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Abstract

We study the effects of the Mexican conditional cash transfer program Progresa (now re-
named Oportunidades) on school enrollment and performance in passing grades. We develop
a theoretical framework of the dynamics of the educational process including endogeneity and
uncertainty of school performance. It provides predictions for the effect on performance of a
cash transfer conditional on school attendance. Using a randomized experiment implemented
under Progresa, we identify the effect of the program on enrollment and performance in the
first year of the program, before performance-induced dynamic selection took place. We find
that the program had a positive impact on school enrollment at all grade levels whereas for
performance it had a positive impact at the primary school level but a negative impact at the
secondary level. According to our theoretical framework, this can be due to the disincentives
created by termination of program benefits after the third year of secondary school.
Key words: education demand, school enrollment, school performance, dynamic decisions,

transfer program, Mexico.
JEL Classification: C14, C25, D91, H52, H53, I21, I28, J24.

∗Corresponding author:
Toulouse School of Economics (GREMAQ, INRA, IDEI)
Manufacture des Tabacs
21 allée de Brienne
31000 Toulouse France
pierre.dubois@tse-fr.eu
†University of California, Berkeley.
‡We are grateful to Progresa for providing us the data, and Progresa staff of Hidalgo State for guiding us in

visiting communities. We thank the Editor Peter Arcidiacono and two anonymous referees as well as Jerome Adda,
Orazio Attanasio, Antoine Bommier, Richard Blundell, Luis Braido, Pierre-André Chiappori, Carlos da Costa, Bruno
Crépon, Marcelo Fernandes, Denis Fougère, Andrew Foster, Gustavo Gonzaga, Sylvie Lambert, Guy Laroque, Pascal
Lavergne, Ethan Ligon, Thierry Magnac, Torsten Persson, Bas Van der Klaauw, Ed. Vytlacil for their comments as
well as the seminar participants at CREST Paris, the University of Toulouse, PUC Rio de Janeiro, Getulio Vargas
Foundation in Rio de Janeiro, ECARES, Université Libre de Bruxelles, INRA LEA Paris, CIRPEE Université Laval,
Québec, Tinbergen Institute, the Institute of International Economic Studies at Stockholm University, University
College London, and conferences of Canadian Economic Association Conference in Montreal, Society for Economic
Dynamics Conference in Stockholm, Econometric Society European Meeting and European Economic Association
Annual Conference in Lausanne, Brazilian Econometric Society Meeting in Porto Seguro.

1



1 Introduction

In 1998, the Education, Health, and Nutrition Program, known under its Spanish acronym as

Progresa and later renamed Oportunidades, was introduced in rural Mexico. The purpose of the

program is to create incentives to increase the human capital of children of poor rural households,

thus attempting to break the inter-generational inheritance of poverty. To do this, the program

provides cash transfers and in-kind benefits to poor households, conditional on the child’s school

attendance and on regular visits to health centers. On average, these cash transfers represent 22%

of the income of beneficiary families. The program has grown rapidly and was covering 2.6 million

rural families in extreme poverty in 2000, corresponding to about 40 percent of all rural families

in Mexico. At that date, Progresa operated in 50,000 localities in 31 states, with a budget of

approximately one billion dollars. In 2008, Oportunidades covered more than 5 million families in

both rural and urban areas.

In Mexican rural communities, children tend to join the labor force at early ages, with nega-

tive implications on school attendance and performance. High repetition rates further lower the

education achievements relative to years of schooling. One of the main objectives of Progresa is to

reduce this early labor force participation of children and thereby increase their enrollment and at-

tendance at school. The program includes three closely linked components—education, health, and

nutrition—based on the idea that positive interactions between these three components enhance the

effectiveness of an integrated program over and above the separate benefits from each component.

The educational component constitutes the largest part of the monetary benefits.

The purpose of this paper is to evaluate the impact of Progresa on the educational performance

of children. We develop a dynamic model of education demand incorporating the Progresa grants

system, and show how it affects not only enrollment decisions but performance at school, a crucial

point in the context of high repetition rates. A key feature of this model is the endogenous learn-

ing effort. Effort affects performance, which influences school drop out and the final completed

education level. Descriptive statistics indeed show that drop out is higher when the child has to

repeat a class. The most recent education demand models embody the dynamics and uncertainty

associated with wages and returns to schooling as well as liquidity constraints (De Vreyer, Lambert,

Magnac, 1999; Magnac and Thesmar, 2002a, 2002b; Cameron and Heckman, 1998, 2001; Cameron

and Taber, 2004; Rosenzweig and Wolpin 1995; Eckstein and Wolpin, 1999; Keane and Wolpin,

1997, 2001; Taber, 2001). But most models assume that households can choose with certainty each

child’s final level of school attainment or at least that the decision to continue updated each year

does not involve any uncertainty in grade progression. A few exceptions can be found. For exam-
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ple, Magnac and Thesmar (2002a) use a model where grade completion is stochastic, and show

that the rise in educational levels observed in France between 1980 and 1993 was partly due to

the decreasing selectivity of the education system. Attanasio, Meghir, and Santiago (2011) study

the effect of Progresa on enrolment using a structural model where schooling costs are stochastic

and class repetition is allowed. However, they assume that the probability of failing to complete a

grade is exogenous and does not depend on effort or on the willingness to continue schooling. Using

the same Progresa data, Todd and Wolpin (2006) estimate a structural model of child schooling

and fertility, in which similarly the probability of success does not depend on any endogenous ef-

fort. Cameron and Heckman (1998) model the transitions from one grade to the next as random

processes but without distinguishing whether non progression comes from school drop out or from

repetition. To our knowledge, there is no theoretical model where both the endogeneity and uncer-

tainty in successfully passing grades are explicitly modeled. Here, we explicitly take these features

into account because both school enrollment and school performance determine educational attain-

ment. In a related study, Behrman, Sengupta, and Todd (2005) estimate school transition matrices

by grade and find results quite consistent with ours. Their reduced form specification is however

different as they look at transition probabilities from one grade to another conditional on age and

do not treat differently students that drop out of school from students that fail. In contrast, we

estimate separately a continuation decision and a performance equation. These two approaches are

not nested and are equally general.

The theoretical model shows that transfers can have either positive or negative effects on per-

formance. The first order impact of the program on enrollment depends on the size of the current

transfer relative to the opportunity cost of time spent at school. The program can also increase

the learning effort of children as they want to receive future transfers that increase with grade. On

the other hand, program termination may create disincentive effects. The net effect is therefore an

empirical issue.

We use data from Progresa’s randomized experiment to empirically estimate the effects of

the conditional cash transfer on the discrete outcomes of school continuation and performance

(success or failure of a grade). The randomized experiment which took place in the middle of a

school year, helps solve the usual identification problem of dynamic selection in discrete models

with unobserved heterogeneity (Cameron and Heckman, 1998; Ham and Lalonde, 1996). We thus

estimate the average program impact at all grade levels in the first year of the program without

bias. We find that Progresa had a positive impact on school continuation at all grade levels whereas

for performance it had a positive impact at the primary school level but a negative effect at the

secondary school level. This is consistent with the findings of Behrman, Sengupta, and Todd (2005)
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and Schultz (2004).

In section 2, we characterize the related problems of low enrollment and poor school performance

in rural Mexico, describe the Progresa transfers with the incentive effects they create, and present

the data. In section 3, we develop a life cycle model of education demand that captures how

the program design impacts individual education decisions. Section 4 treats of the identification

problems. Estimation results are presented in Section 5. Section 6 concludes.

2 Education in Rural Mexico and Progresa

2.1 School Enrollment and Performance

Although educational levels have been improving over time in Mexico, current levels in poor rural

communities remain very low, with only 36% of 18 years old having gone beyond primary school.

The major breaking point in school attendance occurs at entry in secondary school (Table 1). In

primary school, continuation rates reach at least 95% in every grade, with the result that 85% of

the children that start primary school complete the cycle. However, only 72.4% of the children

that successfully complete primary school enroll in the first year of secondary school. The gender

difference is very pronounced at this decisive step, with 75.1% of the boys entering secondary school

and only 69.4% of the girls.

Table 1 illustrates the key role that school performance plays on the decision to continue.

Throughout primary school continuation rates are higher among those that passed than among

those that failed their grade. There is here again a striking discontinuity at entry into secondary

school. The performance rate is the lowest in the first year of secondary school and dropout rates

after a first year of trying secondary school without success are very high. In the last year of each

cycle we observe very large re-enrollment rates upon failure, suggesting important incentives to

complete a cycle.
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Table 1: Continuation and Performance Statistics
(% in 1998 for children Overall Performance Continuation among those that
at school in 1997) Continuation (grade success) passed failed
Grade attended in 1997 Boys Girls Boys Girls Boys Girls Boys Girls
Primary school

2 98.5 97.5 76.2 77.9 98.5 97.1 98.5 98.8
3 96.9 96.8 77.9 78.1 96.9 97.8 96.8 92.9
4 96.7 96.0 78.5 80.4 97.2 96.9 95.2 92.2
5 94.9 95.9 83.7 85.1 95.6 96.8 91.0 91.0
6 75.1 69.4 84.1 84.7 73.5 65.9 83.9 89.3

Secondary school
1 82.3 77.5 74.2 67.8 94.3 94.9 47.5 41.1
2 95.5 95.1 84.4 82.1 96.2 96.1 91.8 90.2
3 57.3 59.4 80.7 75.3 36.9 49.0 91.0 91.8

Note: These descriptive statistics are for the whole population (“poor”and “non poor”) of children in

control villages (i.e., villages where Progresa is not implemented).

In conclusion, there is a clear school continuation problem, especially at entry into secondary

school, and it is intertwined with a problem of performance in passing grades.

2.2 Progresa’s Incentive Scheme

Progresa is targeted at poor families and has three components: health, nutrition, and education.

