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Abstract

We propose a Quasi-Bayesian nonparametric approach to estimating the struc-

tural relationship ϕ among endogenous variables when instruments are available. We

show that the posterior distribution of ϕ is inconsistent in the frequentist sense. We

interpret this fact as the ill-posedness of the Bayesian inverse problem defined by the

relation that characterizes the structural function ϕ. To solve this problem, we con-

struct a regularized posterior distribution, based on a Tikhonov regularization of the

inverse of the marginal variance of the sample, which is justified by a penalized projec-

tion argument. This regularized posterior distribution is consistent in the frequentist

sense and its mean can be interpreted as the mean of the exact posterior distribution

resulting from a gaussian prior distribution with a shrinking covariance operator.
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1 Introduction

In structural econometrics an important question is the treatment of endogeneity.

Economic analysis provides econometricians with theoretical models that specify a struc-

tural relationship ϕ(·) among variables: a response variable, denoted with Y , and a vector

of explanatory variables, denoted with Z. In many cases, the variables in Z are exoge-

nous, where exogeneity is defined by the property ϕ(Z) = E(Y |Z). However, very often in

economic models the explanatory variables are endogenous and the structural relationship

ϕ(Z) is not the conditional expectation function E(Y |Z). In this paper we deal with this

latter case and the structural model we consider is:

Y = ϕ(Z) + U, E(U |Z) 6= 0 (1)

under the assumption of additive separability of U . Function ϕ(·) : Rp → R, for some

p > 0, is the link function we are interested in and U denotes a disturbance that, by

(1), is non-independent of the explanatory variables Z. This dependence could be due for

instance to the fact that there are other variables that cause both Y and Z and that are

omitted from the model. In order to characterize ϕ(·) we suppose that there exists a vector

W of random variables, called instruments, that have a sufficiently strong dependence with

Z and for which E(U |W ) = 0. Then,

E(Y |W ) = E(ϕ|W ) (2)

and the function ϕ(·), defined as the solution of this moment restriction, is called instru-

mental variable (IV) regression. If the joint cumulative distribution function of (Y,Z,W )

is characterized by its density with respect to the Lebesgue measure, equation (2) is an

integral equation of the first kind and recovering its solution ϕ is an ill-posed inverse

problem, see O’Sullivan (1986) and Kress (1999). Recently, theory and concepts typical of

inverse problems literature, like regularization of the solution, Hilbert Scale, Source con-

dition, have become more and more popular in estimation of IV regression, see Florens

(2003), Blundell and Powell (2003), Hall and Horowitz (2005), Darolles et al. (2003), Flo-

rens et al. (2005) and (2010), Gagliardini and Scaillet (2009), to name only a few. Other

recent contributions to the literature on nonparametric estimation of IV regression, based

on finite dimensional sieve minimum distance estimator, are Newey and Powell (2003), Ai

and Chen (2003) and Blundell et al. (2007).

The existing literature linking IV regression estimation and inverse problems theory is

based on frequentist techniques. Our aim is to develop a Quasi-Bayesian nonparametric

estimation of the IV regression based on the Bayesian inverse problems theory. Bayesian

analysis of inverse problems has been developed by Franklin (1970), Mandelbaum (1984),

Lehtinen et al. (1989) and recently by Florens and Simoni (2009a,b). We call our ap-

proach Quasi-Bayesian because the posterior distribution that we recover is not the exact

one and because asymptotic properties of it and of the posterior mean estimator of the IV

regression are analyzed from a frequentist perspective, i.e. with respect to the sampling

distribution.
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The Bayesian estimation of ϕ that we develop in this paper considers the reduced form

model associated with (1) and (2):

Y = E(ϕ|W ) + ε, E(ε|W ) = 0 (3)

where the residual ε is defined as ε = Y −E(Y |W ) = ϕ(Z)−E(ϕ|W )+U and is supposed to

be gaussian conditionally on W and homoskedastic. The reduced form model (3), without

the homoskedasticity assumption, has been also considered by Chen and Reiss (2007) un-

der the name nonparametric indirect regression model and by Loubès and Marteau (2009).

Model (3) is used to construct the sampling distribution of Y given ϕ. In the Bayesian

philosophy the functional parameter of interest ϕ is not conceived as a given parameter,

but it is conceived as a realization of a random process and the space of reference is the

product space of the sampling and parameter space. We do not constrain ϕ to belong to

some parametric space; we only require that it satisfies some regularity condition as it is

usual in nonparametric estimation. We specify a very general gaussian prior distribution

for ϕ, general in the sense that the prior covariance operator is not required to have any

particular form or any relationship with the sampling model (3); the only requirement is

that the prior covariance operator is trace-class.

The Bayes estimation of ϕ, or equivalently the Bayes solution of the inverse problem,

is the posterior distribution of ϕ. It results that the Bayesian approach solves the original

ill-posedness of an inverse problem by changing the nature of the problem: the problem of

finding the solution of an integral equation is replaced by the problem of finding the inverse

decomposition of a joint probability measure constructed as the product of the prior and

the sampling distributions, that is, we have to find the posterior distribution of ϕ and the

marginal distribution of Y . However, because the parameter ϕ is of infinite dimension, its

posterior distribution suffers of another kind of ill-posedness. The posterior distribution,

which is well-defined in small sample size, has a bad frequentist behavior as the sample size

increases. More specifically, as the sample size increases, the posterior mean is no longer

continuous in Y and becomes an inconsistent estimator in the frequentist sense. This is

due to the fact that its expression involves the inverse of the marginal covariance operator

of the sample and this operator converges towards an operator with unbounded inverse.

Henceforth, the posterior distribution is not consistent in a frequentist sense, even if it

stays consistent from a Bayesian point of view, i.e. with respect to the joint distribution

of the sample and the parameter.

In this paper we adopt a frequentist perspective, therefore we admit the existence of

a true value of ϕ, denoted by ϕ∗, that characterizes the distribution having generated the

data and that satisfies (2). We study consistency of the posterior distribution. Posterior,

or frequency, consistency means that the posterior distribution degenerates to a Dirac

measure on the true value ϕ∗.

To get rid of the problem of inconsistency of the Bayes estimator of the IV regression

ϕ, we replace the posterior distribution by the regularized posterior distribution that we

have introduced in Florens and Simoni (2009a). This distribution is like the exact poste-

rior distribution but the mean and variance are replaced by new moments in which the
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inverse of the marginal covariance operator of the sample has been regularized by using a

Tikhonov regularization scheme. An important contribution of this paper, with respect to

Florens and Simoni (2009a), consists in providing a fully Bayesian interpretation for the

mean of the regularized posterior distribution. It is the mean of the posterior distribution

that would result if the prior covariance operator was specified as a shrinking operator

depending on the sample size and on the regularization parameter αn of the Tikhonov

regularization. However, the variance of this posterior distribution slightly differs from

the regularized posterior variance. This interpretation of the regularized posterior mean

does not hold for a general inverse problem like that one considered in Florens and Simoni

(2009a).

We assume homoskedasticity of the error term in (3) and our Quasi-Bayesian approach

is able to simultaneously estimate ϕ and the variance parameter of ε by specifying a prior

distribution either conjugate or independent on these parameters.

The paper is organized as follows. The reduced form model for IV estimation is pre-

sented in Section 2. In Section 3 we present our Bayes estimator for ϕ, based on the

regularized posterior distribution, and for the error variance parameter. Then, we discuss

inconsistency of the posterior distribution of ϕ and state frequentist asymptotic properties

of our estimator. The conditional distribution of Z given W is supposed to be known in

Section 3. This assumption is relaxed in Section 4. Numerical simulations are presented

in Section 5. Section 6 concludes. All the proofs are in Appendix A.

