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Abstract
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2Toulouse School of Economics (GREMAQ)



1 Introduction

The modelling and estimation of production functions have been the topic of many research

papers on economic activity. A classical formulation of this problem is to consider produc-

tion units characterized by a vector of inputs x ∈ R
p
+ producing a vector of outputs y ∈ R

q
+.

The set of production possibilities is denoted by Φ and is a subset of R
p+q
+ on which the

inputs x can produce the outputs y. Following Shephard (1970), several assumptions are

usually imposed on Φ: convexity, free disposability and strong disposability. Free dispos-

ability means that if (x, y) belongs to Φ and if x′, y′ are such that x′ > x and y′ 6 y then

(x′, y′) ∈ Φ. Strong disposability requires that one can always produce a smaller amount of

outputs using the same inputs.

The boundary of the production set is of particular interest in the efficiency analysis

of production units. The efficient frontier in the input space is defined as follows. For all

y ∈ R
q
+, consider the set ρ(y) = {x ∈ R

p
+|(x, y) ∈ Φ}. The radial efficiency boundary is

then given by

ϕ(y) = {x ∈ R
p
+ : x ∈ ρ(y), θx 6∈ ρ(y) ∀0 < θ < 1}

for all y. Similarly, an efficient frontier in the output space may be defined (e.g. Färe,

Grosskopf, & Knox Lovell, 1985).

In empirical studies, the attainable set Φ is unknown and has to be estimated from data.

Suppose a random sample of production units Xn = {(Xi, Yi) ∈ R
p+q
+ : i = 1, . . . , n} is

observed. We assume that each unit (Xi, Yi) is an independent replication of (X,Y ). The

joint probability measure (X,Y ) on R
p+q
+ describes the production process. The support

of this probability measure is the attainable set Φ, and looking for an estimator of the

efficiency boundary is related to the estimation of the support of (X,Y ).

Out of the large literature on the estimation of the attainable set, nonparametric models

appeared to be appealing since they do not require restrictive assumptions on the data

generating process of Xn. Deprins, Simar, and Tulkens (1984) have introduced the Free

Disposal Hull (FDH) estimator that is defined as

Φ̂fdh = {(x, y) ∈ R
p+q
+ : y 6 Yi, x > Xi, i = 1, . . . , n}

and became a popular estimation method (e.g. De Borger, Kerstens, Moesen, & Vanneste,

1994; Leleu, 2006). The convex hull of Φ̂fdh, called the Data Envelopment Analysis (DEA),

is the smallest free disposal convex set covering the data (e.g. Seiford & Thrall, 1990).

Among the significant results on this subject, we like to mention the asymptotic results

proved in Kneip, Park, and Simar (1998) for the DEA and Park, Simar, and Weiner (2000)

for the FDH.

The consistency of the FDH estimator and other data envelopment techniques is only

achieved when the production units are observed without noise, that is when P((Xi, Yi) ∈
Φ) = 1. However, FDH in particular is very sensitive to the contamination of the data by

measurement errors or by outliers (e.g. Cazals, Florens, & Simar, 2002; Daouia, Florens, &

Simar, 2009). Measurement errors are frequently encountered in economic data bases, and

therefore there is a need for developing more robust estimation procedures of the production

frontier.
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In Cazals et al. (2002), a new nonparametric estimator has been proposed to overcome

the nonparametric frontier estimation from contaminated samples. When p = 1 and under

the free disposability assumption, they show that the frontier function ϕ(y) can be written

as

ϕ(y) = inf{x ∈ R+ such that SX|Y >y(x) < 1}, (1.1)

where SX|Y >y(x) = P(X > x|Y > y) denotes the conditional survival function. IfX1, . . . ,Xm

are m independent replications of (X|Y > y) for an integer m > 1, then a key observation

in Cazals et al. (2002) is that the expected minimum input functions

ϕm(y) := E
(

min{X1, . . . ,Xm}|Y > y
)

m = 1, 2, 3, . . . (1.2)

are such that

ϕm(y) :=

∫ ∞

0

{

SX|Y >y(u)
}m

du (1.3)

and ϕm(y) converges pointwise to the frontier ϕ(y) as m tends to infinity (assuming the

existence of ϕm(y) for all m). The functions ϕm(y) are nonparametrically estimated in

Cazals et al. (2002) from nonparametric estimators of the conditional survival function

SX|Y >y. The empirical survival function is defined by ŜX,Y (x, y) = n−1
∑

i 11(Xi > x, Yi >

y) and the empirical version of SX|Y >y is thus given by

ŜX|Y >y =
ŜX,Y (x, y)

ŜY (y)
(1.4)

where ŜY (y) = n−1
∑

i 11(Yi > y). Cazals et al. (2002) have studied the asymptotic

properties of the frontier estimator

ϕ̂m,n(y) :=

∫ ∞

0

{

ŜX|Y >y(u)
}m

du (1.5)

that is called the m-frontier estimator. They argue that this estimator is less sensitive to

extreme values or noise in the sample of production units than FDH or DEA-type estimators.