The health component offers basic health care to all family members. The nutrition component

includes a fixed monetary transfer for improved food consumption, as well as nutritional supple-

ments targeted at all children under the age of two, malnourished children under the age of five,

and pregnant and breast-feeding women. Families must complete a schedule of visits to health care

facilities in order to receive monetary support for improved nutrition. Education is, however, by

far the program’s most important component in terms of cash transfers. It consists in payments

to families with children attending school between the third grade of primary and the third grade

of secondary. The conditionality requires presence at school in at least 85% of school days, i.e., no

more than 3 absences a month.1 After three years in the program, families may renew their status

as beneficiaries, subject to reevaluation of their socio-economic condition. The level of the transfers

(see Table 2) increases as children progress to higher grades in order to match the rising income

they would contribute to their families if they were working (Progresa, 2000). The transfers are

slightly higher for girls than for boys in secondary school.

In addition, program rules impose an upper limit to the total cash transfer a household can

receive. Details about this rule are explained and used in section 4.3.

1Another rule implies that students lose eligibility if they repeat a grade twice. However, the data do not give
information on the student’s past schooling history before the October 1997 baseline survey. Moreover, the rule of
grade repetition does not appear to have been enforced and surely not the first year of the program to students
already repeating. We thus ignore such rule for a simpler modeling and in order to be consistent with the actual
implementation of Progresa.
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Table 2: Monthly Progresa Transfers in Pesos
Educational Grant by Student 1997 1998 1999
Primary School Boys Girls Boys Girls Boys Girls
1st and 2nd year 0 0 0 0 0 0
3rd year 60 60 70 70 80 80
4th year 70 70 80 80 95 95
5th year 90 90 100 100 125 125
6th year 120 120 135 135 165 165
Secondary School Boys Girls Boys Girls Boys Girls
1st year 175 185 200 210 240 250
2nd year 185 205 210 235 250 280
3rd year 195 225 220 255 265 305
Further Schooling 0 0 0 0 0 0
Cash Transfer for Food 90 100 125
Household level maximum benefit 550 625 750

Note: Nominal values corresponding to the second semester of the year (changes occur every semester).

Approximate exchange rate: 10 Pesos = 1 US$.

Given these program rules, several incentive mechanisms can affect the behavior of beneficiary

households. All transfers, conditional or unconditional, create an income effect.2 Higher school

attendance may increase students’ knowledge and reduce grade repetition.3 The conditionality

on school attendance creates both static and dynamic incentives to enroll. The static incentive

relates to the current transfer payment, which reduces the foregone income in going to school.

The option of receiving future transfers if one stays in school creates the dynamic effect. Rising

transfers with grade level further enhance the dynamic incentives. They create an incentive to

pass grades and thus to perform better at school, in addition to the threat of losing eligibility after

two repetitions. A possible negative effect of program termination may however appear since, in

the third year of secondary school, students may prefer to repeat the grade rather than lose the

transfer. This disincentive effect could also increase repetition before the last grade of eligibility in

order to increase the number of years a student stays in the program.4

2To the extent that preference for and performance in school increase with income, transfers will have a positive
effect. This is all the more true if the household faces short term liquidity constraints and school attendance entails
monetary costs such as transportation.

3At the individual level, higher school attendance is expected to improve learning. However, there may be negative
externalities on those students which, in any case, would have attended school regularly if the increased number of
children in a classroom lowers school quality. As the data do not indicate the exact class attendance, we cannot test
for the presence of these externalities.

4To get an order of magnitude, in rural Mexico, the average daily wage of a 16-18 years old boy with completed
junior high school in the sample was 25 pesos in 1997. A full time work of 20 days per month would generate an income
of 500 pesos per month, compared to a maximum of 255 pesos from Progresa transfers. Therefore, heterogeneity of
individuals and of labor market uncertainty implies that some students may prefer to repeat the grade rather than
look for a job.
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2.3 Randomized Experiment and Average Effects

Progresa started operating in poor rural communities (defined on the basis of a national marginality

index using the 1995 population census) with suffi cient access to primary school and primary care

facilities. The program was gradually rolled out and partial coverage in the first years was used

to facilitate evaluation with a randomized experiment. A subset of 506 of the 50,000 eligible

communities was selected to participate in the evaluation. 320 of these communities were randomly

assigned to constitute the treatment group where Progresa was implemented starting in May 1998,

while the remaining 186 communities formed the control group where Progresa would be introduced

three years later (Behrman and Todd, 1999). These experimental communities are located in seven

states: Guerrero, Hidalgo, Michoacan, Puebla, Queretaro, San Luis Potosi, and Veracruz. On

average, 78% of the households in the selected communities were deemed in poverty and hence

eligible for the program (the poverty status of households was established prior to the start of the

program using a household census conducted in October 1997, see Skoufias, Davis, and Behrman,

1999). All households (eligible and not) of both types of communities were then surveyed twice a

year during the three years of the evaluation. For our analysis, we use data from the baseline survey

in October 1997 and the follow up surveys in May and October 1998. We thus have information on

enrollment during school years 1997-98 and 1998-99, and on performance in school during 1997-98

on some 13,900 children from poor households. Because transfers are generous, almost all eligible

families chose to participate (97%). The average household size is around 7. 15% of household

heads have an educational level less than primary school, 30% completed primary school, and 52%

completed secondary school. We first look at instructive descriptive statistics contrasting treatment

and control communities.

Table 3: Continuation and Performance
Continuation Performance

Grade attended
in 1997 Control Treatment Control Treatment
Primary school

2 0.982 0.991∗ 0.764 0.778
3 0.967 0.987∗ 0.775 0.828∗

4 0.964 0.984∗ 0.788 0.833∗

5 0.963 0.978∗ 0.846 0.864
6 0.703 0.824∗ 0.837 0.858

Secondary school
1 0.803 0.898∗ 0.728 0.760
2 0.957 0.972 0.811 0.860∗

3 0.543 0.591 0.755 0.721
Note: Overall rates for students of poor families in treated and control communities. Performance is

measured as the difference between the grade completed in October 1997 and the grade completed in
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October 1998. It is 1 if passed and 0 if failed. School continuation is defined as being enrolled at school in

1998 while already at school in October 1997. It is 1 if the student continues schooling and 0 if drops out.

Statistical significance of equality of means has been tested and rejection at the 5% level if denoted with *

in the treatment column.

Table 3 provides statistics that motivate the education demand model developed in the next

section and the empirical econometric estimates. School continuation rates are consistent with those

reported by Schultz (2000, 2004). Comparison between control and treated communities show that

Progresa benefits seem to have increased school continuation at all grade levels and particularly at

the end of primary school and first year of secondary school. Results on performance are showing an

increase at primary school and secondary school levels except for the third year of secondary school

which is the last year of program eligibility where repetition seems to have increased in Progresa

villages, something consistent (but not identical) with Behrman, Sengupta, and Todd (2005).

3 A Dynamic Educational Model with Schooling, Effort, and Per-
formance

We construct a dynamic schooling model showing how a conditional cash transfer affects both en-

rollment and learning. We assume that the household decision maker’s objective is to maximize the

child’s net expected income. In this calculus, education has a cost which includes the opportunity

cost of the time spent studying instead of working. The return to schooling and the opportunity

cost of attending school increase with the individual’s completed school grade, and successfully

completing grades is uncertain and endogenous (it depends on a learning effort variable). We ex-

plicitly include in the model conditional cash transfers. The program may impact learning effort,

performance, or grade progression through other channels than the cash transfers conditional on

school attendance (e.g., better health, better nutrition, better attendance, or classroom composi-

tion and peer effects) but, as these transfers are Progresa’s main and most important component,

we choose to model them explicitly abstracting from other aspects of the program that will have

to be kept in mind when interpreting the results.

A child of gender g who has completed grade l at the beginning of an academic year is assumed

to be automatically accepted in grade l + 1 if he enrolls at school. If the household is eligible,

he is then entitled to an educational transfer denoted τ (l, g, p). In our sample, p is equal to 1 in

randomly selected treatment villages and 0 otherwise (with τ (l, g, 0) ≡ 0). Note that with the cap

on total household transfer, direct incentives to attend school are a function of family structure,

giving us a possible variation in the value of transfers across children (as will be used in section

8



4.3). Let s be a variable equal to one if the child attends school and zero otherwise. Let π, the

educational performance of the child, be a function of his school level l, and an individual learning

effort e: π (l, e). This effort variable is meant to represent individual actions of the student such

as attention in class, being at school on time, and studying at home. As educational learning and

skills are not perfectly observable by the teacher, we assume that the student will complete grade

l + 1 if and only if s = 1 and π (l, e) ≥ ε, where ε is a random variable with c.d.f. F and p.d.f. f .

π depends on l because the level of effort required to pass varies with grade level. This function

depends on the selectivity of the educational system as set by government (that is how hard exams

are to pass). The function π can also depend on characteristics x of the student, but we don’t need

to explicitly introduce them in the theoretical model as long as they are exogenous.

Grade progression from year t to year t+ 1 is then determined by the following rule:

lt+1 = lt + 1 if st = 1 and π (lt, et) ≥ εt (1)

= lt if st = 0 or π (lt, et) < εt

with the following assumptions:

Assumption 1 The probability of success P (lt+1 = lt + 1|et, st = 1) = F ◦ π (lt, et) is increasing

and concave in effort et.

This assumption is satisfied when the performance function π (l, e) is increasing and concave in

e and the random terms ε are i.i.d. across individuals and periods and their c.d.f. F is concave.

We assume that a person with gender g and completed grade l, is able to work (either on farm,

at home, or outside) and gets earnings w (g, l) (again the model could be written with w (x, g, l)

where individual characteristics x affect earnings).

Assumption 2 The earnings function w (g, l) is increasing in the acquired level of education l.

We assume that the cost for a child of going to school, denoted c (e), depends on the learning

effort e (plus the cost of transportation and other costs associated with enrollment).

Assumption 3 The cost function c(e) is increasing and convex in e, the level of learning effort at

school.