2 The Model

Let S = (Y,Z,W ) denote a random vector belonging to R×R
p×R

q with distribution

characterized by the cumulative distribution function F . We assume that F is absolutely

continuous with respect to the Lebesgue measure with density f . We denote by fz, fw the

marginal densities of Z and W , respectively, and by fz,w their joint density (Z,W ). We

introduce the real Hilbert space L2
F of square integrable real functions of S with respect

to F . We denote by L2
F (Z) and L

2
F (W ) the subspaces of L2

F of square integrable functions

of Z and of W , respectively. Hence, L2
F (Z) ⊂ L2

F and L2
F (W ) ⊂ L2

F . The inner product

and the norm in these spaces are indistinctly denoted by < ·, · > and || · ||, respectively.
We introduce the two following conditional expectation operators:

K : L2
F (Z) → L2

F (W )

h 7→ E(h|W )

K∗ : L2
F (W ) → L2

F (Z)

h 7→ E(h|Z)

The operator K∗ is the adjoint of K with respect to the inner product in L2
F . We assume

that the IV regression ϕ, which satisfies model (3), is such that ϕ ∈ L2
F (Z).

The reduced form model (3) provides the sampling model for inference on ϕ and it is a

conditional model, conditioned on W , that does not depend on Z. This is a consequence

of the fact that the instrumental variable approach specifies a statistical model concerning
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(Y,W ), and not concerning the whole vector (Y,Z,W ) since the only information available

is that E(U |W ) = 0. Nothing is specified about the joint distribution of (U,Z) and (Z,W )

except that the dependence between Z and W must be sufficiently strong. It follows that

if the conditional densities f(Z|W ) and f(W |Z) are known, we need only a sample of

(Y,W ) and not of Z. However, we assume below that also a sample of Z is available

since this will be used in Section 4 when f(Z|W ) and f(W |Z) are unknown and must be

estimated.

The i-th observation of the random vector S is denoted with small letters: si =

(yi, z
′
i, w

′
i)
′, where zi and wi are respectively p×1 and q×1 vectors. Boldface letters z and

w denote the matrices where vectors zi and wi, i = 1, . . . , n have been stacked columnwise.

Assumption 1 We observe an i.i.d. sample si = (yi, z
′
i, w

′
i)
′, i = 1, . . . , n satisfying

model (3).

Each observation satisfies the reduced form model: yi = E(ϕ(Z)|wi)+εi, E(εi|w) = 0,

for i = 1, . . . , n, and Assumption 2 below. After having scaled every term in the reduced

form by 1√
n
, we rewrite the sample of (3) in matrix form as

y(n) = K(n)ϕ+ ε(n), (4)

where

y(n) =
1√
n







y1
...

yn






, ε(n) =

1√
n







ε1
...

εn






, y(n), ε(n) ∈ R

n

∀φ ∈ L2
F (Z), K(n)φ = 1√

n







E(φ(Z)|W = w1)
...

E(φ(Z)|W = wn)






, K(n) : L

2
F (Z) → R

n

and ∀x ∈ R
n, K∗

(n)x = 1√
n

∑n
i=1 xi

f(Z,wi)
f(Z)f(wi)

, K∗
(n) : R

n → L2
F (Z).

The set Rn is provided with its canonical Hilbert space structure where the scalar product

and the norm are still denoted, by abuse of notation, by < ·, · > and || · ||. Operator K∗
(n)

is the adjoint of K(n), as it can be easily verified by solving the equation < K(n)φ, x >=<

φ,K∗
(n)x >, ∀x ∈ R

n and φ ∈ L2
F (Z). Since K(n) and K

∗
(n) are finite rank operators they

have only n singular values different than zero. We denote with yi(n) and εi(n) the i-th

element of vectors y(n) and ε(n), respectively.

We use the notation GP for denoting a gaussian distribution either in finite or in

infinite dimensional spaces. The residuals of Y given W in model (3) are assumed to be

gaussian and homoskedastic, thus we have the following assumption:

Assumption 2 The residuals of yi given w are i.i.d. gaussian: εi|σ2,w ∼ i.i.d.GP(0, σ2),

i = 1, . . . , n and σ2 ∈ R+.
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It follows that ε(n)|σ2,w ∼ GP(0, σ
2

n In), where In is the identity matrix of order n. We

only treat the homoskedastic case. Under the assumption of additive separability of the

structural error term U and under Assumption 2, the conditional sampling distribution,

conditioned on w, is: y(n)|ϕ, σ2,w ∼ GP(K(n)ϕ,
σ2

n In). We use the notation P σ,ϕ,w to de-

note this distribution and P σ,ϕ,wi

i to denote the sampling distribution of yi(n), conditioned

on W = wi, i.e. P
σ,ϕ,wi

i = GP( 1√
n
E(ϕ|W = wi),

1
nσ

2). We remark that elements yi(n),

i = 1, . . . , n, represent n independent, but not identically distributed, random variables.

In this notation, ϕ and σ2 are treated as random variables. When frequentist consistency

will be analyzed in the following of the paper, we shall replace ϕ and σ2 by their true

values ϕ∗ and σ2∗, then the true sampling distribution will be denoted by P σ∗,ϕ∗,w.

Remark 1 The normality of errors in Assumption 2 is not restrictive. The proof of

frequentist consistency of our IV estimator does not rely on this parametric restriction.

Therefore, making Assumption 2 simply allows to find a Bayesian justification for our esti-

mator, but the estimator is well-suited even if the normality assumption is violated. Hence,

our approach is robust to normality assumption. On the other side, homoskedasticity of

εi|w is crucial even if our approach may be extended to the heteroskedastic case.

3 Bayesian Analysis

In this section we analyze the Bayesian experiment associated with the reduced form

model (4) and we construct the Bayes estimator for (σ2, ϕ). Let FY denote the Borel σ-

field associated with the product sample space Y := R
n; we endow the measurable space

(Y,FY ) with the sampling distribution P σ,ϕ,w defined in the previous section.

This distribution, conditioned on the vector of instruments w, depends on two param-

eters: the nuisance variance parameter σ2 and the IV regression ϕ which represents the

parameter of interest. Parameter σ2 ∈ R+ is endowed with a probability measure, denoted

by ν, on the Borel σ-field B associated with R+. Parameter ϕ(Z) ∈ L2
F (Z) is endowed

with a probability measure, denoted by µσ and conditional on σ2, on the Borel σ-field E

associated with L2
F (Z). The probability measure ν × µσ is the prior distribution on the

parameter space (R+×L2
F (Z),B⊗E) and is specified in a conjugate way in the following

assumption.

Assumption 3

(a) Let ν be an Inverse Gamma distribution on (R+,B) with parameters ξ0 ∈ R+ and

s20 ∈ R+, i.e. ν ∼ IΓ(ξ0, s
2
0).

(b) Let µσ be a gaussian measure on (L2
F (Z),E) with a mean element ϕ0 ∈ L2

F (Z)

and a covariance operator σ2Ω0 : L2
F (Z) → L2

F (Z) that is trace-class, i.e. ϕ|σ2 ∼
GP(ϕ0, σ

2Ω0).

Notation IΓ in part (a) of the previous assumption is used to denote the Inverse

Gamma distribution. Parameter ξ0 is the shape parameter and s20 is the scale parameter.
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There exist different specifications of the density of an IΓ distribution. We use in our

study the form: f(σ2) ∝
(

1
σ2

)ξ0/2+1
exp

{

− 1
2
s20
σ2

}

with E(σ2) =
s20/2

ξ0/2−1 =
s20

ξ0−2 and

V ar(σ2) =
s40/4

(ξ0/2−1)2(ξ0/2−2)
. Properties of the measurement µσ specified in part (b) imply

that E(||ϕ||2) <∞ and that Ω0 is linear, bounded, nonnegative and self-adjoint. We give

a brief reminder of the definition of covariance operator: Ω0 is such that < σ2Ω0δ, φ >=

E(< ϕ−ϕ0, δ >< ϕ−ϕ0, φ > |σ2), for all δ, φ in L2
F (Z), see Chen and White (1998). The

covariance operator Ω0 needs to be trace-class in order that µσ generates with probability

1 trajectories belonging to L2
F (Z). Therefore, Ω0 cannot be proportional to the identity

operator. The fact that Ω0 is trace-class entails that Ω
1
2
0 is Hilbert-Schmidt (HS, hereafter),

see Kato (1995) Section 10.1.3. HS operators are compact and compactness of Ω
1
2
0 implies

compactness of Ω0.

