
Institut d’Economie Industrielle (IDEI) – Manufacture des Tabacs
Aile Jean-Jacques Laffont – 21, allée de Brienne – 31000 TOULOUSE – FRANCE
Tél. + 33(0)5 61 12 85 89 – Fax + 33(0)5 61 12 86 37 – www.idei.fr – contact@cict.fr

July, 2010

n° 630

“Iterative Regularization in 
Nonparametric Instrumental 

Regression”

Jan JOHANNES,                         
Sébastien VAN BELLEGEM 

and Anne VANHEMS



Iterative regularization

in nonparametric instrumental regression∗
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1 Introduction

The statistical inference in the nonparametric regression model

Y = ϕ(Z) + ε

where Y is a real dependent variable, Z is a real multivariate explanatory random variable

and ϕ is an unknown function, usually requires that the error term ε is such that E(ε|Z) = 0.

A vast literature is now available about the estimation of the nonparametric function in

this setting, under various regularity assumptions on ϕ. Less work is however available if

the error ε is allowed to be correlated with Z, a situation that is frequently encountered in

the empirical studies in human sciences.

A simple situation where this correlation appears is when omitted variables influence

both Y and Z but are not included in the explanatory vector of the regression model.

One famous example of this situation appears when Y is a measure of the income of some

individuals and Z is a measure of their level of education. It is likely that other variables,

such as a measure of the social ability or the intelligence, may be influencial on both the

income and the level of education of the individuals. However, this variable is rarely observed

or even difficult to measure, and it is thus omitted in the regression model. In consequence,

the error term ε contains an information about the omitted variable, and therefore may

depend on the observed explanatory variables. This example is discussed in more details

in many econometrics textbooks [e.g. Wooldridge (2008)], see also the survey written by

Angrist & Krueger (2001).

One conventional approach to accomodate this problem is to measure a set of new

variables W that are called “instrumental variables” and such that E(ε|W ) = 0. Taking the

conditional expectation of the above regression model, the nonparametric function ϕ now

appears to be the solution of

E(Y |W ) = E(ϕ(Z)|W ). (1.1)

The choice of appropriate instruments W is a delicate question in practice. The interested

reader can find examples of instrumental variables in the above econometric references.

As a statistician, the interesting and nonstandard point is that the nonparametric func-

tion ϕ appears to be the solution of an integral equation given by (1.1). It is thus the

solution of an ill-posed inverse problem. Moreover, the involved conditional expectations

must be estimated from observations of (Y,Z,W ), which is a source of error in both sides

of equation (1.1).

A number of papers have considered the estimation of ϕ in model (1.1) from the obser-

vation of (Y,Z,W ) when the conditional expectations are estimated nonparametrically and

by regularizing the ill-posed problem in order to recover a consistent solution. We refer to

Hall & Horowitz (2005) for some methods and to our recent paper, Johannes et al. (2010),
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that presents a unified approach to get consistent estimators of ϕ with optimal rates of

convergence.

One goal of this paper is to present new results on a regularization scheme that has

been less studied in this context. This regularization is the so-called “Landweber-Fridman”

iterative procedure that we define below. Moreover, our estimator of the conditional ex-

pectations and ϕ are projection estimators onto finite-dimensional vectorial spaces, with

dimension increasing with the sample size. The expansion of the nonparametric function ϕ

is provided in a basis that may be different from the basis that is used to estimate the condi-

tional expectations. This aspect of our procedure is valuable, since the degree of regularity

of ϕ may be very different from the degree of regularity of E(ϕ(Z)|W ).

Under a set of minimal conditions on the choice of those bases, we prove the consistency

and the mean square convergence of the estimator given by iterative regularization. Results

are given for both the mildly and severely ill-posed inverse problems, and reach the optimal

minimax rate of convergence in standard function spaces in both cases. The results also

give optimal stopping rule for the iterative regularization of the estimator.

The paper is organized as follows. In Section 2, we introduce the necessary notations

of the paper and, more importantly, we formulate the estimation problem as an ill-posed

inverse problem with an unknown linear operator. In Section 3 we derive the projection

estimator and apply the regularization iterative method of Landweber-Fridman. Theoretical

properties of the estimators have to be found in Sections 4 and 5. Those sections include

the derivation of the rate of convergence under the various sets of regularity conditions, and

provides a comparison with the most recent results of the literature. Section 6 discusses the

role of the parameters in the estimation procedure and shows the finite sample properties

of the proposed procedure via simulations. The proofs and technical results are deferred to

an Appendix.

2 Model and assumptions

Let Z ∈ R
p and W ∈ R

q be two vectors of observed variables. In this section, we will

write the nonparametric function ϕ as a solution of an inverse problem. Define the function

spaces

L2
Z = {φ : R

p → R, ‖φ‖2
Z := E[φ2(Z)] <∞}

and

L2
W = {ψ : R

q → R, ‖ψ‖2
W := E[ψ2(W )] <∞} .

For the sake of readability, we shall denote by 〈·, ·〉 and ‖ · ‖ the inner product and norm for

both Hilbert spaces L2
Z and L2

W when there is no possible confusion about the functional

space in question. The equation (1.1) can be rewritten

r = Tϕ (2.1)
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if r is a function of L2
W such that r(·) := E(Y |W = ·) and T is a linear operator that maps

the function ϕ onto the conditional expectation, i.e.

T : L2
Z → L2

W : φ 7→ E(φ(Z)|W = ·)

assuming the existence of the conditional density of Z given W , here denoted by fZ|W .

For convenience, we will assume in the following that the operator T is a compact

operator. This assumption implies that T and the adjoint operator T ⋆ can be discretized

using a singular value decomposition (SVD). We recall that the compacity of T implies the

existence of a singular system {(λk, uk, vk); k = 1, 2, . . .} that is such that:

1. The eigenvalues λk are real, strictly positive and decreasing;

2. {λ2
k; k = 1, 2, . . .} are the nonzero eigenvalues of the self-adjoint operators T ⋆T and

TT ⋆;

3. {uk; k = 1, 2, . . .} (resp. {vk; k = 1, 2, . . .}) is an orthonormal system of eigenvectors

of T ⋆T (resp. TT ⋆).

The existence and uniqueness of the solution from equation (2.1) needs some assump-

tions. A detailed discussion on identification issues can be found in the seminal work of

Darolles et al. (2002). In the sequel, we assume the existence and uniqueness of the solu-

tion. Uniqueness is guaranteed if we assume the operator T to be injective. The existence

assumption formally requires that the function r belongs to the range of the operator T .

From (2.1), we see that ϕ can be recovered by inverting the operator T . However, even if

T is in general an invertible operator, it is not necessary stable or, in more technical terms,

T−1 is not a bounded operator. In other words, since the left hand side of equation (2.1) is

not observed directly but needs to be estimated by r̂, the solution T−1r̂ does not converge to

T−1r. That phenomenon is called the “ill-posedness” of the inversion. Therefore, in order

to derive a consistent estimator of the functional parameter of interest ϕ, we shall proceed

in two steps. First, T and r depend on the distribution of (X,Y,W ) and are estimated from

the dataset using projection method. Second, a regularized version of (2.1) is obtained

using a Landweber-Fridman iterative method.