Then, sending a child to school in year t costs c (et)−τ(lt, g, p), while not sending him generates

earnings w(g, lt), the opportunity cost of school enrollment. Assuming that the household’s decision

process results in maximization of the child’s intertemporal expected benefits V (lt, g, p, st), the value
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of enrolling a child at the beginning of year t (st = 1) or of not enrolling him (st = 0) knowing his

completed grade lt, gender g, and eligibility p can be written recursively as follows:

V (lt, g, p, 1) = max
et
{τ (lt, g, p)− c (et) + βE[ max

st+1∈{0,1}
V (lt+1, g, p, st+1) | st = 1]} (2)

V (lt, g, p, 0) = w (g, lt) + βE[ max
st+1∈{0,1}

V (lt+1, g, p, st+1) | st = 0] (3)

with β the discount factor and lt+1 following the rule in (1).

Because of the uncertainty of grade progression, parents revise their expected optimal choice at the

beginning of each school year.

The value function for a child of education lt, gender g, and eligibility p can be written:

φ(lt, g, p) = max
st∈{0,1}

V (lt, g, p, st)

Substituting in expressions (2) and (3) gives

V (lt, g, p, 1) = max
et
{τ (lt, g, p)− c (et) + βE[φ (lt+1, g, p) | st = 1]}

V (lt, g, p, 0) = w (g, lt) + βE [φ (lt+1, g, p) | st = 0] = w (g, lt) + βφ (lt, g, p)

because P (lt+1 = lt + 1 | st = 0) = 0. This implies

φ (lt, g, p) = max{τ (lt, g, p) + max
et
{βE[φ (lt+1, g, p) | st = 1]− c (et)}, w(g, lt) + βφ(lt, g, p)} (4)

We can show the following proposition:

Proposition 1 The function φ defined by the Bellman equation (4) exists and is unique.

Proof. See Appendix C.1.

Intuitively, we expect the value function φ to be increasing with completed grade. In Appendix

B, we give suffi cient conditions on the primitives of the model that ensure that it is the case:

If individuals are suffi ciently patient (β ≥ 1/2) and transfers are increasing with grade (or not

decreasing too much, i.e., transfers are not too large when the program ends) and not too large

compared to the potential wage, then the endogenous value function φ is increasing with completed

grade. In contrast, φ will be clearly decreasing with completed grade if the lifetime wage did

not respond to education, and the child was losing a very high transfer in enrolling beyond the

upper grade covered by the program. However, rather than assuming these “reasonable”suffi cient

conditions (likely to be true in the case of Progresa), we will simply impose the assumption that

φ (l, g, p) is increasing in l. Thus, in the rest of this paper, we will assume that:

Assumption 4 The value function φ (l, g, p) is always increasing with completed grade l.
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3.1 Program Impact on Effort and Performance

We could consider, as often done, that learning effort depends on children’s exogenous character-

istics and cannot be adjusted once presence at school is required. Then, effort would have to be

considered exogenous in our model. It is however clear that higher returns to education (in a very

broad sense) provide an incentive for students to study and learn more. Introducing an endogenous

learning effort, maximization of the value function implies that learning effort is chosen conditional

on enrollment so as to maximize τ(lt, g, p)− c(e) + βE[φ(lt+1, g, p) | s = 1]. Assuming that there is

no fixed cost to effort and that the cost of zero effort is zero (c(0) = 0), then we obtain the following

proposition5:

Proposition 2 The learning effort e∗ is strictly positive if and only if φ(l+ 1, g, p) > φ(l, g, p) and

satisfies the first order condition

β[φ(l + 1, g, p)− φ(l, g, p)]f ◦ π(l, e∗)
∂π

∂e
(l, e∗) = c′(e∗) (5)

Proof. See Appendix C.2.

Since the performance technology depends on grade (diffi culty of tests, system selectivity, etc.),

proposition 2 implies that effort at school can be highly non-linear and non-monotonic in the grade

level. It can be either increasing or decreasing with grade and thus the expected performance at

school can also be either increasing or decreasing with grade.

These results call for taking into account heterogeneity of treatment effects, as shown by the

following proposition:

Proposition 3 Treatment raises effort and performance at school in terms of probability to succeed

in a given grade lt if φ(lt + 1, g, 1) − φ(lt, g, 1) > φ(lt + 1, g, 0) − φ(lt, g, 0) and reduces effort and

expected performance if φ(lt + 1, g, 1)− φ(lt, g, 1) < φ(lt + 1, g, 0)− φ(lt, g, 0).

Proof. As shown in Appendix C.2, if φ (lt + 1, g, p)−φ (lt, g, p) ≤ 0, then e∗t = 0. If φ (lt + 1, g, p)−

φ (lt, g, p) > 0, then e∗t satisfies (5). For notational ease we use ∆ for the discrete difference in p,

that is for a function H(p), ∆H(p) = H(1)−H(0). With assumptions 1 and 3, the implicit function

theorem implies that e∗t is increasing in p if ∆[φ(lt + 1, g, p) − φ(lt, g, p)] ≥ 0 and decreasing in p

otherwise. As π (l, e) is an increasing function of e, the same applies for performance.

This proposition indicates that the effect of the program on learning and performance at school

will depend on whether the value of getting an additional year of education is higher for treated

or untreated students. Its sign is ambiguous and depends on the effect of the program on the

5With a non zero "fixed cost" of effort, the optimal effort is either zero or is strictly positive and satisfies (5).
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curvature of φ (l, g, p) with respect to l. Note that the program can have a positive impact on effort

at a grade l while it has a negative impact at another lower or higher grade l′.

To get an intuition on the expected sign of this expression, consider the case where the optimal

path for the child with completed grade l includes completed grade l+1 the following year. The value

function at completed grade l is thus equal to: φ (lt, g, p) = τ (lt, g, p)− c (e) + βφ (lt + 1, g, p) and

then φ (lt + 1, g, p)− φ (lt, g, p) = −τ (lt, g, p) + c (e) + (1− β)φ (lt + 1, g, p). Taking the difference

in p we have

∆[φ(lt + 1, g, p)− φ(lt, g, p)] = −τ (lt, g, p) + (1− β) ∆[φ (lt + 1, g, p)].

The conditional cash transfer program reduces the net cost of the current school year by τ

and raises the next year value function φ (lt + 1, g, p) by the direct and indirect value of potential

transfers in upper grades. Indirectly therefore, all the parameters of the model enter this expression,

such as cost of effort, earnings function, etc., corresponding to grades above lt + 1. One dimension

of particular interest however is due to the limited length of the program. For children nearing

the end of the program, ∆[φ (lt + 1, g, p)] is small, in fact null for a child with completed grade

lt = 2nd year of secondary school, since there will be no transfer beyond the current year. Hence,

∆[φ(lt + 1, g, p) − φ(lt, g, p)] will be either small or negative. Progresa is thus expected to have

either a small or even a negative effect on effort. In contrast, at lower grade levels, the program

raises φ (lt + 1, g, p) by the value of many potential years of transfer, while reducing the cost of the

current year in schooling by the same τ . Progresa is thus expected to induce an increase in effort

unless the child is so patient that he would rather enjoy adding one more year of transfer now and

pushing down his future plan by one year. We will test this heterogeneity of impact across grades

in the empirical section.

Note also that the previous proposition gives us an empirical test of whether the learning effort is

actually endogenous which is of great importance for education policies. Under the assumption that

treatment does not directly affect the performance and evaluation technologies π and F , if treatment

affects the probability to pass a given grade, it means that the learning effort is endogenous.

3.2 Program Impact on the Enrollment Decision

The enrollment decision is taken by comparing the values of going and not going to school. Define

the decision to enroll the child by st = 1{v(lt,g,p)≥0} where v(lt, g, p) = V (lt, g, p, 1)− V (lt, g, p, 0) is

the difference between the two conditional value functions.

The following proposition shows the derivatives of v(lt, g, p) with respect to the program treatment

p which represents the effect of treatment on the propensity to choose schooling over working.
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Proposition 4 The program impact on the value of going to school compared to not going is:

∆v(lt, g, p) = τ(lt, g, 1) + P (lt+1 = lt + 1 | st = 1)β∆ [φ (lt + 1, g, p)− φ (lt, g, p)]

−∆h(P (lt+1 = lt + 1 | st = 1)) + β [φ (lt + 1, g, p)− φ (lt, g, p)] ∆P (lt+1 = lt + 1 | st = 1)

where h(.) is a positive and increasing function equal to the inverse in effort of the probability of

success given effort.

Proof. See Appendix C.3.

Proposition 4 shows that ∆v(lt, g, p) depends on the direct incentives to go to school provided by

the educational transfer, τ(lt, g, 1) ≥ 0, and on the discounted expected marginal value of program

eligibility composed of several terms:

- The probability of successfully completing the current grade times the increase in getting one

additional year of education provided by the treatment p (which implicitly includes the future

years benefits of the program): P (lt+1 = lt + 1 | st = 1)β∆[φ(lt + 1, g, p)− φ(lt, g, p)].

- The marginal value of getting an additional year of education times the change in the probability

of succeeding: β [φ (lt + 1, g, p)− φ (lt, g, p)] ∆P (lt+1 = lt + 1 | st = 1).

- The change in the cost of effort or equivalently the change in an increasing function of the

probability to pass ∆h(P (lt+1 = lt + 1 | st = 1)).

Moreover, according to proposition 3, ∆P (lt+1 = lt + 1 | st = 1) and ∆[φ(lt+1, g, p)−φ(lt, g, p)]

are of the same sign. This model clearly shows the implications of the program on the value for

children of going to school compared to not going. In particular, it helps explain that the incentives

provided by the program depend not only on reduction of the opportunity cost of schooling by the

conditional transfers but also on the additional value provided by the expectation of receiving

transfers the year after and the expected value of being more educated. Therefore, the program

impact has no reason to be simply proportional to the transfers received. According to this model,

the program’s treatment effect should be heterogeneous not only across individuals with different

grades and genders but also for example across all characteristics that affect future wages.

Another implication is that the incentive to go to school represented by ∆v(lt, g, p) depends on

the probability of grade progression, on the cash transfer corresponding to the current grade, and

on transfers for higher but not for lower grades.

