which is equivalent to the

fact that S(rm; N) is bilaterally e¢ cient.

- Consider now the case QP
00(Q)

P 0(Q) > �N(N�3)
N�2 and let us show that r = 0 is bilaterally e¢ cient,

that is Q�12(0; 0) maximizes �12 (Q12; 0) over [0; Q
�
12(0; 0)]. We have

@�12
@Q12

(Q12; 0) = (c� P (Q12 +BR�1;2(Q12))) (1 + 2BR0�12(Q12)) +D(Q12; 0)

where D(Q12; r) is de�ned in the beginning of the proof.

Let us now show that P 00(Q12+BR�12(Q12))BR�12 (Q12)+(N�3)P 0(Q12+BR�12(Q12)) < 0
for any Q12 2 [0; Q�12(0; 0)], which, by (23), is su¢ cient to state that 1 + 2BR0�12(Q12) < 0

for any Q12 2 [0; Q�12(0; 0)]. On the one hand, if P 00(Q12 + BR�1;2(Q12)) < 0 then it fol-

lows from BR�12 (Q12) � 0 and P 0(Q) < 0 that 1 + 2BR0�12(Q12) < 0. On the other

hand, if P 00(Q12 + BR�12(Q12)) � 0 then from BR�12 (Q12) � Q, it follows that P 00(Q12 +

BR�12(Q12))BR�12 (Q12) + (N � 3)P 0(Q12 + BR�12(Q12)) � P 00(Q)Q + (N � 3)P 0(Q). Note
�rst that if P 00(Q12 + BR�12(Q12)) � 0, it must hold that N � 4; otherwise the condition
QP 00(Q)
P 0(Q) > �N(N�3)

N�2 (which is one of the two conditions de�ning the present scenario) would be

violated. This implies that P 00(Q)Q+(N�3)P 0(Q) � P 00(Q)Q+P 0(Q), which combined withA3
yields P 00(Q)Q+(N�3)P 0(Q) < 0 and, therefore, 1+2BR0�12(Q12) < 0. We are now in position
to state that, for any Q12 2 [0; Q�12(0; 0)], the latter inequality holds independently of whether
P 00(Q12 +BR�12(Q12)) < 0 or P 00(Q12 +BR�12(Q12)) � 0. Combining that with the fact that
the two inequalities c�P (Q12 +BR�1;2(Q12)) � c�P (Q�12(0; 0) +BR�1;2(Q�12(0; 0))) < 0 and
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D(Q12; 0) � 0 (from (22))hold for any Q12 2 [0; Q�12(0; 0)], we get that @�12
@Q12

(Q12; 0) � 0 for

any Q12 2 [0; Q�12(0; 0)]. This implies that Q�12(0; 0) maximizes �12 (Q12; 0) over [0; Q�12(0; 0)].
Therefore, S(0; N) is bilaterally e¢ cient.

Proof of Lemma 3

By G1, G2 and G3 it holds that
NP
i=1
�i (x;r; F ) =

NP
i=1
�i (x; r) does not depend on r for any

x. By G6, xm is then the unique solution to the system of N equations:

NX
i=1

@�i
@xj

(x; r) = 0 for j 2 f1; :::; Ng ;

for any r: Therefore, if a vector r 2 D is such that
NP
i=1

@�i
@xj

(x� (r) ; r) = 0 for any j 2 f1; :::; Ng,

then it must be that x� (r) = xm, which implies that (i)
NX
i=1

�i (x
� (r) ; r)

N

�
X
i=1

�i (x
� (r0) ; r0)

for any r0; that is, r is fully cooperative, and (ii) the fully cooperative upstream agreements

allows the agent to achieve the fully cooperative downstream outcome.

Proof of Lemma 4
Assume that r 2 D is bilaterally e¢ cient. Then for any (i; j) 2 f1; :::; Ng2 with i 6= j, it

must hold that

@

@ri!j
(�i + �j)

�
~x�i
�
ri!j ; rj!i;x

�
�ij (r)

�
; ~x�j

�
ri!j ; rj!i;x

�
�ij (r)

�
;x��ij (r) ; r�ij

�
= 0;

which can be rewritten as

@~x�i
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�i
@xi

�
~x�i
�
ri!j ; rj!i;x

�
�ij (r)

�
; ~x�j

�
ri!j ; rj!i;x

�
�ij (r)

�
;x��ij (r) ; r�ij

�
+

@~x�j
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�i
@xj

�
~x�i
�
ri!j ; rj!i;x

�
�ij (r)

�
; ~x�j

�
ri!j ; rj!i;x

�
�ij (r)

�
;x��ij (r) ; r�ij

�
+

@~x�i
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�j
@xi

�
~x�i
�
ri!j ; rj!i;x

�
�ij (r)

�
; ~x�j

�
ri!j ; rj!i;x

�
�ij (r)

�
;x��ij (r) ; r�ij

�
+

@~x�j
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�j
@xj

�
~x�i
�
ri!j ; rj!i;x

�
�ij (r)

�
; ~x�j

�
ri!j ; rj!i;x

�
�ij (r)