We now describe the two steps in detail.

3 Estimation and regularization

3.1 Projection step

Define two finite dimensional subsets ΦdZ
of L2

Z and ΨdW
of L2

W . Their dimension depend

on prescribed numbers dZ , dW > 0 and we suppose that {φ1, . . . , φdZ
} is a basis for ΦdZ

and {ψ1, . . . , ψdW
} is a basis for ΨdW

. Note that the each of these bases is not necessarily

an orthonormal basis.
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The two bases are chosen independently of the operator T . However, our theory requires

a condition that relates both the bases and T . Denote by PZ , resp. QW , the orthogonal

projection onto ΦdZ
, resp. ΨdW

and by I the identity operator. We assume from now on

that the operators PZ , QW and T are such that

‖T (I − PZ)‖ → 0 and ‖(I −QW )T‖ → 0 (3.1)

as (dZ , dW ) → ∞, where the norms are the operator norm, e.g.

‖T‖ := sup{‖Tψ‖W ; ψ ∈ L2
Z}

is the operator norm of T . This condition is discussed in the following remark and two

examples.

Remark 3.1. Because ΦdZ
and ΨdW

are finite dimensional, the range of the operators PZ

and QW that we denote by R(PZ) and R(QW ) are finite dimensional. Using a result to

be found in Plato & Vainikko (1990), a necessary and sufficient condition in order to get

condition (3.1) is that (i) T is a compact operator, (ii) PZ → I pointwise on R(T ⋆) as

dZ → ∞ and (iii) QW → I pointwise on R(T ) as dW → ∞. In particular, it is not difficult

to derive from the singular value decomposition that the following two inequalities hold:

‖T (I − PZ)‖ > λdZ

and

‖(I −QW )T‖ > λdW
.

Therefore, whatever the two bases are, the best approximation of T cannot perform better

than the rate of the singular values λdZ
and λdW

. Note that the equality holds when the

bases are chosen to be the eigenfunctions {uk; k = 1, ..., dZ} and {vk; k = 1, ..., dW }, but

this situation is not useful in our context since T is unknown. �

Example 3.1. To simplify this example, assume that Z and W are uniformly distributed

over [0, 1]. Let s0, . . . , sdZ
denote an equidistant grid on [a, b], that is sk = a + kτ with

τ = (b − a)/dZ . Define φk := I[sk−1,sk] for k = 1, . . . , dZ as a basis of ΦdZ
. Analogously,

define a grid on [c, d] with tk = a + kτ with τ = (d − c)/dW and Ψk := I[tk−1,tk] for

k = 1, . . . , dW . For this example with a sufficiently smooth joint density fZW , we can write

(cf. Plato & Vainikko (1990))

‖T (I − PZ)‖ 6 c1 · (b− a)/dZ , c1 =
2

3

(∫ b

a

∫ d

c

∣∣∣
∂fZW (z,w)

∂z

∣∣∣
2
dwdz

)1/2
,

‖(I −QW )T‖ 6 c2 · (d− c)/dW , c2 =
2

3

(∫ b

a

∫ d

c

∣∣∣
∂fZW (z,w)

∂w

∣∣∣
2
dwdz

)1/2
.
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With additional regularity assumptions on fZW , it is useful to consider more regular

basis functions, such as higher order B-splines or wavelets for instance. This would lead,

for example, to upper bound for ‖T (I − PZ)‖ of the type ((b − a)/dZ)η. The exact value

of η depends on the basis system and the smoothness of fZW and is derived from typical

inequalities in approximation theory (cf. DeVore & Lorentz (1993)). �

Example 3.2. An interesting example for ΦdZ
is given by the basis of orthonormal wavelets.

The theory of wavelets offers an appealing alternative to the Fourier analysis. A wavelet

system is an orthogonal basis of L2(Rq) which, in contrast to the Fourier basis, contains

functions that are well localized both in the time and the frequency domain. As a conse-

quence, they appear more appropriate to decompose functions ϕ that have a more irregular

behavior, such as jumps or peaks. For a general introduction to this theory, we refer to

Vidakovic (1999).

Suppose that Z and W are uniformly distributed over [0, 1]. Let (φ,ψ) be some scaling

and mother functions over [0, 1] and assume that ψ has κ continuous derivatives and κ

vanishing moments. Let j be a negative integer. The space ΦdZ
in this example is the

linear space that is spanned by {φjk}06k<2−j−1, with φjk(·) := 2−j/2φ(2−j ·−k). Denote by

Pj the orthogonal projection onto this space. For any function g belonging to the Sobolev

space W s[0, 1] for 0 < s < κ, one can show ‖(I − Pj)g‖2 = o(22sj) (e.g. Mallat (1997,

Theorem 9.4)). Therefore, some calcuation show that

‖T (I − Pj)‖ 6 C22sj

∫
‖f(·, w)/

√
r(w)‖2

W sdz

provided that [f(·, w)/
√
r(w)] ∈ W s and that the integral exists. A similar bound can be

derived for ‖(I −Q)T‖. �

We are now in position to describe the projection step of the estimation. Find a solution

ϕ◦ ∈ ΦdZ
of the system of equations

〈Tϕ◦, ψj〉 = 〈r, ψj〉 for all j = 1 . . . dW .

This system is a discretization of the problem (2.1). Since ϕ◦ ∈ ΦdZ
, we can write ϕ◦ =

∑dZ
j=1 a

◦
jφj which, by linearity of the operator T , leads to the equivalent system of equations

M̃da
◦ = ṽd (3.2)

where a◦ = (a◦1, . . . , a
◦
dZ

)′ is the vector of parameters, M̃d is the dW×dZ matrix with element

(i, j) equal to 〈Tφi, ψj〉 and ṽd is the column vector (〈r, ψ1〉, . . . , 〈r, ψdW
〉)′. The inversion

of the system (3.3) however leads to two important issues. The first issue is that the basis

systems {φ1, . . . , φdZ
} and {ψ1, . . . , ψdW

} are not orthonormal. Thus the inversion of (3.3)

involves the Gram matrices

Gφ := (〈φi, φj〉)i,j=1,...,dZ
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and

Gψ := (〈ψi, ψj〉)i,j=1,...,dW
.

These two matrices reduce to the identity matrix when the basis systems are orthonormal.

With this correction, (3.2) becomes

Mda
◦ = vd (3.3)

where Md = G
−1/2
ψ M̃dG

−1/2
φ and vd = G

−1/2
ψ ṽd.