We introduce the Reproducing Kernel Hilbert Space (R.K.H.S. hereafter) associated

with Ω0 and denoted with H(Ω0). Let {λΩ0
j , ϕΩ0

j }j be the eigensystem of Ω0, see Kress

(1999) Section 15.4, for a definition of eigensystem and singular value decomposition of

an operator. We define the space H(Ω0) embedded in L2
F (Z) as:

H(Ω0) =
{

h;h ∈ L2
F (Z) and

∞∑

j=1

< h,ϕΩ0
j >2

λΩ0
j

<∞
}

(5)

and, by Proposition 3.6 in Carrasco et al. (2007), we have the relation H(Ω0) = R(Ω
1
2
0 ),

where R(·) denotes the range of an operator.

The R.K.H.S. is a subset of L2
F (Z) that gives the geometry of the distribution of ϕ.

The support of a centered gaussian process, taking its values in L2
F (Z), is the closure in

L2
F (Z) of the R.K.H.S. associated with the covariance operator of this process (denoted

with H(Ω0) in our case). Then µσ{ϕ; (ϕ − ϕ0) ∈ H(Ω0)} = 1 but it is well-known that

µσ{ϕ; (ϕ − ϕ0) ∈ H(Ω0)} = 0, see van der Vaart and van Zanten (2008a).

From a classical point of view, there exists a true value ϕ∗ that has generated the data

y(n) in model (4) and that satisfies the assumption below:

Assumption 4 (ϕ∗ − ϕ0) ∈ H(Ω0), i.e. there exists δ∗ ∈ L2
F (Z) such that (ϕ∗ − ϕ0) =

Ω
1
2
0 δ∗.

This assumption may be discussed by the following remarks. First, let us note that

Ω0 is an integral operator. Indeed, ∀δ, φ ∈ L2
F (Z) it is defined as

< Ω0δ, φ > =
1

σ2
E(< ϕ− ϕ0, δ >< ϕ− ϕ0, φ > |σ2)

=
1

σ2
E

(∫

(ϕ(z) − ϕ0(z))δ(z)fz(z)dz

∫

(ϕ(ζ)− ϕ0(ζ))φ(ζ)fz(ζ)dζ
∣
∣
∣σ2
)

=

∫

ω0(z, ζ)δ(z)φ(ζ)fz(z)fz(ζ)dzdζ

where ω0(z, ζ) =
1
σ2E[(ϕ(z)−ϕ0(z))(ϕ(ζ)−ϕ0(ζ))] is the kernel of the Ω0 operator. Then,

Ω0δ =
∫
ω0(z, ζ)δ(ζ)fz(ζ)dζ. If ω̄0 satisfies the equation:

ω0(z, ζ) =

∫

ω̄0(z, t)ω̄0(t, ζ)fz(t)dt
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the operator Ω
1
2
0 is also an integral operator with kernel ω̄0, i.e.

∀δ ∈ L2
F (Z), Ω

1
2
0 δ =

∫

ω̄0(z, ζ)δ(ζ)fz(ζ)dζ.

Assumption 4 can be rewritten:

ϕ∗ − ϕ0 =

∫

ω̄0(z, ζ)δ∗(ζ)fz(ζ)dζ

which is clearly a smoothing assumption on ϕ∗. This assumption may also be viewed as an

hypothesis on the rate of decline of the Fourier coefficient of ϕ in the basis defined by the

ϕΩ0
j s. Indeed, (ϕ∗−ϕ0) = Ω

1
2
0 δ∗ implies that ||δ∗||2 =

∑∞
j=1

<ϕ∗−ϕ0,ϕ
Ω0
j >2

λ
Ω0
j

is bounded and,

as λΩ0
j ↓ 0 this implies that the Fourier coefficients < ϕ∗−ϕ0, ϕ

Ω0
j > go to zero sufficiently

fast or, intuitively, that (ϕ∗ − ϕ0) may easily be approximated by a linear combination of

the ϕΩ0
j s.

To give an idea of the smoothness of the functions in H(Ω0), consider for instance an

operator Ω0 with kernel the variance of a standard Brownian motion in C[0, 1] (where C[0, 1]
denotes the space of continuously defined functions on [0, 1]), i.e. δ ∈ L2

F (Z) 7→ Ω0δ =
∫ 1
0 (s∧t)δ(s)ds. The associated R.K.H.S. is the space of absolutely continuous functions h

on [0, 1] with at least one square integrable derivative and such that h(0) = 0, see Carrasco

and Florens (2000). Summarizing, in according to our prior beliefs about the smoothness

of ϕ∗, the operator Ω0 must be specified in such a way that the corresponding H(Ω0)

contains functions that satisfy such a smoothness and Assumption 4 is a way to impose a

smoothness assumption on ϕ∗. We refer to van der Vaart and van Zanten (2008b, Section

10) for other examples of R.K.H.S. associated with the covariance operator of processes

related to the Brownian motion.

Assumption 4 is closely related to the so-called ”source condition” which expresses the

smoothness (i.e. the regularity, for instance the number of square integrable derivatives)

of the function ϕ∗ according to smoothing properties of the operator K defining the inverse

problem. More precisely, a source condition assumes that there exists a source w ∈ L2
F (Z)

such that

ϕ∗ = (K∗K)µw, ||w||2 ≤ R, R, µ > 0.

Since for ill-posed problems K is usually a smoothing operator, the requirement for ϕ∗ to

belong to R(K∗K)µ can be considered as an (abstract) smoothness condition, see Engl et

al. (2000) Section 3.2 and Carrasco et al. (2007).

The fact that µσ{ϕ; (ϕ − ϕ0) ∈ H(Ω0)} = 0 implies that the prior measure µσ is not

able to generate trajectories of ϕ that satisfy Assumption 4. However, if Ω0 is injective,

then H(Ω0) is dense in L2
F (Z) so that the support of µσ is the whole space L2

F (Z) and

the trajectories generated by µσ are as close as possible to ϕ∗. The incapability of the

prior to generate the true parameter characterizing the data generation process is known

in the literature as prior inconsistency and it is due to the fact that, because of the infinite

dimensionality of the parameter space, the support of µσ can cover only a very small part

of it.
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We need Assumption 4 in order to get the consistency result in Theorem 2 below

because Ω0 and KΩ
1
2
0 do not necessarily have the same eigenfunctions and then they do

not commute. If this would be the case, then consistency of our estimator would be true

even without Assumption 4.

3.1 Identification and Overidentification

From a frequentist perspective, ϕ is identified in the IV model if the solution of

equation (2) is unique. This is verified if K is one-to-one, i.e. N (K) = {0}, where N (·)
denotes the kernel (or null space) of an operator. Existence of a solution of equation (2)

is guaranteed if the regression function E(Y |W ) ∈ R(K). Non existence of this solution

characterizes a problem of overidentification. Henceforth, overidentified solutions come

from equations with an operator that is not surjective and non-identified solutions come

from equations with an operator that is not one-to-one. Thus, existence and uniqueness

of the classical solution depend on the properties of F .

The identification condition that we need in our problem is the following one:

Assumption 5 The operator KΩ
1
2
0 : L2

F (Z) → L2
F (W ) is one-to-one on L2

F (Z).