�
;x��ij (r) ; r�ij

�
= 0:

Using the de�nition of a Nash equilibrium , it is straightforward to see that ~x�i
�
ri!j ; rj!i;x��ij (r)

�
=
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x�i (r) and that ~x
�
j

�
ri!j ; rj!i;x��ij (r)

�
= x�j (r). Therefore, it holds that

@~x�i
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�i
@xi

(x� (r) ; r) +
@~x�j
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�i
@xj

(x� (r) ; r) +

@~x�i
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�j
@xi

(x� (r) ; r) +
@~x�j
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�j
@xj

(x� (r) ; r) = 0:

By de�nition of the downstream Nash equilibrium x� (r), it holds that

@�i
@xi

(x� (r) ; r) =
@�j
@xj

(x� (r) ; r) = 0:

This yields

@~x�j
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�i
@xj

(x� (r) ; r) +
@~x�i
@ri!j

�
ri!j ; rj!i;x

�
�ij (r)

� @�j
@xi

(x� (r) ; r) = 0:

By symmetry we also have

@~x�i
@rj!i

�
ri!j ; rj!i;x

�
�ij (r)

� @�j
@xi

(x� (r) ; r) +
@~x�j
@rj!i

�
ri!j ; rj!i;x

�
�ij (r)

� @�i
@xj

(x� (r) ; r) = 0:

Denoting yij = @�i
@xj

(x� (r) ; r) and yji =
@�j
@xi

(x� (r) ; r) ; and omitting the argument
�
ri!j ; rj!i;x��ij (r)

�
,

the latter two equations can be rewritten as a two-equation linear system in yji and yij :8<:
@~x�i
@ri!j

:yji +
@~x�j
@ri!j

:yij = 0
@~x�i
@rj!i

:yji +
@~x�j
@rj!i

:yij = 0

If

������
@~x�i
@ri!j

@~x�j
@ri!j

@~x�i
@rj!i

@~x�j
@rj!i

������ 6= 0, then the latter system has a unique solution, given by yji = yij = 0:

Hence, we get the following: for any (i; j) 2 f1; :::; Ng2 with i 6= j, the following equation must
hold

@�i
@xj

(x� (r) ; r) = 0:

Proof of Lemma 5
Assume that a given vector of public input prices r 2 D is bilaterally e¢ cient. The FOCs

associated with

(ri!j ; rj!i) 2 Argmax
(r0i!j ;r

0
j!i)

�
(�i + �j)

�
x�
�
r0i!j ; r

0
j!i; r�ij

�
; r�ij

��
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are
nX
k=1

@x�k
@ri!j

(r)
@�i
@xk

(x� (r) ; r) +
nX
k=1

@x�k
@ri!j

(r)
@�j
@xk

(x� (r) ; r) = 0;

and
nX
k=1

@x�k
@rj!i

(r)
@�i
@xk

(x� (r) ; r) +
nX
k=1

@x�k
@rj!i

(r)
@�j
@xk

(x� (r) ; r) = 0:

Hence, the FOCs associated with the bilateral e¢ ciency of the upstream agreements give rise

to N(N � 1) conditions. Adding these to the N FOCs @�i
@xi
(x� (r) ; r) = 0 associated to the

downstream Nash equilibrium, we end up with a system of N2 equations. The latter can be

represented as a linear systemMpublic:Y = 0 whereMpublic is a N2�N2 matrix whose elements

are de�ned as follows:

Mpublic
N(i�1)+j;N(l�1)+k =

8>>>><>>>>:

@x�k
@ri!j

if l = i and i 6= j
@x�k
@ri!j

if l = j and i 6= j
1 if l = k = i = j

0 otherwise

for any i; j; l; k 2 f1; :::; Ng; and Y is a N � 1 matrix whose elements (which are the "unknown
variables") are de�ned as follows

YN(l�1)+k =
@�l
@xk

(x� (r) ; r) :

If detMpublic 6= 0, then this linear system has a unique solution given by

@�l
@xk

(x� (r) ; r) = 0;

for any k; l 2 f1; :::; Ng ; which completes the proof.
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11 Supplementary material for online publication

11.1 Alternative equivalent formulation: value-increasing patents

Instead of assuming that access to more patents reduces a �rm�s marginal cost, we can assume

that access to more patents increases the value of the product produced by the �rm. We below

show that our model of cost-reducing patents can be equivalently interpreted as a model of

value-increasing patents.

We consider a constant symmetric marginal cost c for all �rms. Each �rm has one patent.

Let v(n) represent the value of the product produced by a �rm when the �rm has access to

n 2 f1; :::; Ng number of distinct patents with v(N) � v(N � 1) � ::: � v(1)(� v). Let

v � (v1; :::; vN ) be the vector representing the value of each �rm�s product after the licensing

stage.

We de�ne Cournot competition for given v � (v1; :::; vN ) as follows. Each �rm i simultane-

ously chooses its quantity qi. Given v � (v1; :::; vN ), q � (q1; :::; qN ) and Q = q1 + :::+ qN , the
quality-adjusted equilibrium prices are determined by the following two conditions:

- an indi¤erence condition:

vi � pi = vj � pj for all (i; j) 2 f1; :::; Ng2 ;

- a market-clearing condition:

Q = D(p) where pi = p+ vi � v:

In other words, p is the price for the product of a �rm which has access to its own patent only.