The second issue is the stability of the inversion. Because we are solving an integral

equation, the problem (2.1) is in general ill-posed. This implies that the matrix Md in (3.3)

is ill-conditionned and thus its inversion is numerically unstable. In particular, it implies

that, even if we find a consistent estimator for Md and vd, the estimation of a◦ resulting

from the inversion of (3.3) has a very slow rate of convergence in general. For this reason,

we need to stabilize (regularize) the inversion in order to recover faster rates of convergence

in the estimation of ϕ. Below we propose an iterative method for this issue. However,

before presenting this method, we first introduce consistent estimators of Md and vd.

3.2 Estimation of Md and vd

Let {(Yl, Zl,Wl); l = 1, 2, . . . , n} be an independent and identically distributed sample from

(Y,Z,W ). Let φ(·) = (φ1(·), . . . , φdZ
(·))′ and ψ(·) = (ψ1(·), . . . , ψdW

(·))′. The estimators

of Md and vd are respectively given by

M̂d =
1

n

n∑

l=1

G
−1/2
φ φ(Zl)ψ(Wl)

′G
−1/2
ψ (3.4a)

and

v̂d =
1

n

n∑

l=1

YlG
−1/2
ψ ψ(Wl) . (3.4b)

We give below some asymptotic properties for these two estimators that will be useful

to derive the final rates of convergence. The result is valid under the following assumption.

Assumption 3.1. Denote φ̃ = G
−1/2
φ φ and ψ̃ = G

−1/2
ψ ψ. The vectors φ̃ and ψ̃ are the

orthogonalization of φ and ψ by the Gram matrices. We assume: ‖φ̃i‖ζ
Lζ

Z

6 c · d(ζ/2)−1
Z and

‖ψ̃i‖ζ
Lζ

W

6 c · d(ζ/2)−1
W for all ζ > 2.

It is not difficult to check that Assumption 3.1 holds true for the basis introduced in the

two examples.
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Proposition 3.1. The estimators M̂d, resp v̂d, are unbiased for Md, resp. vd. Suppose

that EY 2 <∞. Then, under Assumption 3.1 it holds1

E‖v̂d − vd‖2
2 .

dW
n
, (3.5)

E‖M̂d −Md‖ζ2 .
(dW dZ)ζ/2

nζ/2
for all ζ ∈ (0, 2], (3.6)

E‖M̂d −Md‖ζ2 .
(dW dZ)ζ−1

nζ/2
for all ζ > 2, (3.7)

where ‖ · ‖2 is the ℓ2 norm of a matrix.

Proof. The unbiasedness of M̂d and v̂d is a straightforward result. The proof of (3.5) is

similar to the proof of (3.6), therefore we skip it.

Application of Lyapunov’s inequality leads to E‖M̂d −Md‖ζ2 6 (E‖M̂d −Md‖2
2)
ζ/2 for

all ζ ∈ (0, 2]. Moreover, if Md;ij denotes the element (i, j) of the matrix Md, we have

E‖M̂d −Md‖2
2 6

∑
i,j Var M̂d;ij because M̂d is an unbiased estimator of Md. Then we can

write, by independence of the sample,

Var M̂d;ij 6
1

n
E{φ̃i(Z)2ψ̃j(W )2} (3.8)

This last expression is finite as the functions ψj , φi are such that ‖ψ̃j‖L2
W

= ‖φ̃i‖L2
Z

= 1

for all i, j. The inequality (3.6) follows by noticing that the sum over i, j contains dW dZ

elements.

We now prove (3.7). Using Jensen’s inequality

E‖M̂d −Md‖ζ2 = (dW dZ)ζ/2E





1

dWdZ

∑

i,j

(Md;ij − M̂d;ij)
2






ζ/2

6 (dW dZ)(ζ/2)−1
∑

i,j

E(Md;ij − M̂d;ij)
ζ .

To simplify notations, write M̂d;ij = n−1
∑

l Aij;l where Aij;l := φ̃i(Zl)ψ̃j(Wl). By the

inequality of Minkowski, it holds E|∑iXi|p 6 {∑i(E|Xi|p)2/p}p/2 and we can then write

E(Md;ij − M̂d;ij)
ζ 6 n−ζ{

∑

l

(E|Aij;l − EAij;l|ζ)2/ζ}ζ/2

. n−ζ{
∑

l

(EAζij;l)
2/ζ}ζ/2 (3.9)

using again Jensen’s inequality. As above when we derived the upper bound of (3.8), we

note that EAζij;l . ‖ψ̃j‖ζ
Lζ

W

· ‖φ̃i‖ζ
Lζ

Z

. Therefore, with Assumption 3.1, (3.9) is bounded by

n−ζ/2(dZdW )(ζ/2)−1 and the result follows. �

1We write A . B if there exists a positive constant c such that A 6 cB.
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3.3 Regularization iterative step

We now present the iteration procedure used in order to stabilize the inversion of the system

(3.3). It is called the Landweber-Fridman in the numerical literature [e.g. Engl et al. (2000)].

It is of course possible to define other regularization schemes at this stage, among which

is Tikhonov regularization. The Landweber-Fridman has the advantage to be numerically

very simple to implement when it is applied to the projection estimator.

The vector a◦ in the system (3.3) is estimated by the following way:

â◦0 = 0

â◦k+1 = â◦k −
1

µ2
M̂ ′
d

(
M̂dâ

◦
k − v̂d

)
k = 0, 1, . . . ,K − 1 (3.10)

The estimator of ϕ◦ then follows by

ϕ̂◦ := â◦′KG
−1/2
φ φ . (3.11)

The presence of the parameter µ in the iterative scheme is only technical. The con-

vergence results established below need that the norm of the matrix used in the algorithm

must be less than 1. The parameter µ then normalizes the problem such that this con-

straint is fulfilled. In practice and in the proof of our results, we use the random bound

µ > max(1, ‖M̂d‖).
One crucial question is to decide on the number of iterations K. It is known that a too

small value of K provides unsufficient regularization, whereas a too large value of K leads

to a too large regularization bias. The theoretical sections below and the empirical study

provide a guidance for the choice of this regularization parameter.

4 Convergence under mild ill-posedness

In order to derive a rate of convergence for our estimator we need to specify regularity

assumptions for the unknown solution ϕ. One convenient approach is to relate the regularity

of ϕ to the behavior of the operator T itself. The idea is that, if ϕ is well adapted to the

operator, then the estimation should be easier, thus the rates of convergence should be

faster. The meaning of how “well-adapted” is the solution to the operator is characterized

by the so-called source condition that we define now.

The natural operator of interest in order to define our source condition is T ⋆T , which

is by construction self-adjoint, non-negative and such that

T ⋆Tg =
∑

k∈N

λ2
k〈g, uk〉uk for all g ∈ L2

Z

by definition of the singular value decomposition of T .

In the following it is useful to define what is a function of T ⋆T . Consider a function

ℓ that is defined on the real line. The operator ℓ(T ⋆T ) is defined through its spectral
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decomposition:

ℓ(T ⋆T )g :=
∑

k∈N

ℓ(λ2
k)〈g, uk〉uk (4.1)

for all g ∈ L2
Z .

The regularity assumption imposed on the solution ϕ is defined next.