This assumption is weaker than requiring K is one-to-one since if Ω
1
2
0 and KΩ

1
2
0 are

both one-to-one, this does not imply that K is one-to-one. This is due to the fact that we

are working in spaces of infinite dimension. If we were in spaces of finite dimension and if

the matrices Ω
1
2
0 and KΩ

1
2
0 were one-to-one then K would be implied to be one-to-one. In

reverse if Ω
1
2
0 and K are one-to-one this does imply KΩ

1
2
0 is one-to-one.

In order to understand the meaning of Assumption 5, it must be considered together

with Assumption 4. Under Assumption 4, we can rewrite equation (2) as E(Y |W ) =

Kϕ∗ = KΩ
1
2
0 δ∗, if ϕ0 = 0. Then, Assumption 5 guarantees identification of the δ∗ that

corresponds to the true value ϕ∗ satisfying equation (2). However, this assumption does

not guarantee that the true value ϕ∗ is the unique solution of (2) since it does not imply

that N (K) = {0}.

3.2 Regularized Posterior Distribution

Let Πw denote the joint conditional distribution on the product space (R+×L2
F (Z)×

Y,B ⊗ E ⊗ FY ), conditional on w, that is Πw = ν × µσ × P σ,ϕ,w. We assume, in all

the Section 3, that the density fz.w, fz and fw are known. When this is not the case, the

density f must be considered as a nuisance parameter to be incorporated in the model.

Therefore, for completeness we should index the sampling probability with f : P f,σ,ϕ,w,

but, for simplicity, we omit f when it is known.

Bayesian inference consists in finding the inverse decomposition of Πw in the product

of the posterior distributions of σ2 and of ϕ conditionally on σ2, denoted by νy,wn ×µσ,y,wn ,

and the marginal distribution Pw of y(n). After that, we recover the marginal posterior

distribution of ϕ, µy,wn , by integrating out σ2 with respect to its posterior distribution. In

the following, we lighten the notation by eliminating indexw in the posterior distributions,
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so νyn, µ
σ,y
n and µyn must all be meant conditioned onw. Summarizing, the joint distribution

Πw is:

σ2 ∼ IΓ(ξ0, s
2
0)

(

ϕ

y(n)

)
∣
∣
∣σ2 ∼ GP

((

ϕ0

K(n)ϕ0

)

, σ2

(

Ω0 Ω0K
∗
(n)

K(n)Ω0
1
nIn +K(n)Ω0K

∗
(n)

))

(6)

and the marginal distribution P σ,w of y(n), obtained by marginalizing with respect to µσ,

is P σ,w ∼ GP(K(n)ϕ0, σ
2Cn) with Cn = ( 1nIn +K(n)Ω0K

∗
(n)).

The posterior distributions νyn and µ
y
n will be analyzed in the next subsection; here

we focus on µ
σ,y
n . The conditional posterior distribution µ

σ,y
n , conditionally on σ2, and

more generally the posterior µyn, are complicated objects in infinite dimensional spaces

since the existence of a transition probability characterizing the conditional distribution

of ϕ given y(n) (whether conditional or not on σ2) is not always guaranteed, differently

to the finite dimensional case. A discussion about this point can be found in Florens

and Simoni (2009a). Here, we simply mention the fact that Polish spaces1 guarantee the

existence of such a transition probability (see the Jirina Theorem in Neveu (1965)) and

both (Rn,B(Rn)) and the space L2
F on (Rn,B(Rn), F ), with B(Rn) denoting the Borel

σ-field on R
n, are Polish because (Rn,B(Rn)) is a separable metric space. The conditional

posterior distribution µ
σ,y
n , conditioned on σ2, is gaussian and E(ϕ|y(n), σ2) exists, since

|ϕ|2 is integrable, and it is an affine transformation of y(n). We state the following theorem

and we refer to Mandelbaum (1984) and Florens and Simoni (2009a) for a proof of it.

Theorem 1 Let (ϕ, y(n)) ∈ L2
F (Z) × R

n be two gaussian random elements jointly dis-

tributed as in (6), conditionally on σ2. The conditional distribution µ
σ,y
n of ϕ given

(y(n), σ
2) is gaussian with mean Ay(n) + b and covariance operator σ2Ωy = σ2(Ω0 −

AK(n)Ω0), where

A = Ω0K
∗
(n)C

−1
n , b = (I −AK(n))ϕ0 (7)

and I : L2
F (Z) → L2

F (Z) is the identity operator.

Since we use a conjugate model, the variance parameter σ2 affects the posterior distribu-

tion of ϕ only through the posterior covariance operator, so that E(ϕ|y(n), σ2) = E(ϕ|y(n)).
The posterior mean and variance are well-defined for small n since Cn is an n×nmatrix

with n eigenvalues different than zero and then it is continuously invertible. Neverthe-

less, as n → ∞, the operator K(n)Ω0K
∗
(n) in Cn converges towards the compact operator

KΩ0K
∗ which has a countable number of eigenvalues accumulating at zero and which

is not continuously invertible. Then, K(n)Ω0K
∗
(n) becomes not continuously invertible as

n→ ∞. One could think that the operator 1
nIn in Cn plays the role of a regularization op-

erator and controls the ill-posedness of the inverse of the limit of K(n)Ω0K
∗
(n). This is not

the case since 1
n converges to 0 too fast. Therefore, C−1

n converges toward a non-continuous

operator that amplifies the measurement error in y(n) and E(ϕ|y(n)) is not consistent in

1A Polish space is a separable, completely metrizable topological space.
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the frequentist sense, that is, with respect to P σ,ϕ,w. This prevents the posterior distri-

bution from being consistent in the frequentist sense. We discuss the inconsistency of the

posterior distribution in more detail in subsection 3.4 and we formally prove it in Lemma

2 below.

Remark 2 The IV model (4) describes an equation in finite dimensional spaces, but the

parameter of interest is of infinite dimension so that the reduced form model can be seen

as a projection of ϕ∗ on a space of smaller dimension. If we solved (4) in a classical way,

we would realize that some regularization scheme would be necessary also in the finite

sample case since ϕ̂ = (K∗
(n)K(n))

−1K∗
(n)y(n), but K

∗
(n)K(n) is not full rank and then is not

continuously invertible.

In order to solve the lack of continuity of C−1
n we use the methodology that we

have proposed in Florens and Simoni (2009a): we replace the exact posterior distribution

with a regularized posterior distribution. This new distribution, denoted with µσ,yα , is ob-

tained by applying a Tikhonov regularization scheme to the inverse of Cn, so that we get

C−1
n,α = (αnIn+

1
nIn+K(n)Ω0K

∗
(n))

−1, where αn is a regularization parameter. In practice,

this consists in translating the eigenvalues of Cn far from 0 by a factor αn > 0. As n→ ∞,

αn → 0 at a suitable rate to ensure that operator C−1
n,α stays well defined asymptotically.

Therefore, the regularized conditional posterior distribution (RCPD) µσ,yα is the con-

ditional distribution on E, conditional on (y(n), σ
2), defined in Theorem 1 but with the

operator A replaced by Aα := Ω0K
∗
(n)C

−1
n,α. The regularized conditional posterior mean

and covariance operator are:

ϕ̂α := Eα(ϕ|y(n), σ2) = Aαy(n) + bα (8)

σ2Ωy,α := σ2(Ω0 −AαK(n)Ω0)

with

Aα = Ω0K
∗
(n)

(

αnIn +
1

n
In +K(n)Ω0K

∗
(n)

)−1
(9)

bα = (I −AαK(n)ϕ0)

and Eα(·|y(n), σ2) denotes the expectation with respect to µσ,yα .

We take the regularized posterior mean ϕ̂α as the point estimator for the IV regression.