Note also that even if the transfer function for some grade l and gender g is zero, τ(l, g, 1) =

τ(l, g, 0) = 0, we still have ∆v(l, g, p) 6= 0 if for some grade l′ > l, τ((l′, g, 1) > 0. Because of

the expected benefit from transfers in higher grades, the cash transfer generates incentives in favor

of schooling even if the student is not entitled to receive any grant in his current grade. In the
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particular case of Progresa, this suggests the existence of an incentive to schooling in the first and

second years of primary school even though students receive nothing in their current grade.

4 Identification and Econometric Evaluation

The theoretical model developed in the previous section has testable implications regarding the

impact of a conditional cash transfer on enrollment decisions and performance outcomes. We now

turn to the estimation of passage probabilities from grade to grade P (lt+1 = lt + 1 | st = 1) and

continuation decision P (st+1 = 1 | st = 1) for the year 1997-98.6

4.1 Econometric Specification

To simplify notations, the theoretical model did not explicit exogenous characteristics that could

affect the wage or costs of schooling. Adding now these characteristics xt to the grade progression

model (1), we have: P (lt+1 = lt + 1 | st = 1) = F ◦π (xt, lt, e
∗
t ) where e

∗
t is endogenously determined

and depends on xt, lt, g, and p. Therefore, we specify the grade progression as:

P (lt+1 = lt + 1 | st = 1) = ϕ(θ1p+ θ2τ (lt, g, p) .p+Xtγlt,g) (6)

where γl,g, θ are vectors of parameters specific to grade l and gender g, Xt is a vector of exogenous

variables (including xt, lt, g), and ϕ is a c.d.f. (for example logistic or normal).78

The reduced form of the model does not allow decomposing the effect of the program into each

incentive component identified in the theoretical model. However, it allows to evaluate the total

program impact on enrollment and performance at school and is more robust to misspecification

than a structural model would be.

We know from the model that the decision to continue schooling is given by st = 1{v(lt,g,p)≥0}

and thus that the propensity to continue school is affected by the quantity ∆v(lt, g, p). As shown

by Proposition 4, ∆v(lt, g, p) is a function among other things of the probability to pass P (lt+1 =

lt + 1 | st = 1). Consequently, when specifying the reduced form equation for P (st+1 = 1 | st = 1),

we cannot impose exclusion restrictions where some exogenous determinants of the probability to

pass would not affect the continuation probability, while the contrary could be possible. In practice,

6A previous longer version (Dubois, de Janvry, and Sadoulet 2007) of this paper presents a semi-structural approach
with parametric identification conditions that provide consistent results with those in this paper and additional
insights not mentioned here.

7All estimations will be based on parametric maximum likelihood. The semi-parametric identification of binary
choice models is possible with some assumptions like location and scale normalization (Manski, 1985 and 1988) but
given the number of explanatory variables used in our regressions we will use simple parametric estimation methods.

8This specification is consistent with the theoretical model for example (but not only) if the c.d.f. F of ε is normal
or logistic and the performance function π is a linear index of its arguments.
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we specify the school continuation probability in a reduced form as follows

P (st+1 = 1 | st = 1) = ϕ(α1.p+ α2τ (lt+1, g, p) .p+Xtδlt,g) (7)

Since the design of the program is such that transfers are gender and grade specific, coeffi cients α1

and α2 will be allowed to be gender and grade specific. Thus, α2 will be identified only if transfers

τ (lt+1, g, p) vary for a given grade and gender in treated villages.

4.2 Identification of the Program Impact and the Dynamic Selection Problem

As shown by Cameron and Heckman (1998), the estimation of school transition models faces a

problem of dynamic selection bias. Even if unobserved factors entering the school transition model

are distributed independently of observable characteristics in the population enrolling in the first

year of primary school (for example), the distribution of unobserved characteristics of students

in the second year of primary school will be truncated and not independent of the distribution

of observable characteristics. Here, this diffi culty certainly affects estimation of the probabilities

to enroll at school and to successfully pass a grade. However, with randomization of treatment,

and a program that started in the middle of a school year, evaluation of the average program

impact will not be biased by this dynamic selection problem in the first year of the program.

We explicitly formulate the necessary assumptions for identification, and establish the relationship

between randomization and the dynamic selection problem.

Grade transition probabilities conditional on the vector of observables ωt+1 = (Xt, lt+1, st), the

treatment dummy p ∈ {0, 1}, and unobserved characteristics θ̃ can be written9

E(st+1 | ωt+1, p, θ̃) = ψ(ωt+1, p, θ̃)

where ψ (.) is a real valued function. It is to be noted that, with these notations, we have heteroge-

nous treatment effects ∆ψ(ωt+1, p, θ̃).

As θ̃ is unobserved, we cannot identify E(st+1 | ωt+1, p, θ̃) but we are interested in the average

E(st+1 | ωt+1, p) = E
θ̃
[E(st+1 | ωt+1, p, θ̃)]. The parameters of interest that we would like to

identify are the average program impact

E
θ̃
[∆E(st+1 | ωt+1, p, θ̃)]

and the average of the effects of some covariates ωt+1 on treatment effects

E
θ̃
[

∂

∂ωt+1
∆E(st+1 | ωt+1, p, θ̃)]

9Note that E(st+1 | ωt+1, p, θ̃) = P (st+1 = 1 | ωt+1, p, θ̃).
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Cameron and Heckman (1998) showed that even if the distribution of θ̃ is independent of ω0

(θ̃ ⊥⊥ ω0), this random effect assumption for the initial schooling stage will not be true for the

subsequent ones because of the selection of students; that is, in general θ̃ ⊥⊥� ωt+1. This dynamic

selection bias implies that

∂

∂ωt+1
E (st+1 | ωt+1, p) =

∂

∂ωt+1
[E

θ̃
ψ(ωt+1, p, θ̃)] 6= E

θ̃
[

∂

∂ωt+1
ψ(ωt+1, p, θ̃)]

The value ∂
∂ωt+1

E (st+1 | ωt+1, p) is thus a biased estimator of Eθ̃[
∂

∂ωt+1
ψ(ωt+1, p, θ̃)] because the

derivative of the average E
θ̃
ψ(ωt+1, p, θ̃) is not equal to the average derivative. The bias being

diffi cult to sign and quantify a priori (as in Cameron and Heckman, 1998), a solution is then to

model the unobserved component θ̃, for example by using the Heckman and Singer (1984) technique

of introducing an arbitrary discrete non-parametric distribution for θ̃.

However, as proposition 5 below shows, we do not encounter the same problem when evaluating

the average program impact

∆E(st+1 | ωt+1, p) = E(st+1 | ωt+1, p = 1)− E(st+1 | ωt+1, p = 0)

Actually, randomization implies that treatment is orthogonal to observed and unobserved charac-

teristics

p ⊥⊥ (θ̃, ωt+1) (8)

which implies (9) that can be used in the following proposition.

Proposition 5 If treatment p ∈ {0, 1} is orthogonal to the distribution of unobserved characteris-

tics conditional on observables ωt+1 that is

p ⊥⊥ θ̃ | ωt+1 (9)

then

∆E (st+1 | ωt+1, p) = ∆[E
θ̃
ψ(ωt+1, p, θ̃)] = E

θ̃
[∆ψ(ωt+1, p, θ̃)] (10)

Proof. Proof in Appendix C.4.

This proposition shows that the parameters of interest E
θ̃|ωt+1 [∆ψ(ωt+1, p, θ̃)] and Eθ̃|ω′t+1

[∆ψ(ω′t+1, p, θ̃)]

are identified for any ωt+1 and ω′t+1 and thus their difference.

However, we could consider that this is not the parameter of interest and rather that we would

like to identify the structural parameter E
θ̃|ωt+1 [∆ψ(ωt+1, p, θ̃) − ∆ψ(ω′t+1, p, θ̃)] which tells us

how average treatment effects ∆ψ(ωt+1, p, θ̃) vary with ωt+1 when we average over some constant

distribution of unobservables θ̃ given ωt+1.

We have the following Proposition:
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Proposition 6 For any ωkt+1, the average treatment effect Eθ̃[∆
∂

∂ωkt+1
ψ(ωt+1, p, θ̃)] is identified and

equal to ∆ ∂
∂ωkt+1

E (st+1 | ωt+1, p) if one of the following condition is satisfied10

∂

∂ωkt+1
dλ(θ̃ | ωt+1) = 0 (11)

or ∫
E(st+1 | ωt+1, 1, θ̃)

∂

∂ωkt+1
dλ(θ̃ | ωt+1) =

∫
E(st+1 | ωt+1, 0, θ̃)

∂

∂ωkt+1
dλ(θ̃ | ωt+1) (12)

Proof. See Appendix C.5.

Condition (11) means that the distribution of θ̃ does not depend on ωkt+1 i.e. that there is no

dynamic selection bias in the direction of ωkt+1. Condition (12) means that the marginal treatment

effect11 ∆E(st+1 | ωt+1, p, θ̃) averages to zero when integrating with respect to ∂
∂ωkt+1

dλ(θ̃ | ωt+1)

which is always the case if ∆E(st+1 | ωt+1, p, θ̃) is constant across θ̃ because
∫

∂
∂ωkt+1

dλ(θ̃ | ωt+1) = 0

since
∫
dλ(θ̃ | ωt+1) ≡ 1. Therefore, this is always true if the average treatment effect ∆E(st+1 |

ωt+1, p, θ̃) does not depend on ωt+1.**

If these conditions are not satisfied, it means that the identified parameter E∆ψ(ωt+1, p) −

E∆ψ(ω′t+1, p) will tell us how average treatment effects ∆ψ(ωt+1, p, θ̃) vary with ωt+1 but taking

average over the distribution of unobservables θ̃ which also varies with ωt+1.

In the present case, neither assumption (11) nor (12) have to be valid given the randomization

procedure. (11) will be wrong as soon as there is some dynamic selection which is likely in education

transition models and (12) is unlikely to happen as soon as the treatment effect∆E(st+1 | ωt+1, p, θ̃)

depends on covariates ωt+1. Therefore, the randomization process only insures identification of the

average impact ∆E(st+1 | ωt+1, p). The same argument can be applied to the performance prob-

ability P (lt+1 = lt + 1 | st = 1). The randomization condition (9) is suffi cient to ensure that the

dynamic selection bias present in the estimation of the conditional probabilities P (st+1 = 1 | st = 1)

and P (lt+1 = lt + 1 | st = 1) will be the same for treated and untreated sample and will then cancel

out in the estimation of the program impact.