Assumption 4.1 (Strong source condition). The operator T and the solution ϕ are such

that there exists β > 0 and ψ ∈ L2
Z with ϕ = (T ⋆T )β/2ψ and ‖ψ‖ 6 ρ.

To understand this condition it is convenient to note that it is equivalent to require

that the solution ϕ is such that (T ⋆T )−β/2ϕ belongs to L2
Z . Using the singular value

decomposition of T and the representation given in (4.1) it is therefore equivalent to assume

∞∑

k=1

(〈ϕ, uk〉)2

λβk
<∞ .

Because the eigenvalues λβk tend to zero, the index β that appears in the source condition

is one measure of the ill-posedness of the problem.

Before stating the convergence result, we also formalize the condition (3.1) on the op-

erators PZ , QW and T in the following assumption.

Assumption 4.2. The projection operators PZ , QW and T are such that ‖T (I −PZ)‖ 6 δZ

and ‖(I −QW )T‖ 6 δW , where δZ , resp. δW , denote two sequences vanishing as dZ , resp.

dW , growth.

Theorem 4.1. Consider the estimator (3.11) constructed using the projections PZ and

QW and set µ = Cmax(1, ‖M̂d‖) for some constant C > 1. Suppose that the “strong source

condition” (Assumption 4.1) is satisfied, that EY 2 <∞ and Assumptions 3.1 and 4.2 hold

true. Assume that the number of iterations K is such that

K =

(
δ
2+2(1∧β)
Z +

dW (dZ + 1)

n

)− 1
β+1

. (4.2)

Then the L2 risk of the proposed estimator ϕ̂◦ has the rate

E‖ϕ̂◦ − ϕ‖2 = O

((
dZdW
n

) β
β+1

+ δ
2(β∧1)
Z + δ

2(β∧1)
W

)
.

Proof. An upper bound for the mean square error of ϕ̂◦ under the strong source condition

is derived in Lemma B.1 in the technical Appendix, and is given by

E‖ϕ̂◦−ϕ‖2 . {1+E‖M̂d−Md‖2β
2 }K−β+K

(
E‖M̂d −Md‖2

2 + E‖v̂d − vd‖2
2 + δ

2+2(β∧1)
Z

)

+ E‖M̂d −Md‖2(β∧1)
2 + E‖M̂d −Md‖2β

2 + δ
2(β∧1)
Z + δ

2(β∧1)
W .
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First we note that 1 + E‖M̂d−Md‖2β
2 . 1 by Proposition 3.1. We find the optimal number

of iterations K by balancing the first two terms, which gives:

K ∼
{

E‖M̂d −Md‖2 + E‖r̂d − rd‖2 + δ
2+2(β∧1)
Z

}− 1
β+1

.

The above Proposition 3.1 gives the rate of convergence for E‖M̂d−Md‖2 and E‖r̂d− rd‖2,

and they lead to the optimal rate (4.2) given in the statement of the theorem. We plug in

the optimal rate for K in the MSE of ϕ̂◦, and we consider the leading terms we get

E‖ϕ̂◦ − ϕ‖2 .

(
dZ(dW + 1)

n

) β
β+1

+

(
dZdW
n

)β∧1

+ δ
2β(1+β∧1)

β+1

Z + δ
2(β∧1)
Z + δ

2(β∧1)
W .

The result follows by considering the leading terms and using the inequalities β/(β + 1) 6

β ∧ 1 6 (1 + β ∧ 1)β/(1 + β) that hold for all β > 0. �

We comment this result in the following remarks.

Remark 4.1. 1. The result is presented under mild conditions on the bases used for the

projection. Now impose m := dZ = dW and δZ = δW = m−4β. If β 6 1 then the

rate of convergence of the risk reduces to n
−β

β+3/2 which is known to be optimal in

the class of solutions that satisfy the strong source condition [Johannes et al. (2010,

Proposition 4.1 with s = 0, a = 1 and p = β)].

2. One interesting example is given when the projection basis is given by the singular

value decomposition of T . We have already argued that this case is not realistic since

the eigenfunctions are unknown, but it is at least of a theoretical interest. From

Remark 3.1 it follows that δZ = λdZ
and δW = λdW

. We may also impose that the

eigenvalues are decreasing at a polynomial rate, i.e. λd = d−ε for some ε > 0. Then

the rate is given by n
−2β

2β+2+1/ε . This particular setting has been considered for the

study of other regularization methods in Hall & Horowitz (2005). This rate is known

to be optimal for mildly ill-posed inverse problems over the space of functions ϕ that

satisfy the source condition [e.g. Chen & Reiß (2010)].

3. The discontinuity (β ∧ 1) on the range of the exponent of δZ and δW implies that

the rate is no longer optimal for β > 1. This limitation is not technical, but it is

intrinsic to the Landweber-Fridman method (the mathematical explanation is given

by the analogous limitation in Lemma B.1 in the Appendix below). A similar phe-

nomenon has been observed in Tautenhahn (1996) in a purely deterministic setting.

In Tautenhahn (1996) a so-called “preconditionning” treatment has been proposed to

improve the rate when β > 1. We conjecture that a similar solution would lead to the

same improvement of our result.

10



5 Convergence under severe ill-posedness

There are a number of important situations where the strong source condition is a too

restrictive assumption. A prominent example is given by random variables Z andW that are

normally distributed. In that situation one can show that the eigenvalues of the conditional

expectation operator T are exponentially decreasing, i.e. λk behaves like exp(−kε) for some

ε > 0. Under this setting, the functions satisfying Assumption 4.1 for an arbitrary β > 0

would be very limitated. Indeed, Assumption 4.1 would imply that the solution ϕ has an

infinite number of derivatives (i.e. ϕ is an analytic function). This example show that the

strong source condition may be restrictive.

We can define a weaker condition than Assumption 4.1 if we consider the function ℓ in the

representation (4.1) to be logarithmic. This case has been considered in the deterministic

setting [e.g. Hohage (1997); Nair et al. (2005)]. Surprisingly, it has been less studied in the

context where the function r and the operator T have to be estimated [see Chen & Reiß

(2010) for a related condition].

Assumption 5.1 (Weak source condition). There exists ψ ∈ L2
Z such that

ϕ =

{
− log

(
T ⋆T

2

)}−β/2

ψ, ‖ψ‖ 6 ρ and β > 0, (5.1)

where ρ is sufficiently small.

Note that this assumption is well defined since T and T ⋆ are conditional expectation

operators and therefore they are projections and such that ‖T ⋆T‖ = 1. The following

theorem gives the asymptotic risk under the weak source condition.

Theorem 5.1. Consider the estimator (3.11) constructed using the projections PZ and QW

and set µ = Cmax(1, ‖M̂d‖) for some constant C > 1. Suppose the weak source condition

(Assumption 5.1) is satisfied and dZ , dW are such that (dZdW )/n2 = O(1). Suppose that

EY 2 <∞ and Assumptions 3.1 and 4.2 hold true. If the stopping index K is chosen by

K =

{
dZdW
n

+ δ2Z + δ2W

}−1/2

(5.2)

then we have

E‖ϕ̂◦ − ϕ‖2 .