The market clearing condition means that this price is adjusted to make the total supply equal to

the demand. The indi¤erence condition implies that the price each �rm charges is adjusted such

that all consumers who buy any product are indi¤erent among all products. A micro-foundation

of this setup can be provided as follows. There is a mass one of consumers. Each consumer has

a unit demand and hence buys at most one unit among all products. A consumer�s gross utility

from having a unit of product of �rm i is given by u+vi: u is speci�c to the consumer while vi is

common to all consumers. Let F (u) represent the cumulative distribution function of u: Then,

by construction of quality-adjusted prices, any consumer is indi¤erent among all products and

the marginal consumer indi¤erent between buying any product and not buying is characterized

by u+ v � p = 0, implying
D(p) = 1� F (p� v):

In equilibrium, p is adjusted such that 1 � F (p � v) = Q. Let P (Q) be the inverse demand

34



function. In equilibrium, a �rm�s pro�t is given by

�i =

0@P (Q) + vi � v � c�X
j 6=i

ri!j

1A qi +X
j 6=i

rj!iqj :

After making the following change of variables

c� (vi � v) = ci;

the pro�t can be equivalently written as

�i =

0@P (Q)� ci �X
j 6=i

ri!j

1A qi +X
j 6=i

rj!iqj ;

which is the pro�t expression in our original model of cost-reducing patents. Therefore, our

model of cost-reducing patents can be equivalently interpreted as a model of value-increasing

patents.

11.2 Robustness to deviations by coalitions of any size

In this extension, we show that the main results previously obtained by considering a coalition

of size 2 extend to a coalition of any given size k (with 3 � k � N � 1). We will say that a set
of cross-licensing agreements is k-e¢ cient if no coalition of size k �nds it optimal to change the

terms of the cross-licensing agreements between the members of the coalition. We consider �rst

the case of public cross-licensing and then the case of private cross-licensing.

Suppose that cross-licensing agreements are public. Consider the deviation of a coalition

composed of f1; :::; kg in the licensing stage. Lemma 1 continues to hold in the case of coalition
of size k and hence, without loss of generality, we can restrict attention to deviations involving

a symmetric royalty r̂. For given (r; r̂), let Q�k(r; r̂) denote the sum of the outputs of the �rms

in the coalition in the (second-stage) equilibrium of Cournot competition. Let Q��k(r; r̂) �
Q�(r; r̂)�Q�k(r; r̂).

Denoting Qk the total quantity produced by the considered coalition and r the common

royalty paid to the �rms outside the coalition, the coalition�s pro�t can be rewritten as

�k (Qk; r) = [P (Qk +BR�k(Qk))� (c+ (N � 1) r)]Qk| {z }
�Dk (Qk;r)

+ r [(k � 1)Qk + kBR�k(Qk)]| {z } :
�Uk (Qk;r)

(25)

Equation (25) generalizes (6). Suppose that the coalition marginally expands or contracts its
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output Qk with respect to Q�k(r; r). Then, we have

@�Dk
@Qk

(Q�k(r; r); r) = � [P (Q�(r; r))� (c+ (N � 1) r)] [k � 1 + kBR0�k(Q�k(r; r))]:

@�Uk
@Qk

(Q�k(r; r); r) = r
�
k � 1 + kBR0�k(Q�k(r; r))

�
:

Summing up the two terms leads to

@�k
@Qk

(Q�k(r; r); r) = [c+Nr � P (Q�(r; r))] [k � 1 + kBR0�k(Q�k(r; r))]: (26)

Equation (26) generalizes (11). In particular, the �rst bracket term is the same in both

equations and does not depend on k while the second bracket term in (26) depends on k. The

Stackelberg e¤ect dominates the coordination e¤ect if and only if k� 1+ kBR0�k(Q�k(r; r)) < 0.
We have

k � 1 + kBR0�k(Q�k(r; r)) S 0 i¤
QP 00(Q)

P 0(Q)
T �N(N � 2k + 1)

N � k :

The important point is that at r = rm, the �rst bracket term in (26) is zero regardless of the

coalition size: c+Nrm � P (Q�(rm; rm)) = 0. Therefore, we have the following result

Proposition 6 (public cross-licensing) Consider the two-stage game of public cross-licensing
followed by Cournot competition.

(i) If the Stackelberg e¤ect dominates the coordination e¤ect
�
QP 00(Q)
P 0(Q) > �N(N�2k+1)

N�k

�
, then

S(r;N) is k-e¢ cient if and only if r 2 f0; rmg.
(ii) If the coordination e¤ect dominates the Stackelberg e¤ect

�
QP 00(Q)
P 0(Q) < �N(N�2k+1)

N�k

�
, then

S(r;N) is k-e¢ cient if and only if r = rm.

Proposition 6 generalizes Proposition 2 to any given size of coalition. In particular, this

proposition shows that the monopoly outcome is obtained for any size of coalition.