Condition (8) that the joint distribution of observables and unobservables is independent of treat-

ment (i.e., that it is the same across treated and control samples) is not testable, but an implication

of it on the marginal distribution of observables can be checked (and empirically validated for data

in 1997 by Behrman and Todd (1999) and Schultz (2004)).While we can safely assume that ran-

domization of program placement in the case of Progresa is such that condition (8) is true at the

beginning of the program in 1997, we can expect that this will not be the case afterwards. Since the

10The notation λ is used to designate cumulative distribution functions. For example λ(θ̃ | ωt+1) is the c.d.f. of θ̃
conditional on ωt+1.
11The analogy with marginal treatment effects of Heckman and Vytlacil (1999,2001) is due to the fact that the

unobservable may affect the probability to be treated through the dynamic selection.
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program impact is non zero (as empirical results will confirm), the dynamic selection bias will not

cancel out across treatment and control groups. Therefore, probability estimates of the program

impact for example between 1998 and 1999 will be biased by a dynamic selection bias due to the

impact of the program. For example, if the program has a positive effect on the propensity to

continue school, it can select individuals with (on average) lower unobserved factors also causing

an increase in the individuals’propensity to go to school (like unobserved ability). This in turn

would bias downward the probability to succeed estimated the following year.

4.3 Identifying the Marginal Effects of Transfers

Until now we have investigated the estimation of the average program impact. While this provides

interesting ex-post results on Progresa as it was defined, obtaining marginal effects of transfers

would indicate the potential value of modifying the transfer scheme. This marginal impact of

transfers is
∂

∂T
E(st+1 | ωt+1, T ) (13)

where T is the transfer received by the student (the previously defined treatment dummy is p =

1(T>0)). To explain the identification method, we derive the following proposition:

Proposition 7 Assume that there exists a random variable ω′t+1 such that the transfer T is

τ̃(g, l, p, ω′t+1) and the following assumptions are satisfied:

The average treatment effect ∂
∂TE(st+1 | ωt+1, T ) does not depend on ω′t+1 i.e.

∂

∂ω′t+1
(
∂

∂T
E(st+1 | ωt+1, T )) = 0 (Exclusion Restriction)

The program rule τ̃(g, l, p, ω′t+1) is such that

∂

∂ω′t+1
τ̃(g, l, p, ω′t+1) 6= 0 is known (Known Conditionality of Program Rule on Observables)

and does not depend on unobservables θ̃

∂

∂θ̃
{τ̃(g, l, p, ω′t+1)} = 0 (Program Rule Independent of Unobservables)

The observed component ω′t+1 is independent of unobserved factors θ̃ conditionally on ωt+1

ω′t+1 ⊥⊥ θ̃ | ωt+1 (IV assumption)

Then ∂
∂TE(st+1 | ωt+1, T ) identifies12 E

θ̃
[ ∂∂TE(st+1 | ωt+1, T, θ̃)].

12Of course only within the range of variation of T in the data observed.
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Proof. Proof in Appendix C.6.

In Progresa, this identification is provided by the maximum rule as follows.13 The Progresa

rules stipulate that household transfers cannot exceed some given maximum amount of money

and impose a proportional adjustment rule for individual benefits. Table 4 gives examples of this

proportional adjustment in terms of transfers to be received. The last column shows the transfer

due for each child given this adjustment for family A and B which otherwise would get more than

the maximum amount allowed while family C does not reach this amount. This monthly amount

corresponds to what is lost if a child misses school without justification.

Table 4: Examples of the Maximum Rule
Example of the Maximum Rule in 1997 Progresa Grant

Without With Proportional
Family A: Adjustment Adjustment
One Boy in Secondary School (1st year) 175 175

605×550 = 159
One Girl in Secondary School (2nd year) 205 205

605×550 = 186
One Girl in Secondary School (3rd year) 225 225

605×550 = 205

Total received by household 605 550

Family B:
One Girl in Secondary School (1st year) 185 185

585×550 = 173
One Girl in Secondary School (2nd year) 205 205

585×550 = 193
One Boy in Secondary School (3rd year) 195 195

585×550 = 184

Total received by household 585 550

Family C:
One Girl in Primary School (6th year) 120 120
One Girl in Secondary School (2nd year) 205 205
One Boy in Secondary School (3rd year) 195 195

Total received by household 520 520

Noting as T ′ the total transfer that the household would receive in absence of this maximum

rule and as Mt+1 the maximum amount of money the household can receive at time t + 1, the

actual transfer received for a child is the known function

T = τ(g, l, p) min

{
Mt+1

T ′
, 1

}
The assumption needed for identification is that the random variable min

{
Mt+1

T ′ , 1
}
does not affect

the average treatment effect ∂
∂TE(st+1 | ωt+1, T ), i.e., that given observables ωt+1 the average effect

of transfer T on schooling st+1 is constant across values of T ′. Concretely, it means that the effect

of transfer T on individual schooling can depend on the observable characteristics of a student

but that, conditionally on these characteristics ωt+1, there are other observable characteristics that

13Without this rule, the value of transfers T = τ(g, l, p) is conditional only on gender g and grade l which are
very likely to be correlated with the individual unobservable components θ̃. Then, if transfers do not vary across
individuals (conditionally on ωt+1), ∂

∂T
E(st+1 | ωt+1, T ) is not identifiable and only the average treatment effect

∂
∂p
E(st+1 | ωt+1, p) is identified.
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affect T ′ but not the treatment effect. For example, the number of children of the household

which generates variation in the individual transfer amount (because some reach the maximum

and others not) may have a direct effect on the average treatment effect. However, conditionally

on the number of children with for example an equal number of boys and girls, it may be more

reasonable to assume that the order of children’s gender does not affect the average treatment

effect directly while it provides some variation in the amount of transfers received. Table 4 shows

examples of families with the same number of children, the same number of boys and girls but for

which individual transfers of the girl in the second year of secondary school vary because of this

rule. The presence at school of a second year secondary school girl will not bring the same transfer

if she belongs to family A, B, or C in the example of Table 4.

We therefore exploit this kind of variation and assume that conditionally on ωt+1 (which in-

cludes the number of children) the fact that the household reaches the maximum or not is random

and uncorrelated with the unobserved characteristics θ̃ because it comes mainly from the random

distribution of genders within the family. The conditions of identification given by Proposition 7

are then plausible even if not testable.

Identifying how the magnitude of the treatment effect varies with the magnitude of transfers

is of great importance for the design of such programs and for their cost-effectiveness analysis (de

Janvry and Sadoulet (2006)). An alternative would be to estimate a fully structural model, as

Todd and Wolpin (2006) did for child schooling and fertility, in order to simulate the effect of

counterfactual values of transfers.

5 Empirical Results and Policy Implications

We now turn to the results on the estimation of the average and marginal effects of Progresa

transfers on performance and continuation. Identification of the marginal effect of transfers is

based on the 14% of the sample households that are constrained by the maximum benefit rule.

Recall that these results are obtained from the first year of operation of the program, hence they

reflect an unbiased effect of the program rule, without any selection effect, but they measure very

short-term impacts.

5.1 Performance

The probabilities of grade progression during school year 1997-98 are estimated using a logit model

with standard errors clustered at the village level. In Table 5, panel (1) reports the average impact

of transfers and panel (2) the marginal effect of the transfer amount (with transfers measured in

hundreds of pesos). The means of marginal effects denoted (∂ϕ/∂x) are computed as means of the
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observation by observation marginal effects for each variable and presented together with coeffi cient

estimates.

Table 5 shows these average effects by school level. Indeed, the program effects ought to be

specific to each grade level because of the intrinsic heterogeneity discussed in section 3.1: net

effects depend on several “structural” parameters, such as the cost of effort which is higher at

higher grades and the “returns”to effort (probability to pass) which can be lower for higher grades,

and on the remaining number of years of eligibility. This could potentially lead to a lower impact

of the program in the higher grades, even though transfers increase with grade level.

The average treatment effects by gender for primary and secondary school are very different.

The means of marginal effects for primary school are positive with a 6% increase in performance

for both girls and boys while it is negative in secondary school with means of marginal effects of

-22% for girls and -17% for boys. This result confirms the prediction that cash transfers may have

a negative impact on learning effort towards the end of eligibility because students want to remain

longer in the program.

A full set of control variables included in the regressions show that household size, child male

gender, and student’s age have negative effects on performance.

Panel (2) of Table 5 reports the estimates with value of transfers included in addition to the

Progresa dummy. The estimated marginal effects of transfers are negative in primary school but

positive in secondary school, although only significant for male.14 This contradicts the theory that

marginally higher transfers would lead to even more repetition. Estimation of the average treatment

effect by gender and grade level of primary and secondary school reported in Table 7 in Appendix D

are much more imprecise but consistent with those of Table 5. They show however that the positive

marginal effects in secondary school only apply to the first two grades where dynamic incentives

may still work but not to the last year, at the end of the program.

