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Abstract

We study the reaction of financial markets to aggregate liquidity shocks when traders

face cognition limits. While each financial institution recovers from the shock at a random

time, the trader representing the institution observes this recovery with a delay, reflecting

the time it takes to collect and process information about positions, counterparties and

risk exposure. Cognition limits lengthen the recovery process. They also imply that

traders who find their institution has not yet recovered from the shock place market sell

orders, and then progressively buy back at relatively low prices, while simultaneously

placing limit orders to sell later when the price will have recovered. This generates round

trip trades, which raise trading volume. We compare the case where algorithms enable

traders to implement this strategy to that where traders can only place orders when they

have completed their information processing task.
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1 Introduction

“The perception of the intellect extends only to the few things that are accessible

to it and is always very limited” (Descartes, 1641)

We analyze trades and price dynamics when investors face cognition limits and the market

is hit by an aggregate liquidity shock. The shock induces a transient drop in the willingness

and ability of financial institutions to hold assets, such as stocks or bonds. It can be triggered

by changes in the characteristics of assets, e.g., certain types of institutions, such as insur-

ance companies or pension funds, are required to sell bonds which lose their investment grade

status, or stocks which are delisted from exchanges or indices (see, e.g., Greenwood, 2005).

Alternatively, the aggregate shock can reflect events affecting the overall financial situation of a

category of institutions, e.g., funds experiencing large outflows or losses (see Coval and Stafford,

2007), banks incurring large losses (see Berndt, Douglas, Duffie, Ferguson, and Schranz, 2005),

or specialists building extreme positions (see Comerton Forde, Hendershott, Jones, Moulton,

and Seasholes, 2010).1 To recover from the shock, institutions seek to unwind their positions in

several markets (e.g., credit default swaps (CDS) corporate bonds or mortgage based securities

(MBS)). They can also raise new capital, secure credit lines or structure derivative trades to

hedge their positions. All this process is complex and takes time. But, once the institution has

been able to arrange enough deals, it recovers from the liquidity shock.

In this context, traders must collect and process a large flow of information about asset

valuations, market conditions and the financial status of their own institution. They must

obtain and aggregate information from several desks, markets and departments about gross

and net positions, the resulting risk exposure, and compliance with regulations. When traders

have limited cognition, completing these tasks is challenging and it takes them time and effort.

We address the following issues: How do traders and markets cope with negative liquid-

ity shocks? What is the equilibrium price process after such shocks? How are trading and

prices affected by cognition limits? Do the consequences of limited cognition vary with market

mechanisms and technologies?

We consider an infinite horizon, continuous–time market with a continuum of rational,

risk–neutral competitive financial institutions, deriving a non–linear utility flow from holding

1A striking example of a liquidity shock and its consequences on institutions and market pricing is analyzed
by Khandani and Lo (2008). They observe that, during the week of August 6th 2007, quantitative funds subject
to margin calls and losses in credit portfolios had to rapidly unwind equity positions. This resulted in a sharp
but transient drop in the S&P. But, by August 10th 2010 prices had in large part reverted.
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divisible shares of an asset, as in Lagos and Rocheteau (2009) and Gârleanu (2009). To model

the aggregate liquidity shock, we assume that at time 0 this utility flow drops for all institutions,

as in Duffie, Gârleanu, and Pedersen (2007) and Weill (2007). Then, as time goes by, institutions

progressively switch back to a high valuation. More precisely, each institution is associated

with a Poisson process and switches back to high-valuation at the first jump in this process.

Unconstrained efficiency would require that low-valuation institutions sell to high-valuation

institutions. However, in our model, such asset reallocation is delayed because of cognition

limits. In line with the rational inattention models of Reis (2006a and 2006b), Mankiw and

Reis (2002) and Gabaix and Laibson (2002), we assume that each trader engages in information

collection and processing for some time and, only when this task is completed, observes the

current valuation of her institution for the asset. We refer to this observation as an “information

event.” When this event occurs, the trader updates her optimal asset holding plan, based on

rational expectations about future variables and decisions.2 The corresponding demand, along

with the market clearing condition, gives rise to equilibrium prices. Thus, while Mankiw and

Reis (2002) and Gabaix and Laibson (2002) analyzed how inattention affects consumption, we

study how it affects equilibrium pricing during liquidity shocks.

In the spirit of Duffie, Gârleanu, and Pedersen (2005), we assume that information events,

and correspondingly trading decisions, occur at Poisson arrival times.3 Thus in our model,

each institution is exposed to two Poisson processes: one concerns changes in its valuation for

the asset, the other the timing of its trader’s information events. For simplicity, we assume

these two processes are independent. Also for tractability we assume that these processes are

independent across institutions. Thus, by the law of large numbers, the aggregate state of the

market changes deterministically with time.4 Correspondingly, the equilibrium price process

is deterministic too. We show equilibrium existence and uniqueness. In equilibrium the price

2Thus, in the same spirit as in Mankiw and Reis (2002), traders have “sticky plans” but rationally take into
account this stickiness.

3Note however that the interpretation is different. Duffie, Gârleanu, and Pedersen (2005) model the time it
takes traders to find a counterparty, while we model the time it takes them to collect and process information.
This difference results in different outcomes. In Duffie, Gârleanu, and Pedersen investors don’t trade between
two jumps of their Poisson process. In our model they do, but based on imperfect information about their
valuation for the asset. In a sense our model can be viewed as the dual of Duffie, Gârleanu, and Pedersen: they
assume that traders continuously observe their valuation but are infrequently in contact with the market, while
we assume that traders are continuously in contact with the market but infrequently refresh their information
about their valuation.

4We also analyze an extension of our framework where the market is subject to recurring aggregate liquidity
shocks, occurring at Poisson arrival times. While, in this more general framework, the price is stochastic, the
qualitative features of our equilibrium are upheld.
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increases with time, reflecting that the market progressively recovers from the shock. Limits

to cognition lengthen the time it takes market prices to fully recover from the shock. Yet they

do not necessarily amplify the initial price drop generated by that shock. Just after the shock,

with perfect cognition the marginal trader knows her institution has a low valuation, while

with limited cognition she is imperfectly informed about her institution valuation, and realizes

that, with some probability, it may have recovered. We also show that the equilibrium is an

information constrained Pareto optimum. This is because in our setup there are no externalities,

as the holding constraints on holdings imposed by cognition limits on one trader, don’t depend

on the actions of other traders.

While we first characterize traders’ optimal policies in terms of abstract holding plans,

we then show how these plans can be implemented in a realistic market setting, featuring an

electronic order book, limit and market orders, and trading algorithms. The latter enable

traders to conduct programmed trades while devoting their cognitive resources to investigating

the liquidity status of their institution. In this context, traders who find out their institution

is still subject to the shock, and correspondingly has a low valuation for the asset, sell a lump

of their holdings, with a market sell order. They also program their trading algorithms to then

gradually buy back, as they expect their valuation to revert upward. Simultaneously, they

submit limit orders to sell the asset, to be executed later when the equilibrium price will have

recovered. To the extent that they buy in the early phase of the aggregate recovery, and then

sell towards the end of the recovery, the traders act as market makers.5 The corresponding

round–trip transactions reflect their optimal reaction to cognition limits. These transactions

can raise trading volume above the level it would reach under perfect cognition.

We also study the case where trading algorithms are not available and traders must imple-

ment their holding plans by placing limit and market orders when their information process

jumps. With increasing prices, this prevents them from buying in between jumps of their in-

formation process. When the liquidity shock is large, this constraint binds and reduces the

efficiency of the equilibrium allocation. It does not necessarily amplify the price pressure of the

liquidity shock, however. Since traders anticipate they won’t be able to buy back until their

next information event, they sell less when they observe their valuation is low. Such a reduction

in supply limits the selling pressure on prices. Put differently, a policy that would ban the use

5In doing so they act similarly to the market makers analyzed by Grossman and Miller (1988). Note however
that, while in Grossman and Miller agents are exogenously assigned market making or market taking roles, in
our model, agents endogenously choose to supply or demand liquidity, depending on the realization of their own
shocks.
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of algorithms could help alleviate the initial price pressure created by the liquidity shock. Yet,

this policy would reduce welfare: indeed, in our model the equilibrium with algorithmic trading

is information constrained Pareto optimal.6

The order placement policies generated by our model are in line with several stylized facts.

Irrespective of whether algorithms are available or not, we find that successive traders place

limit sell orders at lower and lower prices. Such undercutting is consistent with the empirical

results of Biais, Hillion, and Spatt (1995), Griffiths, Smith, Turnbull, and White (2000) and

Ellul, Holden, Jain, and Jennings (2007). Furthermore, our algorithmic traders both supply and

consume liquidity, by placing market and limit orders, consistent with the empirical findings of

Hendershott and Riordan (2010) and Brogaard (2010). Brogaard also finds that algorithms i)

don’t tend to withdraw from the market after large liquidity shocks, ii) tend to provide liquidity

by purchasing the asset after large price drops, and iii) in doing so profit from price reversals;

all these features are in line with the implications of our model.

Our analysis of the dynamics of markets where traders choose whether to place limit or

market orders is related to the insightful papers of Parlour (1998), Foucault (1999), Foucault,

Kadan, and Kandel (2005), Rosu (2009), Goettler, Parlour, and Rajan (2005, 2009). But we

focus on different market frictions than they do. While they study strategic behavior and/or

asymmetric information under perfect cognition, we analyze competitive traders with symmetric

information under limited cognition. This enables us to study how the equilibrium interaction

between the price process and order placement policies is affected by cognition limits and market

instruments.

The next section presents the economic environment and the equilibrium prevailing under

unlimited cognition. Section 3 presents the equilibrium prevailing with limited cognition. Sec-

tion 4 discusses the implementation of the abstract equilibrium holding plans with realistic

market instruments such as limit and market orders and trading algorithms. Section 5 con-

cludes. Proofs not given in the text are in the appendix, and a supplementary appendix offers

additional information about the model, proofs and analyses.

6 In Section II of our supplementary appendix we analyze the case when traders can only place market orders
when their information process jumps, i.e., limit orders and trading algorithms are ruled out. In that case the
price reverts to its pre–shock level earlier. Indeed, when traders can place limit orders, the sell orders stored in
the book exert a downward pressure on prices towards the end of the recovery. But, then again, the efficiency
of the allocation is higher when traders can use limit orders, and even higher they can use algorithms. Indeed
these market instruments enable traders to conduct mutually beneficial trades which would be infeasible with
market orders only.
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Figure 1: The utility flows of high– (in blue) and low–valuation (in red) investors, when σ = 0.5.

2 The economic environment

2.1 Assets and agents

Time is continuous and runs forever. A probability space (Ω,F , P ) is fixed, as well as an

information filtration satisfying the usual conditions (Protter, 1990).7 There is an asset in

positive supply s ∈ (0, 1) and the economy is populated by a [0, 1]-continuum of infinitely-lived

agents that we call “financial institutions” (funds, banks, insurers, etc. . . ) discounting the

future at the same rate r > 0.

Each institution can be in one of two states. Either it derives a high utility flow (“θ = h”)

from holding any quantity q ≥ 0 of the asset, or it derives a low utility flow (“θ = `”), as

illustrated in Figure 1. For high–valuation institutions, the utility flow per unit of time is

v(h, q) = q, for all q ≤ 1, and v(h, q) = 1, for all q > 1. For low–valuation institutions, it

is v(`, q) = q − δ q
1+σ

1+σ
, for all q ≤ 1, and v(`, q) = 1 − δ/(1 + σ), for all q > 1.8 The two

parameters δ ∈ (0, 1] and σ > 0 capture the effect of a low liquidity status on utility flows.

The parameter δ controls the level of utility: the greater is δ, the lower is the marginal utility

flow of low–valuation institutions. The parameter σ, on the other hand, controls the curvature

of low–valuation institutions utility flows. The greater is σ, the less willing they are to hold

extreme asset positions.9 Because of this concavity, it is efficient to spread holdings among

7To simplify the exposition, for most stated equalities or inequalities between stochastic processes, we sup-
press the “almost surely” qualifier as well as the corresponding product measure over times and events.

8The short–selling constraint is without loss of generality in the following sense. If we extend the utility
functions to q < 0 in any way such that they remain concave, then the equilibrium outcomes we characterize
are unaffected. In particular, q < 0 never arises.

9The curvature of low–valuations utilities contrasts with the constant positive marginal utility of high–
valuation institutions have for q < 1. One could have introduced such curvatures for high–valuations too as
in Lagos and Rocheteau (2009) or Gârleanu (2009) at the cost of reduced tractability, without qualitatively
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low–valuation institutions. This is similar to risk–sharing between risk–averse agents, and as

shown below will imply that equilibrium holdings take a rich set of values.10 This is in line

with Lagos and Rocheteau (2009) and Gârleanu (2009). Note that, even in the σ → 0 limit,

low–valuation investors’ utility flow is reduced, by a factor 1 − δ, but in that case the utility

flow is piecewise linear.11

In addition to deriving utility from the asset, institutions can produce (or consume) a non-

storable numéraire good at constant marginal cost (utility) normalized to one.