In this article, we slightly amend this claim, and show that, when the noise level on

the data does not vanish as the sample size n grows, then the m-estimator is no longer

asymptotically consistent. When the noise level is too high, we show that consistency may

be recovered when a robust estimate of the conditional survival function is plugged-in in

the integral in (1.5). By “robust estimate”, we think here of an estimator of SX|Y >y that

is consistent even in the presence of a non-vanishing noise in the sample.

In this article, a new robust estimator of the survival function is studied when the inputs

X are contaminated by an additive error. We show the consistency of the estimator under

the assumption that we only have a partial information on the distribution of the error.

More precisely, we assume that the additive noise is a zero-mean Gaussian random variable

with an unknown variance.

The paper is organized as follows. In Section 2, we give an overview of existing methods

to nonparametrically estimate a density from noisy observations when the distribution of the
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noise is partially unknown. In Section 3, we define a new estimator of the survival function

in the univariate case, when the data are contaminated by an additive Gaussian random

noise with an unknown variance. We prove the asymptotic consistency of our estimator.

Finite sample properties are also considered through Monte Carlo simulations. In Section 4,

we define and illustrate on data a new robustm-frontier estimator that is defined similarly to

the estimator in (1.5), except that our robust estimator of the conditional survival function is

plugged in the integral. The consistency of the robustm-frontier estimator is also established

theoretically in this section. The last section summarizes the results of this paper and

suggests future directions of research.

2 Density estimation from noisy observations

Estimating the distribution of a real random variable X from a noisy sample is a standard

problem in nonparametric statistics. The usual setting is to assume independent and identi-

cally distributed (iid) observations from a random variable Z such that Z = X+ ε, where ε

represents an additive error independent of X. Many research papers focus on the accurate

estimation of the cumulative distribution function (cdf) of X under the assumption that

the cdf of ε is known. The additive measurement error implies that the density of Z, if it

exists, is the convolution between the density of ε and the one of X:

fZ(z) = f ε ⋆ fX(z) :=

∫ ∞

−∞
f ε(t)fX(z − t)dt .

Based on this result, most estimators of fX studied in the literature use the Fourier trans-

form of the densities since the Fourier coefficients of the convolution are the product of the

coefficients:

ψZ(ℓ) = ψε(ℓ)ψX (ℓ), ℓ ∈ Z

where ψU (ℓ) := E{exp(iℓU)} denotes the ℓ-th Fourier coefficient of a density fU . A usual

estimator of ψZ(ℓ) is (a functional of) the empirical characteristic function of the sample

(Z1, . . . , Zn), i.e.

ψ̂Z(ℓ) :=
1

n

n
∑

i=1

exp(iℓZi), ℓ ∈ Z .

From this estimator and under the condition that fℓ is known and nonzero, the standard

estimators are based on the inverse Fourier transform of ψ̂Z(ℓ)/ψε(ℓ) (e.g. Carroll & Hall,

1988; Fan, 1991). Alternative estimators have also been studied in the literature, for in-

stance in the wavelet domain (Pensky & Vidakovic, 1999; Johnstone, Kerkyacharian, Picard,

& Raimondo, 2004; Bigot & Van Bellegem, 2009).

The exact knowledge of the cdf of the error is however not realistic in many empirical

studies. If we want to relax the condition that the cdf of the error is known, one major

obstacle is that the cdf of X is no longer identifiable. To circumvent this problem, at least

three research directions may be found in the literature.
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A first approach assumes that an independent sample from the measurement error ε

is available in addition to the sample of Z. From the independent observation of ε, the

density f ε is identified and so is the target density fX . A nonparametric estimator from

the sample of ε’s can be constructed, and then used in the construction of the estimator

of fX (Neumann, 2007; Johannes & Schwarz, 2009; Johannes, Van Bellegem, & Vanhems,

2010). If this approach may be realistic for a set of practical situations (e.g. in some

problems in biostatistics and astrophysics), it is hardly applicable in production frontier

estimation.

A second approach is to assume various sampling processes. Li and Vuong (1998)

suppose that repeated measurements for one single value of X are available, such as Zj =

X + εj for j = 1, . . . ,m. Assuming further that X, ε1, and ε2 are mutually independent,

E(εj) = 0, and that the characteristic functions of X and ε are non-zero everywhere, they

show how the latter characteristic functions can be expressed as functions of the joint

characteristic function of (Z1, Z2). From this representation it follows that the cumulative

distribution function (cdf) of bothX and ε can be identified from the observation of the pair

(Z1, Z2). The joint characteristic function of (Z1, Z2) can be estimated from a sample of

(Z1, Z2) and then used to derive an estimator of fX . The characteristic functions of X and

ε, denoted by ψX and ψε, can then be computed using the above-mentioned representation.