This estimator is justified as the minimizer of the penalized mean squared error obtained

by approximating ϕ by a linear transformation of y(n). More clearly, by fixing ϕ0 = 0 for

simplicity, the bounded linear operator Aα : Rn → L2
F (Z) is the unique solution to the

problem:

Aα = arg min
Ã∈B2(Rn,L2

F
(Z))

E||Ãy(n) − ϕ||2 + αnσ
2||Ã||2HS (10)

where E(·) denotes the expectation taken with respect to the conditional distribution

µσ ×P σ,ϕ,w of (ϕ, y(n)), given σ
2, ||Ã||2HS := trÃ∗Ã denotes the HS norm, B2(R

n, L2
F (Z))

is the set of all bounded operators on R
n to L2

F (Z) for which ||A||HS <∞.
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Even if we have constructed the RCPD through a Tikhonov regularization scheme and

justified its mean as a penalized projection, we can derive the regularized posterior mean

ϕ̂α as the mean of an exact Bayesian posterior. The mean ϕ̂α is the mean of the exact

posterior distribution obtained from the sequence of prior probabilities, denoted with µ̃σn,

of the form:

ϕ|σ2 ∼ GP
(

ϕ0,
σ2

αnn+ 1
Ω0

)

and from the sampling distribution P σ,ϕ,w = GP(K(n)ϕ,
σ2

n In) (which is unchanged).

With this sequence of prior probabilities, the posterior mean is:

E(ϕ|y(n), σ2) = ϕ0 +
σ2

αnn+ 1
Ω0K

∗
(n)

(σ2

n
In +

σ2

αnn+ 1
K(n)Ω0K

∗
(n)

)−1
(y(n) −K(n)ϕ0)

= ϕ0 +Ω0K
∗
(n)

(αnn+ 1

n
In +K(n)Ω0K

∗
(n)

)−1
(y(n) −K(n)ϕ0)

= ϕ0 +Ω0K
∗
(n)

(

αnIn +
1

n
In +K(n)Ω0K

∗
(n)

)−1
(y(n) −K(n)ϕ0) ≡ ϕ̂α.

However, the posterior variance associated with this sequence of prior probabilities is

different than the regularized conditional posterior variance:

V ar(ϕ|y(n), σ2) =
σ2

αnn+ 1

[

Ω0 − Ω0K
∗
(n)(αnIn +

1

n
In +K(n)Ω0K

∗
(n))

−1K(n)Ω0

]

and it converges faster than σ2Ωy,α. This is due to the fact that the prior covariance oper-

ator of µ̃σn is linked to the sample size and to the regularization parameter αn. Under the

classical assumption α2
nn→ ∞ (classical in inverse problems theory), this prior covariance

operator is shrinking with the sample size and this speeds up the rate of V ar(ϕ|y(n), σ2).
Such a particular feature of the prior covariance operator can make µ̃σn a not desirable

prior: first of all because a sequence of priors that become more and more precise requires

that we are very sure about the value of the prior mean; secondly, because a prior that

depends on the sample size is not acceptable for a subjective Bayesian. For these reasons,

we prefer to construct ϕ̂α by starting from a prior distribution with a general covariance

operator and by using a Tikhonov scheme, but we want to stress that our point estimator

ϕ̂α can be equivalently derived with a fully Bayes rule.

3.3 The Student t Process

We proceed now to compute the posterior distribution νyn of σ2. This distribution will

be used in order to marginalize µσ,yα .

Since we have a conjugate model, we integrate out ϕ from the sampling probability

P σ,ϕ,w by using the prior µσ and we use the probability model P σ,w×ν to make inference

on σ2, with P σ,w defined in (6). The posterior distribution of σ2 has the kernel of an IΓ

distribution:

σ2|y(n) ∼ νF ∝
( 1

σ2

)ξ0/2+n/2+1
exp{− 1

2σ2
[(y(n)−K(n)ϕ0)

′C−1
n (y(n)−K(n)ϕ0)+s

2
0]}. (11)
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Then, νyn ∼ IΓ(ξ∗, s2∗) with ξ∗ = ξ0 + n,

s2∗ = s20 + (y(n) −K(n)ϕ0)
′C−1

n (y(n) −K(n)ϕ0)

and we can take the posterior mean E(σ2|y(n)) = s∗
(ξ∗−2) as point estimator.

Since νyn does not depend on ϕ it can be used for marginalizing the RCPD µ
σ,y
α of ϕ,

conditional on σ2, by integrating out σ2. In the finite dimensional case, integrating a gaus-

sian process with respect to an Inverse Gamma distribution gives a Student-t distribution.

This suggests that we should find a similar result for infinite dimensional random variables

and that ϕ|y(n) should be a process with a distribution equivalent to the Student-t distri-

bution, i.e. ϕ|y(n) should be a Student-t process in L2
F (Z). This type of process has been

used implicitly in the literature on Bayesian inference with Gaussian process priors in or-

der to characterize the marginal posterior distribution of a functional parameter evaluated

at a finite number of points, see e.g. O’Hagan et al. (1998) and Rasmussen and Williams

(2006) Section 9.9. In these works this process is called Student process simply because

it generalizes the multivariate t-distribution. Nevertheless, to the best of our knowledge,

a formal definition of a Student-t process in infinite dimensional Hilbert spaces has not

been provided. In the next definition we give a formal definition of the Student-t process

(StP) in an infinite dimensional Hilbert Space X by using the scalar product in X .

Definition 1 Let X be an infinite dimensional Hilbert space with inner product < ·, · >X .

We say that a random element x, with values in X , is a Student t Process with parameters

x0 ∈ X , Ω0 : X → X and ι ∈ R+, denoted x ∼ StP(x0,Ω0, ι), if and only if ∀δ ∈ X ,

< x, δ >X ∼ t(< x0, δ >X , < Ω0δ, δ >X , ι),

i.e. < x, δ >X has a density proportional to

[

ι+
(< x, δ >X − < x0, δ >X )2

< Ω0δ, δ >X

]− ι+1
2
,

with mean and variance

E(< x, δ >X ) = < x0, δ >X , if ι > 1

V ar(< x, δ >X ) =
ι

ι− 2
< Ω0δ, δ >X , if ι > 2.

We admit the following Lemma, concerning the marginalization of a gaussian process

with respect to a scalar random variable distributed as an Inverse Gamma.

Lemma 1 Let σ2 ∈ R+ and x be a random function with value in the Hilbert space X . If

σ2 ∼ IΓ(ξ, s2) and x|σ2 ∼ GP(x0, σ
2Ω0), with ξ ∈ R+, s

2 ∈ R+, x0 ∈ X and Ω0 : X → X ,

then

x ∼ StP
(

x0,
s2

ξ
Ω0, ξ

)

.

The proof of this lemma is trivial and follows immediately if we consider the scalar product

< x, δ >X , ∀δ ∈ X , which is normally distributed on R conditioned on σ2.

13



We apply this result to the IV regression process ϕ, so that if we integrate out σ2 in

µ
σ,y
α , with respect to νyn, we get

ϕ|y(n) ∼ StP
(

ϕ̂α,
s2∗
ξ∗

Ωy,α, ξ∗
)

,

with marginal mean ϕ̂α and marginal variance s2
∗

ξ∗−2Ωy,α. We call this distribution regu-

larized posterior distribution (RPD) and denote it with µyα.

3.4 Asymptotic Analysis

In this section we analyze asymptotic properties of νyn, µ
σ,y
α and µyα from a frequentist

perspective and we check that ϕ̂α and E(σ2|y(n)) are consistent estimators for ϕ∗ and σ2∗ ,

respectively (consistent in the frequentist sense). We say that the RCPD is consistent

in the frequentist sense if the probability, taken with respect to µσ,yα , of any complement

of a neighborhood of ϕ∗ converges to zero in P σ∗,ϕ∗,w-probability or P σ∗,ϕ∗,w-a.s. In

other words, the pair (ϕ∗, µ
σ,y
α ) is consistent if for P σ∗,ϕ∗,w-almost all sequences y(n), the

regularized posterior µσ,yα converges weakly to a Dirac measure on ϕ∗. Moreover, µσ,yα is

consistent if (ϕ∗, µ
σ,y
α ) is consistent for all ϕ∗. This concept of regularized posterior consis-

tency is adapted from the concept of posterior consistency in the Bayesian literature, see

for instance Diaconis and Freedman (1986), definition 1.3.1 in Ghosh and Ramamoorthi

(2003), van der Vaart and van Zanten (2008a).