{
log

(
dWdZ
n

+ δ2Z + δ2W

)}−β

.

Proof. In Lemma C.1 of the technical Appendix, we have derived the mean square error of

ϕ̂◦ under the weak source condition. This lemma together with Lemma A.2 gives

E‖ϕ̂◦ − ϕ‖2 . K{E‖M̂d −Md‖2
2 + E‖v̂d − vd‖2

2 + δ2Z + δ2W } + 2(logK)−β (5.3)

provided that K,dW and dZ are such that

K2
E‖M ′M − M̂ ′

dM̂d‖2
2 = O(1) . (5.4)

11



Proposition 3.1 applied to the rate (5.3) leads to E‖ϕ̂◦ − ϕ‖2 . K{dZ(dW + 1)/n + δ2Z +

δ2W } + 2(logK)−β. With K such that (5.2) holds, and considering the main terms, then

the mean square rate of convergence follows. It remains to check if the constraint (5.4) is

fulfilled. The norm (5.4) can be decomposed into three terms:

K2
E‖M ′M − M̂ ′

dM̂d‖2
2 . K2

{
E‖M ′(M − M̂ )‖2

2 + E‖(M ′ − M̂ ′
d)(M̂d −Md)‖2

2

+E‖Md(M
′ − M̂ ′

d)‖2
2

}

Using Proposition 3.1, the first and the second term are bounded by K2(δ2W + δ2Z +

(dW dZ)/n). Using the Cauchy-Schwarz inequality and Proposition 3.1 with ζ = 4, the

second term is bounded up to a constant by K2(δ2W + δ2Z)(dW dZ)3/2/n +K2(dW dZ)3/n2.

Therefore, with the choice of K given in (5.2), it is sufficient to satisfy the constraint

(dW dZ)3

n2 + dW dZ
n + (δ2W + δ2Z)

(
1 + (dW dZ )3/2

n

)

dZdW
n + δ2Z + δ2W

= O(1).

The last constraint is satisfied under the condition that (dW dZ)2/n is finite. �

Remark 5.1. 1. The optimal number K of iterations found in this result appears to be

independent from the β, that is it is independent from the level of regularity of ϕ

given by the weak source condition.

2. Suppose we take the same number of basis functions m := dW = dZ in both Hilbert

spaces. Suppose also that the basis is such that δZ = δW = exp(−m2ε) from some

positive number ε. Then if we take e.g. m = n1/4 the final rate of convergence is

{log(n)}−β . When T and r which are known and deterministic, this rate is known

to be the optimal rate of convergence over the solutions that satisfy the weak source

condition [Hohage (2000)].

6 Finite sample study

We present here the results of a Monte-Carlo study that aims to study the finite sample

properties of the suggested method. The function ϕ is this study is designed as ϕ(z) =

(0.2 + z)1[0,0.6](z) + (0.8− 0.5(z − 0.6))1]0.6,1](z), where 1A(z) is the indicator function that

is equal to 1 if z ∈ A and 0 otherwise. The true function is continuous but it contains an

elbow that has point at which the function is not differentiable. Data are generated from

the model Y = ϕ(Z) + U with U ∼ N(0; 0.3) and Z is the restriction to the interval [0, 1]

of Z = 1 − 3W − 3W 2 + 5U + V with V ∼ N(0; 0.1) and W ∼ N(0; 0.1).

The function ϕ is displayed in Figure 1 (solid line) together with a generated sample of

n = 500 points. The cloud of sample points is not exactly “centered” around the function

ϕ, as it can be expected since the variable Z is correlated with the model error U . It is

12



µ

1.1 1.2 1.3 1.4 1.5 2 2.5 3 3.5 4

K 1 2.14 1.37 0.92 0.68 0.55 0.50 0.66 0.79 0.88 0.95
2 1.12 0.70 0.65 0.65 0.63 0.48 0.49 0.59 0.69 0.77
3 2.28 1.24 0.95 0.83 0.75 0.55 0.47 0.50 0.57 0.65
4 1.96 1.43 1.22 1.05 0.93 0.63 0.50 0.48 0.51 0.57
5 3.30 2.03 1.60 1.33 1.14 0.72 0.55 0.48 0.48 0.52
6 3.48 2.57 2.04 1.67 1.40 0.81 0.60 0.51 0.48 0.50

Table 1: Average of mean square errors at the scale 10−2 between the approxi-

mated solution PZϕ and the nonparametric estimator by iterative regularization.

K is the number of iterations and µ is the rescaling parameter appearing in (3.10).

precisely the information given by the instrumental variable W that allows to correct for

this endogeneity issue.

The basis systems that we consider in this study is given by Haar basis. This orthonormal

basis is a wavelet system generated from the scaling function φ(z) = 1[0,1](z) and mother

function ψ(z) = 1[0,0.5[(z) − 1[0.5,1[(z) (see Example 3.2). Because the random variables

are Normaly distributed, we see that the basis systems are not necessarily well adapted to

the conditional expectation operator of this simulation. As for the dimension of the basis

systems, we consider dZ = dW = 8 other the whole study.

The classical ordinary least square estimator of ϕ in this basis is the estimator that

is estimating the 8 coefficients by OLS. This estimator is drawn in Figure 1 (dash-dotted

line). This estimator is of course biased because of the endogeneity. It is considered as the

initial estimator in the iterative regularization system (3.10). Figure 1 also shows the result

of the iterative regularization after 3 iterations (dashed line). For the sake of comparison,

the approximated solution in the Haar basis, PZϕ, is also displayed on the picture (dotted

line). The picture shows the correction by the iteration is more effective where the cloud of

points is far from the true regression function.

A systematic Monte Carlo study has been performed in this setting with 2000 repli-

cations. In particular, we want to illustrate the sensitivity of K and µ on the resulting

estimator. Table 1 shows the result of the simulations for a range of K going from 1 to 6,

and a range of µ going from 1.1 to 4. The table gives the average of mean square errors at

the scale 10−2 between the approximated solution PZϕ and the nonparametric estimator

by iterative regularization. For µ = 1.5 and higher values, the results are not very sensitive

to this parameter. We also notice that it is not necessary to perform a high number of

iterations in order to correct for endogeneity and to regularize the estimator.
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Figure 1: The solid line is true function ϕ and the pink points is an observed

sample of size n = 500. The approximated solution PZϕ in the Haar basis is

the dotted line. A standard OLS estimator of the coefficients of the projection

leads to the dash-dotted line. This estimator is the initial step of the iterative

algorithm. After K = 3 steps, the regularized estimator gives the dahsed line.
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APPENDIX

A A functional definition of the estimator

In this preliminary section, we derive another writing of the estimator ϕ̂◦. This equivalent

definition relates the estimator to an empirical version of the function r and operators T

and T ∗ defined in (2.1).