Delaigle, Hall, and Meister (2008) have considered this setting and present modified kernel

estimators which, if the number of repeated measurements is large enough, can perform as

well as they would under known error distribution.

A related situation is when there are repeated measurements of X in a multilevel model.

In Neumann (2007) it is assumed that Zij = Xi + εij for j = 1, . . . , N and i = 1, . . . , n are

observed (see also Meister, Stadtmüller, & Wagner, 2010). In this sampling process, the

identification of the cdf of X is ensured by a condition on the zero-sets of the characteristic

functions of X and ε. Let Z = (Zi1, . . . , ZiN )′, ψZ its characteristic function, and ψ̂Z

the empirical characteristic function of Z. A consistent estimator of the density of X is

obtained by minimizing the discrepancy
∫

Rn

∣

∣ψX(t1 + . . .+ tn)ψε(t1) · · ·ψε(tn) − ψ̂Z
n (t1, . . . , tn)

∣

∣h(t1, . . . , tn)dt1 . . . dtn

over certain classes of possible characteristic functions ψX and ψε of X and ε respectively.

Repeated measurements of multilevel sampling appear in some economic situations, for

instance when production units are observed over time (a case considered e.g. in Park,

Sickles, & Simar, 2003; Daskovska, Simar, & Van Bellegem, 2010).

A third approach to recover the identification of X in spite of the noise ε is to assume

that the cdf of ε is only partially unknown. A realistic case for practical purposes is to

assume that ε is normally distributed, but the variance of ε is unknown. Of course the cdf

of X is not identified in this setting, and it is necessary to restrict the class of cdfs of X in

order to recover identification.

Several recent research papers have proposed identification restrictions on the class of

X given a partial knowledge about the cdf of the noise. Butucea and Matias (2005) assume

that the error density, is “s-exponential” meaning that its Fourier transform, ψε, satisfies

b exp(−|u|s) 6 |ψε(u)| 6 B exp(−|u|s)
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for some constants b,B, s and |u| large enough. In their approach the error density is

supposed to be known up to its scale σ (called “noise level”). As for the density fX , both

polynomial and exponential decay of its Fourier transform are shown to lead to a fully

identified model. To define an estimator, let ψε
σ be the Fourier transform of (σf ε). The

key to the estimation of σ is the observation that the function |F (τ, u)| = |ψZ(u)|/|ψε
τ (u)|

diverges as u → ∞ when τ > σ and that it converges to 0 otherwise. Let F̂ (τ, un) =

|ψ̂Z(un)|/|ψε
τ (un)|. Then Butucea and Matias (2005) show that

σ̂n = inf{τ > 0 : |F̂ (τ, un)| > 1}

yields a consistent estimator of σ for some well balanced sequence un. This estimator is

then used to deconvolve the empirical density of Z and to get an estimator of the density

of X. Some extensions are proposed in Butucea, Matias, and Pouet (2008), where the error

density is assumed to have a stable symmetric distribution with ψε(u) = exp(−|γu|s) in

which γ represents some known scale parameter and s is an unknown index, called the

self-similarity index.

A similar setting is considered in Meister (2006). In this paper, the error is supposed to

be normally distributed with an unknown variance parameter. Identification is recovered by

assuming that ψX lies in {ψ : c1|u|−β 6 |ψ(u)| 6 c2|u|−β for all u ≫ 0} for some strictly

positive constants c1, c2.

In Meister (2007), it is assumed that ψε is known on some arbitrarily small interval

[−ν, ν] and that it belongs to some class

Gµ,ν = {f is a density such that ‖f‖∞ 6 C, |ψf (t)| > µ ∀|t| > ν}.

The target density fX is assumed to belong to

FS,C,β = {f is a density such that

∫ S

−S
f(u)du = 1 and

∫

|ψf (t)|2(1 + t2)βdt 6 C},

that is in the class of densities with compact support that are uniformly bounded in the

Sobolev norm. Empirically the direct access to ψX via Fourier deconvolution is only re-

stricted to the interval [−ν, ν]. However, it is shown using a Taylor expansion that ψX is

uniquely determined by its restriction to [−ν, ν], and therefore is everywhere identified.

Because the deconvolution of the density of Z is solved via the Fourier transform, most

of the assumptions on X or ε recalled above are expressed in terms of their characteristic

functions. They appear to be ad hoc assumptions, although they could be difficult to

interpret econometrically. In Schwarz and Van Bellegem (2010), an identification theorem

is proved on the target density under assumptions that are not expressed in the Fourier

domain. It is instead assumed that the measurement error ε is normally distributed with

an unknown variance parameter, and that fX lies in the class of densities that vanish

on a set of positive Lebesgue measure. This restriction on the class of target densities is

reasonable for our purpose of frontier estimation, in which it is structurally assumed that

the density of X (or the conditional density of (X|Y > y)) is zero beyond the frontier. Since

this is a natural assumption in the setting of frontier estimation, we use this framework in

the next section in order to estimate a survival function from noisy data.