2.2 Liquidity shock

To model liquidity shocks we follow Duffie, Gârleanu, and Pedersen (2007) and Weill (2007).

Before the shock, each institution is in the high–valuation state, θ = h, and holds s shares of the

asset. But, at time zero, the liquidity shock hits all the institutions, and they make a transient

switch to low–valuation, θ = `. The difference between and can be interpreted as a holding cost

or a capital charge or shadow cost associated with positions. As discussed in the introduction

and in Duffie, Gârleanu, and Pedersen (2007) a variety of institutional factors can generate

such costs, e.g., regulatory constraints on holdings (see, e.g., Greenwood, 2005), need for cash

(see Coval and Stafford, 2007, Berndt et al., 2005), positions limits (see Comerton Forde et al.,

2010, or Hendershott and Seasholes, 2007), or tax considerations.

Note however that the shock is transient. As discussed above, to cope with the shock

institutions seek to unwind positions, raise capital, secure credit lines or hedge positions. All

this process is complex and takes time. But, once the institution has been able to arrange

enough deals, it recovers from the liquidity shock. To capture the recovery process we assume

that, for each institution, there is a random time at which it reverts to the high–valuation

state, θ = h, and then remains there forever. For simplicity, we assume that recovery times

are exponentially distributed, with parameter γ, and independent across investors. Hence, by

the law of large numbers, the measure µht of high–valuation investors at time t is equal to the

altering our results.
10Note also that the holding costs of low–valuation institutions are homothetic. This results in homogenous

asset demand and, as will become clear later, facilitates aggregation.
11For the σ → 0 limit, see our supplementary appendix, (Biais, Hombert, and Weill, 2010b), Section III.
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probability of high–utility at that time conditional on low–utility at time zero.12 Thus

µht = 1− e−γt, (1)

and we denote by Ts the time at which the mass of high–utility institutions equals the supply

of the asset, i.e.,

µhTs = s. (2)

2.3 Equilibrium without cognition limits

Consider the benchmark case where institutions continuously observe their θt. To find the

competitive equilibrium, it is convenient to solve first for efficient asset allocations, and then

find the price path which decentralizes these efficient allocations in a competitive equilibrium.13

In the efficient allocation, for t > Ts, all assets are held by high–valuation institutions, and

all marginal utilities are equalized. Indeed, with an (average) asset holding equal to s/µht < 1,

the marginal utility is 1 for high–valuation institutions, while with zero asset holdings marginal

utility is vq(`, 0) = 1 for low–valuation institutions. In contrast, for t ≤ Ts, we have µht ≤ s,

and each high–valuation institution holds one unit of the asset while the residual supply, s−µht,
is held by low–valuation institution. The asset holding per low–valuation institution is thus:

qt =
s− µht
1− µht

. (3)

This is an optimal allocation because all high–valuation institutions are at the corner of their

utility function: reducing their holdings would create a utility loss of 1, while increasing their

holdings would create zero utility. Low valuation institutions, on the other hand, have holdings

in [0, 1), so their marginal utility is strictly positive and less than 1.

For t ≤ Ts, as soon as an institution switches from θ = ` to θ = h, its holdings jump from

qt to 1, while as long as her valuation remains low, it holds qt, given in (3), which smoothly

declines with time. This decline reflects that, as time goes by, more and more institutions

12For simplicity and brevity, we don’t formally prove how the law or large numbers applies to our context. To
establish the result precisely, one would have to follow Sun (2006), who relies on constructing an appropriate
measure for the product of the agent space and the event space.

13Note that, with quasi–linear utilities and unlimited cognition, in all Pareto efficient allocation of assets and
numéraire goods, the asset allocation maximizes, at each time, the equally weighted sum of the institutions’
utility flows for the asset, subject to feasibility.
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Figure 2: Population of high–valuation investors (Panel A) and price dynamics when σ = 0.3
(Panel B).

recover from the shock, switch to θ = h and increase their holdings. As a result, the remaining

low–valuation institutions are left with less shares to hold.

Equilibrium prices reflect the cross–section of valuations across institutions. In our setting,

by the law of large numbers, there is no aggregate uncertainty and this cross–section is deter-

ministic. Hence, the price also is deterministic. For t ≤ Ts, it is equal to the present value of a

low–valuation institution’s marginal utility flow:

pt =

∫ ∞
t

e−r(z−t)vq(`, qz) dz,

where qz is given in (3). Taking derivatives with respect to t, we find that the price solves the

Ordinary Differential Equation (ODE):

vq(`, qt) = rpt − ṗt ≡ ξt. (4)

The left-hand side of (4) is the institution’s marginal utility flow over [t, t+dt]. The right-hand

side is the opportunity cost of holding the asset: it is the cost of buying a share of the asset at

time t and reselling it at t + dt, i.e., the time value of money, rpt, minus the capital gain, ṗt.

Finally, when t ≥ Ts, vq(`, qz) = vq(`, 0) = 1 and the price is pt = 1/r.
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Table 1: Parameter values
Parameter Value
Intensity of information event ρ 250
Asset supply s 0.59
Recovery intensity γ 25
Discount rate r 0.05
Utility cost δ 1
Curvature of utility flow σ {0.3, 0.5, 1.5}

Thus, the price increases deterministically towards 1/r, as the holdings of low valuation

institutions go to zero and their marginal utility increases. Institutions do not immediately bid

up this predictable price increase because the demand for the asset builds up slowly: on the

intensive margin, high–valuation institutions derive no utility flow if they hold more than one

unit; and, on the extensive margin, the recovery from the aggregate liquidity shock occurs pro-

gressively as institutions switch back to high utility flows. Thus, there are “limits to arbitrage”

in our model, in line with the empirical evidence on the predictable patterns of price drops and

reversals around liquidity shocks.14

Throughout the paper we will illustrate our results with numerical computations based

on the parameter values shown in Table 1. We take the discount rate to be r = 0.05, in

line with Duffie, Gârleanu, and Pedersen (2007). We pick the liquidity shock parameters to

match empirical observations from large equity markets. Hendershott and Seasholes (2007) and

Hendershott and Menkveld (2010) find liquidity price pressure effects of the order of 10 to 20

basis points, with duration ranging from 5 to 20 days. During the liquidity event of Khandani

and Lo (2008), the price pressure subsided in about 4 trading days. Adopting the convention

that there are 250 trading days per year, setting γ to 25 means that an institution takes on

average 10 days to switch to high valuation. Setting the asset supply s to 0.59 then implies

that with unlimited cognition the time it takes the market to recover from the liquidity shock

(Ts) is around 9 days, as illustrated in Figure 2 Panel A. Lastly, for these parameter values,

setting δ = 1 implies the initial price pressure generated by the liquidity shock is between 10

and 20 basis points, as illustrated illustrated in Figure 2 Panel B.15

14 See, e.g., for short–lived shocks the empirical findings of Hendershott and Seasholes (2007), Hendershott
and Menkveld (2010) and Khandani and Lo (2008).

15Duffie, Gârleanu and Pedersen (2007) provide a numerical analysis of liquidity shocks in OTC markets.
They chose parameters to match stylized facts from illiquid corporate bond markets. Because we focus on more
liquid electronic exchanges, we chose parameter values different from theirs. For example in their analysis the
price takes one year to recover while in ours it takes less than two weeks.
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3 Equilibrium with limited cognition

We now turn to the case where agents have limited cognition. In the first subsection, we

present our assumptions on cognition limits. In the second subsection we solve for equilibrium.

To do so we follow standard steps: we first compute the value function of the traders; then

we maximize this function to pin down demands; finally substituting demands into the market

clearing condition we obtain the equilibrium price. In the third subsection we present the

properties of the equilibrium, regarding welfare, holding plans, trading volume, and prices. In

the fourth subsection we show that our qualitative results are upheld in an extension of the

model where recurring preference shocks lead to stochastic equilibrium prices.

3.1 Assumptions

3.1.1 Limited cognition

Each institution is represented in the market by one trader.16 To determine optimal asset

holdings, the trader must analyze the liquidity status of her institution. This task is cognitively

challenging. As mentioned in the previous section, to recover from the shock the institution

engages in several financial transactions in a variety of markets, some of them complex, opaque

and not computerized. Evaluating the liquidity status of the institution requires collecting,

analyzing and aggregating information about the resulting positions. Our key assumption is

that, because of limited cognition and information processing constraints, the trader cannot

continuously and immediately observe the liquidity status of her institution.17 Instead, we

assume there is a counting process Nt such that the trader observes θt at each jump of Nt (and

only then).18 At the jumps of her information process Nt the trader submits a new optimal

trading plan, based on rational expectations about {Nu, θu : u ≥ t}, and her future decisions.

This is in line with the rational inattention model of Mankiw and Reis (2002). For simplicity,

the traders’ information event processes are assumed to be Poisson distributed, with intensity

16For simplicity we abstract from agency issues and assume the trader maximizes the inter-temporal expected
utility of the institution.

17Regulators have recently emphasized the difficulty to come up with an integrated measurement of all relevant
risk exposures within a financial institution (see Basel Commitee on Banking Supervision, 2009). Academic
research has also underscored the difficulties associated with the aggregation of information dispersed in several
departments of the financial institution (see Vayanos, 2003).

18The time between jumps creates delays in obtaining fresh information about θt, which can be interpreted
as the time it takes to the risk management unit or head of strategy to aggregate all relevant information and
disseminate it to the traders.
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ρ, and independent from each others as well as from the times at which institutions emerge

from the liquidity shock.19

3.1.2 Conditions on asset holding plans and prices

When an information event occurs at time t > 0, a trader designs an updated asset holding

plan, qt,u, for all subsequent times u ≥ t until the following information event. Formally,

denoting D = {(t, u) ∈ R2
+ : t ≤ u}, we let an asset holding plan be a bounded and measurable

stochastic process

q : D × Ω→ R+

(t, u, ω) 7→ qt,u(ω),

satisfying the following two conditions:

Condition 1. For each u ≥ t, the stochastic process (t, ω) 7→ qt,u(ω) is Ft-predictable, where

{Ft}t≥0 is the filtration generated by Nt and θt.

Condition 2. For each (t, ω), the function u 7→ qt,u(ω) has bounded variations.

Condition 1 means that the plan designed at time t, qt,u, can only depend on the trader’s

time-t information about her institution: the history of her information-event counting process,

and of her institution utility status process up to, but not including, time t.20 Condition 2 is a

technical regularity condition ensuring that the present value of payments associated with qt,u

is well defined. To simplify notations, in what follows we suppress the explicit dependence of

asset holding plans on ω.

At this stage of the analysis, we assume that traders have access to a rich enough menu of

market instruments to implement any holding plan satisfying Conditions 1 and 2. We study

implementation in Section 4, where we analyze what types of market instruments are needed

19For simplicity, we don’t index the information processes of the different traders by subscripts specific to
each trader. Rather we use the same generic notation, “Nt”, for all traders.

20We add the “not including” qualifier because the asset holding plans are assumed to be Ft-predictable instead
of Ft-measurable. This predictability assumption is standard for dynamic optimization problems involving
decisions at Poisson arrival times (see Chapter VII of Brémaud, 1981). For much of the paper, however, we
won’t need to distinguish between Ft–predicability and Ft–measurability. This is because the probability that
the trader type switches exactly at the same time an information event occurs is of second order. Therefore,
adding or removing the type information accruing exactly at information events leads to almost surely identical
optimal trading decisions.
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to implement equilibrium holding plans, and what equilibrium arises when the menu of market

instrument is not rich enough.

The last technical condition concerns the price path:

Condition 3 (Well-behaved price path). The price path is bounded, deterministic and contin-

uously differentiable (C1).

As in the unbounded cognition case, because there is no aggregate uncertainty, it is natural

to focus on deterministic price paths. Furthermore, in the environment we consider the equi-

librium price must be continuous, as formally shown in our supplementary appendix (see Biais,

Hombert, and Weill, 2010b, Section VI). The economic intuition is the following. If the price

were to jump at time t, all traders who experience an information event shortly before t would

want to “arbitrage” the jump: they would find it optimal to buy an infinite quantity of asset

and re-sell these assets just after the jump. This would contradict market–clearing. Finally,

the condition that the price be bounded is imposed to rule out bubbles (see Lagos, Rocheteau,

and Weill, 2007, for a proof that bubbles can’t arise in a closely related environment).

3.2 Equilibrium

3.2.1 Intertemporal payoffs

For any time u ≥ 0, let τu denote the time of the last information event before u, with the

convention that τu = 0 if no information event occurred. Correspondingly q0,u represents the

holdings of a trader who had no information event by time u and thus no opportunity to update

her holding plan. Given that all traders start with the same holdings at time zero, we have

q0,u = q0,0 = s for all u ≥ 0.