First, we introduce column vectors φ̃ = G
−1/2
φ φ and ψ̃ = G

−1/2
ψ ψ. These vectors are the

orthogonalization of φ and ψ by the Gram matrices. We then define T̂dφ(·) := ψ̃(·)′M̂d〈φ, φ̃〉
where 〈φ, φ̃〉 denotes the column vector (〈φ, φ̃1〉, . . . , 〈φ, φ̃dZ

〉)′. The dual of T̂ is T̂ ⋆dψ(·) :=

φ̃(·)′M̂ ′
d〈ψ, ψ̃〉 where 〈ψ, ψ̃〉 analogously denotes the column vector (〈ψ, ψ̃1〉, . . . , 〈ψ, ψ̃dW

〉)′.
Finally, we define r̂d(·) = ψ̃(·)′v̂d. A convenient way to write these estimators is to consider

the functions

c : L2
π → R

dZ : φ 7→ 〈φ, φ̃〉, c∗ : R
dZ → L2

π : θ 7→
∑

j

θjφ̃j

and

b : L2
τ → R

dW : ψ 7→ 〈ψ, ψ̃〉, b∗ : R
dW → L2

τ : θ 7→
∑

j

θjψ̃j .

With these notations, we find that T̂d = b∗M̂dc, T̂
∗
d = c∗M̂ ′

db and r̂d = b∗v̂d. Moreover,

T̂ ∗
d T̂d = c∗M̂ ′

dM̂dc and T̂ ∗
d r̂d = c∗M̂ ′

dv̂d.

Now recall that the vector â◦k+1 was recursively defined by (3.10). From this definition,

we can write â◦k+1 = Rµk+1(M̂
′
dM̂d)M̂

′
dv̂d where

Rµk+1(A) =
1

µ2

k∑

j=0

(
I − 1

µ2
A

)j
. (A.1)

The final estimator (3.11) is defined as ϕ̂◦ = â◦′Kφ̃, and the next lemma presents an equiva-

lent definition of the estimator.

Lemma A.1. An equivalent definition of the estimator ϕ̂◦ is given by

ϕ̂◦ = RµK(T̂ ∗
d T̂d)T̂

∗
d r̂d . (A.2)

Proof. Apply c∗ to both side of (3.10) and denote ϕ̂k := c∗â◦k = â◦′k φ̃. Using cc∗ = bb∗ = I,

we can write ϕ̂k+1 = ϕ̂k − µ−2c∗M̂ ′
db(b

∗M̂dcϕ̂k − b∗v̂d). By definition of T̂d, T̂
∗
d and r̂d, this

equation writes ϕ̂k+1 = ϕ̂k − µ−2T̂ ∗
d (T̂dϕ̂k − r̂d). Similarly to what we argue above, this

recursive formula for ϕ̂k+1 implies ϕ̂k+1 = Rµk+1(T̂
∗
d T̂d)T̂

∗
d r̂d. This proves the result, with

ϕ̂◦ = ϕ̂K = â◦′Kφ̃. �

Below we derive risk bounds for ϕ̂K in terms of the operator norms ‖T̂d − T‖ and

‖r̂d − rd‖. The next lemma relates these norms to the norm between matrices Md and M̂d.
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Lemma A.2. Consider the estimator (3.11) constructed using the projections PZ and QW .

Then Md = QWTPZ and

‖T̂d − T‖ 6 ‖M̂d −Md‖2 + ‖T (I − PZ)‖ + ‖(I −QW )T‖ .

where ‖ · · · ‖2 is the ℓ2 norm between matrices, and ‖ · · · ‖ is the spectral norm.

B Risk under the strong source condition assumption

The proof of the main results makes use of known results in functional analysis. It is

convenient to summarize in a lemma the results we shall use.

Lemma B.1. Let G and H be real Hilbert spaces, and A,B : G → H be linear, bounded

operators with ‖A‖, ‖B‖ 6 1. Let P : G→ G and Q : H → H be two orthogonal projections.

Then, for all β > 0,

‖(I − P )(A∗A)β/2‖ 6 ‖A(I − P )‖β∧1 (B.1)

‖P (A∗A)β/2 − (P ∗A∗Q∗QAP )β/2‖ 6 Cβ

(
‖A(I − P )‖β∧1 + ‖(I −Q)A‖β∧2

)
(B.2)

where Cβ is a generic factor depending on β only, and for all β > 0, β 6= 1,

‖(A∗A)β/2 − (B∗B)β/2‖ 6 Cβ‖A−B‖β∧1. (B.3)

A proof of (B.1) can be found in Plato (1990), (B.2) is Lemma 4.4 of Plato & Vainikko

(1990) and (B.3) is Lemma 3.2 of Egger (2005).

The following lemma is the key result from which we derive the results of Section 4. It

gives an explicit bound for the loss of the proposed estimator ϕ̂◦.

Lemma B.2. Consider the estimator (3.11) constructed from the projectors PZ and QW .

Suppose that ‖T (I−PZ)‖ 6 δZ and ‖(I−QW )T‖ 6 δW . Set Td := QWTPZ and rd := QW r.

Then, under the strong source condition (Assumption 4.1) the estimator is such that

E‖ϕ̂◦ −ϕ‖2 . {1 + E‖T̂d − Td‖2β}K−β +K
(

E‖T̂d − Td‖2 + E‖r̂d − rd‖2 + δ
2+2(β∧1)
Z

)

+ E‖T̂d − Td‖2(β∧1) + E‖T̂d − Td‖2β + δ
2(β∧1)
Z + δ

2(β∧1)
W .

Proof. Consider the definition of the estimator ϕ̂◦ given by (A.2). The proof is based on

the decomposition

E‖ϕ̂◦ − ϕ‖2 . E‖RµK(T̂ ⋆d T̂d)T̂
⋆
d {T̂dϕ− r̂d}‖2 + E‖{I −RµK(T̂ ⋆d T̂d)T̂

⋆
d T̂d}ϕ‖2 (B.4)

We bound each term of the RHS separately.

In order to bound the first term, we bound separately the two factors ‖µRµK(T̂ ⋆d T̂d)T̂
⋆
d ‖

and ‖µ−1(T̂dϕ− r̂d)‖. For the first factor:

‖µRµK(T̂ ⋆d T̂d)T̂
⋆
d ‖ =

∥∥∥R1
K

(
T̂ ⋆d
µ

T̂d
µ

)
T̂ ⋆d
µ

∥∥∥ = sup
{√

λR1
K(λ) s.t. λ ∈ [0, 1]

}
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because the spectrum of
T̂ ⋆

d
µ
T̂d
µ belongs to [0, 1]. Using the inequality

√
λRK(λ) = λ−1/2[1−

(1 − λ)K ] 6
√
K, we get the bound

‖µRµK(T̂ ⋆d T̂d)T̂
⋆
d ‖2 6 K. (B.5)

For the second factor, using the decomposition ‖µ−1(T̂dϕ− r̂d)‖ . ‖T̂d−T‖+ ‖r̂d− r‖ that

holds since µ > 1, we can write

E‖µ−1(T̂dϕ− r̂d)‖2 . E‖T̂d − Td‖2 + E‖r̂d − rd‖2 + ‖rd − Tdϕ‖2.