14Note that the total effect θ1 + θ2τ is always of the sign of the average treatment effect without conditioning on
the transfer value for the range of values of effective transfer.
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Table 5: Impact on Performance by School Level
P (lt+1 = lt + 1 | st = 1) (1) (2)

Coeff. (∂ϕ/∂x) Coeff. (∂ϕ/∂x)
θ1(grade l,gender g).p

Primary school, girl 0.552* (6.76) 0.061* (7.36) 2.165* (16.80) 0.194* (21.26)
Primary school, boy 0.541* (6.63) 0.060* (7.13) 2.395* (18.02) 0.216* (23.09)
Secondary school, girl -1.321* (-5.80) -0.219* (-4.73) -2.753* (-4.21) -0.489* (-4.09)
Secondary school, boy -1.096* (-4.56) -0.172* (-3.76) -3.017* (-4.40) -0.528* (-4.65)

θ2(grade l,gender g).τ(l, g).p
Primary school, girl -2.470* (-12.45) -0.287* (-12.41)
Primary school, boy -2.897* (-13.89) -0.336* (-13.86)
Secondary school, girl 0.608 (1.71) 0.071 (1.71)
Secondary school, boy 0.925* (2.37) 0.107* (2.38)

Covariates Xt+1

Gender (1: boy, 0:girl) -3.158* (-8.86) -0.380* (-9.03) -3.856* (-9.25) -0.448* (-9.48)
Household Head Education -0.009 (-0.30) -0.001 (-0.30) -0.019 (-0.62) -0.002 (-0.62)
Household Size -0.030* (-2.46) -0.004* (-2.45) -0.038* (-2.97) -0.004* (-2.95)
Age -0.308* (-16.73) -0.037* (-16.93) -0.300* (-16.10) -0.035* (-16.39)
Distance to Sec. School 0.022 (1.51) 0.003 (1.51) 0.021 (1.44) 0.002 (1.44)
Grade×Gender Dummies Yes Yes
State Dummies Yes Yes
Observations 13911 13911

Note: Transfers τ are in hundreds of pesos, t-stat are in parenthesis, and * means estimate is significantly

different from zero at the 5% level. The set of Grade×Gender dummies include the specific grades within

primary and secondary levels.

5.2 School Continuation

Equation (7) of school continuation for 1997-98 (in Fall 1998) is estimated and results are shown

in Table 6. The probability is estimated using a logit model with standard errors clustered at the

village level and means of marginal effects are presented together with coeffi cient estimates. Control

variables show in particular that the household head’s education level has a positive effect, age and

distance to nearest secondary school a negative effect, while household size and child gender have

no significant effect on school continuation.

The average program impact on all students (estimate not shown here) is significantly positive

with a 3.5% increase in school continuation, which is consistent with results obtained by Schultz

(2004) and Behrman et al. (2005). Table 6 shows that the average treatment effect for primary

school is a 3.1% increase in school continuation for girls and boys, and 3.4% for girls and 3.2%

for boys in secondary school. Table 8 in Appendix D shows the estimates of grade and gender

specific treatments. When significant, there is a positive effect by grade and gender on enrollment

in primary and secondary school. The means of marginal effects are around 3-4% for primary school

and 3.5% in the 1st year of secondary school but insignificant in the 2nd and 3rd years of secondary

school.

22



Table 6: Impact on Continuation Decision by School Level
P (st+1 = 1 | st = 1) (1) (2)

Coeff. (∂ϕ/∂x) Coeff. (∂ϕ/∂x)
α1(grade l,gender g).p

Primary school, girl 0.704* (3.37) 0.031* (3.86) 0.774 (1.13) 0.034 (1.29)
Primary school, boy 0.694* (3.30) 0.031* (3.78) 1.111 (1.43) 0.046 (1.72)
Secondary school, girl 0.762* (5.08) 0.034* (5.79) -0.981 (-1.19) -0.058 (-1.01)
Secondary school, boy 0.712* (4.65) 0.032* (5.22) -0.487 (-0.52) -0.026 (-0.48)

α2(grade l,gender g).τ(l, g).p
Primary school, girl -0.076 (-0.11) -0.004 (-0.11)
Primary school, boy -0.420 (-0.58) -0.021 (-0.58)
Secondary school, girl 0.876* (2.14) 0.044* (2.14)
Secondary school, boy 0.625 (1.30) 0.031 (1.30)

Covariates Xt+1

Gender (1: boy, 0:girl) 1.597 (1.71) 0.079 (1.71) 1.456 (1.39) 0.072 (1.39)
Household Head Education 0.187* (4.10) 0.009* (4.12) 0.188* (4.11) 0.009* (4.13)
Household Size 0.000 (0.05) 0.000 (0.05) 0.010 (0.58) 0.000 (0.58)
Age -0.642* (-20.90) -0.032* (-22.09) -0.643* (-20.98) -0.032* (-22.19)
Distance to Sec. School -0.101* (-4.56) -0.005* (-4.58) -0.099* (-4.50) -0.005* (-4.52)
Grade×Gender Dummies Yes Yes
State Dummies Yes Yes
Observations 13894 13894

Note: Transfers τ are in hundreds of pesos, t-stat are in parenthesis, and * means estimate is significantly

different from zero at the 5% level. The set of Grade×Gender dummies include the specific grades within

primary and secondary levels.

In Table 6, the marginal effect of transfers is positive for girls in secondary school, with a 100

pesos increase in transfers leading to a 4.4% increase in school continuation. In the grade specific

estimates of Table 8, the marginal effect of a one hundred pesos transfer on school continuation is

significantly positive for the 1st year of secondary school with means of marginal effects of 4.7% for

girls and 5.2% for boys, but not for the last year of school. This suggests that further increasing

the transfer for this key transition to secondary school could induce some of the remaining large

group of students that quit at the end of primary school to go on with their education.

Todd and Wolpin (2006) use their estimate of a structural model of child schooling and fertility

with the Progresa data to engage in counterfactual analysis of other subsidy schemes. While their

approach is very different from ours, it is worth noting that our estimates are in the ballpark of

their implied marginal effects when predicting changes in completed schooling under counterfactual

transfer schemes such as doubling the subsidy. Indeed, from their simulation results (Table 19 in

Todd and Wolpin, 2006), we can infer that girls’completed schooling would increase by 6.9% for a

doubling of the subsidy. This amounts to a marginal effect of transfers of 6.9% which is larger but

in the confidence interval of our marginal effect of transfer estimate for girls in secondary school.
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6 Conclusion

We analyzed the effects on school enrollment and performance of Progresa, a conditional cash

transfer program in Mexico. We constructed a theoretical framework to analyze the dynamic

educational decision and process, including endogeneity and uncertainty of performance in passing

grades. This gave predictions for the effect on performance and school continuation of conditional

cash transfers for children enrolled at school. To validate the model predictions empirically, we

used the randomized experiment set up by Progresa in 506 rural communities. This experiment

allowed us to identify the effect of the conditional cash transfers on enrollment and performance

at school in the first year of the program, before dynamic selection in passing grades started to

bias outcomes. While we must be cautious as we only estimated short-term impacts, we found

that Progresa had a positive impact on performance in primary school but a negative impact in

secondary school, while having a positive impact on school continuation at all levels as uncovered

by Schultz (2004) and Behrman et al. (2005). This empirical finding on performance is a possible

consequence of the disincentive effect provided by termination of program benefits after the third

year of secondary school.

This paper thus showed the importance of carefully analyzing the behavioral determinants of

schooling enrollment and learning when designing financial incentive programs for education in a

developing country. Results show that this kind of program modifies the endogenous value function

of education and thus the educational behavior of students directly targeted or not by the program.

The cash transfers conditional on school attendance proved successful in reducing school drop out

but had a perverse negative effect on class repetition, implying that the design of incentive transfers

must carefully take into account how the anticipated termination of benefits may affect behavior.

It is interesting to observe that, based on lessons learned, Progresa adjusted in subsequent years

the design of the program in two ways: first, by extending the cash incentives to the full six years

of high school and second by offering a graduation prize consisting in a lump sum transfer to be

invested in housing, enterprise startup, or college studies. Through these program improvements,

the negative effect of conditional cash transfers on performance that we observed in early years of

the program may hopefully have been eliminated.
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A Data

The data used were provided by Progresa. To construct our variables and sample we used all the

available relevant information from the following data sets: ENCASEH97 (Encuesta de Carac-

terísticas Socioeconomicas de los Hogares), ENCEL (Encuesta de Evaluacion) of March 1998 and

October 1998.

The schooling variable used in the analysis corresponds to the question on whether the child is

currently going to school which means both enrollment and non permanent absenteeism.

The variables on grades correspond to the question on what is the last grade completed by the

child. It is assumed that he or she is then entitled to enroll at the upper grade. We use the interme-

diate evaluation survey of March 1998 to check the consistency of the data, correct the obviously

erroneous answers, and to complete non responses that sometimes happen in a given survey.

B Increasing Value function

Corollary 8 The value function φ is increasing in l if individuals are suffi ciently patient (β ≥ 1/2)

and transfers are increasing with grade (or not too much decreasing i.e. transfers not too large when

the program ends) and not too large compared to the potential wage (conditions likely to be true in

the case of Progresa).

Proof. Simplifying notations by avoiding indices g and p when there is no ambiguity, we know

that φ exists, is unique and is the fixed point solution of T where ∀l : T (φ) (l) = max{w (g, l) +

βφ (l) ,maxe≥0{τ (l, g, p) − c (e) + βE [φ (l′ (l)) | s = 1]}} s.t. l′ (l) = l + 1 if s = 1 and π (l, e) ≥ ε

and l′ = l otherwise. T being a contraction mapping, the fixed point solution will be increasing in

l if φ increasing in l implies T (φ) increasing in l.

T (φ)(l + 1)− T (φ)(l)

= max {w(g, l + 1) + βφ(l + 1),maxe{τ(l + 1, g, p)− c(e) + βE[φ(l′(l + 1)) | s = 1]}}

−max{w(g, l) + βφ(l),maxe{τ (l, g, p) − c (e) + βE [φ (l′ (l)) | s = 1]}} where l′ (l) = l + 1 if s = 1

and π (l, e) ≥ ε and l′ = l otherwise.

So T (φ)(l + 1)− T (φ)(l) is one of the four following values:

a) w(g, l + 1)− w(g, l) + β[φ(l + 1)− φ(l)] ≥ 0 because w and φ are increasing in l.

b) τ(l + 1, g, p) − τ(l, g, p) + βmaxe{{E [φ(l′(l + 1)) | s = 1] − c (e)} − βmaxe{E[φ(l′(l)) | s =

1]− c (e)} is likely to be positive if τ(l+ 1, g, p)− τ(l, g, p) is positive or not too large compared to

the discounted marginal value of a higher education degree.

c) w (g, l + 1)−τ (l, g, p)+βφ (l + 1)−maxe {βE [φ (l′ (l)) | s = 1]− c (e)} ≥ 0 if τ(l, g, p) ≤ w(g, l+

1) (the wage is suffi ciently high compared to the transfer) because E [φ(l′) | s = 1] < φ(l+ 1) which
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implies that βφ(l + 1)−maxe{βE[φ (l′) | s = 1]− c(e)} > 0.

d) τ(l + 1, g, p) + maxe{βE [φ(l′(l + 1)) | s = 1] − c(e)} + βφ(l) − w(g, l) > 0 because obviously

φ(l) > w(g,l)
1−β implying that βφ(l) > β

1−βw(g, l) ≥ w(g, l) if β ≥ 1/2 and maxe{βE[φ(l′(l + 1)) | s =

1]− c(e)} ≥ 0.