5



3 A new estimator of the survival function from noisy obser-

vations

3.1 Identification of the survival function

Suppose we observe a sample {Z1, . . . , Zn} of n independent replications of Z from the

model

Z = X + ε , (3.1)

where ε is a N(0, σ2) random variable, independent from X, and with an unknown variance

σ2. As explained in the previous section, the probability density of Z is the convolution

φσ ⋆ f
X , where fX is the probability density of X and φσ denotes the Normal density with

standard error σ. The following theorem, quoted from Schwarz and Van Bellegem (2010),

defines a set of identified probability distributions fX from model (3.1). The survival

function SX of X will hence be identified on that set from the observation of Z.

Theorem 3.1. Define the following set of probability distributions:

P0 := {P distribution : ∃ Borel set A such that |A| > 0 and P (A) = 0},

where |A| denotes the Lebesgue measure of A. The model defined by (3.1) is identifiable

for the parameter space P0 × (0,∞). In other words, for any two probability measures

P 1, P 2 ∈ P0 and σ1, σ2 > 0, we have that φσ1 ⋆P
1 = φσ2 ⋆P

2 implies P 1 = P 2 and σ1 = σ2.

3.2 A consistent estimator

From model (3.1), we also observe after a straightforward calculation that the survival

function of Z, denoted by SZ , follows a convolution formula:

SZ(z) = φσ ⋆ S
X(z)

where SX is the survival function of the variable X and φσ denotes the density function of

a N(0, σ2) random variable.

Our estimator of SX is approximated in a sieve as follows. For any integers k,D > 0,

define ∆(k,D) := {δ ∈ R
k : 0 6 δ1 6 . . . 6 δk 6 D} and for δ ∈ ∆(k,D) define

Sδ(t) :=
1

k

k
∑

j=1

11(δj > t) . (3.2)

For any δ ∈ ∆(k,D), denote by Pδ the probability distribution corresponding to the survival

function Sδ. The choice of the approximating function is performed minimizing the contrast

function

γ(S, ζ;T ) :=

∫ ∞

−∞

∣

∣(φζ ⋆ S)(t) − T (t)
∣

∣h(t)dt,

where h is some strictly positive probability density ensuring the existence of the integral.
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We are now in position to define our estimator of the survival function. Let (kn)n∈N

and (Dn)n∈N be two positive, divergent sequence of integers. The estimator (Sδ̂(n), σ̂n) is

defined by

(δ̂(n), σ̂n) := arg min
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ; ŜZ
n ) , (3.3)

where ŜZ
n := n−1

∑n
k=1 11(Zk > t) is the empirical survival function of Z. Note that the

argmin is attained because it is taken over a compact set of parameters. Though, it is

not necessary unique. If it is not, an arbitrary value among the possible solutions may be

chosen.

Theorem 3.2. The estimator (Sδ̂(n), σ̂n) is consistent in the sense that

PX
δ̂n

L−→ PX and σ̂n → σ

almost surely as n→ ∞, where
L−→ denotes weak convergence of probability measures.

The proof of this result is based on some technical lemmas and can be found in the

appendix below.

To illustrate the estimator, we now present the result of a Monte Carlo experiment. The

estimator of the standard deviation σ of the noise is of particular interest. In the following

experiment, we consider two designs for the input X. One is uniformly distributed over

[1, 2], and the other is a mixture U [1, 2] + Exp(1). In both cases the density of X is zero

below 1, and in the second case the support of X is not bounded to the right. For various

true values of σ, we calculate the estimators (δ̂(n), σ̂n) for sample sizes n = 100, 200 and

500. No particular optimization over the value of k (appearing in (3.2)) is provided, except

that we increase k as the sample size increases. For the considered sample sizes, we set

k = 10n1/2. The minimization of the contrast function is calculated using the algorithm

optim in the R software. For this algorithm, we have chosen the initial values of δj to be

equispaced values over the interval [0, 3] and the initial value of σ is the empirical standard

deviation of the sample Z1, . . . , Zn.

Tables 1 and 2 show the result of the Monte Carlo simulation usingB = 2000 replications

of each design. The mean and standard deviation of σ − σ̂n over the B replications are

displayed. Some results are not reported for very small sizes, because a stability problem

has been observed, especially in the mixture case. In these cases, the optim algorithm did

not often converge (a similar phenomenon has been observed using the nlm algorithm). It

also has to be mentioned that the stability is very sensitive to the choice of k and to the

choice of initial values for δ and σ. For larger sample sizes, or larger values of the noise, the

results overall improve with the sample size.