The trader’s objective is to maximize the inter-temporal expected value of utility flows, net

of the cost of buying and selling assets. With the above notations in mind, it can be written:

E
[∫ ∞

0

e−ru
(
v(θu, qτu,u)du− pudqτu,u

)]
, (5)

where v(θu, qτu,u) du is the utility enjoyed, and pudqτu,u is the cost of asset purchases during

[u, u + du], given the holding plan chosen at τu, the last information event before u. Given

our distributional assumptions for the type and information processes, and given the technical

Conditions 1 to 3 we can rewrite this objective equivalently as:
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Lemma 1. The inter-temporal payoffs associated with the holding plan qt,u is, up to a constant:

V (q) = E
[∫ ∞

0

e−rt
∫ ∞
t

e−(r+ρ)(u−t)
{
Et [v(θu, qt,u)]− ξuqt,u

}
du ρdt

]
, (6)

where ξu = rpu − ṗu.

The interpretation of equation (6) is the following. The outer expectation sign takes expec-

tation over all time–t histories. The “ρ dt” term in the outer integral is the probability that an

information event occurs during [t, t+dt]. Conditional on the time–t history and on an informa-

tion event occurring during [t, t+dt], the inner integral is the discounted expected utility of the

holding plan until the next information event. At each point in time this involves the difference

between a trader’s expected valuation for the asset, Et [v(θu, qt,u)], and the opportunity cost of

holding it, ξu. This is similar to the result in Lagos and Rocheteau (2009) that an investor’s

demand depends from his current marginal utility from holding the asset as well as his expectd

marginal utility in the future. Finally, the discount factor applied to time u is adjusted by the

probability e−ρ(u−t) that the next information event occurs after u.

3.2.2 Market clearing

In all what follows we focus on the case where all traders choose the same holding plan, which

is natural given that traders are ex–ante identical.21 Of course, while traders choose ex–ante

the same holding plan, ex–post they realize different histories of Nt and θt, and hence different

asset holdings.

The market clearing condition requests that, at each date u ≥ 0, the cross-sectional average

asset holding be equal to s, the per-capita asset supply. By the law of large numbers, and given

ex–ante identical traders, the cross-sectional average asset holding is equal to the expected asset

holding of a representative trader. Hence, the market clearing condition can be written:

E [qτu,u] = s. (7)

for all u ≥ 0. Integrating against the distribution of τu, and keeping in mind that q0,u = s,

leads to our next lemma:

21By ex–ante identical we mean that traders start with the same asset holdings and have identically distributed
processes for information event and utility status.
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Lemma 2. The time-u market clearing condition, (7), writes:∫ u

0

ρe−ρ(u−t)
{

(1− µht)E [qt,u | θt = `] + µhtE [qt,u | θt = h]− s
}
dt = 0. (8)

This lemma states that the aggregate net demand of traders who experienced at least

one information event is equal to zero. The first multiplicative term in the integrand of (8),

ρe−ρ(u−t), is the density of time–t traders, i.e., traders whose last information event occurred

at time t ∈ (0, u]. The first and second terms in the curly bracket are the gross demands of

time–t low– and high–valuation traders respectively. The last term in the curly bracket is their

gross supply. It is equal to s because information events arrive at random, which implies that

the average holding of time–t traders just before their information event equals the population

average.

3.2.3 Equilibrium existence and uniqueness

We define an equilibrium to be a pair (q, p) subject to Conditions 1, 2 and 3 and such that: i)

given the price path, the asset holding plans maximize V (q) given in (6), and ii) the holding

plans are such that the market clearing condition (8) holds at all times. In this subsection we

first present, in Lemmas 4 to 6, properties of holding plans implied by i) and ii). Then, based

on these properties we obtain our first proposition, which states the uniqueness and existence

of equilibrium and gives the equation for the corresponding price.

Going back to the value V (q), in equation (6), and bearing in mind that a trader can choose

any function u 7→ qt,u subject to Conditions 1 and 2, it is clear that the trader inter-temporal

problem reduces to point-wise optimization. That is, a trader whose last information event

occurred at time t chooses her asset holding at time u, qt,u, in order to maximize the difference

between her expected valuation for the asset and the corresponding holding cost:

Et [v(θu, qt,u)]− ξuqt,u. (9)

Now, for all traders, utilities are strictly increasing for qt,u < 1 and constant for qt,u ≥ 1. So, if

one trader finds it optimal to hold strictly more than one unit at time u, then it must be that

ξu ≤ 0, implying that all other traders find it optimal to hold more than one unit. Inspecting

equation (8), one sees that in that case the market cannot clear since s < 1. We conclude that:

Lemma 3. In equilibrium, ξu ≥ 0 and qt,u ∈ [0, 1] for all traders.
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To obtain further insights on holding plans, consider first a time–t high–valuation trader,

i.e., a trader who finds out at time t that θt = h. She knows her valuation for the asset will

stay high forever. Hence

Et [v(θu, qt,u)] = v(h, qt,u),∀u ≥ t. (10)

Next, consider a time–t low–valuation trader, i.e. a trader who finds out at time t that θt =

`. This trader anticipates that her utility status will remain low by time u with probability

(1− µhu)/(1− µht). Hence:

Et [v(θu, qt,u)] = qt,u − δ
1− µhu
1− µht

q1+σt,u

1 + σ
,∀qt,u ∈ [0, 1] (11)

Comparing (10) and (11), one sees that, for all asset holdings in (0, 1), high–valuation traders

have a uniformly higher marginal utility than low–valuation traders. Now let

Su ≡
∫ u

0

ρe−ρ(u−t) (s− µht) dt, (12)

the gross asset supply brought by all traders minus the maximum (unit) demand of high–

valuation traders, integrating across all traders with at least one information event.

Given the definition of Su, and based on the above ranking of marginal utilities, one sees

that the economy can be in either one of two regimes. The first regime arises if Su > 0:

in that case, since qt,u ≤ 1 for high–valuation traders, market–clearing implies that qt,u > 0

for some low–valuation trader. But then all high–valuation traders must hold one unit, since

they have uniformly higher marginal utility for holdings in [0, 1]. The second regime arises

if Su < 0. In this case market clearing implies that some high–valuation trader must find it

optimal to hold strictly less than one share: she either strictly prefer to hold zero share, or she

is indifferent between any holding in [0, 1]. But since high–valuation traders have uniformly

higher marginal utility for holdings in [0, 1], this implies that all low–valuation traders hold

zero share. Summarizing:

Lemma 4. Let Tf be the unique strictly positive solution of Su = 0. Then:

• if u ∈ (0, Tf ) then, for all t ∈ (0, u], θt = h implies qt,u = 1;

• if u ∈ [Tf ,∞) then, for all t ∈ (0, u], θt = ` implies qt,u = 0.
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Next, consider the demand of high–valuation traders when u > Tf . We know from the

previous lemma that low–valuation traders hold no asset. Thus, high–valuation traders must

hold all the asset supply. Moreover, since Su < 0, the market-clearing condition implies that

some high–valuation traders must hold strictly less than one share. Keeping in mind that

high–valuation traders have the same linear utility flow over [0, 1], this implies they must be

indifferent between any holding in [0, 1]. Thus we can state the following lemma.

Lemma 5. For all u > Tf , the average asset holding of a high–valuation trader is∫ u
0
ρe−ρ(u−t)s dt∫ u

0
ρe−ρ(u−t)µht dt

,

but the distribution of asset holdings across high–valuation traders is indeterminate.

Now turn to the demand of low–valuation traders when u < Tf . Taking first-order conditions

when θt = ` in (9), we obtain, given qt,u ∈ [0, 1]:

qt,u = 0 if ξu ≥ 1 (13)

qt,u = 1 if ξu ≤ 1− δ1− µhu
1− µht

(14)

qt,u = (1− µht)1/σQu if ξu ∈
(

1− δ1− µhu
1− µht

, 1

)
, where Qu ≡

[
1− ξu

δ(1− µhu)

]1/σ
. (15)

Equation (13) states that low–valuation traders hold zero unit if the opportunity cost of holding

the asset is greater than 1, their highest possible marginal utility, which arises when q = 0.

Equation (14) states that low–valuation traders hold one unit if the opportunity cost of holding

the asset is below the lowest possible marginal utility, which arises when q = 1. Lastly, equation

(15) pins down a low–valuation trader’s holdings in the intermediate interior case by equating

to 0 the derivative of (11) with respect to qt,u.

As argued earlier, before time Tf the holdings of some low–valuation traders must be strictly

greater than zero: thus, holdings are determined by either (14) or (15) and ξu > 0. By the

definition of Qu, ξu ≤ 1 − δ(1 − µhu)/(1 − µht) if and only if (1 − µht)1/σQu ≥ 1. Hence, the

asset demand defined by (14) and (15) can be written as

qt,u = min{(1− µht)1/σQu, 1}. (16)

Substituting the demand from (16) into the market-clearing condition (8) and using the defini-
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tion of Su in (12), the following lemma obtains.

Lemma 6. If u ∈ (0, Tf ), then for all t ∈ (0, u], θt = ` implies qt,u = min{(1 − µht)1/σQu, 1}
where:∫ u

0

(1− µht) min{(1− µht)1/σQu, 1}ρe−ρ(u−t) dt = Su. (17)

Equation (17) is a one-equation-in-one-unknown for Qu that is shown in the proof appendix

to have a unique solution. Taken together, Lemmas 4 to 6 imply:

Proposition 1. There exists an equilibrium. The equilibrium asset allocation is unique up to

the distribution of asset holdings across high–valuation traders after Tf , and is characterized by

Lemma 4-6. The equilibrium price path is unique. It is increasing until Tf , constant thereafter,

and solves the following ODE:

u ∈ (0, Tf ) : rpu − ṗu = 1− δ(1− µhu)Qσ
u (18)

u ∈ [Tf ,∞) : pu =
1

r
. (19)

As in the perfect cognition case, the price deterministically increases until it reaches 1/r.

One difference is that, while under perfect cognition this recovery occurred at time Ts (defined

in equation (2)), with limited cognition it occurs at the later time Tf > Ts. For u < Tf , the

time–u low–valuation traders are the marginal investors, and the equilibrium price is such that

their marginal valuation is equal to the opportunity cost of holding the asset, as stated by (18).

For u > Tf , the entire supply is held by high–valuation investors. Thus the equilibrium price is

equal to the present value of their utility flow, as stated by (19).22 The proposition is illustrated

in Figure 2, Panel B, which plots the equilibrium price under limited cognition. Note that for

this numerical analysis we set the intensity of information events ρ to 250, which means that

traders observe refreshed information on θ on average once a day. This is a plausible frequency,

given the time it takes to collect and aggregate information across desks, departments and

markets in a financial institution.

22They must be indifferent between trading or not. This indifference condition implies that 1− rpu + ṗu = 0.
And, pu = 1/r is the only bounded and positive solution of this ODE.
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3.3 Equilibrium properties

In this subsection we discuss the properties of the equilibrium price and trades and compare

them to their unbounded cognition counterparts.

3.3.1 Welfare

To study welfare we define an asset holding plan to be feasible if it satisfies Conditions 1 and

2 as well as the resource constraint, which is is equivalent to the market-clearing condition (7).

Furthermore, we say that an asset holding plan q Pareto dominates some other holding plan q
′

if it is possible to generate a Pareto improvement by switching from q
′

to q while making time

zero transfers among traders. Because utilities are quasi linear, q Pareto dominates q
′

if and

only if W (q) > W (q
′
), where

W (q) = E
[∫ ∞

0

e−ruv(θτu , qτu,u) du

]
. (20)

The next proposition states that in our model the first welfare theorem holds:

Proposition 2. The holding plan arising in the equilibrium characterized in Proposition 1

maximizes W (q) among all feasible holding plans.

The proposition reflects that, in our setup, there are no externalities, in that the holdings

constraints imposed by limited cognition for one agent (and expressed in conditions 1 and 2)

do not depend on the actions of the other agents. These constraints translate into simple

restrictions on the commodity space (conditions 1 and 2), allowing us to apply the standard

proof of the first welfare theorem (see Mas-Colell, Whinston, and Green, 1995, Chapter 16)

3.3.2 Holdings

As stated in equation (16), for a trader observing at t that her valuation is low, the optimal

holdings at time u > t are (weakly) increasing in Qu. Relying on the market clearing condition,

the next proposition spells out the properties of Qu.

Proposition 3. The function Qu is continuous, and such that Q0+ = s and QTf = 0. Moreover,

if

s ≤ σ

1 + σ
(21)
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Figure 3: The function Qu for various values of σ

Qu is strictly decreasing with time. Otherwise, it is hump-shaped.

The economic intuition is the following. At time 0+ the mass of traders with high–valuation

is negligible. Therefore low–valuation investors have to absorb the entire supply. Hence, Q0+ =

s. At time Tf high valuation traders absorb all the supply. Hence, QTf = 0.

When the per–capita supply of assets concerned by the shock s is low, so that (21) holds,

the incoming flow of high–valuation traders reaching a decision at a given point in time is

always large enough to accommodate the supply from low–valuation traders. Correspondingly,

in equilibrium low valuation traders sell a lump of their assets when they reach a decision and

then smoothly unwind their inventory until the next information event.

In contrast, when s is large so that (21) fails to hold, the liquidity shock is more severe.