Proposition 6 also implies that Proposition 3 of private cross-licensing generalizes to coali-

tions of any size since private cross-licensing is formally a particular case of public cross-licensing

in which the Stackelberg e¤ect is absent (i.e., BR0�k = 0).

Proposition 7 (private cross-licensing) In the two-stage game of private cross-licensing fol-
lowed by Cournot competition, S(rm; N) is the unique k-e¢ cient set of symmetric agreements.

11.3 Bertrand competition with di¤erentiated products

In this section we extend our analysis to a di¤erent mode of downstream competition. Consider

the same game as before but assume now that �rms produce di¤erentiated goods and compete

in prices in the second stage of the game. Let pj denote the price of product j 2 f1; 2; :::; Ng,
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Di(p1; p2; :::; pN ) the demand for product i 2 f1; 2; :::; Ng, and Si �
�
(p1; p2; :::; pn) 2 Rn+ j Di(p1; p2; :::; pn) > 0

	
.

We make the following assumptions for each i 2 f1; 2; :::; Ng :

B1 Di is twice continuously di¤erentiable on Si.
B2 (i)@Di@pi

< 0, (ii)@Di@pj
> 0 for any j 6= i, and (iii)

Pn
j=1

@Di(p;p;:::;p)
@pj

< 0 over the set Si.

B3 (i) @
2Di

@pi@pj
> 0 for any j 6= i and (ii)

Pn
j=1

@2Di
@pi@pj

< 0 over the set Si.

B4
Pn
j=1

@2Di
@pk@pj

� 0 for any k 6= i on Si:
Conditions B1-B3 are quite general, and are commonly invoked for di¤erentiated-good

demand systems to guarantee that the standard Bertrand game with linear cost is supermodular

and has a unique equilibrium (see e.g., Vives, 1999). They have the following meanings and

economic interpretations. For B2, part (i) is just the ordinary law of demand; part (ii) says

that goods i and j are substitutes; and part (iii) is a dominant diagonal condition for the

Jacobian of the demand system, which is required to hold only at equal prices. It says that,

along the diagonal, own price e¤ect on demand exceeds the total cross-price e¤ects. For B3,
part (i) says that demand has strictly increasing di¤erences in own price and any rival�s price,

and part (ii) says that the Hessian of the demand system has a dominant diagonal.

Moreover, assume that the demand system is symmetric (i.e., products are symmetrically dif-

ferentiated), and that a unique second-stage equilibrium exists for any �rst-stage cross-licensing

agreements. Assumption B4 is a technical assumption ensuring the monotonicity of the second-
stage equilibrium price with respect to �rst-stage royalties.

Note that, while Assumption B3 (i) guarantees that the second-stage pricing game features
strategic complementarity when there is no cross-licensing agreement involving the payment of

a strictly positive per-unit royalty (i.e., when the second-stage game is a standard Bertrand

game), it does not imply that this property holds for all �rst-stage agreements.

The concept of bilateral e¢ ciency extends in a very natural way to the current setting, both

for private and public agreements. As in the cournot case, we focus on the scenario in which all

�rms license their patents to each other.

11.3.1 Fully cooperative royalty

Let us �rst characterize the fully cooperative downstream price when all �rms license their

patents to each other. The latter, which we assume to be unique, is given as follows (by

symmetry) by

pm � argmax (p� c)
NX
i=1

Di(p; p; :::; p) = argmax (p� c)D1(p; p; :::; p):
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The corresponding F.O.C. is given by

D1(p
m; :::; pm) + (pm � c)

�
@D1
@p1

(pm; :::; pm) + (N � 1) @D2
@p1

(pm; :::; pm)

�
= 0: (27)

When all cross-licensing agreements involve the payment of the same royalty r, �rm 1�s pro�t

function in the second-stage subgame is given by

�1 (p1; :::; pN ) = (p1 � (c+ (N � 1)r))D1 (p1; :::; pN ) + r
NX
j=2

Dj (p1; :::; pN ) :

Using the symmetry of the problem, the second-stage equilibrium p�(r) is given by

D1(p
�(r); :::; p�(r)) +

@D1
@p1

(p�(r)� (c+ (N � 1)r)) + r(N � 1)@D2
@p1

= 0; (28)

where @D1
@p1

= @D1
@p1
(p�(r); :::; p�(r)) and similarly for @D2

@p1
. From (27) and (28), one derives the

monopoly royalty satisfying p�(rm) = pm :

rm =

@D2
@p1

(pm; :::; pm)

@D2
@p1

(pm; :::; pm)� @D1
@p1

(pm; :::; pm)
(pm � c) :

11.3.2 Public agreements

Let us �rst introduce some useful notations. Let p�1 (r; r1!2; r2!1) and p
�
2 (r; r1!2; r2!1) denote

the second-stage equilibrium prices when the royalty paid by �rm 1 to 2 is r1!2, the royalty

paid by �rm 2 to 1 is r2!1, and all other cross-licensing agreements involve the payment of the

same royalty r. With a slight abuse of notation, we will denote p� (r) � p�1 (r; r; r) = p�2 (r; r; r).
Furthermore, considering the special case where all �rms license their patents each other at the

same royalty r > 0, de�ne R�12 (p1; p2; r) as follows: if N = 3, then R�12 (p1; p2; r) is the best

response of �rm 3 to �rms 1 and 2 setting prices p1 and p2; if N > 3, then R�12 (p1; p2; r) is the

(assumed unique) number such that for any i 2 f3; :::; Ng, R�12 (p1; p2; r) is �rm i�s best-response
to �rms 1 and 2 setting prices p1 and p2 and all other �rms setting a price R�12 (p1; p2; r).21

Note that R�12 (p� (r) ; p� (r) ; r) = p� (r).