4 Robust m-frontier estimation in the presence of noise

4.1 Inconsistency of the m-frontier estimator

Let us now consider our initial problem of consistently estimating the production frontier

ϕ(y) from a sample of production units (Xi, Yi), where Xi is the input and Yi is the output.
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True σ

n 1 2 5

100 1.30 -1.08

(1.05) (0.51)

200 0.91 0.07 -0.38

(3.84 (0.45) (0.45)

500 0.37 0.06 0.14

(0.30) (0.44) (0.49)

Table 1: The inputs simulated in this experiment are uniformly distributed over
[1, 2]. For each sample size and noise level, we compute the mean of σ − σ̂n from
B = 2000 replications (the standard deviation is given between parentheses)

True σ

n 1 2 5

100 2.84 -0.92

(7.80) (7.15)

200 -0.49 -0.49

(6.32) (5.92)

500 1.78 0.029 0.014

(5.90) (4.88) (6.69)

Table 2: The inputs simulated in this experiment are a mixture U [1, 2]+Exp(1).
For each sample size and noise level, we compute the mean of σ−σ̂n fromB = 2000
replications (the standard deviation is given between parentheses)
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To simplify the discussion, we assume that the dimension of the input and the output are

p = q = 1.

In the introduction we have recalled the definition of them-frontier estimator in equation

(1.5). Compared to the FDH or DEA estimator, this nonparametric frontier estimator

provides a more robust estimator of the frontier in the presence of noise. In Cazals et al.

(2002, Theorem 3.1) it is also proved that for any interior point y in the support of the

distribution Y and for any m > 1, it holds that

ϕ̂m,n(y) → ϕm(y) almost surely as n→ ∞ (4.1)

where ϕm(y) is the expected minimum input function of order m given in equation (1.2).

When the input of the production units is contaminated by an additive error, the actually

observed inputs are

Zi = Xi + εi, εi ∼ N(0, σ2)

instead of Xi, for some positive, unknown variance parameter σ2. If σ2 does not vanish

asymptotically, the limit appearing in (4.1) is no longer given by the expected minimum

input function (1.2). Instead we get

ϕ̂m,n(y) → E (min{Z1, . . . , Zm}|Y > y) almost surely as n→ ∞ .

The expectation appearing on the right hand side is not (1.2) because the support of the

variable Z is the whole real line. Therefore, the m-frontier estimator does not converge to

the desired target function, due to the non-vanishing error variance. Note that this is in

contrast with the approach of Hall and Simar (2002) or Simar (2007). In the two latter

references, the noise level is assumed to be asymptotically negligible.

The inconsistency of the m-frontier estimator is illustrated in Figures 1 and 2. The

true production frontier in this simulation is given by ϕ(y) =
√
y and is displayed by the

dashed line. We have simulated 200 production inputs from the model Xi = Y 2
i +Ei, where

Ei ∼ Exp(1). The production inputs are then contaminated by an additive noise, so that

the observed inputs are Zi = Xi + εi instead of Xi, where εi are independently generated

from a zero mean normal variable with standard error σ = 2.

The FDH estimator computed in Figure 1 is known to be inconsistent in this situation,

because it is constructed under the assumption that all production units are in the produc-

tion set Φ with probability one. Figure 2 shows the m-frontier of Cazals et al. (2002) for

m = 1 and 50 respectively (cf. (1.5)). As discussed in Cazals et al. (2002), an appropriate

choice of m is delicate and, as far as we know, there is no automatic procedure to select it

from the data. If m is too low, the m-frontier is not a good estimator of the production

function. In the theory of Cazals et al. (2002), m is an increasing parameter with respect

to the sample size. For large values of y, the estimator is above the true frontier.

For larger values of m, as shown in Figure 2, the estimator is close to the FDH estimator.

Because the value of m increases with n in theory, the two estimators will be asymptotically

close. This illustrates the inconsistency of the m-frontier in the case where the noise on the

data is not vanishing with increasing sample size.
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Figure 1: The gray points are the simulated production units and the thick line
is the true production frontier. The solid line is the Free Disposal Hull (FDH)
estimator of the frontier.
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Figure 2: Using the same data as in Figure 1, the two solid lines are the m-
frontier estimator with m = 1 and m = 50 respectively.
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4.2 Robust m-frontier estimation

In order to recover the consistency of the m-frontier, we need to plug-in a consistent estima-

tor of the conditional survival function in (1.3). The construction of the estimator is easy

from the above results if we assume that the additive noise to the inputs is independent

from the input X and the output Y . Let y be a point in the output domain where the

support of Y is strictly positive. Restricting the data set to (Zi|Yi > y), we can construct

the empirical conditional survival function ŜZ|Y >y using the usual nonparametric estimator

(1.4). Note that this estimator does not require any regularization parameter such as a

bandwidth. In analogy to (3.3), we also define

(δ̂(n), σ̂n) := arg min
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ; ŜZ|Y >y) . (4.2)

The final robust m-frontier estimator is then given by

ϕ̂rob
m,n(y) =

∫ ∞

0

{

Sδ̂(n)(u)
}m

du . (4.3)

Note that this integral is easy to compute since Sδ̂(n) is a step function. The following result

establishes the consistency of this new estimator under a condition on the parameter m.