Posterior consistency is an important concept in the Bayesian nonparametric litera-

ture. The idea is that if there exists a true value of the parameter, the posterior should

learn from the data and put more and more mass near this true value. The first to con-

sider this idea was Laplace; Von Mises refers to posterior consistency as the second law

of large numbers, see von Mises (1981) and Ghosh and Ramamoorthi (2003) Chapter 1.

In 1949 Doob publishes a fundamental result regarding consistency of Bayes estimators.

Doob shows that, under weak measurability assumptions, for every prior distribution on

the parameter space, the posterior mean estimator is a martingale which converges almost

surely except possibly for a set of parameter values having prior measure zero. This con-

vergence is with respect to the joint distribution of the sample and the parameter. A more

general version of this theorem can be found in Florens et al. (1990), Chapter 4 and 7.

Doob’s results have been extended by Breiman et al. (1964); Freedman (1963) and

Schwartz (1965) extended Doob’s theorem in a frequentist sense, that is, by considering

a convergence with respect to the sampling distribution. Let θ be the finite dimensional

parameter of interest and P θ denote the sampling distribution; they prove that the pos-

terior mean of θ converges P θ-almost surely to θ, for θ belonging to the support of the

prior distribution, if and only if θ has finite dimension and if P θ is smooth with respect to

θ. Diaconis and Freedman (1986) point out that the assumption of finite dimensionality

of θ is really needed, so that in some infinite dimensional problems inconsistency of the

posterior distribution is the rule, see Freedman (1965).

We first analyze the inconsistency of the posterior distribution µσ,yn defined in Theorem

14



1. Inconsistency of the posterior distribution represents the ill-posedness of the Bayesian

inverse problem and it is stated in the following lemma:

Lemma 2 Let ϕ∗ ∈ L2
F (Z) be the true IV regression characterizing the data generating

process P σ∗,ϕ∗,w. The pair (ϕ∗, µ
σ,y
n ) is inconsistent, i.e. µσ,yn does not weakly converge to

Dirac measure δϕ∗
centred on ϕ∗ with probability one.

This Lemma shows that, contrarily to the finite dimensional case where the posterior

distribution is consistent, in infinite dimensional problems the prior-to-posterior transfor-

mation does not solve the problem of ill-posedness. This is due to compactness of KΩ0

and to the fact that the sampling covariance operator shrinks at the rate 1
n which is too

fast to control the ill-posedness.

In the reverse, we state in the following theorem that the regularized posterior distri-

bution µ
σ,y
α and the regularized posterior mean ϕ̂α are consistent. For some β > 0, we

denote with Φβ the β-regularity space defined as

Φβ := R(Ω
1
2
0K

∗KΩ
1
2
0 )

β
2 . (12)

Theorem 2 Let (σ2∗ , ϕ∗) be the true value of (σ2, ϕ) having generated the data y(n) under

model (4) and µσ,yα be a gaussian random measure on L2
F (Z) with mean ϕ̂α = Aαy(n) + bα

and covariance operator σ2Ωy,α defined in (8) and (9). Under Assumptions 4 and 5, if

αn → 0 and α2
nn→ ∞, we have:

(i) ||ϕ̂α − ϕ∗|| → 0 in P σ∗,ϕ∗,w-probability and if δ∗ ∈ Φβ for some β > 0,

||ϕ̂α − ϕ∗||2 = Op

(

αβ
n +

1

α2
nn
αβ
n +

1

α2
nn

)

;

(ii) if there exists a κ > 0 such that limn→∞
∑n

j=1
<Ω0ϕjn,ϕjn>

λ2κ
jn

<∞, where {λjn, ϕjn, ψjn}nj=1

is the singular value decomposition associated with K(n)Ω
1
2
0 , then, for a sequence ǫn

with ǫn → 0, µσ,yα {ϕ ∈ L2
F (Z); ||ϕ − ϕ∗|| ≥ ǫn} → 0 in P σ∗,ϕ∗,w-probability. More-

over, if δ∗ ∈ Φβ for some β > 0, it is of order

µσ,yα {ϕ ∈ L2
F (Z); ||ϕ− ϕ∗|| ≥ ǫn} =

1

ǫ2n
Op

(

αβ
n +

1

α2
nn
αβ
n +

1

α2
nn

+ ακ
n

)

.

(iii) Lastly, ∀φ ∈ L2
F (Z), ||σ2Ωy,αφ|| → 0 in P σ∗,ϕ∗,w-probability and the restriction of

Ωy,α to the set {φ ∈ L2
F (Z); Ω

1
2
0 φ ∈ Φβ, for some β > 0}, is of order

||Ωy,αφ||2 = O
(

αβ
n +

1

α2
nn
αβ
n

)

.

The condition δ∗ ∈ Φβ required for δ∗, where δ∗ is defined in Assumption 4, is just

a regularity condition that is necessary for having convergence at a certain rate. It is a

source condition on δ∗ (see the discussion following Assumption 4) which expresses the

regularity of δ∗ in according to the smoothing properties of KΩ
1
2
0 . The larger β is, the
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smoother the function δ∗ ∈ Φβ will be. However, with a Tikhonov regularization we have

a saturation effect that implies that β cannot be greater than 2, see Engl et al. (2000,

Section 4.2). Therefore, having a function δ∗ with a degree of smoothness larger than 2 is

useless with a Tikhonov regularization scheme.

The fastest global rate of convergence of ϕ̂α is obtained by equating αβ
n to 1

α2
nn

; while

the first rate αβ
n requires a regularization parameter αn going to zero as fast as possible,

the rate 1
α2
nn

requires an αn decreasing to zero as slow as possible. Hence, the optimal

αn, optimal for ϕ̂α, is proportional to α
∗
n ∝ n

− 1
β+2 and the corresponding optimal rate for

||ϕ̂α − ϕ∗||2 is proportional to n
− β

β+2 .

When αn = α∗
n, then ||Ωy,αφ||2 ∼ n

− β
β+2 , ∀φ such that Ω

1
2
0 φ ∈ Φβ. The optimal αn for

the RCPD µ
σ,y
α is given by α∗ if κ ≥ β and by n−

1
κ+2 otherwise. Thus, the optimal rate

of contraction of µσ,yα is ǫn ∝ n
− β∧κ

(β∧κ)+2 .

Remark 3 From result (i) of Theorem 2 we can easily prove that the rate of contraction

for the MISE E(||ϕ̂α − ϕ∗||2|σ2∗ , ϕ∗,w) is the same as the rate for ||ϕ̂α − ϕ∗||2.

Remark 4 We point out that Theorem 2 can be obtained as a special case of Theorems

2, 3 and 4 of Florens and Simoni (2009a). However, the fact that operators K(n) and

K∗
(n) are finite rank and the variance parameter σ2 is treated as random variable make the

rates of convergence in Theorem 2 and strategy of its proof different than those ones of

Theorems 2, 3 and 4 in Florens and Simoni (2009a).

Remark 5 . The rate of convergence of the regularized posterior mean, given in Theorem

2 (i), can be improved if we add the assumption that operator (TT ∗)τ is trace-class for

τ ∈]0, 1], where T := KΩ
1
2
0 ; this is a condition on the joint density f(Y,Z,W ). If this

assumption holds, the rate of the term depending on ε(n) would be faster.

Next, we analyze consistency of E(σ2|y(n)) and of the posterior νyn for a true value

σ2∗ having generated data in model (4). If ω̄0(s, z) denotes the kernel of Ω
1
2
0 , we use

the notation g(Z,wi) = Ω
1
2
0 (

f(s,wi)
f(s)f(wi)

)(Z) =
∫
ω̄0(s, Z)

f(s,wi)
f(s)f(wi)

f(s)ds, then Ω
1
2
0K

∗
(n)ε(n) =

1
n

∑n
i=1 εig(Z,wi).