We now de�ne the counterpart of the gameG(r;N) when �rms set prices instead of quantities.

De�nition 6 For any r � 0 and N � 3, the game GB(r;N) is de�ned by the following elements:

Players: There are N � 1 players: coalition {1,2} and �rms i = 3; :::; N . Each player has a
marginal production cost c (excluding royalties). The coalition pays a per-unit royalty r to each

of the other players. Each �rm i 2 f3; :::; Ng pays a per-unit royalty 2r to the coalition and a
per-unit royalty r to each �rm j 2 f3; :::; Ng n fig.
21Here we make the implicit assumption that the best-response correspondence is indeed a function.
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Actions: The coalition {1,2} chooses the price pair (p1; p2) within the interval [p�1(r; 0; 0);+1)�
[p�2(r; 0; 0);+1) and each �rm i 2 f3; :::; Ng chooses a price pi � 0.

Timing: There are two stages.

- Stage 1: The coalition {1,2} acts as a Stackelberg leader and chooses (p1; p2) within

[p�1(r; 0; 0);+1) � [p�2(r; 0; 0);+1) :
- Stage 2: If N = 3, then �rm 3 chooses its price p3. If N � 4, then all �rms i = 3; :::; N

choose simultaneously (and non-cooperatively) their prices pi.

The following lemma is the counterpart in a Bertrand setting of Lemma 2.

Lemma 6 A symmetric set of cross-licensing agreements S(r;N) is bilaterally e¢ cient if and

only if choosing (p� (r) ; p� (r)) is optimal for the coalition in the Stackelberg game GB(r;N):

Proof. Similar to the proof of Lemma 2.
We will assume in what follows that the coalition�s maximization problem is well-behaved

in the following sense: it has a unique solution and when the latter is interior, it is fully char-

acterized by the corresponding �rst-order condition.

Again we can split the coalition�s joint pro�t into a downstream pro�t and an upstream

pro�t:

�12 (p1; p2; r) = �
D
12 (p1; p2; r) + �

U
12 (p1; p2; r)

where

�D12 (p1; p2; r) �
X
i=1;2

Di(p1; p2; R�12 (p1; p2; r) ; :::; R�12 (p1; p2; r)) (pi � (c+ (N � 1)r))

and

�U12 (p1; p2; r) � r

26664
X
i=1;2

Di(p1; p2; R�12 (p1; p2; r) ; :::; R�12 (p1; p2; r))+

2

NX
j=3

Dj(p1; p2; R�12 (p1; p2; r) ; :::; R�12 (p1; p2; r))

37775
For a symmetric set of cross-licensing agreements S(r;N) , with r > 0, to be bilaterally e¢ cient,

it must hold that
@�12
@p1

((p�(r); p�(r); r) =
@�12
@p2

((p�(r); p�(r); r) = 0:

Our assumption that the coalition�s problem is well-behaved ensures that the latter necessary

�rst-order conditions are su¢ cient to characterize a bilaterally e¢ cient positive symmetric roy-

alty.

Let us now investigate the e¤ects of a (local) variation of p1 (or symmetrically p2) on both

sources of pro�t.
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Considering �rst the coalition�s downstream pro�t, we have

@�D12
@p1

((p�(r); p�(r); r) =

�
@D1
@p1

+
@D2
@p1

�
(p�(r)� (c+ (N � 1)r)) +D1(p�(r); :::; p�(r)) +

(p�(r)� (c+ (N � 1)r))

0@ NX
j=3

@ (D1 +D2)

@pj

1A @R�12
@p1

((p�(r); p�(r); r) :

From (28) it follows that:

@�D12
@p1

((p�(r); p�(r); r) =
@D2
@p1

(p�(r)� (c+ 2(N � 1)r)) +

(p�(r)� (c+ (N � 1)r))

0@ NX
j=3

@ (D1 +D2)

@pj

1A @R�12
@p1

((p�(r); p�(r); r) :

The �rst term, i.e., @D2@p1
(p�(r)� (c+ 2(N � 1)r)), captures the coordination e¤ect in this setting.

In contrast to the Cournot setting, the sign of this e¤ect is ambiguous: Note however that it

is positive in the special case of r = 0, which captures the usual collusive incentive to increase

prices in the standard Bertrand model. The remaining term captures the Stackelberg e¤ect. Its

sign is solely determined by the sign of @R�12@p1
((p�(r); p�(r); r) : If the second stage pricing game

features strategic complementarity22, then @R�12
@p1

((p�(r); p�(r); r) > 0 and hence the sign of the

Stackelberg e¤ect is positive (as in the standard Bertrand game).