The last term is such that ‖rd − Tdϕ‖2 = ‖QWTϕ−QWTPZϕ‖2 6 ‖QW ‖2 · ‖T (I −PZ)‖2 ·
‖(I − PZ)ϕ‖2. The strong source condition (Assumption 4.1) implies the existence of a

function ψ in L2
π such that ϕ = (T ∗T )β/2ψ with ‖ψ‖ 6 ρ. This, together with (B.1),

implies

‖(I − PZ)ϕ‖2 = ‖(I − PZ)(T ⋆T )β/2ψ‖2 . δ
2(β∧1)
Z

and therefore ‖rd − Tdϕ‖2 . δ
2+2(β∧1)
Z . Finally the bound for the first term in (B.4) is

E‖RµK(T̂ ⋆d T̂d)T̂
⋆
d {T̂dϕ− r̂d}‖2 . K

(
E‖T̂d − Td‖2 + E‖r̂d − rd‖2 + δ

2+2(β∧1)
Z

)
.

To treat the second term of (B.4) we separately consider the cases β 6= 1 and β = 1.

Case 1: β 6= 1. As before, the strong source condition (Assumption 4.1) implies

the existence of a function ψ in L2
π such that ϕ = (T ∗T )β/2ψ with ‖ψ‖ 6 ρ. With this

assumption the second term is up to a constant bounded by

E

∥∥∥{I −RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d}

( T̂ ⋆d
µ

T̂d
µ

)β/2
µβψ

∥∥∥
2

+ E

∥∥∥{I −RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d}

{(T ⋆
µ

T

µ

)β/2
−
( T̂ ⋆d
µ

T̂d
µ

)β/2}
µβψ

∥∥∥
2
. (B.6)

The first term of the decomposition (B.6) is bounded up to a constant by

Eµ2β sup
{

[1 −RK(λ)λ]λβ/2 : λ ∈ [0, 1]
}2

. K−β
Eµ2β

because [1 − RK(λ)λ]λβ/2 = (1 − λ)Kλβ/2 6 CβK
−β/2 for some generic positive factor Cβ

depending on β only. Using that µ2β . C{(1∨ ‖T‖2β) + ‖T − T̂d‖2β}, we can finally bound

the first term of (B.6):

E

∥∥∥{I −RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d}

( T̂ ⋆d
µ

T̂d
µ

)β/2
µβψ

∥∥∥
2

6 K−β(1 + E‖T − T̂d‖2β) (B.7)

up to a constant, using that ‖T‖ <∞.

We now bound the second term of (B.6). As ‖I − RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d‖ 6 1, that term is

bounded up to a constant by E‖(T ∗T )β/2 − (T̂ ∗
d T̂d)

β/2‖2. In order to bound that term, we

consider two subcases.
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Case 1a: β < 1. Lemma B.1, inequality (B.3) allows to write with an appropriate µ̃

‖(T ⋆T )β/2 − (T̂ ⋆d T̂d)
β/2‖ = µ̃β

∥∥∥
(T ⋆
µ̃

T

µ̃

)β/2
−
( T̂ ⋆d
µ̃

T̂d
µ̃

)β/2∥∥∥

6 Cβµ̃
β
∥∥∥
T

µ̃
− T̂d

µ̃

∥∥∥
β

= Cβ‖T̂d − T‖β . (B.8)

Case 1b: β > 1. We proceed analogously and get the bound

‖(T ⋆T )β/2 − (T̂ ⋆d T̂d)
β/2‖ 6 Cβµ̃

β−1‖T − T̂d‖

Choosing µ̃β−1 . (1 ∨ ‖T‖β−1) + ‖T̂d − T‖β−1 we can write

‖(T ⋆T )β/2 − (T̂ ⋆d T̂d)
β/2‖ . ‖T̂d − T‖ + ‖T̂d − T‖β, (B.9)

Overall, (B.8) and (B.9) lead to

E‖(T ∗T )β/2 − (T̂ ∗
d T̂d)

β/2‖2 . E‖T̂d − T‖2(β∧1) + E‖T̂d − T‖2β for all β 6= 1

and thus we get the result for all β 6= 1.

Case 2: β = 1. That case needs a slightly different technique, because (B.3) is no longer

valid. We first notice that the range of the operator (T ⋆T )1/2 is the same as the range of

the operator T ⋆ (see e.g. Proposition 2.18 of Engl et al. (2000)) and thus the strong source

condition implies the existence of a function ψ ∈ L2
τ such that ϕ = T ⋆ψ. Therefore the

second term in (B.4) is bounded up to a constant by

E‖{I −RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d}T̂ ⋆dψ‖2 + E‖{I −RµK(T̂ ⋆d T̂d)T̂

⋆
d T̂d}(T ⋆ − T̂ ⋆d )ψ‖2

By (B.7), the first term is bounded up to a constant by (1+E‖T − T̂d‖2β)K−β. Using again

‖I −RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d‖ 6 1, the second term is bounded up to a constant by E‖T ⋆ − T̂ ⋆d ‖2 =

E‖T − T̂d‖2.

Combining all bounds we obtain that the second term of (B.4) is bounded up to a

constant by

{1 + E‖T̂d − T‖2β}K−β + E‖T̂d − T‖2(β∧1) + E‖T̂d − T‖2β.

By using the inequalities ‖T̂d − T‖ 6 δZ + δW + ‖T̂d − Td‖ . 1 + ‖T̂d − Td‖, we obtain the

desired result. �

C Risk bound under the weak source condition assumption

Under the weak source condition assumption, the proof of a stochastic bound for ‖ϕ̂◦ − ϕ‖
necessitates a different proof technique. We start with a key lemma.
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Lemma C.1. Consider the estimator (3.11) constructed using the projections PZ and QW .

Suppose that ‖T (I−PZ)‖ 6 δZ and ‖(I−QW )T‖ 6 δW . Set Td := QWTPW and rd := QW r.

Then, under the weak source condition (Assumption 5.1),

E‖ϕ̂◦ − ϕ‖2 . K{E‖T̂d − Td‖2 + E‖r̂d − rd‖2 + δ2Z + δ2W } + 2(logK)−β

provided that K,hW and hZ are such that K2
E‖T ⋆T − T̂ ⋆d T̂d‖2

2 is finite.

Proof. Analogously to (B.4), consider the decomposition

‖ϕ̂◦ − ϕ‖2 . ‖RµK(T̂ ⋆d T̂d)T̂
⋆
d {T̂dϕ− r̂d}‖2 + ‖{I −RµK(T̂ ⋆d T̂d)T̂

⋆
d T̂d}ϕ‖2 (C.1)

Using the inequality (B.5) from the previous proof, the first term is bounded by

K‖{T̂dϕ− r̂d}‖2 6 K
{
‖T̂d − Td‖2 + ‖r̂d − rd‖2 + ‖Td − T‖2 + ‖rd − r‖2

}

6 K
{
‖T̂d − Td‖2 + ‖r̂d − rd‖2 + δ2Z + 2δ2W

}
.