Theorem 3 Let (σ2∗ , ϕ∗) be the true value of (σ2, ϕ) having generated the data under model

(4) and νyn be the IΓ(ξ∗, s2∗) distribution on R+ described in (11). Under Assumption 4, if

there exists a γ such that ∀w, g(Z,w) ∈ Φγ (with Φγ defined as in (12)), then

√
nγ∧1(E(σ2|y(n))− σ2∗) = Op(1).

It follows that, for a sequence ǫn such that ǫn → 0, νyn{σ2 ∈ R+; |σ2 − σ2∗ | ≥ ǫn} → 0 in

P σ∗,ϕ∗,w-probability.
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The last assertion of the theorem shows that the posterior probability of the complement

of any neighborhood of σ2∗ converges to 0; then, νy is consistent in the frequentist sense.

We conclude this section by giving a result of joint posterior consistency, that is, the

joint regularized posterior νyn × µ
σ,y
α degenerates toward a Dirac measure on (σ2∗ , ϕ∗).

Corollary 1 Under conditions of Theorems 2 and 3, the joint posterior distribution

νyn × µσ,yα {(σ2, ϕ) ∈ R+ × L2
F (Z); ||(σ2, ϕ)− (σ2∗ , ϕ∗)||R+×L2

F
(Z) ≥ ǫn}

converges to zero in P σ∗,ϕ∗,w-probability.

3.5 Independent Priors

We would like to briefly analyze an alternative specification of the prior distribution

for ϕ. We replace the prior distribution µσ in Assumption 3 (b) by a gaussian distribution

with a covariance operator not depending on σ2. This distribution, denoted with µ, is

independent of σ2: ϕ ∼ µ = GP(ϕ0,Ω0), with ϕ0 and Ω0 as in Assumption 3 (b). Hence,

the joint prior distribution on R+ × L2
F (Z) is equal to the product of two independent

distributions: ν × µ, with ν specified as in Assumption 3 (a). The sampling measure

P σ,ϕ,w remains unchanged.

The resulting posterior conditional expectation E(ϕ|y(n), σ2) depends now on σ2 and

the marginal posterior distribution of ϕ has not a nice closed form. Since we have a closed

form for the regularized conditional posterior distribution (RCPD) of ϕ, conditional on

σ2, µσ,yα and for the RCPD of σ2, conditional on ϕ, νϕ,yα , we can use a Gibbs sampling

algorithm to get a good approximation of the stationary laws represented by the desired

regularized marginal posterior distributions µyα and νyα of ϕ and σ2, respectively.

In this framework, the regularization scheme affects also the posterior distribution of

σ2, whether conditional or not. We explain this fact in the following way. The conditional

posterior distribution of ϕ given σ2 still suffers of a problem of inconsistency since it

demands the inversion of the covariance operator (σ
2

n In +K(n)Ω0K
∗
(n)) of the distribution

of y(n)|σ2 which, as n → ∞, converges toward an operator with non-continuous inverse.

Therefore, we use a Tikhonov regularization scheme and obtain the RCPD for ϕ, still

denoted with µσ,yα . It is a gaussian measure with mean E(ϕ|y(n), σ2) = Aσ
αy(n) + bσα and

covariance operator Ωσ
y,α = Ω0 −Aσ

αK(n)Ω0 where

Aσ
α = Ω0K

∗
(n)

(

αnIn +
σ2

n
In +K(n)Ω0K

∗
(n)

)−1
,

bσα = (I −Aσ
αK(n))ϕ0

that must not be confused with Aα and bα in (9). For computing the posterior νϕ,yα of σ2,

given ϕ, we use the homoskedastic model specified in Assumption 2 for the reduced form

error term: ε(n)|σ2,w ∼ i.i.d. N (0, σ
2

n In) with ε(n) = y(n) − K(n)ϕ and ϕ is drawn from

µ
σ,y
α . Therefore, we talk about regularized error term and it results that the regulariza-

tion scheme plays a role also in the conditional posterior distribution of σ2 through ϕ, so

that we index this distribution with αn: ν
ϕ,y
α . The distribution νϕ,yα is an IΓ(ξ∗, s̃2∗), with
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ξ∗ = ξ0 + n, s̃2 = s20 + n
∑

i(y
i
(n) −Ki

(n)ϕ)
2 and Ki

(n) denotes the i-th component of K(n).

It is then possible to implement a Gibbs sampling algorithm by alternatively drawing

from µ
σ,y
α and νϕ,yα with the initial values for σ2 drawn from an overdispersed IΓ distribu-

tion. The first J draws are discarded; we propose to determine the number J for instance

by using the technique proposed in Gelman and Rubin (1992), which can be trivially

adapted for an infinite dimensional parameter, see Simoni (2009) Section 4.3.3.

4 The Unknown Operator Case

In this Section the variance parameter σ2 is considered as known, in order to simplify

the setting, and we specify the prior for ϕ as in Assumption 3 (b) with the difference that

the prior covariance operator does not depend on σ2, then µ ∼ GP(ϕ0,Ω0).

4.1 Unknown Infinite Dimensional Parameter

We consider the case in which the density fz,w := f(Z,W ) is unknown and then oper-

ators K(n) and K
∗
(n) are also unknown. We do not use a Bayesian treatment for estimating

fz,w. The Bayesian estimation of all the parameters of our model (fz,w, σ
2, ϕ) is difficult

for the following reason. Given fz,w, the inference on ϕ and σ2 may be concentrated on

the conditional distribution of Y given W as we did before (note that we may assume that

Y |Z,W ∼ Y |W ). In reverse, the inference on fz,w given ϕ and σ2 may not be concentrated

on the (Z,W )-distribution: the curve Y (given W ) also contains some information on fz,w.

In order to bypass these problems we propose to use another technique that does not

appear among Bayesian methods. We propose to substitute the true fz,w in K(n) and K
∗
(n)

with a nonparametric classical estimator f̂z,w and to redefine the IV regression ϕ as the

solution of the estimated reduced form equation

y(n) = K̂(n)ϕ+ η(n) + ε(n) (13)

where K̂(n) and K̂∗
(n) denote the corresponding estimated operators. We have two error

terms: ε(n) is the error term of the reduced form model (4) and η(n) accounts for the

estimation error of operator K(n), i.e. ηi =
1√
n
(Ki

(n)ϕ∗ − K̂i
(n)ϕ∗) and η(n) = (η1, . . . , ηn)

′.

If model (4) is true, then also (13) is true and characterizes ϕ∗.

We estimate fz,w by a kernel smoothing. Let L be a kernel function satisfying the usual

properties and ρ be the minimum between the order of L and the order of differentiability of

f . We use the notation L(u) for L(uh) where h is the bandwidth used for kernel estimation

such that h → 0 as n → ∞ (for lightening notation we have eliminated the dependence

on n from h). We denote Lw the kernel used for W and Lz the kernel used for Z. The

estimated density function is

f̂z,w =
1

nhp+q

n∑

i=1

Lw(wi − w)Lz(zi − z).
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The estimator of K(n) is the classical Nadaraya-Watson estimator and K∗
(n) is estimated

by plugging in the estimates f̂z,w, f̂z and f̂w:

K̂(n)ϕ =
1√
n







∑

j ϕ(zj)
Lw(w1−wj)∑
l Lw(w1−wl)
...

∑

j ϕ(zj)
Lw(wn−wj)∑
l Lw(wn−wl)






, ϕ ∈ L2

Z

K̂∗
(n)x =

1√
n

∑

i

xi

∑

j Lz(z − zj)Lw(wi − wj)
∑

l Lz(z − zl)
1
n

∑

l Lw(wi − wl)
, x ∈ R

n

and

K̂∗
(n)K̂(n)ϕ =

1

n

∑

i

(
∑

j

ϕ(zj)
Lw(wi − wj)
∑

l Lw(wi − wl)

) ∑

j Lz(z − zj)Lw(wi − wj)
∑

l Lz(z − zl)
1
n

∑

l Lw(wi − wl)
.