C Proofs

C.1 Proof of Proposition 1

Noting φ (., g, p) = φ (.), let’s first define an operator Tg,p transforming φ (.) in Tg,p(φ(.)) by

∀l : Tg,p(φ)(l) = max{w (g, l) + βφ(l),max
e≥0
{τ(l, g, p)− c(e) + βE[φ(l′) | s = 1]}}}

s.t. l′ = l + 1 if s = 1 and π(l, e) ≥ ε and l′ = l otherwise.

φ (.) is the fixed point (if any) of the operator Tg,p (.). If Tg,p (.) is a contraction mapping, then

its fixed point exists and is unique (see Stokey and Lucas, 1989). Using Blackwell suffi ciency

theorem, we just need to show that Tg,p verifies the monotonicity and discounting properties. Let

φ, φ̃ ∈ C (<+,<) such that ∀l, φ (l) ≤ φ̃ (l) then it is straightforward to check that ∀l, Tg,pφ (l) ≤

Tg,pφ̃ (l) (monotonicity property). Moreover ∀l, Tg,p (φ+ γ) (l) ≤ Tg,p (φ) (l) + βγ because it is

straightforward to check that Tg,p(φ+γ)(l) = Tg,p(φ)(l)+βγ. φ is the fixed point of T : Tg,p(φ) = φ.

C.2 Proof of Proposition 2

Conditional on schooling, the learning effort is chosen to maximize τ(l, g, p) − c(e) + βE[φg,p(l
′) |

s = 1, e]. This program is always concave in e because E[φg,p (l′) | s = 1, e] = P (l′ = l + 1 | s =

1, e)φ(l + 1, g, p) + P (l′ = l | s = 1, e)φ(l, g, p)

= φ (l, g, p) + P (l′ = l + 1 | s = 1, e) [φ (l + 1, g, p)− φ (l, g, p)] and P (l′ = l + 1 | s = 1, e) is

increasing concave in e. Then, the learning effort will satisfy the first order condition β ∂
∂eE[φg,p (l) |

s = 1] = c′(e). Since P (l′ = l + 1 | s = 1, e) = F ◦ π(l, e∗) and when φ(l + 1, g, p) > φ(l, g, p) the

first order condition equation determining e∗ is

β[φ(l + 1, g, p)− φ(l, g, p)]f ◦ π(l, e∗)
∂π

∂e
(l, e∗) = c′(e∗)

When φ(l + 1, g, p) − φ(l, g, p) < 0 then e∗ = 0. Since f is decreasing, π(l, .) is increasing concave

in e, and c(.) increasing convex, we can use the implicit function theorem to find some properties

of e∗. If ∂π∂l = 0, e∗ has the same directions of variation in l than φ(l + 1, g, p) − φ(l, g, p). This

implies that e∗ is increasing in l if φ (l, g, p) is convex in l and decreasing in l if φ(l, g, p) is concave

in l. If ∂π∂l 6= 0, then e∗ can be either increasing or decreasing in l, according to the properties of

∂2π
∂e∂l and φ(l + 1, g, p)− φ(l, g, p).
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C.3 Proof of Proposition 4

Remind that v(lt, g, p) = V (lt, g, p, 1)− V (lt, g, p, 0) where

V (lt, g, p, 1) = max
et
{τ (lt, g, p)− c (et) + βE[φ (lt+1, g, p) | st = 1]}

V (lt, g, p, 0) = w (g, lt) + βφ (lt, g, p)

Using the previous definitions and τ (lt, g, p) = 1{p=1}τ (lt, g, 1) since τ (lt, g, 0) = 0,

v(lt, g, p) = 1{p=1}τ (lt, g, 1) + max
et
{−c (et) + βE[φ (lt+1, g, p) | st = 1]}

−w (g, lt)− βφ (lt, g, p)

Then

∆v(lt, g, p) = τ(lt, g, 1)− β∆φ (lt, g, p)

+∆

[
max
et
{−c (et) + βE[φ (lt+1, g, p) | st = 1]}

]
Remark that

E[φ (lt+1, g, p) | st = 1] = φ (lt + 1, g, p)P (lt+1 = lt+1 | st = 1, et)+φ (lt, g, p)P (lt+1 = lt | st = 1, et)

where P (lt+1 = lt + 1 | st = 1, et) is the probability of success given effort et. However, we cannot

use the envelope theorem as if p was continuous, thus we have

∆E[φ (lt+1, g, p) | st = 1] = P (lt+1 = lt + 1 | st = 1)∆φ (lt + 1, g, p)

+φ (lt + 1, g, p) ∆P (lt+1 = lt + 1 | st = 1)

+P (lt+1 = lt | st = 1)∆φ (lt, g, p) + φ (lt, g, p) ∆P (lt+1 = lt | st = 1)

which leads to

∆v(lt, g, p) = τ(lt, g, 1)− β∆φ (lt, g, p)−∆c(e(p))

+βP (lt+1 = lt + 1 | st = 1)∆φ (lt + 1, g, p) + βφ (lt + 1, g, p) ∆P (lt+1 = lt + 1 | st = 1)

+βP (lt+1 = lt | st = 1)∆φ (lt, g, p) + βφ (lt, g, p) ∆P (lt+1 = lt | st = 1)

As the optimal effort is an increasing function of the probability of success by inverting the increasing

function P (lt+1 = lt + 1 | st = 1, et), we can write c(e) = h(P (lt+1 = lt + 1 | st = 1)) where h is an

increasing function

∆v(lt, g, p) = τ(lt, g, 1) + βP (lt+1 = lt + 1 | st = 1)∆ [φ (lt + 1, g, p)− φ (lt, g, p)]

−∆h(P (lt+1 = lt + 1 | st = 1)) + β [φ (lt + 1, g, p)− φ (lt, g, p)] ∆P (lt+1 = lt + 1 | st = 1)

which gives the proposition.
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C.4 Proof of Proposition 5

It comes from the fact that the conditional distribution of θ̃ on ωt+1 does not depend on p. Using

the law of iterated expectations, a simple differentiation of the expectation proves it15:

∆E(st+1 | ωt+1, p) = ∆

∫∫
st+1dλ(st+1, θ̃ | ωt+1, p)

= ∆

∫∫
st+1dλ(st+1 | ωt+1, p, θ̃)dλ(θ̃ | ωt+1, p)

=

∫
[∆

∫
st+1dλ(st+1 | ωt+1, p, θ̃)]dλ(θ̃ | ωt+1) = E

θ̃
[∆ψ(ωt+1, p, θ̃)]

because (9) implies that dλ(θ̃ | ωt+1, p) = dλ(θ̃ | ωt+1, 1) = dλ(θ̃ | ωt+1, 0) = dλ(θ̃ | ωt+1).

C.5 Proof of Proposition 6

Defining biases equal to B(ωt+1, 1) = ∂
∂ωt+1

[E
θ̃
E(st+1 | ωt+1, 1, θ̃)] − Eθ̃[

∂
∂ωt+1

E(st+1 | ωt+1, 1, θ̃)]

for the treatment population and to B(ωt+1, 0) = ∂
∂ωt+1

[E
θ̃
E(st+1 | ωt+1, 0, θ̃)] − Eθ̃[

∂
∂ωt+1

E(st+1 |

ωt+1, 0, θ̃)] for the control population.

The difference of biases is

∆B(ωt+1, p) = ∆{ ∂

∂ωt+1
[E

θ̃
ψ(ωt+1, p, θ̃)]− Eθ̃[

∂

∂ωt+1
ψ(ωt+1, p, θ̃)]}

=
∂

∂ωt+1
E
θ̃
[∆ψ(ωt+1, p, θ̃)]− Eθ̃[∆

∂

∂ωt+1
ψ(ωt+1, p, θ̃)]

because dλ(θ̃ | ωt+1, p) = dλ(θ̃ | ωt+1). However

∂

∂ωt+1
E
θ̃
[∆ψ(ωt+1, p, θ̃)] =

∂

∂ωt+1

∫
[∆

∫
st+1dλ(st+1 | ωt+1, p, θ̃)]dλ(θ̃ | ωt+1)

=

∫
[∆

∫
st+1dλ(st+1 | ωt+1, p, θ̃)]

∂

∂ωt+1
dλ(θ̃ | ωt+1) +

∫
∂

∂ωt+1
[∆

∫
st+1dλ(st+1 | ωt+1, p, θ̃)]dλ(θ̃ | ωt+1)

=

∫
[∆

∫
st+1dλ(st+1 | ωt+1, p, θ̃)]

∂

∂ωt+1
dλ(θ̃ | ωt+1) + E

θ̃
[∆

∂

∂ωt+1
ψ(ωt+1, p, θ̃)]

Then ∆B(ωt+1, p) = 0 if and only if
∫

[∆
∫
st+1dλ(st+1 | ωt+1, p, θ̃)] ∂

∂ωt+1
dλ(θ̃ | ωt+1) = 0. This is

not always true since in general ∂
∂ωt+1

dλ(θ̃ | ωt+1) 6= 0.

Noting ωkt+1 some component of ωt+1, the average change according to ω
k
t+1 in the impact of p,

E
θ̃
[∆ ∂

∂ωkt+1
ψ(ωt+1, p, θ̃)], will be identified through the estimation of ∂

∂ωkt+1
E
θ̃
[∆ψ(ωt+1, p, θ̃)] if and

only if one of the following conditions is satisfied:

∂

∂ωkt+1
dλ(θ̃ | ωt+1) = 0

15The notation λ(µ | ν) always means the cumulative distribution of µ conditional on ν.
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or ∫
∆E(st+1 | ωt+1, p, θ̃)

∂

∂ωkt+1
dλ(θ̃ | ωt+1) = 0

⇔
∫
E(st+1 | ωt+1, 1, θ̃)

∂

∂ωkt+1
dλ(θ̃ | ωt+1) =

∫
E(st+1 | ωt+1, 0, θ̃)

∂

∂ωkt+1
dλ(θ̃ | ωt+1)

Then, we just need to use Proposition 5 to complete the proof.