Getting an upper bound for the second of (C.1) is more delicate. Observe that the

operator S := {I −RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d} is self-adjoint (i.e. S⋆ = S) and such that ‖S1/2‖ 6 1.

Therefore, the second term of (C.1) is ‖Sϕ‖2 6 ‖S1/2ϕ‖2 = |〈Sϕ,ϕ〉|.
Let φβ(u) := [− log(u/2)]−β/2 and note that the operator φβ(T

⋆T ) is also self-adjoint.

This implies

‖Sϕ‖2 6 |〈Sϕ, φβ(T ⋆T )φ−1
β (T ⋆T )ϕ〉|

= |〈φβ(T ⋆T )Sϕ, φ−1
β (T ⋆T )ϕ〉|

6 ‖φβ(T ⋆T )Sϕ‖ · ‖φ−1
β (T ⋆T )ϕ‖

by the Cauchy-Schwarz inequality. The weak source condition assumption implies that

‖φ−1
β (T ⋆T )ϕ‖ 6 ρ. Therefore,

‖Sϕ‖2 6 ρ‖φβ(T ⋆T )Sϕ‖ (C.2)

and the Jensen’s inequality implies

E‖Sϕ‖2 6 ρ
√

E‖φβ(T ⋆T )Sϕ‖2 (C.3)

Define the function Γβ(u) = 2 exp(−u−1/β). In the technical Lemma C.2 below, we

show that

Γβ

(
γ2
β

√
E‖φβ(T ⋆T )Sϕ‖2

ρ2

)
.

√
E‖T ⋆T − T̂ ⋆d T̂d‖2

2 + Eµ4/K2.

for γβ = 1 ∧ 1/{(1 + β)βϕβ(‖T‖)2}. This implies

E‖Sϕ‖2 6
1

γ2
β

φβ




Γβ

(
γ2
β

√
E‖φβ(T ⋆T )Sϕ‖2

ρ2

)2



 .
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Because 1/γ2
β is bounded, we can write using Lemma C.2

E‖Sϕ‖2 .

{
− log

√
E‖T ⋆T − T̂ ⋆d T̂d‖2

2 + Eµ4/K2

}−β

Note that Eµ4 is finite by Proposition 3.1. Therefore, if we assume that K2
E‖T ⋆T − T̂ ⋆d T̂d‖2

2

is finite for each K, we get the upper bound E‖Sϕ‖2 . 2(logK)−β and the result follows.

�

Lemma C.2. Let Γβ(u) := 2 exp(−u−1/β) and φβ(u) := [− log(2u)]−β/2. Define

γβ := 1 ∧ 1

(1 + β)βφβ(‖T‖)2

and S := I −RµK(T̂ ⋆d T̂d)T̂
⋆
d T̂d. Then the inequality

Γβ

(
γ2
β

√
E‖φβ(T ⋆T )Sϕ‖2

ρ

)
6

√
2E‖T ⋆T − T̂ ⋆d T̂d‖2

2 +
2

K2
C ′

2ρ
2Eµ4

holds true.

Proof. We first derive three useful inequalities.

1. We first give a bound for ‖T̂dSϕ‖2. Using the bound (B.7) with β = 2, we can write

‖T̂dSϕ‖2 6 ‖T̂dS1/2‖ · ‖S1/2ϕ‖2 6
C ′

2µ
2ρ

K
· ‖S1/2ϕ‖2.

By (C.2), we get the bound

E‖T̂dSϕ‖2 6
C ′

2µ
2ρ2

K
· E‖φβ(T ⋆T )Sϕ‖. (C.4)

2. We derive a bound for E‖TSϕ‖2/
√

E‖φβ(T ⋆T )Sϕ‖2. Using (B.7), (C.2) and (C.4),

we get

‖TSϕ‖2 = 〈T ⋆TSϕ, Sϕ〉
= 〈(T ⋆T − T̂ ⋆d T̂d)Sϕ, Sϕ〉 + ‖T̂dSϕ‖2

6 ‖φβ(T ⋆T )Sϕ‖
{
ρ‖T ⋆T − T̂ ⋆d T̂d‖ +

C ′
2µ

2ρ2

K

}
.

Taking the expectation and using the Cauchy-Schwarz’s inequality, we obtain

E‖TSϕ‖2

√
E‖φβ(T ⋆T )Sϕ‖2

6

√
2ρ2E‖T ⋆T − T̂ ⋆d T̂d‖2 +

2C ′2
2 Eµ4ρ4

K2
(C.5)
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3. Denote by {(λi, ui)} the eigenvalue decomposition of the compact operator T ⋆T , where

λi is a decreasing sequence of positive eigenvalues in R, and ui is the correspond-

ing orthonormal system of eigenfunctions. The norm is such that ‖φβ(T ⋆T )Sϕ‖2 =
∑

i φβ(λi)
2〈Sϕ, ui〉2 and

E‖φβ(T ⋆T )Sϕ‖2

E‖Sϕ‖2
=
∑

i

φβ(λi)
2 E〈Sϕ, ui〉2∑

j E〈Sϕ, uj〉2
.

Note that the function Γβ(·) is convex over the interval (0, (1+β)−β ]. Moreover, since

γβ 6 and Γβ(·) is an increasing function, we get Γβ(γ
2
βφβ(λi)

2) 6 Γβ(φβ(λi)
2) = λi for

all eigenvalue λi in the spectrum of the operator T . Therefore, the Jensens’s inequality

allows to write

Γβ

(
γ2
β

E‖φβ(T ⋆T )Sϕ‖2

E‖Sϕ‖2

)
6
∑

i

λi
E〈Sϕ, ui〉2∑
j E〈Sϕ, uj〉2

=
E‖TSϕ‖2

E‖Sϕ‖2
(C.6)

To prove the result, we first note that (C.3) implies

(E‖φβ(T ⋆T )Sϕ‖2)1/4
√
ρ

6
(E‖φβ(T ⋆T )Sϕ‖2)1/2

(E‖Sϕ‖2)1/2

and therefore, for all monotone function g, it holds

g

[
γβ

(E‖φβ(T ⋆T )Sϕ‖2)1/4
√
ρ

]
6 g

[
γβ

(E‖φβ(T ⋆T )Sϕ‖2)1/2

(E‖Sϕ‖2)1/2

]
.

If we apply that inequality with the monotone function g(u) = Γβ(u
2)/u2, we get using

(C.6)

Γβ

(
γ2
β

√
E‖φβ(T ⋆T )Sϕ‖2

ρ

)
6

E‖TSϕ‖2

ρ
√

E‖φβ(T ⋆T )Sϕ‖2

which leads to the result using (C.5). �
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