Hence, shortly after the initial aggregate shock, the inflow of high–valuation traders is not

large enough to absorb the sales of low–valuation traders who currently reach a decision. In

equilibrium, some of these sales are absorbed by “early” low–valuation traders who reached

a decision at time t < u and have not had another information event. Indeed, these “early”

low–valuation traders anticipate that, as time goes by, their institution is more likely to have

recovered. Thus, their expected valuation (in the absence of an information event) increases

with time and they find it optimal to buy if their utility is not too concave, i.e., if σ is not too

high. Correspondingly, near time zero, Qu is increasing, as depicted in Figure 3 for σ = 0.3 and

0.5.

Combining Lemma 4, Lemma 5, Lemma 6 and Proposition 3, one obtains a full charac-
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terization of the equilibrium holdings process, which can be compared to its counterpart in

the unlimited cognition case. When cognition is not limited, as long as an institution has not

recovered from the shock, its holdings decline smoothly, and, as soon as it recovers, they jump

to 1. Trading histories are quite different with limited cognition. First an institution’s holdings

remain constant until its trader’s first information event. Then, if at her first information event

the trader learns that her institution has a low valuation, she sells a lump. After that, if (21)

does not hold, the trader progressively buys back, and then eventually sells out at the next

jump of her information process. This process continues until she finds out her valuation has

recovered and her holdings jump to one. Such round–trip trades don’t arise in the unbounded

cognition case.

3.3.3 Trading volume

Because they result in round–trip trades, hump–shaped asset holding plans generate extra

trading volume relative to the unlimited cognition case. Specifically, consider a trader who, at

two consecutive information events t1 and t2, discovers that she has a low–valuation. During

the time period (t1, t2] she trades an amount of asset equal to∫ t2

t1

∣∣∣∣∂qt1,u∂u

∣∣∣∣ du+ |qt2,t2 − qt1,t2| . (22)

The first term in (22) is the flow of trading between time t1 and time t2 dictated by qt1,u, the

time–t1 holding plan. The second term is the lumpy adjustment at time t2.

Note that (16) implies that, whenever |∂qt1,u/∂u| is not 0, it has the same sign as Q′u. Note

also that, because at time t2 the trader observes that the institution has still not recovered,

qt2,t2 < qt1,t2 . Hence, if Qu is decreasing, (22) is equal to qt1,t1 − qt2,t2 . In contrast, if Qu is

increasing, the trading volume between t1 and t2 is

qt1,t2 − qt1,t1 + qt1,t2 − qt2,t2 = 2 (qt1,t2 − qt1,t1)︸ ︷︷ ︸
round trip trade

+qt1,t1 − qt2,t2 (23)

Since, qt1,t2 > qt1,t1 , (23) is greater than qt1,t1 − qt2,t2 . The first term in the equation is the extra

volume created by the round–trip trade: the purchase of qt1,t2 − qt1,t1 during (t1, t2) followed by

a sale of the same quantity at time t2.

The comparison between trading volume with unbounded cognition and with limited cogni-

tion depends on two effects: i) On one hand, the above discussion shows that cognition limits
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Figure 4: The trading volume unlimited (green) and limited cognition (blue), when σ = 0.3.
In the figure, Tψ denotes the argument maximum of Qu.

generate round-trip trades which tend to raise trading volume. ii) On the other hand, since

information events are infrequent, agents’ ability to realize mutually beneficial trades is limited

(e.g., if ρ = 0 there are no trades.) For the parameter values we consider, Figure 4 shows that,

for early times, effect i) dominates so that trading volume is greater with limited cognition.

But, as shown in the figure, for later times, effect ii) dominates so that trading volume is lower

with limited cognition. Indeed, round–trip trades become less prevalent, and stop after the

time Tψ when Qu reaches its maximum. When ρ goes to infinity, there is only effect i) so that,

as stated in the next proposition, trading volume is at least as large with limited cognition.

Proposition 4. When ρ goes to infinity, the equilibrium price and allocation converge to their

unlimited cognition counterparts. Relative to unlimited cognition, the extra volume at time t

with limited cognition converges to

γmax

{
s− µht
σ

− (1− s), 0
}
.

When condition (21) does not hold, this asymptotic extra volume is strictly positive for small t.

The proposition reveals the crucial role of the curvature parameter, σ: as illustrated in

Figure 3, when σ is small and utility is close to linear, the hump–shaped pattern in holdings is

quite pronounced. This leads to very large extra trading volume
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3.3.4 Prices

Proposition 1 implies that, from time Ts to time Tf , the price under limited cognition is lower

than its counterpart with unlimited cognition, 1/r. By continuity, the price is lower under

cognition limits just before Ts. The next proposition states that this ranking of prices holds at

all times if s < σ/(σ + 1), but not necessarily otherwise.

Proposition 5. If (21) holds, then at all time the price is strictly lower with limited cognition.

But if s is close to 1 and σ is close to 0, then at time 0 the price is strictly higher with limited

cognition.

That the price would be higher without cognition limits sounds intuitive. Unbounded cog-

nition enables traders to continuously allocate the asset to those who value it the most. Such

an efficient allocation could be expected to raise the price, and this is indeed what happens

when (21) holds. But, as stated in Proposition 5, there are cases where the price can be higher

when cognition is limited than when it is unbounded. The intuition is the following. Around

time zero, low–valuation traders are marginal. With limited cognition, low–valuation traders

have a higher marginal utility because they take into account the possibility that they may

have switched to high–valuation. Consequently, they demand more assets, which tends to push

up prices. This effect is stronger when low–valuation traders are marginal for a longer period,

that is, when the shock is more severe (s close to one) and when their utility flow is not too

concave (σ close to zero).

3.4 Robustness to recurring liquidity shocks

So far we focused on a simple model generating a deterministic equilibrium price process. In

this subsection, we show that our qualitative results are upheld in a more general model, with

stochastic shocks and stochastic prices. Thus, our baseline one–shock analysis can be viewed,

at least qualitatively, as the impulse response of a more general model with recurring shocks.

In the spirit of Duffie, Gârleanu, and Pedersen (2007) we assume that aggregate liquidity

shocks occur at Poisson arrival times with intensity κ > 0. As in the baseline model, when

a shock hits, all investors switch to the low–valuation state and recover later at independent

exponential times with intensity γ. We also assume that, at the time of a shock, all traders

withdraw from the market and halt trading, to re-design their holding plans. Traders resume
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trading and revise their holding plan at the first subsequent jump of their information process.23

We focus on stationary equilibria in which the price is stochastic, but can be written as function

of one random variable: the time elapsed since the last aggregate shock.

In Section IV, page 18 of the supplementary appendix, we show that the structure of the

equilibrium remains qualitatively the same as in our baseline model. In particular, the market

clearing condition is the same as in Lemma 2. Also, a trader’s objective function is∫ ∞
t

e−(r+ρ+κ)(u−t)
{
E [v(θu, qt,u) | θt] + κW (qt,u)− ξuqt,u

}
du

where ξu ≡ rpu − ṗu − κ(p0 − pu),

and the time index, t or u, denote the time elapsed since the last liquidity shock. This is

similar to the value function in Lemma 1, but with two changes. First, the definition of the

opportunity cost of holding asset is modified so as to reflect the possibility that a new shock

might hit the market with intensity κ, bringing down the price to p0. Second, the utility flow

is augmented by κW (qt,u), where W (q) is the value of holding q units of the asset at the time

of a new aggregate liquidity shock, until the first subsequent information event. In Section IV,

page 18 of the supplementary appendix, we solve for W (q), compute the optimal holdings and,

substituting them in the market clearing condition, obtain the following proposition.

Proposition 6. With recurrent random aggregate liquidity shocks, there exists an equilibrium

in which i) the price jumps each time the market is hit by a shock, ii) in between jumps the price

is the function of the time u elapsed since the last shock which is the unique bounded solution

of the ODE:

(r + κ)pu − ṗu =1 +
κ

r
− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)
Qσ
h,u

− δκ2(r + κ)(r + ρ+ κ)

r(r + ρ)(r + ρ+ κ+ γ)

∫ ∞
0

(
e−(r+κ)z − e−(r+ρ+κ)z

)
Qσ
h,z dz,

where Qh,u is defined in equation (IV.6), page 21 of the supplement.

In the supplement we provide various numerical examples based on our analytical charac-

terization. We consider various values of κ, set σ = 0.3, and otherwise keep the same parameter

23This is in line with evidence from the “flash crash” of May 6th, 2010: the Security and Exchanges
Commission reports that automated trading systems paused in reaction to the sudden price decline in
order to allow traders and risk managers to fully assess the risks before trading was resumed. See
www.sec.govnews/studies2010marketevents-report.pdf online.
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values as in Table 1. In the example where aggregate liquidity shocks occur every quarter on

average (κ = 4) we find that holding policies are hump–shaped and that the price is increas-

ing, just as in our baseline model. However, since traders anticipate the occurrence of future

liquidity shocks, the price level is about 9.5% lower.

4 Implementation with realistic market instruments

So far, our characterization of equilibrium was cast in abstract terms, such as holding plans

and market clearing. We now study how these holding plans can be implemented with realistic

market instruments. In doing so, we focus on electronic order driven markets. Such venues

are the major trading mechanism for stocks around the world (e.g., in the US Nasdaq and the

NYSE, and in Europe Euronext, the London Stock Exchange and the Deutsche Börse.) In

these markets, traders can place limit sell (resp. buy) orders requesting execution at prices at

least as large (resp. low) as their limit price. These orders are stored in the book, until they

are executed, canceled or modified. Traders can also place market orders, requesting immediate

execution. A limit sell order standing in the book is executed, at its limit price, when hit by

an incoming buy order (either a market order or a limit buy order with a higher price limit), if

there are no unexecuted sell orders in the book at lower prices, or at the same price but placed

at an earlier point in time. The case of a limit buy order is symmetric.24

There are multiple possible implementations of our equilibrium. For instance, there is a

trivial implementation, where all traders desiring to change their holdings continuously submit

market orders or limit orders at the current equilibrium price. While it has the advantage of

simplicity, this implementation is at odds with important stylized facts; for example it leads to

an empty limit order book. To narrow down the set of possible implementations while giving

rise to realistic dynamics, we restrict our attention to the case where market participants alter

their trading strategies only when their information process jumps. This is quite natural in our

framework, and it follows if, between two jumps of their information process, traders’ cognitive

resources are devoted to the complex task of assessing the liquidity status of their institution,

which leaves little opportunity to alter trading plans.

24Note also that a limit order to sell and a limit order to buy placed at the same price can’t both remain
together in the limit order book: as soon as offers cross each other they are executed, in accordance with price
and time priority rules.
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4.1 Implementing the equilibrium with limit orders and algorithms

First we assume that, when their information process jumps, in addition to market and limit

orders, traders can place trading algorithms. The latter are computer programs feeding orders

in the market as time goes by, in response to pre-specified future changes in market variables.25

Note that both limit orders and algorithms enable trades to happen without direct human

intervention while the trader is engaged in information collection and processing.26 Lastly,

in keeping with our limited–cognition assumption, we do not allow algorithms to condition

their orders on changes in the liquidity status of the institution occurring between jumps of its

information process.

It is straightforward to implement the holding plan of a high–valuation traders. Before Tf ,

as soon as their information process reveals their institution has recovered from the shock, they

place a limit order to buy at the current price, which is immediately executed.27 At that point

in time, since they now have their optimal holdings, they cancel any limit order they would

have previously placed in the book.

The case of low–valuation traders is more intricate. Indeed, one must bear in mind that

the equilibrium price given in Proposition 1 is strictly increasing over (0, Tf ). This implies that

any limit order to buy submitted at time t is either immediately executed (if the limit price is

greater than pt) or never executed (if the limit price is lower than pt). Consequently, if a trader

only places (limit or market) orders when her information process jumps, she cannot implement

increasing holding plans. In contrast, when the equilibrium holding plan is decreasing, it can

be implemented by placing at time t an immediately executed market order to sell, as well as

limit orders to sell at price pu > pt which will be executed later. Now, Proposition 3 states

that equilibrium holdings are decreasing if and only if condition (21) holds. This leads to the

following Proposition:

Proposition 7. The equilibrium characterized in Proposition 1 can be implemented by traders

placing market and limit orders (only) when their information process jumps if and only if (21)

holds.
25Because we do not have any aggregate uncertainty, market-level variables (price, volume, quote...) are in

our model deterministic functions of time. Thus, conditioning on time is enough to make the algorithm also
depend on the state of the market. In a more general model with aggregate uncertainty, one would need to
explicitly allow algorithms to depend on market–level variables at time u.

26This is in line with the view of Harris (2003), who argues that “Limit orders represent absent traders
[enabling them] to participate in the markets while they attend to business elsewhere.”

27Equivalently, they could place a market order to buy. Assuming they place a limit order to buy at pt pins
down the market clearing price.

26



If (21) does not hold, asset holding plans are hump shaped. As argued above, in order to

implement the increasing branch of the hump, a trader cannot use limit buy orders: instead,

she must rely on algorithms.