Considering now the coalition�s upstream pro�t, we have:

@�U12
@p1

((p�(r); p�(r); r) = r

�
@D1
@p1

+
@D2
@p1

�
+ 2r

NX
j=3

@Dj
@p1

+ r

0@ NX
j=3

@ (D1 +D2)

@pj

1A @R�12
@p1

+2r
NX
k=3

0@ NX
j=3

@Dj
@pk

1A @R�12
@p1

((p�(r); p�(r); r)

The �rst term, which is negative (by B2 (ii) and (iii)), captures a direct royalty-saving e¤ect.
The second term, which is positive, can be interpreted as the direct e¤ect of a price increase

on licensing revenues. The third term, which has the same sign as @R�12@p1
((p�(r); p�(r); r), cap-

tures an indirect royalty-saving e¤ect. Finally, the fourth term, which has the same sign as

�@R�12
@p1

((p�(r); p�(r); r), can be interpreted as the indirect e¤ect of a price increase on licensing

revenues. Note that under Cournot setting, we have only the �rst and the last e¤ects.

Before stating the main result of this section, let us show why r = 0 cannot be a bilaterally

22We assumed this property to hold in the case r = 0 (corresponding to the standard Bertrand game) but we
do not impose it for r > 0:
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e¢ cient symmetric royalty. In this special case, the upstream pro�ts are zero and

@�12
@p1

((p�(0); p�(0); 0) =
@�D12
@p1

((p�(0); p�(0); 0)

= (p�(0)� c)| {z }
>0

2666664
@D2
@p1|{z}
>0

+

0@ NX
j=3

@ (D1 +D2)

@pj

1A
| {z }

>0 by B2 (ii)

@R�12
@p1

((p�(0); p�(0); 0)| {z }
>0

3777775
Hence @�12

@p1
((p�(0); p�(0); 0) > 0, which shows that it is not optimal for the coalition to set

(p1; p2) = (p
�(0); p�(0)) when r = 0: Lemma 6 then implies that S(0; N) is not a set of bilaterally

e¢ cient agreements. This contrasts with the case of Cournot competition. The reason for this

is that, when r = 0, prices are strategic complements. Therefore, the Stackelberg e¤ect has

a positive sign and thus reinforces the coordination e¤ect (while it mitigates it under Cournot

competition).

The following proposition characterizes the bilaterally e¢ cient symmetric public agreements.

Proposition 8 (public bilateral cross-licensing: Bertrand) In the two-stage game of public

cross-licensing followed by Bertrand competition, S(r;N) is bilaterally e¢ cient if and only if

r = rm.

Proof. We have already shown that r = 0 is not a bilaterally e¢ cient symmetric royalty. We
can therefore focus on interior royalties r > 0: The F.O.C. characterizing p�(r) is given by

D1(p
�(r); :::; p�(r)) +

@D1
@p1

: (p�(r)� (c+ (N � 1)r)) + r(N � 1)@D2
@p1

= 0: (29)

Assume that S(r;N) is bilaterally e¢ cient. Then

@�D12
@p1

((p�(r); p�(r); r) +
@�U12
@p1

((p�(r); p�(r); r) = 0;

which is the same as�
@D1
@p1

+ @D2
@p1

�
: (p�(r)� (c+ (N � 1)r)) +D1(p�(r); :::; p�(r)) + r

�
@D1
@p1

+ @D2
@p1

�
+

2r

NX
j=3

@Dj
@p1

+ (p�(r)� (c+ (N � 1)r))

0@ NX
j=3

@(D1+D2)
@pj

1A @R�12
@p1

((p�(r); p�(r); r)+

r

0@ NX
j=3

@(D1+D2)
@pj

1A @R�12
@p1

+ 2r

NX
k=3

0@ NX
j=3

@Dj
@pk

1A @R�12
@p1

((p�(r); p�(r); r) = 0:
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Using the symmetry of the problem the latter can be rewritten as

D1(p
�(r); :::; p�(r)) + @D1

@p1
(p�(r)� (c+ (N � 2)r)) + @D2

@p1
(p�(r)� (c� (N � 2)r))

+2(N � 2)@R�12@p1
((p�(r); p�(r); r)

h
r @D1@p1

+ (p�(r)� (c+ r)) @D2@p1

i
= 0:

Combining the latter and (29) yields�
1 + 2(N � 2)@R�12

@p1
((p�(r); p�(r); r)

��
r
@D1
@p1

+ (p�(r)� (c+ r)) @D2
@p1

�
= 0;

which implies

r
@D1
@p1

+ (p�(r)� (c+ r)) @D2
@p1

= 0:

Adding the latter multiplied by (N � 1) to (29) yields

D1(p
�(r); :::; p�(r)) +

@D1
@p1

: (p�(r)� c) + (N � 1)@D2
@p1

(p�(r)� c) = 0: (30)