Proposition 4.1. Suppose we observe production units {(Zi, Yi); i = 1, . . . , n} in which the

univariate inputs are such that Zi = Xi + εi, where εi models a measurement error that is

independent from Xi and Yi, normally distributed with zero mean and unknown variance

σ2. Consider the robust m-frontier estimator given by equations (4.2) and (4.3) and let mn

be a strictly divergent sequence of positive integers such that

{Sδ̂(n)(ϕ(y))}mn → 1 (4.4)

almost surely as n→ ∞. Then ϕ̂rob
mn,n(y) → ϕ(y) almost surely as n→ ∞.

This result illustrates well the role of the parameter m = mn, which has to tend to

infinity at an appropriate rate as n → ∞ in order to achieve consistency of the robust

frontier estimator. Indeed, if mn is bounded by some M > 0, Fatou’s Lemma implies that

almost surely

lim
n→∞

ϕ̂rob
mn,n(y) >

∫ ∞

0

{

SX|Y >y(u)
}M

du = ϕ(y) +

∫ ∞

ϕ(y)

{

SX|Y >y(u)
}M

du.

Except for the trivial case where the true conditional survival function is the indicator func-

tion of the interval (−∞, ϕ(y)), the last integral on the right hand side is strictly positive.

This shows that the robust estimator asymptotically overestimates the true frontier ϕ(y)

if mn does not diverge to infinity.

On the other hand, if mn increases too fast in the sense that the condition in (4.4) does

not hold, then ϕ̂rob
mn,n(y) may asymptotically underestimate the true frontier ϕ(y) as one

can see decomposing the integral from (4.3) into

∫ ∞

0

{

Sδ̂(n)(u)
}mn

du =

∫ ϕ(y)

0

{

Sδ̂(n)(u)
}mn

du+

∫ ∞

ϕ(y)

{

Sδ̂(n)(u)
}mn

du.
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The second integral on the right hand side tends to 0 almost surely for n → ∞ as we

explain in the proof of Proposition 4.1. As for the first one, the integrand converges to a

non-negative monotone function S with S(ϕ(y)) < 1, and hence the integral may tend to a

limit that is smaller than the true frontier ϕ(y). However, this need not be the case, and

thus the condition in (4.4) is sufficient but not necessary.

Summarizing the above discussion, the sufficient condition in (4.4) implicitly defines an

appropriate rate at which mn may diverge to infinity such that the new robust frontier

estimator is consistent. This rate depends on characteristics of the true conditional survival

function, and we do not know at present how to choose it in an adaptive way. Nevertheless,

the simulations show that even for finite samples, large choices of m do not deteriorate the

performance of the robust estimator.

The estimator is computed for each possible value of y. In practice, it is not necessary to

estimate the standard deviation of the noise for each y. We can first estimate the noise level

using the marginal data set of inputs only, and use the techniques developed in Section 4. We

then use this estimated value in (4.2) even as an initial parameter of the optim algorithm,

or as a fixed, known parameter of the noise standard deviation.

Figure 3 shows the estimator on the simulated data of Figure 1. As for the standard m-

frontier, the robust m-frontier with m = 1 is not a satisfactory estimator. The interesting

fact about the robust m-frontier is that it does not deteriorate the frontier estimation

for large values of m. For the sake of comparison with Figure 2, Figure 3 also displays the

robust m-frontier estimator with m = 50. This estimator does not cross the true production

frontier and does not converge to the FDH estimator.

0 5 10 15 20 25

0
1

2
3

4
5

Z

Y

Figure 3: Using the same data as in Figure 1, the two solid lines are the robust
m-frontier estimator with m = 1 and m = 50 respectively.

12



5 Conclusion and further research

One original idea in this paper is to consider stochastic frontier estimation when the data

generating process has an additive noise on the inputs. The noise is not assumed to vanish

asymptotically. In this situation, the m-frontier estimator introduced by Cazals, Florens,

and Simar (2002) is still a valuable tool in robust frontier estimation, but it requires to

plug-in a consistent estimator of the conditional survival function in order to be consistent

itself.

Constructing this consistent estimator is a deconvolution problem. We have solved this

problem in this paper. An important feature of our results is that the noise level is not

known, and therefore needs to be estimated from a cross section of production units.