For concreteness, consider the example illustrated in Figure 5. Interpret t1 and t2 as the time

of two consecutive jumps of the information process of a trader, both revealing low valuation. At

t2 the trader’s asset holdings undergo a discrete downward jump, from qt1,t2 to qt2,t2 . Then they

continuously increase, reach a flat, and finally decrease again. To implement this holding plan,

the trader places a market sell order at time t2, which implements the initial downward jump

in her optimal holdings. She also programs her algorithm to place a sequence of market buy

orders after t2, which implement the increasing part of her holding plan. Finally, to implement

the smoothly decreasing part of her holding plan, she uses a schedule of limit sell orders.

As shown on Figure 5, the limit sell orders placed at time t2 start executing before those

placed at time t1. Since the equilibrium price process is increasing, this means that these orders

are placed at lower prices than the previous ones. The figure also shows that the holding plan

set at time t2 declines less steeply than its t1 counterpart. This reflects that the quantity offered

in the book at corresponding prices is lower for the plan set at t2 than for the plan set at t1.

Thus, to implement the new holding plan, at t2 the trader cancels some of the orders placed

at t1, replacing them with more aggressive orders. Finally note that, at t2, the trader also

modifies the trading algorithm generating the purchases necessary to implement the increasing

part of her holding plan. This can be interpreted in terms of human intervention resetting the

parameters of the trading algorithm. This discussion is summarized in our next proposition.

Proposition 8. Consider a trader observing low valuation at time t < Tf . If (21) does not

hold she can implement the optimal holding plan arising in Proposition 1 by placing market and

limit sell orders at t and programming her trading algorithm to trigger market buy orders at

times u > t.

Turning back to Figure 5, now interpret t1 and t2 as the times at which the information

processes of two traders jump, each time revealing low valuation. The figure illustrates that

the late trader starts selling before the early trader implying that the limit sell orders of the

late trader are placed at lower prices than the limit sell orders of the early trader, i.e., there

is undercutting.28 To see why this is optimal, compare the time–u expected valuations of

28This is in line with the empirical results of Biais, Hillion, and Spatt (1995), Griffiths, Smith, Turnbull, and
White (2000) and Ellul, Holden, Jain, and Jennings (2007).
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Figure 5: The holding plans of an early low–valuation trader and of a late low–valuation trader,
when σ = 0.3

the time–t1 trader and the time–t2 trader, assuming that for both of them there has been no

new information event by time u. For the trader who observed low valuation at time t1 the

probability that her valuation is high now is: 1−e−γ(u−t1). For the other trader it is 1−e−γ(u−t2),
which is lower since t2 > t1. Hence the expected valuation of the time–t1 trader is greater than

that of the time–t2 trader. This is why the time–t1 trader sells later.29

Taking stock of the above results, we now describe the overall market dynamics prevailing

when (21) does not hold and Qu > 1 for some u. There are four successive phases in the market,

as illustrated in Figure 6.

• There exists a time T1 < Tf such that, from time 0 to T1, low valuation traders place

limit sell orders at lower and lower prices, i.e., there is undercutting. These limit orders

accumulate in the book, without immediate execution. Correspondingly, the best ask

decreases and the depth on the ask side of the book increases. During this period, low

valuation traders also place market sell orders, which are executed against limit buy orders

placed by high–valuation traders and algorithms.

• Denoting by Tψ ∈ (T1, Tf ) the time at which Qu achieves its maximum, during [T1, Tψ]

the best ask quote remains constant and the depth on the ask side of the book declines.

Indeed, during this period, low valuation traders stop undercutting the best quote, while

29This goes along the same lines as the intuition why low valuation traders placing trading plans at t will
initially sell and then buy from agents placing their trading plans later.
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high valuation traders cancel their limit orders. During this second phase of the market,

there are still no executions at the best ask, and trades are initiated by low valuation

traders placing market sell orders, executed against the limit buy orders placed by high

valuation traders.

• The third phase is between Tψ and Tf . During this period, high valuation traders hit the

limit sell orders outstanding in the book with market orders to buy (or marketable limit

orders). Correspondingly, the depth on the ask side continues to decline, and the best

ask price goes up.30

• Finally, after time Tf , the market has recovered from the shock, and the price remains

constant at 1/r.
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Figure 6: Price dynamics (Panel A) and limit order book activity (Panel B), when σ = 0.3.
Supplementary appendix VIII.18 provides the formulas leading to Panel B.

30Note that there is no bid–ask bounce in this market. Until time Tψ all trades are executed at the limit
price of buy orders stemming from traders who just realized their valuation was high. After Tψ all trades are
executed against the best limit order to sell outstanding in the book. Note also that the tick size is zero, so that
prices are not restricted to a discrete grid. Thus there is a sequence of executions at smoothly increasingly high
bid prices, followed by a sequence of executions at smoothly increasing ask prices. Thus in equilibrium there
is positive serial correlation in successive order types, in line with the empirical findings of Biais, Hillion, and
Spatt (1995), Griffiths, Smith, Turnbull, and White (2000) and Ellul, Holden, Jain, and Jennings (2007).
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The algorithmic trading strategies generated by our model are in line with stylized facts and

empirical findings. That algorithms progressively build up an increasing position via successive

buy orders can be interpreted in terms of order splitting. That they buy progressively as the

price deterministically trends upwards can be interpreted in terms of short–term momentum

trading. That after the liquidity shock they build up long positions which they will eventually

unwind is in line with the findings by Brogaard (2010) that algorithms don’t withdraw after

large price drops and benefit from price reversals. Our theoretical results are also is in line with

the empirical findings by Hendershott and Riordan (2010) that trading algorithms provide

liquidity when it is scarce and rewarded. Indeed, the strategies followed by our algo–traders

(who buy initially while simultaneously placing limit orders to sell to be executed later) is a

form of market–making, similar to that arising in Grossman and Miller (1988). Note however

that, while in Grossman and Miller some market participants are exogenously assumed to be

liquidity providers and other liquidity consumers, in our model all participants are identical

ex–ante, yet they play different roles in the market because of differences in the realizations of

their information and valuation processes.

4.2 Equilibrium without trading algorithms

What happens if trading algorithms are not available and traders can only place limit and

market orders at the time of information events? Suppose for now that the equilibrium price

is increasing (which will turn out to be the case in equilibrium). As mentioned in Subsection

4.1 if traders place orders only when their information process jumps, this precludes them from

implementing increasing holding plans. Instead, they can only implement decreasing holding

plans. Therefore, if condition (21) does not hold, the equilibrium will differ from that arising

in Proposition 1. Instead, the equilibrium is as in the next proposition.

Proposition 9. If s > σ/(1 + σ) and traders can only place limit and market orders when

their information process jumps, there exists an equilibrium in which the price path is strictly

increasing over (0, Tf ), and equal to 1/r over [Tf ,∞). High-valuation traders, and low–valuation

traders after Tf , follow the same asset holding plan as in Proposition 1. For low–valuation

traders before Tf , the optimal holding plan qt,u is continuous in (t, u) and strictly less than 1.

Moreover, there exists Tφ ∈ (0, Tf ) and a strictly decreasing function φ : (0, Tφ] 7→ R+, such

that:

• If t ∈ (0, Tφ], then qt,u is constant for u ∈ [t, φt], and strictly decreasing for u ∈ (φt, Tf ).
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Figure 7: Holding plans of algorithmic versus limit order traders, when σ = 0.3, given the
equilibrium price of Proposition 9.

• If t ∈ (Tφ, Tf ], then qt,u is strictly decreasing for u ∈ (t, Tf ).

While the proposition describes the equilibrium in abstract terms, in the the appendix we

provide closed–form analytical solutions for all relevant equilibrium objects. Also, one may

wonder whether the equilibrium in Proposition 9 is unique. We provide a partial answer to

this question in the supplementary appendix to this paper. We show that the equilibrium of

Proposition 9 is unique in the class of Markov equilibria, i.e., equilibria where traders find it

optimal to choose holding plans which only depend on the information-event time (the current

aggregate state) and their current utility status (their current idiosyncratic state).31

The intuition for Proposition 9 is the following. When s > σ/(1 + σ), time–t < Tφ low–

valuation traders would choose hump-shaped holding plans if their holdings were not constrained

to be decreasing (the solid curve in Figure 7). Faced with the constraint of choosing a decreasing

holding plan, they “iron” the increasing part of the hump-shaped plans (the dashed curve in

Figure 7).

To implement the holding plans of the proposition, time–t low–valuation traders place mar-

ket sell orders, as well as schedules of limit sell orders, which start executing at time φt.

Proposition 9 also implies that, similarly to the case where traders could use algorithms, there

31Importantly, our proof does not make any a priori monotonicity restriction on the price path. Instead, we
consider general and possibly non-monotonic price paths. We then show, via elementary optimality and market
clearing considerations, that the preference dynamics and the focus on Markov equilibria imply that the price
path is continuous, strictly increasing until time Tf , and flat after time Tf .
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is undercutting in equilibrium: since φt is strictly decreasing, successive traders place limit sell

orders at lower and lower prices.32

Note that, both in Proposition 1 and Proposition 9, the time at which the price fully recovers

from the liquidity shock is Tf , the time at which the residual supply Su (defined in (12)) reaches

0. This is because Su is a function of the total quantity of the asset brought to the market

and of the unit demand of high–valuation traders, both of which are unaffected by whether

low–valuation traders can use algorithms or not. The next proposition offers further insights

into the comparison of the price paths are arising in Proposition 9 and Proposition 1.

Proposition 10. When s > σ/(1 + σ):

• The price arising in Proposition 1 is strictly lower than its counterpart in Proposition 9

around time zero for ρ close to 0.

• The price arising in Proposition 1 is strictly higher than its counterpart in Proposition 9

between Tφ and φ0;

• The price is identical in Proposition 1 and in Proposition 9 after time φ0.

The Proposition shows that, shortly after the liquidity shock, the price can be lower when

institutions use trading algorithms.33 The intuition is the following. When they can’t use

algorithms, traders know they won’t be able to buy back before their next information event.

Hence they initially sell less, which reduces the selling pressure on the price. Consequently the

price can be higher than when traders can use algorithms. An outside observer may conclude

that banning the use of algorithms could be socially beneficial, since it would alleviate the initial

price pressure created by the liquidity shock. However, inferring aggregate welfare implications

from price effects is misleading. Indeed, Proposition 2 implies that the equilibrium arising with

algorithms Pareto dominates that arising when traders can only place limit and market orders

when their information process jumps.

Figure 8 plots the trading volume (upper panel) and the volume of limit orders outstanding

in the book (lower panel) in Propositions 1 and 9. Trading volume is higher when institutions

32Note that in Proposition 9 we obtain undercutting for all (s, σ) such that σ/(1 + σ) < s. In Proposition 1,
by contrast, we obtain undercutting for the smaller set of parameters such that the maximum of Qu is greater
than one.

33While we are only able to establish this result analytically for small ρ, our numerical calculations suggests
that it can hold for larger value of ρ. In particular, it does hold for the value ρ = 250 that we have chosen for
the numerical calculations presented in this paper as well as in our supplementary appendix.
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Figure 8: Trading volume (upper panel) and volume of limit orders outstanding in the book
(lower panel), when σ = 0.3

can use algorithms. This reflects the additional trading volume generated by round trip trades.

Qualitatively, the stock of limit orders in the book has the same shape in Propositions 1 and

9. The book is filled progressively as limit orders to sell are placed by low–valuation traders.

Then, cancellations and executions lead to a decrease in the stock of orders in the book. During

the early phase, the amount of limit orders outstanding is higher in Proposition 1 than in

Proposition 9. Indeed, with algorithms low valuation traders buy after their information even,

this induces them to place more limit order to sell, to unwind this position towards the end of

the price recovery process.

5 Conclusion

This paper studies the reaction of traders and markets to liquidity shocks under cognition limits.

We model the aggregate liquidity shock as a transient decline in the valuation of the asset

by all participants. While institutions recover from the shock at random times, traders with

limited cognition observe the status of their institution only when their own information process

jumps. We interpret this delay as the time it takes traders to collect and process information

about positions, counterparties, risk exposure and compliance. We characterize equilibrium
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prices and asset holding plans under two alternative market structures: when traders can use

algorithms to automatically change their holding plan while investigating the liquidity status of

their institution, and when they can only place market and limit orders when their information

process jumps.

Our analysis suggests that, to an outside observer, algorithms may seem to be price desta-

bilizing. We show however that they play a socially useful role by facilitating market–making:

the equilibrium prevailing when traders can use algorithms always Pareto dominates that pre-

vailing if traders can only place limit orders. This reflect the absence of externalities, as the

asset holding constraints imposed by cognition limits don’t depend on other traders’ actions.

Note however that in our analysis there is no adverse selection. In a more general model

with changes in common values and where some “slow” traders could not use algorithms, while

“fast traders” could, information asymmetries could arise.34 In this context, algorithmic trading

could inflict negative externalities on slow traders, and equilibrium might no longer be optimal.

Biais, Foucault, and Moinas (2010a) analyze these issues in a one period model. Because of

their static setup, however, they cannot consider rich dynamic order placement policies such as

those arising in the present model. An interesting, but challenging, avenue of further research

would be to extend the present model to the asymmetric information case. In doing so one

could take stock of the insights of Goettler, Parlour, and Rajan (2009) and Pagnotta (2010)

who study dynamic order placement under asymmetric information.