The latter condition characterizes uniquely pm. Therefore p�(r) = pm:

Thus, a necessary condition for S (r;N) to be bilaterally e¢ cient is that p�(r) = pm: This

condition can be easily shown to be su¢ cient by checking that

@�D12
@p1

(pm; pm; rm) +
@�U12
@p1

(pm; pm; rm) = 0

is satis�ed (this is readily obtained by following the previous steps in reverse order) and using

the fact the coalition�s maximization problem in the game GB(r;N) is well behaved. We can

therefore conclude that S (r;N) is bilaterally e¢ cient if and only if p�(r) = pm

To complete the proof it remains to show that p�(r) = pm if and only if r = rm: Since

p�(rm) = pm, it is su¢ cient to establish the strict monotonicity of p�(:) to prove the latter

equivalence result. Di¤erentiating (28) with respect to r; we get

dp�

dr
=

(N � 1)
h
@D1
@p1

� @D1
@p2

i
NX
j=1

@D1
@pj

+
NX
j=1

@2D1
@p1@pj

(p�(r)� (c+ (N � 1)r)) + @D1
@p1

+ r(N � 1)
NX
j=1

@2D2
@p1@pj

The numerator is strictly negative by B2 (i) and (ii), and the denominator is strictly negative
by B2 (iii), B3 (ii), B2 (i) and B4. We can therefore state that p�(r) is strictly increasing in
r, which completes the proof.

42



11.3.3 Private agreements

As in the Cournot competition case, the analysis of private agreements can be derived from

that of public agreements by putting aside all the indirect (or strategic) e¤ects. More precisely,

the Stackelberg e¤ect, the indirect royalty-saving e¤ect and the indirect e¤ect of a price in-

crease on licensing revenues are absent under private cross-licensing. The following proposition

characterizes the bilaterally e¢ cient symmetric private agreements.

Proposition 9 (private bilateral cross-licensing: Bertrand) In the two-stage game of private
cross-licensing followed by Bertrand competition, S(r;N) is bilaterally e¢ cient if and only if

r = rm.

Proof. It is easy to show that r = 0 is not a bilaterally e¢ cient symmetric royalty: as in the
Cournot case with private cross-licensing, when r = 0, the only e¤ect at work is the coordination

e¤ect (which gives incentives to increase royalties). We can therefore focus on r > 0:

We follow the same steps as in the proof of Proposition 8. More speci�cally, we show that

S(r;N) is bilaterally e¢ cient if and only if p�(r) satis�es the F.O.C. uniquely de�ning pm and

then conclude that S(r;N) is bilaterally e¢ cient if and only if r = rm:

In the case of private cross-licensing, the condition @�D12
@p1

((p�(r); p�(r); r)+
@�D12
@p1

((p�(r); p�(r); r) =

0 writes (using the symmetry of the problem)

D1(p
�(r); :::; p�(r)) +

�
@D1
@p1

+
@D2
@p1

�
(p�(r)� (c+ (N � 2)r)) + 2r(N � 2)@D2

@p1
= 0;

which can be rewritten as

D1(p
�(r); :::; p�(r)) +

@D1
@p1

(p�(r)� (c+ (N � 2)r)) + @D2
@p1

(p�(r)� (c� (N � 2)r)) = 0:

Multiplying the latter by (N �1) and substracting (28) multiplied by (N �2) yields (after some
straightforward algebraic manipulations):

D1(p
�(r); :::; p�(r)) +

@D1
@p1

: (p�(r)� c) + (N � 1)@D2
@p1

(p�(r)� c) = 0;

which is the equation de�ning pm:

Thus, S(r;N) is bilaterally e¢ cient if and only if p�(r) = pm = p� (rm), which is the same

as r = rm because p� (:) is strictly monotonic (see the proof of Proposition 8).
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11.4 Extensions of the general model

11.4.1 Mixed price vectors

In this extension we deal with the case of mixed input price vectors, i.e., vectors of prices such

that some of the prices are public and the others are private. More speci�cally, we consider input

price vectors r = ((ri!j ; rj!i))1�i<j<N such that each input price pair (ri!j ; rj!i), with i < j

and i; j 2 f1; ::; Ng, has a probability �i;j 2 [0; 1] of being private and a probability 1 � �i;j of
being public. For any i; j 2 f1; ::; Ng such that i < j, de�ne �j;i = �i;j and denote � = (�i;j)i6=j .
Privately observable input price vectors correspond to the special case where �i;j = 1 for any

i 6= j and publicly observable input price vectors correspond to the special case where �i;j = 0
for any i 6= j.

We �rst extend the de�nition of bilateral e¢ ciency to the case of mixed input price vectors.