Measurement errors are frequently encountered in empirical economic data, and the

new robust estimator is designed to be consistent in this setting. The rate of convergence

of the estimator is however unknown. This study might be of interest for future research in

efficiency analysis.

As it was suggested by a referee, one might also be interested in the case where the

measurement error is in the output rather than in the input variable. We would like to

end this paper by explaining how the above methods can be transferred to this problem

and where the limitations are. In this setting, in contrast to Section 4, the inputs Xi are

directly observed, but only a contaminated version

Wi = Yi + ηi, ηi ∼ N(0, σ2) (5.1)

of the true output variables Yi is observed, with ηi independent from Xi and Yi. Let us

briefly discuss the case where both the input and the output spaces are one-dimensional,

i.e. p = q = 1. As the frontier function ϕ : R+ → R+ given in (1.1) is strictly increasing, its

inverse function ϕ−1 : R+ → R+ exists. The efficiency boundary can be described by either

of the functions ϕ and ϕ−1. Estimating ϕ−1 is thus equivalent to estimating ϕ itself. The

inverse frontier function can be written as

ϕ−1(x) = inf{y ∈ R+ : FY |X6x(y) = 1},

where FY |X6x denotes the conditional distribution function of Y given X 6 x. To apply the

robust m-frontier methodology we therefore need to estimate the conditional distribution

function FY |X6x . From the model (5.1), one can easily show that the estimation of FY |X6x

is again a deconvolution problem, and recalling that FY |X6x = 1 − SY |X6x, we can define

(δ̂(n), σ̂n) := arg min
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ; ŜW |X6x) and F̂n := 1 − Sδ̂(n)

in analogy to Section 4.2. F̂n is the deconvolving estimator of the conditional distribution

function FY |X6x. We proceed by defining the robust m-frontier estimator of ϕ−1 as

ϕ̂−1
m,n(x) := A−

∫ A

0

{

F̂n(u)
}m

du,

13



where A > 0 is some constant fixed in advance. Let mn be a strictly divergent sequence

such that {F̂n(ϕ(x))}mn → 1 almost surely as n → ∞. In analogy to Proposition 4.1, it

can be shown that for such a sequence, ϕ̂−1
mn,n(x) is consistent if A > ϕ−1(x). Otherwise,

ϕ̂−1
mn,n(x) tends to A almost surely. This suggests the following adaptive choice of A. First,

one computes the estimator with some arbitrary initial value of A. If the result is close to A,

recompute it repeatedly for increasing values of A until a value smaller than A is obtained.

This estimator is thus robust with respect to noise in the output variable, but note that

it is not obvious how to generalize this procedure to a multi-dimensional setting. Moreover,

it is not clear how one could cope with a situation with error in both variables. These

questions could be subject to further investigation.

A Proofs

A.1 Proof of Theorem 3.2

In order to show the consistency of the robust frontier estimator, we first need to prove two

lemmas.

Lemma A.1. The estimator (Sδ̂(n), σ̂n) satisfies

γ(Sδ̂(n), σ̂n; ŜZ
n ) → 0 as n→ ∞.

Proof. By the triangle inequality, we have, for any (S′, σ′) ∈ C × R
+,

γ(Sδ̂(n), σ̂n; ŜZ
n ) = min

δ∈∆(kn,Dn)

σ̃∈[0,Dn]

γ(Sδ, σ̃; ŜZ
n )

6 min
δ∈∆(kn,Dn)

σ∈[0,Dn]

γ(Sδ, σ;SX ⋆ φσ) + γ(SX , φσ; ŜZ
n ).

(A.1)

Let η > 0 and T > 0 be such that
∫ ∞
T SX(x) dx 6 η/2. For n sufficiently large, we have

σ 6 Dn and there is δ ∈ ∆(kn,Dn) with
∫ T
0 |(Sδ − SX)(x)| dx 6 η/2, such that

∫

R
|(Sδ −

SX)(x)| dx 6 η. It follows that the first term on the right hand side of (A.1) is a null

sequence, because

γ(Sδ, σ;SX ⋆ φσ) 6 ‖(Sδ − SX) ⋆ φσ‖L1 6 ‖Sδ − SX‖L1‖φσ‖L1 6 η.

The second term is also a null sequence by virtue of Glivenko-Cantelli’s and Lebesgue’s

Theorem. �

Lemma A.2. The estimator Sδ̂(n) defined by (3.3) satisfies

(Pδ̂(n) ⋆ φσ̂n
)

L−→ PZ

almost surely as n→ ∞.

14



Proof. The survival function SZ is continuous everywhere as it can be written as a convo-

lution with some normal density. Therefore, the convergence

ŜZ
n (x)

n→∞−−−→ SZ(x) a.s.

holds for every x ∈ R. Hence, by Lebesgue’s theorem,

γ(SX , σ; ŜZ
n )

n→∞−−−→ 0 a.s.