C.6 Proof of Proposition 7

We just need to prove that ∂
∂TE (st+1 | ωt+1, T ) = E

θ̃
[ ∂∂TE(st+1 | ωt+1, T, θ̃)]. We have ∂

∂TE (st+1 | ωt+1, T ) =

∂
∂T [E

θ̃
ψ(ωt+1, T, θ̃)] where E(st+1 | ωt+1, T, θ̃) = ψ(ωt+1, T, θ̃). With T = τ̃(g, l, p, ω′t+1) and

∂
∂ω′t+1

τ̃(g, l, p, ω′t+1) known (by the program rule),

∂

∂T
ψ(ωt+1, T, θ̃) =

∂
∂ω′t+1

ψ(ωt+1, τ̃(g, l, p, ω′t+1), θ̃)

∂
∂ω′t+1

τ̃(g, l, p, ω′t+1)
.

Thus, we can write

E
θ̃
[
∂

∂T
ψ(ωt+1, T, θ̃)] =

E
θ̃
[ ∂
∂ω′t+1

ψ(ωt+1, τ̃(g, l, p, ω′t+1), θ̃)]

∂
∂ωkt+1

τ̃(g, l, p, ω′t+1)
because

∂

∂θ̃
{ ∂

∂ω′t+1
τ̃(g, l, p, ω′t+1)} = 0

=

∂
∂ω′t+1

E
θ̃
[ψ(ωt+1, τ̃(g, l, p, ω′t+1), θ̃)]

∂
∂ω′t+1

τ̃(g, l, p, ω′t+1)
because θ̃ ⊥⊥ ω′t+1 | ωt+1

=

∂
∂ω′t+1

E
(
st+1 | ωt+1, τ̃(g, l, p, ω′t+1)

)
∂

∂ω′t+1
τ̃(g, l, p, ω′t+1)

which proves the proposition since

∂

∂T
E (st+1 | ωt+1, T ) =

∂
∂ω′t+1

E(st+1 | ωt+1, τ̃(g, l, p, ω′t+1))

∂
∂ω′t+1

τ̃(g, l, p, ω′t+1)
.
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D Additional Tables

Table 7: Impact on Performance by Grade
P (lt+1 = lt + 1 | st = 1) (1) (2)
(t-stat), (*: 5% significance) Coeff. (∂ϕ/∂x) Coeff. (∂ϕ/∂x)
θ1(grade l,gender g).p

P3, girl 0.418* (2.99) 0.052* (3.31) 0.071 (0.08) 0.009 (0.09)
P3, boy 0.336* (2.46) 0.043* (2.66) -0.498 (-0.64) -0.074 (-0.58)
P4, girl -0.320 (-1.77) -0.048 (-1.66) 0.020 (0.02) 0.003 (0.02)
P4, boy -0.234 (-1.28) -0.034 (-1.22) -1.342 (-1.50) -0.228 (-1.29)
P5, girl -0.056 (-0.25) -0.008 (-0.25) -1.649 (-1.48) -0.290 (-1.29)
P5, boy -0.180 (-0.83) -0.026 (-0.80) -1.527 (-1.74) -0.265 (-1.51)
P6, girl -0.177 (-0.69) -0.025 (-0.67) -2.357* (-2.82) -0.431* (-2.75)
P6, boy -0.312 (-1.23) -0.046 (-1.15) 0.036 (0.03) 0.005 (0.04)
S1, girl -1.989* (-5.50) -0.378* (-5.08) -2.467* (-3.46) -0.460* (-3.45)
S1, boy -1.617* (-4.41) -0.297* (-3.88) -3.226* (-4.25) -0.582* (-5.52)
S2, girl -0.333 (-0.66) -0.050 (-0.62) -2.682 (-1.71) -0.501 (-1.81)
S2, boy -0.296 (-0.62) -0.044 (-0.58) -3.282* (-2.38) -0.591* (-3.16)
S3, girl -1.091* (-2.21) -0.190 (-1.89) -1.258 (-0.94) -0.216 (-0.79)
S3, boy -1.470* (-2.72) -0.269* (-2.34) -1.513 (-1.26) -0.268 (-1.07)

θ2(grade l,gender g).τ(l, g)
P3, girl 0.602 (0.42) 0.080 (0.42)
P3, boy 1.451 (1.09) 0.193 (1.09)
P4, girl -0.517 (-0.37) -0.069 (-0.37)
P4, boy 1.646 (1.23) 0.219 (1.23)
P5, girl 1.859 (1.43) 0.247 (1.43)
P5, boy 1.583 (1.55) 0.210 (1.55)
P6, girl 1.983* (2.63) 0.263* (2.63)
P6, boy -0.316 (-0.36) -0.042 (-0.36)
S1, girl 0.284 (0.74) 0.038 (0.74)
S1, boy 1.002* (2.22) 0.133* (2.22)
S2, girl 1.290 (1.50) 0.171 (1.51)
S2, boy 1.778* (2.15) 0.236* (2.15)
S3, girl 0.085 (0.14) 0.011 (0.14)
S3, boy 0.033 (0.05) 0.004 (0.05)

Gender (1: boy, 0:girl) -3.718* (-7.13) -0.514* (-7.19) 0.482 (0.74) 0.064 (0.74)
Household Head Education -0.021 (-0.66) -0.003 (-0.66) -0.022 (-0.71) -0.003 (-0.71)
Household Size -0.031* (-2.49) -0.004* (-2.49) -0.018 (-1.36) -0.002 (-1.36)
Age -0.308* (-15.99) -0.043* (-16.52) -0.311* (-16.01) -0.041* (-16.49)
Distance to Sec. School 0.017 (1.14) 0.002 (1.14) 0.018 (1.19) 0.002 (1.19)
Grade×Gender Dummies Yes Yes
State Dummies Yes Yes
Observations 13911 13911

Note: All additive gender-grade dummies as well as state dummies are not shown but included.
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Table 8: Impact on Continuation Decision by Grade
P (st+1 = 1 | st = 1) (1) (2)
(t-stat), (*: 5% significance) Coeff. (∂ϕ/∂x) Coeff. (∂ϕ/∂x)
α1(grade l,gender g).p

P2, girl -0.322 (-0.35) -0.017 (-0.33) -0.319 (-0.35) -0.017 (-0.33)
P3, girl 1.104* (2.63) 0.043* (3.54) -1.773 (-0.40) -0.129 (-0.29)
P3, boy 0.536 (1.09) 0.024 (1.25) 0.542 (0.08) 0.024 (0.09)
P4, girl 1.203* (2.36) 0.045* (3.35) -3.860 (-1.01) -0.410 (-0.66)
P4, boy 0.901* (2.24) 0.037* (2.84) 1.668 (0.36) 0.057 (0.56)
P5, girl 0.630 (1.77) 0.027* (2.06) -2.767 (-1.20) -0.241 (-0.80)
P5, boy 0.837* (2.15) 0.034* (2.66) 3.699 (0.84) 0.088 (1.64)
P6, girl 0.390 (1.00) 0.018 (1.09) 5.158 (0.92) 0.105* (2.31)
P6, boy 0.459 (1.32) 0.021 (1.47) -2.903 (-0.89) -0.258 (-0.58)
S1, girl 0.857* (5.25) 0.037* (6.18) -1.004 (-1.14) -0.060 (-0.95)
S1, boy 0.823* (4.94) 0.035* (5.77) -1.159 (-1.16) -0.071 (-0.94)
S2, girl 0.133 (0.29) 0.006 (0.29) -3.686* (-2.28) -0.383 (-1.46)
S2, boy 0.629 (1.25) 0.027 (1.47) -1.110 (-0.49) -0.070 (-0.40)
S3, girl 0.280 (0.39) 0.013 (0.42) 2.792 (0.88) 0.072* (2.25)
S3, boy -0.174 (-0.33) -0.009 (-0.31) 4.307 (1.02) 0.088* (3.62)

α2(grade l,gender g).τ(l, g)
P3, girl 4.236 (0.64) 0.210 (0.64)
P4, girl 6.550 (1.30) 0.325 (1.30)
P4, boy -0.970 (-0.16) -0.048 (-0.16)
P5, girl 3.512 (1.48) 0.174 (1.48)
P5, boy -2.905 (-0.66) -0.144 (-0.66)
P6, girl -3.619 (-0.86) -0.179 (-0.86)
P6, boy 2.577 (1.04) 0.128 (1.03)
S1, girl 0.947* (2.13) 0.047* (2.13)
S1, boy 1.048* (2.01) 0.052* (2.01)
S2, girl 1.840* (2.36) 0.091* (2.36)
S2, boy 0.894 (0.77) 0.044 (0.77)
S3, girl -1.081 (-0.84) -0.054 (-0.84)
S3, boy -2.119 (-1.08) -0.105 (-1.08)

Covariates Xt+1

Gender (1: boy, 0:girl) 0.137 (0.63) 0.007 (0.63) -1.382 (-1.21) -0.069 (-1.20)
Household Head Education 0.188* (4.12) 0.009* (4.14) 0.188* (4.12) 0.009* (4.14)
Household Size 0.000 (0.03) 0.000 (0.03) 0.015 (0.83) 0.000 (0.83)
Age -0.643* (-20.78) -0.032* (-22.06) -0.650* (-21.03) -0.032* (-22.11)
Distance to Sec. School -0.101* (-4.59) -0.005* (-4.60) -0.098* (-4.46) -0.005* (-4.48)
Grade×Gender Dummies Yes Yes
State Dummies Yes Yes
Observations 13894 13894

Note: All additive gender-grade dummies as well as state dummies are not shown but included.
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