34Consistent with the view that algorithmic traders have superior information Hendershott and Riordan
(2010) and Brogaard (2010) find empirically that algorithmic trades have greater permanent price impact than
slow trades and lead price discovery.
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A Proofs
This appendix provides the omitted proofs in the main body of the paper. To keep the exposition concise, some
intermediate results and calculations are gathered in our supplementary appendix, Biais, Hombert, and Weill
(2010b).

A.1 Proof of Lemma 1
Let us start by deriving a convenient expression for the intertemporal cost of buying and selling assets. For
this we let τ0 ≡ 0 < τ1 < τ2 < . . . denote the sequence of information events. For accounting purposes, we can
always assume that, at her n-th information event, the trader sells all of her assets, qτn−1,τn , and purchases a
new initial holding qτn,τn . Thus, the expected inter-temporal cost of the holding plan can be written:

E0

[
−pτ1e−rτ1q0,τ1 +

∞∑
n=1

{
e−rτnpτnqτn,τn +

∫ τn+1

τn

pu dqτn,ue
−ru − e−rτn+1pτn+1qτn,τn+1

}]
.

Given that pu is continuous and piecewise continuously differentiable, and that u 7→ qτn,u has bounded vari-
ations, we can integrate by part (see Theorem 6.2.2 in Carter and Van Brunt, 2000), keeping in mind that
d/du(e−rupu) = −e−ruξu. This leads to:

E0

[
−pτ1e−rτ1q0,τ1 +

∞∑
n=1

∫ τn+1

τn

e−ruξuqτn,u du

]
= −p0s+ E0

[ ∞∑
n=0

∫ τn+1

τn

e−ruξuqτn,u du

]

=constant + E0

[∫ ∞
0

e−ruξuqτu,u du

]
.

In the above, the first equality follows by adding and subtracting q0,u = s, and by noting that q0,u is constant;
the second equality follows by using our “τu” notation for the last contact time before u. With the above result
in mind, we find that, up to a constant, we can rewrite the intertemporal payoff net of cost as:

E0

[∫ ∞
0

e−ru
(
v(θu, qτu,u)− ξuqτu,u

)
du

]
. (A.1)

Now for any t ≤ u, the probability that τu ≤ t is the probability that Nu −Nt = 0, which is equal to e−ρ(u−t).
Thus, the distribution of τu has an atom of mass e−ρu at t = 0, and then the density ρe−ρ(u−t) for t ∈ (0, u].
Hence, after applying Baye’s rule, (A.1) rewrites as:∫ ∞

0

e−ru
{
e−ρuE

[
v(θu, q0,u)− ξuq0,u

∣∣∣∣ τu = 0

]
+

∫ u

0

ρe−ρ(u−t)E
[
v(θu, qt,u)− ξuqt,u

∣∣∣∣ τu = t

]
dt

}
du. (A.2)

To simplify this expression, we rely on the following lemma, proved in Section VIII.1, page 44 in the supple-
mentary appendix.

Lemma A.1. E [v(θu, qt,u)− ξuqt,u | τu = t] = E [v(θu, qt,u)− ξuqt,u] for all t ≥ 0.

The lemma is clearly true for t = 0 since q0,u = s for all u, and since the information event process is
independent from the type process. In Section VIII.1 below, we show that it also holds for t > 0. Intuitively,
this is because of two facts. First, as noted above, the information event process is independent from the type
process. Second, {τu = t} = {Nt −Nt− = 1 and Nu −Nt = 0} only depends on increments of the information
process at and after t, which are independent from the trader’s information one instant before t, and hence
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independent from the predictable process qt,u. Relying on Lemma A.1, equation (A.2) becomes:∫ ∞
0

e−(r+ρ)uE [v(θu, s)− ξus] du+

∫ ∞
0

e−ru
∫ u

0

ρe−ρ(u−t)E [v(θu, qt,u)− ξuqt,u] dt du

=

∫ ∞
0

e−(r+ρ)uE [v(θu, s)− ξus] du+ E
[∫ ∞

0

e−rt
∫ ∞
t

e−(r+ρ)(u−t)Et [v (θu, qt,u)− ξuqt,u] du ρdt

]
,

where Et [ · ] refers to the expectation conditional upon Ft and the second line follows from changing the order
of integration and applying the law of iterated expectations.

A.2 Preliminary results about Qu

We start with preliminary results that we use repeatedly in this Appendix. For the first preliminary result, let
Ψ(Q) ≡ inf{ψ ≥ 0 : (1− µhψ)1/σQ ≤ 1}, and ψu ≡ Ψ(Qu). We have:

Lemma A.2 (Preliminary results about Qu). Equation (17) has a unique solution, Qu. Moreover, 0 ≤ Qu <
(1− µhu)−1/σ and Qu is continuously differentiable with

Q′u =
eρu(s− µhu)− eρu (1− µhu)

1+1/σ
Qu∫ u

ψu
eρt (1− µht)1+1/σ

dt
. (A.3)

In the proof of the Lemma, in Section VIII.2 page 44 of the supplementary appendix, we first show existence,
uniqueness, and the inequality Qu < (1− µhu)1/σ using the monotonicity and continuity of equation (17) with
respect to Q. We then show that the solution is continuously differentiable using the Implicit Function Theorem.

For the second preliminary result, consider equation (17) after removing the min operator in the integral:∫ u

0

ρe−ρ(u−t) (1− µht)1+1/σ
Qu dt = Su ⇐⇒ Qu ≡

∫ u
0
eρt (s− µht) dt∫ u

0
eρt (1− µht)1+1/σ

dt
. (A.4)

Now, whenever Qu ≤ 1, it is clear that Qu also solves equation (17). Given that the solution of (17) is unique
it follows that Qu = Qu. Conversely if Qu = Qu, subtracting (17) from (A.4) shows that:∫ u

0

ρe−ρ(u−t)(1− µht)
(

(1− µht)1/σQu −min{(1− µht)1/σQu, 1}
)
dt = 0.

Since the integrand is positive, this can only be true if (1− µht)1/σQu = min{(1− µht)1/σQu, 1} for almost all
t. Letting t→ 0 delivers Qu ≤ 1. Taken together, we obtain:

Lemma A.3 (A useful equivalence). Qu ≤ 1 if and only if Qu = Qu.

The next Lemma, proved in Section VIII.3 page 46 of the supplementary appendix, provides basic properties
of Qu:

Lemma A.4 (Preliminary results about Qu). The function Qu is continuous, satisfies Q0+ = s, QTf = 0. It

is strictly decreasing over (0, Tf ] if s ≤ σ/(1 + σ) and hump-shaped otherwise.

A.3 Proof of Proposition 1
The asset holding plans are determined according to Lemmas 4-6. The asset holding plan of high-valuation
traders are uniquely determined for u ∈ (0, Tf ], and are indeterminate for u > Tf . The holding plan of low-
valuation investor is uniquely determined, as Lemma A.2 shows that equation (17) has a unique solution. Now,
turning to the price, the definition of Qu implies that the price solves rpu = 1− δ(1− µhu)Qσu + ṗu for u < Tf .
For u ≥ Tf , the fact that high-valuation traders are indifferent between any asset holdings in [0, 1] implies that
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rpu = 1 + ṗu. But the price is bounded and positive, so it follows that pu = 1/r. Since the price is continuous
at Tf , this provides a unique candidate equilibrium price path. Clearly this candidate is C1 over (0, Tf ) and
(Tf ,∞). To show that it is continuously differentiable at Tf note that, given QTf = 0 and pTf = 1/r, ODE (18)
implies that ṗT−

f
= 0. Obviously, since the price is constant after Tf , ṗT+

f
= 0 as well. We conclude that ṗu is

continuous at u = Tf as well.
Next, we show that the candidate equilibrium thus constructed is indeed an equilibrium. For this recall

from Lemma A.2 that 0 < Qu < (1− µhu)−1/σ, which immediately implies that

0 < 1− rpu + ṗu < 1

for u < Tf . It follows that high-valuation traders find it optimal to hold one unit. Now one can directly verify

that, for u < Tf , the problem of low-valuation traders is solved by qt,u = min{(1−µht)−1/σQu, 1}. For u ≥ Tf ,
1−rpu+ ṗu = 0 and so the problem of high-valuation traders is solved by any qt,u ∈ [0, 1], while the the problem
of low-valuation traders is clearly solved by qt,u = 0. The asset market clears at all dates by construction.

We already know that the price is equal to 1/r for t > Tf so the last thing to show is that it is strictly

increasing for t < Tf . Letting ∆u ≡ (1−µhu)1/σQu for u ≤ Tf , and ∆u = 0 for u ≥ Tf . In Section VIII.4, page
47 in the supplementary appendix, we show that:

Lemma A.5. The function ∆u is strictly decreasing over (0, Tf ].

Now, in terms of ∆u, the price writes:

pu =

∫ ∞
u

e−r(y−u)
(
1− δ∆σ

y

)
dy =

∫ ∞
0

e−rz
(
1− δ∆σ

z+u

)
dz,

after the change of variable y − u = z. Since ∆u is strictly decreasing over u ∈ (0, Tf ), and constant over
[Tf ,∞), it clearly follows from the above formula that pu is strictly increasing over u ∈ (0, Tf ).

A.4 Proof of Proposition 2
Let us start with a preliminary remark. By definition, any feasible allocation q̃ satisfies the market–clearing
condition E0 [q̃τu,u] = s. Taken together with the fact that ξu = rpu − ṗu is deterministic, this implies:

E
[∫ ∞

0

e−ruqτu,uξu du

]
(A.5)

=

∫ ∞
0

e−ruE [qτu,u] ξu du =

∫ ∞
0

e−rusξu du = p0s. (A.6)

With this in mind, consider the equilibrium asset holding plan of Proposition 1, q, and suppose it does
not solve the planning problem. Then there is a feasible asset holding plan q′ that achieves a strictly higher
value of the objective (20). But, by (A.6), this asset holding plan has the same cost as the equilibrium asset
holding plan. Subtracting the inter-temporal cost (A.6) from the inter-temporal utility (A.1), we obtain that
V (q′) > V (q), which contradicts individual optimality.

A.5 Proof of Proposition 3
Taken together, Lemma A.3 and A.4 immediately imply that

Lemma A.6. The function Qu satisfies Q0+ = s, QTf = 0. If s ≤ σ/(1 + σ), then it is strictly decreasing over

(0, Tf ]. If s > σ/(1 + σ) and Qu ≤ 1 for all u ∈ (0, Tf ], Qu is hump-shaped over (0, Tf ].

The only case that is not covered by the Lemma is when s > σ/(1 + σ) and Qu > 1 for some u ∈ (0, Tf ].

In that case, note that for u small and u close to Tf , we have that Qu < 1. Given that Qu is hump-shaped,

it follows that the equation Qu = 1 has two solutions, 0 < T1 < T2 < Tf . For u ∈ (0, T1] (resp. u ∈ [T2, Tf ]),
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Qu ≤ 1 and is increasing (resp. decreasing), and thus Lemma A.3 implies that Qu = Qu and increasing (resp.
decreasing) as well.

In particular, since we know from Lemma A.2 that Qu is continuously differentiable, we have that Q′T1
> 0

and Q′T2
< 0. Thus, Qu changes sign at least once in (T1, T2). To conclude, in Section VIII.5 we establish:

Lemma A.7. The derivative Q′u changes sign only once in (T1, T2).

A.6 Proof of Proposition 4
In Section VIII.6, page 50 in the supplementary appendix, we prove the following asymptotic results:

Lemma A.8. As ρ goes to infinity:

Tf (ρ) ↓ Ts (A.7)

Qu(ρ) =
s− µhu

(1− µhu)1+1/σ
− 1

ρ

γ

(1− µhu)1/σ

[(
1 +

1

σ

)
s− µhu
1− µhu

− 1

]
+ o

(
1

ρ

)
, ∀u ∈ [0, Ts] (A.8)

Tψ(ρ) = arg max
u∈[0,Tf (ρ)]

Qu(ρ) −→ arg max
u∈[0,Ts]

s− µhu
(1− µhu)1+1/σ

. (A.9)

With this in mind we can study the asymptotic behavior of price, allocation, and volume.

A.6.1 Asymptotic price

Proposition 1 shows that the price at all times t ∈ [Tf ,∞) is equal to 1/r. But we know from Lemma A.8 that
Tf (ρ)→ Ts as ρ→∞. Clearly, this implies that, for all t ∈ (Ts,∞), as ρ→∞ the price converges towards 1/r,
its unlimited cognition counterpart.

Integrating the ODEs of Proposition 1 shows that, at all times t ∈ [0, Ts], the price is equal to:

pt =

∫ Tf (ρ)

t

e−r(u−t) (1− δ(1− µhu)Qσu(ρ)) du+
e−r(Tf (ρ)−t)

r
.

But Lemma A.8 shows that (1−µhu)Qσu(ρ) converges point–wise towards [(s− µhu)/(1− µhu)]
σ
. Moreover, we

know that (1− µhu)Qσu ∈ [0, 1]. It thus follows from dominated convergence that pt converges to its unlimited
cognition counterpart.