De�nition 7 A vector of mixed input prices r = ((ri!j ; rj!i))1�i<j<N associated with the

vector of probabilities � = (�i;j)i6=j is bilaterally e¢ cient if for any (i; j) such that i 6= j the

following holds:

(ri!j ; rj!i) 2 Argmax
(r0i!j ;r

0
j!i)

24 �i;j (�i + �j)�~x�i �r0i!j ; r0j!i;x��ij (r)� ; ~x�j �r0i!j ; r0j!i;x��ij (r)� ;x��ij (r) ; r�ij�
+(1� �i;j) (�i + �j)

�
x�
�
r0i!j ; r

0
j!i; r�ij

�
; r�ij

� 35
We now state the following lemma that provides a necessary condition for a vector of mixed

input prices in D to be bilaterally e¢ cient :

Lemma 7 Consider a vector of probabilities � = (�i;j)i6=j and let �i;i = 1 for any i 2 f1; ::; Ng.
Assume that, for any r 2 D,.

detMmixed (�) 6= 0 (31)

where Mmixed (�) is a N2 �N2 matrix whose elements are de�ned as follows

Mmixed
N(i�1)+j;N(l�1)+k (�) = �i;jM

private
N(i�1)+j;N(l�1)+k + (1� �i;j)M

public
N(i�1)+j;N(l�1)+k

for any i; j; l; k 2 f1; :::; Ng :
Then a necessary condition for a vector of mixed input prices r 2 D associated with the

vector of probabilities � = (�i;j)i6=j to be bilaterally e¢ cient is that

@�i
@xj

(x� (r) ; r) = 0;

for any (i; j) 2 f1; :::; Ng2such that i 6= j.
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Therefore we get the following result:

Proposition 10 (mixed bilateral agreement) Under Condition (31), a bilaterally e¢ cient vec-
tor of mixed input prices r 2 D associated with a vector of probabilities � is necessarily fully

cooperative.

11.4.2 Bilateral agreements among a subset of �rms

Let us now assume that only a strict subset of �rms engage in bilateral agreements. Without

loss of generality, assume that only �rms 1; 2; :::;K, with K 2 f2; 3; :::; N � 1g, sign upstream
bilateral agreements while all N �rms play the downstream stage. The technical assumptions

G4-G6 can be adapted in a straightforward way to this situation. Moreover, we adapt the
de�nition of a fully cooperative vector of privately observable input prices as follows:

De�nition 8 Consider K 2 f2; 3; :::; N � 1g and assume that only �rms 1; 2; :::;K sign up-

stream agreements. A vector r = ((ri!j ; rj!i))1�i<j<K of input prices is intra-group fully

cooperative if

r 2 Argmax
r0

KX
i=1

�i
�
x�
�
r0
�
; r0
�
:

We now adapt the concept of bilateral e¢ ciency in the following way:

De�nition 9 Consider K 2 f2; 3; :::; N � 1g : A vector of privately observable input prices r =
((ri!j ; rj!i))1�i<j<K is bilaterally e¢ cient if for any (i; j) 2 f1; 2; :::;Kg2 such that i 6= j the
following holds:

(ri!j ; rj!i) 2 Argmax
(r0i!j ;r

0
j!i)

�
(�i + �j)

�
~x�i
�
r0i!j ; r

0
j!i;x

�
�ij (r)

�
; ~x�j

�
r0i!j ; r

0
j!i;x

�
�ij (r)

�
;x��ij (r) ; r�ij

��
:

We also de�ne the counterpart DK of the set D in the game we consider in this extension.

Let DK denote the set of vectors r = ((ri!j ; rj!i))1�i<j<K of input prices such that for any

i; j, x�j (:) and ~x
�
j (:) are di¤erentiable with respect to all its arguments at r and �i (:; r) is

di¤erentiable with respect to all its arguments at x� (r) :

We �rst extend Lemma 3 by providing a su¢ cient condition for vector r = ((ri!j ; rj!i))1�i<j<K
of input prices to be intra-group fully cooperative.

Lemma 8 A su¢ cient condition for a vector r = ((ri!j ; rj!i))1�i<j<K 2 DK of input prices

to be intra-group fully cooperative is that for any j 2 f1; :::;Kg ;

KX
i=1

@�i
@xj

(x� (r) ; r) = 0:
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Proof. The proof for this result is a straightforward extension of the proof of Lemma 3.
The following lemma shows that the necessary condition for a vector of privately observable

input prices to be bilaterally e¢ cient when N �rms sign upstream agreements extends to the

situation where only a strict subset of �rms sign bilateral agreements.

Lemma 9 Assume that, for any r 2 DK,������
@~x�i
@ri!j

@~x�j
@ri!j

@~x�i
@rj!i

@~x�j
@rj!i

������ 6= 0 (32)

(where the argument
�
ri!j ; rj!i;x��ij (r)

�
is omitted) for any (i; j) 2 f1; :::;Kg2 such that

i 6= j. Then a necessary condition for a vector of privately observable input prices r 2 DK to be

bilaterally e¢ cient is that
@�i
@xj

(x� (r) ; r) = 0

for any (i; j) 2 f1; :::;Kg2 such that i 6= j.

Proof. The proof of this lemma is a straightforward extension of the proof of Lemma 4.
We can therefore state the following result about the cooperative potential of private up-

stream bilateral agreements between a subset of �rms.

Proposition 11 (bilateral agreements in a subset) Under Condition (32), a bilaterally e¢ cient
vector of privately observable input prices r 2 DK is necessarily intra-group fully cooperative.
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