The triangle inequality, together with Lemma A.1, implies

γ(Sδ̂(n), σ̂n;SZ) 6 γ(Sδ̂(n), σ̂n; ŜZ
n ) + γ(SX , σ; ŜZ

n )
n→∞−−−→ 0 a.s.

A continuity argument implies

(Sδ̂(n) ⋆ φσ̂n
)(x)

n→∞−−−→ SZ(x) a.s.

for every x ∈ R, which is in fact weak convergence and hence concludes the proof. �

Our proof of consistency also needs the following two lemmas. The first one is quoted

from Schwarz and Van Bellegem (2010), the second one is an immediate consequence of

Lemma 3.4 from the same article.

Lemma A.3. Let Qn be a sequence of probability distributions and σn a sequence of positive

real numbers. Suppose further that (Qn ⋆ N(0, σn))n∈N converges weakly to some probabil-

ity distribution. Then, there exist an increasing sequence (nk)k∈N, a probability distribu-

tion Q∞, and a constant σ∞ > 0 such that

Qnk

L−→ Q∞ and σnk
→ σ∞

as n→ ∞.

Lemma A.4. A weakly convergent sequence of probability distributions that have all their

mass on the positive axis has its limit in P0.

We are now in position the prove the consistency theorem.

Proof of Theorem 3.2. For probability distributions P,P ′ and positive real numbers

σ, σ′, define the distance ∆(P, σ;P ′, σ′) := d(P,P ′)+ |σ−σ′|, where d(·, ·) denotes the Lévy

distance, which metrizes weak convergence. The theorem is hence equivalent to

∆(Pδ̂(nk), σ̂nk
;PX , σ)

n→∞−−−→ 0

almost surely. The proof is obtained by contradiction. Suppose that there is some d > 0

and an increasing sequence (nk)k∈N such that

∆(Pδ̂nk

, σ̂(nk);P
X , σ) > d

for all k ∈ N.
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By Lemma A.2, we know that the distributions given by (Sδ̂(n) ⋆ φσ̂n
) converge almost

surely weakly to PZ . Lemma A.3 implies that there is a distribution P∞, some σ∞ > 0,

and a sub-sequence (n′k)k∈N such that almost surely

Pδ̂(n′

k
)

L−→ P∞ and σ̂n′

k
→ σ∞,

which implies the almost sure pointwise convergence of Sδ̂n′

k

to S∞. Fatou’s lemma then

implies

γ(S∞, σ∞;SZ) 6 lim inf
k→∞

γ(Sδ̂(n′

k
), σ̂n′

k
;SZ) = 0 a.s.,

where the last equality holds because of Lemma A.2. Hence, γ(S∞, σ∞;SZ) = 0, and

using continuity again, we conclude that S∞ ⋆ φσ∞
= SX ⋆ φσ. Or equivalently, in terms of

distributions, P∞ ⋆ φσ∞
= PX ⋆Nσ. As all the distributions Pδ̂(n′

k
) have their mass on the

positive axis, Lemma A.4 implies that P∞ ∈ P0, and hence that P∞ = PX and σ∞ = σ,

which is in contradiction to the assumption and concludes the proof.

A.2 Proof of Proposition 4.1

We begin the proof by plugging-in the sequencemn into the robust estimator and by splitting

up the integral occurring in (4.3) into

∫ ∞

0

{

Sδ̂(n)(u)
}mn

du =

∫ ϕ(y)

0

{

Sδ̂(n)(u)
}mn

du+

∫ ∞

ϕ(y)

{

Sδ̂(n)(u)
}mn

du =: An +Bn

with obvious definitions for An and Bn. We have that Bn → 0 almost surely as n tends to

infinity. To see this, let tn := ϕ(y) ∨ sup{t ∈ R : Sδ̂(n)(t) = 1} and decompose Bn further

into
∫ ∞

ϕ(y)
{Sδ̂(n)(u)}mn du =

∫ tn

ϕ(y)
1 du+

∫ ∞

tn

{Sδ̂(n)(u)}mn du. (A.2)

Firstly, tn → ϕ(y) as n→ ∞ because of the consistency of Sδ̂(n). Therefore, the first integral

on the right hand side of (A.2) tends to 0 as n→ ∞. Secondly, Sδ̂(n) is non-increasing and

strictly smaller than 1 on (tn,∞) for every n ∈ N. As the sequence Sδ̂(n) is further surely

point-wise convergent on R, the other integral of the decomposition in (A.2) also tends to 0.

It remains to show that An → ϕ(y) almost surely as n→ ∞. Since Sδ̂(n) is non-increasing

and Sδ̂(n)(0) = 1, we have that sn 6 ϕ(y). On the other hand, sn > ϕ(y) {Sδ̂(n)(ϕ(y))}mn ,

which proves the result by virtue of the assumption.
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