A.6.2 Asymptotic distribution of asset holdings

Let us start with some u ≤ Ts. With unlimited cognition, traders whose valuation is low at time u hold
(s − µhu)/(1 − µhu), and traders whose valuation is high hold one share. With limited cognition, the time–u
cross–sectional distribution of asset holdings across low–valuation traders is, by our usual law of large numbers
argument, the time–u distribution of asset holding generated by the holding plan of a representative trader,
conditional on θu = `. In Section VIII.7, page 52 in the supplementary appendix, we establish:

Lemma A.9. For all ε > 0, as ρ→∞:

Proba

(∣∣ qτu,u − s− µhu
1− µhu

∣∣ > ε

∣∣∣∣ θu = `

)
→ 0 (A.10)

Proba

(∣∣ qτu,u − 1
∣∣ > ε

∣∣∣∣ θu = h

)
→ 0. (A.11)
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A.6.3 Asymptotic volume

Basic formulas. As before, let Tψ denote the arg max of the function Qu. For any time u < Tψ and some time
interval [u, u+du], the only traders who sell are the one who have an information event during this time interval,
and who find out that they have a low valuation. Thus, trading volume during [u, u+ du] can be computed as
the volume of assets sold by these traders, as follows. Just before their information event, low–valuation traders
hold on average:

E [qτu,u | θu = `] = e−ρus+

∫ u

0

ρe−ρ(u−t)q`,t,u dt, (A.12)

since a fraction e−ρu of them have had no information event and still hold s unit of the asset and a density
ρe−ρ(u−t) of them had their last information event at time t and hold q`,t,u. Instantaneous trading volume is
then:

Vu = ρ(1− µhu)

(
E [qτu,u | θu = `]− q`,u,u

)
, (A.13)

where ρ(1 − µhu) is the measure of low–valuations investors having an information event, the term in large
parentheses is the average size of low–valuation traders’ sell orders, and q`,u,u is their asset holding right after
the information event.

For any time u ∈ (Tψ, Tf ) and some time interval [u, u + du], the only traders who buy are the one who
have an information event during this time interval, and who find out that they have a high valuation. Trading
volume during [u, u+ du] can be computed as the volume of assets purchased by these traders:

Vu = ρµhu

(
1− E [qτu,u | θu = h]

)
, (A.14)

where the time–u average asset holdings of high-valuation investors is found by plugging (A.12) into the market
clearing condition:

µhuE [qτu,u | θu = h] + (1− µhu)E [qτu,u | θu = `] = s.

For u > Tf , the trading volume is not zero since high–valuation traders continue to buy from the low valuation
traders having an information event:

Vu = ρ(1− µhu)E [qτu,u | θu = `] . (A.15)

Taking the ρ→∞ limit. We first note that q`,u,u(ρ) = min{(1− µhu)1/σQu, 1} = (1− µhu)1/σQu(ρ). Next,
we need to calculate an approximation for:

E [qτu,u | θu = `] = se−ρu +

∫ u

0

min{(1− µht)1/σQu(ρ), 1}ρe−ρ(u−t) dt.

For this we can follow the same calculations leading to equation (VIII.12) in the proof of Lemma A.8, page 51
in the supplementary appendix, but with f(t, ρ) = min{(1− µht)1/σQu(ρ), 1}. This gives:

E [qτu,u | θu = `] = se−ρu +

∫ u

0

ρe−ρ(u−t)f(t, ρ) dt = f(u, ρ)− 1

ρ
ft(u, ρ) + o

(
1

ρ

)
= (1− µhu)1/σQu(ρ) +

1

ρ

γ

σ

s− µhu
1− µhu

+ o

(
1

ρ

)
=
s− µhu
1− µhu

+
γ

ρ

1− s
1− µhu

+ o

(
1

ρ

)
,

where the second line follows from plugging equation (A.8) in the first line. Substituting this expression into
equations (A.13) and (A.14), we find after some straightforward manipulation that, when ρ goes to infinity,
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Vu → γ(s− µhu)/σ for u < Tψ(∞), Vu → γ(1− s) for u ∈ (limTψ(∞), Ts), and Vu → 0 for u > Ts.
The trading volume in the Walrasian equilibrium is equal to the measure of low–valuation investors who

become high-valuation: γ(1− µhu), times the amount of asset they buy at that time: 1− (s− µhu)/(1− µhu).
Thus the trading volume is γ(1 − s). To conclude the proof, note that after taking derivatives of Qu(∞) with
respect to u, it follows that

Q′Tψ(∞)(∞) = 0⇔
s− µhTψ(∞)

σ
= 1− s

which implies in turn that γ(s− µhu)/σ > γ(1− s) for u < Tψ(∞).

A.7 Proof of Proposition 5

A.7.1 First point: when (21) holds

Given the ODEs satisfied by the price path in both markets, it suffices to show that, for all u < Ts,

(1− µhu)Qσu >

(
s− µhu
1− µhu

)σ
.

Besides, when s ≤ σ/(σ + 1), it follows from Lemma A.3 and Lemma A.4 that:

Qu = Qu =

∫ u
0
eρt(s− µht) dt∫ u

0
eρt(1− µht)1+1/σ dt

.

Plugging the above and rearranging, all we are left showing is that:

Fu = (s− µhu)

∫ u

0

eρt(1− µht)1+1/σ dt− (1− µhu)1+1/σ

∫ u

0

eρt(s− µht) < 0.

But we know from the proof of Lemma A.4, equation (VIII.5), page 46 in the supplementary appendix, that Fu
has the same sign than Q′u, which we know is negative at all u > 0 since s ≤ σ/(σ + 1).

A.7.2 Second point: when s is close to 1 and σ is close to 0

The price at time 0 is equal to:

p0 =

∫ +∞

0

e−ruξu du,

where we make the dependence of s and σ explicit. With perfect cognition, ξu = 1− δ((s− µhu)/(s− µhu))σ =
1− δ (1− (1− s)eγu)

σ
for u < Ts, and ξu = 1 for u > Ts. Therefore p0 = 1/s− δI(s), where:

I(s) ≡
∫ Ts

0

e−ru (1− (1− s)eγu)
σ
du,

where we make explicit the dependence on s. Similarly, with limited cognition, the price at time 0 is equal to
p0 = 1/s− δJ(s), where:

J(s) ≡
∫ Tf

0

e−ru(1− µhu)Qσu du.

We start with a Lemma which we proved in Section VIII.8.1, page 53 in the supplementary appendix:
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Lemma A.10. When s goes to 1, both I(s) and J(s) go to 1/r.

Therefore, p0 goes to (1−δ)/r both with perfect cognition and with limited cognition. Besides, with perfect
cognition:

p0(s0) = (1− δ)/r + δ

∫ 1

s0

I ′(s) ds,

and with limited cognition:

p0(s0) = (1− δ)/r + δ

∫ 1

s0

J ′(s) ds.

The next two lemmas compare I ′(s) and J ′(s) for s in the neighborhood of 1 when σ is not too large. The first
Lemma is proved in Section VIII.8.2, page 54 in the supplementary appendix:

Lemma A.11. When s goes to 1:

I ′(s) ∼ constant if r > γ,

I ′(s) ∼ Γ1(σ) log((1− s)−1) if r = γ,

I ′(s) ∼ Γ2(σ)(1− s)−1+r/γ if r < γ,

where the constant terms Γ1(σ) and Γ2(σ) go to 0 when σ → 0.

In the Lemma and in all what follows f(s) ∼ g(s) means that f(s)/g(s) → 1 when s → 1. The second
Lemma is proved in Section VIII.8.3, page 55 in the supplementary appendix:

Lemma A.12. Assume γ + γ/σ − ρ > 0. There exists a function J̃ ′(s) ≤ J ′(s) such that, when s goes to 1:

J̃ ′(s)→ +∞ if r > γ,

J̃ ′(s) ∼ Γ3(σ) log((1− s)−1) if r = γ,

J̃ ′(s) ∼ Γ4(σ)(1− s)−1+r/γ if r < γ,

where the constant terms Γ3(σ) and Γ4(σ) go to strictly positive limits when σ → 0.

Lemmas A.11 and A.12 imply that, if σ is close to 0, then J ′(s) > I ′(s) for s in the left-neighborhood of 1.
The second point of the proposition then follows.

A.8 Proofs of Proposition 9

A.8.1 The candidate equilibrium

Before formulating our guess, we need the following Lemma, proved in in Section VIII.9, page 59 in the supple-
mentary appendix:

Lemma A.13. Suppose s > σ/(1 + σ) and let Tφ > 0 be the unique solution of:

µhTφ
σ

=

(
1 +

1

σ

)
s− 1. (A.16)

Then Tφ < Ts and, for all t ∈ [0, Tφ) there exists a unique φt ∈ (Tφ, Tf ) such that∫ φt

t

eρu
[
(1− µhu)1+1/σ(s− µht)− (1− µht)1+1/σ(s− µhu)

]
du = 0. (A.17)
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In addition t 7→ φt is continuously differentiable, strictly decreasing over [0, Tφ], and limt→Tφ φt = Tφ.

For concision, we directly state below the analytical formula defining the candidate LOE. (a heuristic
constructive proof is available from the authors upon request).

The price path. The price path is continuous and solves the following ODEs. When t ∈ (0, Tφ):

rpt − ṗt = ξt = 1− δ
(
s− µht
1− µht

)σ
+ δ

d

dt

[(
s− µht

(1− µht)1+1/σ

)σ] ∫ φt

t

e−(r+ρ)(u−t)(1− µhu) du, (A.18)

When t ∈ (Tφ, φ0):

rpt − ṗt = ξt = 1− δ 1− µht
1− µhφ−1

t

(
s− µhφ−1

t

1− µhφ−1
t

)σ
. (A.19)

When t ∈ (φ0, Tf ):

rpt − ṗt = ξt = 1− δ(1− µht)Q
σ

t . (A.20)

where Qt is defined in equation (A.4). Lastly, when t ≥ Tf , pt = 1/r. Clearly, together with the continuity
conditions at the boundaries of each intervals (Tφ, φ0, and Tf ), the above ODEs uniquely define the price path.

High–valuation traders’ holding plans. The asset holding plans of high–valuation traders are as follows.
For t ∈ [0, Tf ), the time–t high–valuation trader holds qt,u = 1 for all u ≥ t. For t ≥ Tf , the time–t high–
valuation trader holds qt,u = s/µht for all u ≥ t. Since these asset holding plan are constant, we guess that they
are implemented by submitting market orders at time t.

Low–valuation traders’ holding plans. The asset holding plans of low–valuation traders are as follows. For
t ∈ (0, Tφ], the time–t low–valuation trader holds:

qt,u =
s− µht
1− µht

for all u ∈ [t, φt] (A.21)

= (1− µht)1/σQu for all u ∈ [φt, Tf ), where Qu ≡
(

1− ξu
δ(1− µhu)

)1/σ

(A.22)

= 0 for all u ≥ Tf , (A.23)

and where ξu is defined in equations (A.18) and (A.19). For t ∈ [Tφ, Tf )

qt,u = (1− µht)1/σQu for all u ∈ [t, Tf ) (A.24)

= 0 for all u ≥ Tf . (A.25)

Lastly, for t ≥ Tf and u ≥ t, qt,u = 0. We guess that, in order to implement her holding plan at the information
event time t, the trader submits market orders and a schedule of limit sell orders.

Note that, after plugging in the definition of ξφt given in equation (A.19), one sees that the above–defined

asset holding plan is continuous at u = φt. Since QTf = QTf = 0, we also have continuity at u = Tf . Lastly in

Lemma A.16 below, we will show that when t ∈ [0, Tφ) (t ∈ [Tφ, Tf )) and u ∈ [φt, Tf ] (u ∈ [t, Tf ]), the holding
plan u 7→ qt,u is strictly decreasing.

The verification proof is organized as follows. Section A.8.2 provides preliminary properties of equilibrium
objects. Section A.8.3 proves the optimality of the candidate asset holding plans. Section A.8.4 concludes by
showing that the market clears at all dates.
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A.8.2 Preliminary results

We start by noting that, by direct inspection of our guess, the candidate LOE coincides with the ATE at all
times t > φ0. Next, a result we use repeatedly is:

Lemma A.14. For t ∈ [0, Tφ],

d

dt

[
s− µht

(1− µht)1+1/σ

]
≥ 0, with an equality only if t = Tφ.

The proof is in Section VIII.10, page 61 in the supplementary appendix. Next, we prove in Section VIII.11,
page 61 in the supplementary appendix:

Lemma A.15. For t ∈ (0, Tf ), rpt − ṗt = ξt ∈ (0, 1).

The Lemma ensures thatQu, in equation (A.22), is well defined, and is also helpful to establish the optimality
of trading strategies. To show that asset holding plans are decreasing when u ≥ φt, we will need the following
Lemma, proved in Section VIII.12, page 62 in the supplementary appendix:

Lemma A.16. u 7→ Qu is continuous over (0, Tf ), strictly increasing over (0, Tφ), and strictly decreasing over
(Tφ, Tf ).

Equipped with the above Lemma, we show in Section VIII.13, page 63 in the supplementary appendix,
another crucial property of the price path:

Lemma A.17. The candidate equilibrium price, pt, is continuously differentiable and strictly increasing over
[0, Tf ].

A.8.3 Asset holding plans are optimal

Execution times of limit orders. The first step is to verify that the candidate asset holding plans
can be implemented using market and limit orders only, as explained in Section A.8.1. To that end, we start
by deriving the execution times associated with alternative limit orders to buy or sell.

Limit orders to buy or sell submitted at t ≥ Tf . Consider the case of limit sell orders (the case of limit
buy order is symmetric). In the candidate equilibrium, the price is constant for all t ≥ Tf . Clearly, this means
that a limit order to sell at the ask price a > pTf is never executed. By the price priority rule, a limit order to
sell at price a < pTf is executed immediately. We can always ignore such limit orders because they are clearly
dominated by a market order to sell, which is also executed immediately, but has a strictly higher execution
price, pTf . Lastly, we argue that a limit order to sell at price a = pTf submitted at time t ≥ Tf is executed
immediately, at time t. First we know from the price priority rule that this order is executed at or after time
t. But note that, at all times u > t ≥ Tf , the limit order book must be empty at price pTf : otherwise, by the
time priority rule, the earliest submitted limit order at price pTf would be executed at time u, which would
contradict the fact that asset holding plans are constant after Tf . Thus, by any time u > t, all limit orders to
sell at price pTf , and in particular the ones submitted at time t, have been executed. Since this is true for all
u > t, this implies that a limit order to sell at price pTf is executed immediately at time t, and is thus equivalent
to a market order.

Limit orders to sell submitted at t < Tf . Lemma A.17 showed that the price path is strictly increasing over
[0, Tf ]. Therefore, the price–priority rule implies that: a limit order to sell at price a > pTf is never executed; a
limit order to sell at price a ∈ [pt, pTf ) is executed when the price reaches a, i.e. at the time u such that pu = a;
a limit order to sell at price a = pTf is executed at or after time Tf . But, as noted in the previous paragraph,
the limit order book is empty at all times u > Tf , and the same reasoning as before shows that this limit order
has to be executed at or before Tf . Taken together, these two remarks imply that a limit order to sell at price
a = pTf , submitted at time t < Tf , is executed exactly at time Tf .

As before, we can ignore limit orders to sell at price a < pt. By the price priority rule, they are executed
immediately at price a < pt, and therefore are clearly dominated by a market order to sell at price pt.

Limit orders to buy submitted at t < Tf . By the price–priority rule: a limit order to buy at price b ≤ pt
is never executed; limit order to buy at price b > pt is executed immediately at price b, and is thus clearly
dominated by market order to buy at price pt.
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A re-statement of the trader’s problem. Based on the above, we show that the trader problem
reduces to maximizing her utility from one information event to the next:

Lemma A.18. In the candidate LOE, an asset holding plan qt,u solves the trader’s problem if and only if it
maximizes∫ ∞

t

e−(r+ρ)(u−t)
{
Et [v(θu, qt,u)]− ξuqt,u

}
du (A.26)

for almost all (t, ω) ∈ R × Ω,and subject to the constraint that u 7→ qt,u is decreasing for u ∈ [t, t ∨ Tf ], and
constant for u ≥ t ∨ Tf .

For the “if” part, note that the execution times of Section A.8.3 imply that, upon an information event at
time t:

• a trader cannot submit a limit order to buy executed at time u > t;

• if t < Tf , a trader can submit a limit order to sell at any time u ∈ (t, Tf ];

• a trader cannot submit a limit order to sell at any time u > Tf .

Therefore, in the candidate LOE, a trader’s asset holding plan u 7→ qt,u can never increase, can decrease in an
arbitrary fashion over [t, t ∨ Tf ], and has to stay constant after t ∨ Tf . This means that the value of the time–t
asset holding plan, u 7→ qt,u, is less than the maximum value of the maximization problem in Lemma A.18.
Therefore, an asset holding plan solves trader’s problem if it solves the program of Lemma A.18 for almost all
(t, ω) ∈ R× Ω.

To prove the “only if” part, we proceed by contrapositive. Suppose that qt,u does not maximize (A.26) for
some positive measure set of R × Ω. Then, consider the following change of holding plan: for all times and
events in that set, switch to a plan that achieves a higher value in the objective (A.26), and keep your original
holding plan the same otherwise. To see that the change of holding plan is feasible, note that the execution
times of Section A.8.3 imply that, if the change of holding plan requires to modify orders submitted at some
information event t1, all of these modifications can be undone at any subsequent information event t2 > t1.
Indeed a limit sell order at price pu ∈ (p0, pTf ] is executed at time u regardless of its submission time t1 < u.
Thus, if such an order is modified at t1 and is still unfilled at time t2, then t2 < u and the modification can
be undone. Other kind of orders (limit sell orders at different prices, limit buy orders, or market orders) are
either immediately executed at information event t1, or never executed, so any modification at t1 can be undone
with market orders at t2. Taken together, this shows that the change of holding plan is feasible and, clearly, it
increases the value of the trader’s objective.

Optimality of high–valuation traders’ asset holding plans. By construction, the candidate
asset holding plan is constant for all u given t, and so it can be implemented by only submitting market orders
at each information event. To show that the candidate asset holding plan is optimal, it suffices to show that
it maximizes a high–valuation trader’s utility flow at each time u. To see that it is indeed the case, recall
from Lemma A.15 that ξu ∈ (0, 1) for u ∈ (0, Tf ), and that by construction we have that ξu = 1 for u > Tf .
Therefore, the flow utility

v(h, q)− ξuq = min{q, 1} − ξuq,

is maximized by q = 1 if u < Tf , and by any q ∈ [0, 1] if u ≥ Tf . In particular, qt,u = 1 and, as long as
t ≥ Tf > Ts, qt,u = s/µht ≤ 1 maximizes the flow utility for u ≥ Tf . Thus, the candidate asset holding plan is
optimal for high–valuation traders.

Optimality of low–valuation traders’ asset holding plans After time Tf , the price is constant
and equal to 1/r, and so the opportunity cost is ξu = 1. Given that vq(`, 0) = v(h, 0) = 1 and vq(`, q) < 1 for q >
0, this immediately implies that q = 0 is the asset holding maximizing the flow payoff, E [vq(θu, q) | θt = `]−ξuq,
for any t < u. Clearly, given the execution time of Section A.8.3, a low–valuation trader can always implement
this zero asset holding for all u ≥ Tf . Indeed, if t < Tf , she just needs to submit a limit order to sell all her
remaining assets at price pTf . If t > Tf , she just needs to submit a market order to sell all her assets at time
t. We conclude that we can restrict attention to holding plans such that qt,u = 0 for all u ≥ Tf . Plugging this
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restriction into the objective (A.26), we find that the low–valuation trader’s problem at time t < Tf reduces to
choosing q̃t,u in order to maximize∫ Tf

t

e−(r+ρ)(u−t)M(u, q̃t,u) du (A.27)

where M(u, q) ≡ E [v(θu, q) | θt = `]− ξuq = (1− ξu) q − δ 1− µhu
1− µht

q1+σ

1 + σ
, (A.28)

subject to the constraint that u 7→ q̃t,u is decreasing over [t, Tf ].
We now verify that our candidate asset holding plan solves this optimization problem. First, we note that,

by Lemma A.16, qt,u is, as required, decreasing over [t, Tf ]. Second, we show below that two sufficient conditions
for optimality are

(i)

∫ Tf

t

e−(r+ρ)(u−t)
∂M

∂q
(u, qt,u)qt,u du = 0,

(ii)

∫ Tf

t

e−(r+ρ)(u−t)
∂M

∂q
(u, qt,u)q̃t,u du ≤ 0 for any decreasing function u 7→ q̃t,u,

where the partial derivative is well defined because, since qt,u is decreasing, qt,u ≤ qt,t = (s−µht)/(1−µht) < 1.
To see why condition (i) and (ii) are sufficient, consider another decreasing holding plan q̃t,u. We have∫ Tf

t

e−(r+ρ)(u−t) [M(u, qt,u)−M(u, q̃t,u)] du ≥
∫ Tf

t

e−(r+ρ)(u−t)
∂M

∂q
(u, qt,u)(qt,u − q̃t,u) du ≥ 0,

where the first inequality follows from the concavity of q 7→ M(u, q), and the second inequality follows from
(i) and (ii). The proof that condition (i) and (ii) hold follows from algebraic manipulations that we gather in
Section VIII.14.

A.8.4 The market clears at all times

For all u ≤ Tf , high–valuation traders who had at least one information event hold qt,u = 1. Plugging this in
equation (8) and rearranging, this leads to the market–clearing condition:∫ u

0

ρe−ρ(u−t)(1− µht)E [qt,u | θt = `] dt =

∫ u

0

ρe−ρ(u−t)(s− µht) dt. (A.29)

Market clearing at u ∈ (0, Tφ). Then, for all t ≤ u, it follows from equation (A.21) that low–valuation traders
hold qt,u = (s− µht)/(1− µht) and so clearly the market–clearing condition (A.29) holds.

Market clearing at u ∈ (Tφ, φ0). Then, it follows from equation (A.21) and (A.22) that low–valuation traders

hold qt,u = (s− µht)/(1− µht) if t ≤ φ−1u , and (1− µht)1/σQu if t ∈ [φ−1u , u]. Thus, the left–hand side of (A.29)
writes:∫ φ−1

u

0

ρe−ρ(u−t)(1− µht)
s− µht
1− µht

dt+

∫ u

φ−1
u

ρe−ρ(u−t)(1− µht)1+1/σQu dt. (A.30)

Plugging ξu, as defined in equation (A.19), into the definition of Qu, as defined in equation (A.22), we obtain:

Qu =
s− µhφ−1

u

(1− µhφ−1
u

)1+1/σ
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Next, using the implicit equation (A.17) defining φ−1u , we obtain that:

Qu =

∫ u
φ−1
u
ρe−ρ(u−t)(s− µht) dt∫ u

φ−1
u
ρe−ρ(u−t)(1− µht)1+1/σ dt

.

Plugging in (A.30) shows that the market–clearing condition (A.29) holds.

Market clearing at u ∈ (φ0, Tf ). First note that by equation (A.20), we have Qu = Qu, where Qu is defined
in equation (A.4). Then, the demand from low-valuation investors is∫ u

0

ρe−ρ(u−t)(1− µht)1+1/σQu dt =

∫ u

0

ρe−ρ(u−t)(s− µht) dt

by definition of Qu,

Market clearing at u > Tf . The market clears by construction of the holding plans of high– and low–valuation
investors after time Tf .

A.9 Proof of Proposition 10
For this proof the superscript ATE (algorithmic trading equilibrium) refers to the equilibrium objects of Propo-
sition 1, while the superscript LOE (limit order equilibrium) refers to the equilibrium object of Proposition
9.

First point: pATEu = pLOEu for u ≥ φ0. By construction pATEu = pLOEu = 1/r for u ≥ Tf , and ξATEu = ξLOEu

for u ∈ (φ0, Tf ). This immediately imply that pATEu = pLOEu for all u ≥ φ0.

Second point: pATEu > pLOEu for u ∈ (Tφ, φ0). To obtain the result, we prove the following Lemma.

Lemma A.19. Let u ∈ (Tφ, φ0). If QATEu ≥ QLOEu , then time–t low–valuation traders’ asset holdings satisfy
qATEt,u ≥ qLOEt,u for all t ∈ (0, u) with a strict equality t ∈ (0, φ−1u ).

The Lemma is proved in Section VIII.15. Since high–valuation traders hold 1 unit of the asset in both the
ATE and the LOE, it cannot be that both markets clear at a date u ∈ (Tφ, φ0) such that QATEu ≥ QLOEu .

Thus, QATEu < QLOEu for all u ∈ (Tφ, φ0) . From the definition of QATEu , we have ξATEu = 1− (1−µhu)QATEu
σ
.

From (A.23), in the LOE we have ξLOEu = 1 − (1 − µhu)QLOEu
σ
. Thus ξATEu > ξLOEu for u ∈ (Tφ, φ0), and

ξATEu = ξLOEu for u ≥ φ0. This clearly implies that pATEu > pLOEu for u ∈ (Tφ, φ0).

Third point: pATE0 < pLOE0 for ρ close to zero. We start by establishing a preliminary result. Since all the
equilibrium variables are defined as roots of continuously differentiable functions that are well-defined in ρ = 0,
with non-zero partial derivatives, we can apply the Implicit Function Theorem to show that:

Lemma A.20. Every equilibrium object has a well-defined limit when ρ → 0 and is continuous in ρ over
ρ ∈ [0,+∞). Moreover, those limits satisfy the same equations as in the case ρ > 0 after letting ρ = 0.

The proof is in Section VIII.16, page 68 in the supplementary appendix. Denoting all these limits with a
hat, “ ˆ ”, we show that

Lemma A.21. The limiting prices at time zero satisfy p̂ATE0 < p̂LOE0 .

And the third point of Proposition 10 follows by continuity.
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