The element in brackets in the last expression converges to E(ϕ|wi), the last ratio con-

verges to f(Z,wi)
f(Z)f(wi)

and hence by the Law of Large Number K̂∗
(n)K̂(n)ϕ→ E(E(ϕ|wi)|Z).

From asymptotic properties of the kernel estimator of a regression function we know

that η(n) ⇒ Nn(0,
σ2

n2hqD(n)) with D(n) = diag( 1
f(wi)

∫
L2
w(u)du) and ⇒ denotes con-

vergence in distribution. The asymptotic variance of η(n) is negligible with respect to

V ar(ε(n)) ≡ σ2

n In since, by definition, the bandwidth h is such that nhq → ∞. The same

is true for the covariance between η(n) and ε(n). This implies that the probability distri-

bution of (y(n) − K̂(n)ϕ)|f̂z,w, ϕ,w is asymptotically gaussian.

In our Quasi-Bayesian approach the gaussianity of the sampling measure is used only in

order to construct the posterior distribution and the regularized posterior mean, which is

our Bayes estimator of the IV regression. Gaussianity of the sampling measure is not used

neither in the proof of frequentist consistency of the regularized posterior distribution nor

in that one of the regularized posterior mean. For this reason, we can approximate the sam-

pling measure by its asymptotic limit, so that y(n)|f̂z,w, ϕ,w ∼ P f̂ ,ϕ,w ∼a GP(K̂(n)ϕ,Σn),

where ∼a means ”approximately distributed as”, Σn = V ar(η(n) + ε(n)) = (σ
2

n + op(
1
n))In

and for simplicity σ2 is considered as known. The estimated density f̂z,w affects the sam-

pling measure through K̂(n), which converges to K(n).

As in the basic case, the factor 1
n in Σn does not stabilize the inverse of the covari-

ance operator Ĉn := (Σn + K̂(n)Ω0K̂
∗
(n)): it converges to zero too fast to compensate the

decline towards 0 of the spectrum of the limits of the operator K̂(n)Ω0K̂
∗
(n). Therefore, to

guarantee consistency of the posterior distribution it must be introduced a regularization

parameter αn > 0 that goes to 0 slower than 1
n . The regularized posterior distribution

that results is called estimated regularized posterior distribution since now it depends on

K̂(n) instead of on K(n). It is denoted with µ̂yα, it is gaussian with mean Êα(ϕ|y(n)) and

covariance operator Ω̂y,α given by

Êα(ϕ|y(n)) = ϕ0 +

Âα
︷ ︸︸ ︷

Ω0K̂
∗
(n)(αnIn +Σn + K̂(n)Ω0K̂

∗
(n))

−1(y(n) − K̂(n)ϕ0)

Ω̂y,α = Ω0 −Ω0K̂
∗
(n)(αnIn +Σn + K̂(n)Ω0K̂

∗
(n))

−1K̂(n)Ω0. (14)
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Asymptotic properties of the posterior distribution for the case with unknown fz,w

are very similar to those ones shown in Theorem 2. In fact, the estimation error associated

with K̂(n) is negligible with respect to the other terms in the bias and variance. In the

following theorem we focus on the consistency of Êα(ϕ|y(n)); consistency of µ̂yα and of

Ω̂y,α may be easily derived from consistency of Êα(ϕ|y(n)) and Theorem 2. Darolles et

al. (2003) provides regularity conditions in order to get ||
∫ ∫

ϕ(z)f̂ (z|wi)dz
f̂(z,wi)

f̂(z)
dwi −

E(E(ϕ|W )|Z)||2 = Op(
1

nhp + h2ρ). We implicitly assume in the following theorem (and in

Lemma 4 below) that the regularity Assumptions B.1-B.5 of Darolles et al. (2003) are

satisfied.

Theorem 4 Let ϕ∗ be the true value having generated the data y(n) under model (4) and

µ̂
y
α be a gaussian measure on L2

F (Z) with mean and covariance operator defined in (14).

Under Assumptions 4 and 5, if αn → 0 and α2
nn→ ∞, we have

||Êα(ϕ|y(n))− ϕ∗||2 → 0 in P f̂ ,ϕ∗,w-probability and if δ∗ ∈ Φβ, for some β > 0,

||Êα(ϕ|y(n))− ϕ∗||2 = Op

(

αβ
n +

1

α2
nn

+
1

α2
n

( 1

n
+ h2ρ

) 1

α2
nn

)

.

If the bandwidth h is chosen in such a way to guarantee that 1
α2
n
( 1n +h2ρ) = Op(

1
α2
nn

),

the optimal speed of convergence is obtained by equating α
β
n = 1

α2
nn

. Hence, we set

h ∝ n
− 1

2ρ and we get the optimal regularization parameter α∗
n ∝ n

− 1
β+2 and the optimal

speed of convergence of ||Êα(ϕ|y(n)) − ϕ∗||2 proportional to n
− β

β+2 . We have the same

speed as for the case with fz,w known.

5 Numerical Implementation

In this section we summarize the results of a numerical investigation of the finite

sample performance of the regularized posterior mean estimator in both the known (Case

I and Case II below) and unknown operator case (Case III below). More figures con-

cerning this simulation can be found in an additional appendix available at

http://didattica.unibocconi.it/mypage/index.php?IdUte=107247&idr=11421&lingua=ita/.

We simulate n = 1000 observations from the following model, which involves only one

endogenous covariate and two instrumental variables2,

wi =

(

w1,i

w2,i

)

∼ N
((

0

0

)

,

(

1 0.3

0.3 1

))

.

vi ∼ N (0, σ2v), zi = 0.1wi,1 + 0.1wi,2 + vi

εi ∼ N (0, (0.5)2), ui = E(ϕ∗(zi)|wi)− ϕ∗(zi) + εi

yi = ϕ∗(zi) + ui.

2This data generating process is borrowed from Example 3.2 in Chen and Reiss (2007).
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We consider two alternative specifications for the true value of the IV regression: a

smooth function ϕ∗(Z) = Z2 and an irregular one ϕ∗(Z) = exp(−|Z|). Therefore, the

structural error ui takes the form ui = σ2v − v2i − 0.2vi(w1,i +w2,1)+ εi in the smooth case

and the form ui = exp(12σ
2
v)[e

−γ(1−Φ(σv− γ
σv
))+eγΦ(σv+

γ
σv
)]−e−|zi|+εi in the irregular

case, where Φ(·) denotes the cdf of a N (0, 1) distribution and γ = 0.1wi,1 + 0.1wi,2. This

mechanism of generation entails that E(ui|wi) = 0; moreover, wi, vi and εi are mutually

independent for every i. The joint density fz,w is






Z

W1

W2




 ∼ N3 (






0

0

0




 ,






(0.026 + σ2v) 0.13 0.13

0.13 1 0.3

0.13 0.3 1




).

Endogeneity is caused by correlation between ui and the error term vi affecting the

covariates. For all the simulations below we fix σv = 0.27 and αn is fixed at a value

determined by letting αn vary in a large range of values and selecting by hand that one

producing a good estimation. We present in the next section a data-driven method for

selecting αn.

Case I. Conjugate Model with fz,w known and smooth ϕ∗.

The true value of the IV regression is ϕ∗(Z) = Z2. We use the following prior

specification: σ2 ∼ IΓ(6, 1), ϕ ∼ GP(ϕ0, σ
2Ω0) with covariance operator (Ω0δ)(Z) =

σ0
∫
exp(−(s − Z)2)δ(s)fz(s)ds, where σ0 = 200 and δ ∈ L2

F (Z). We have performed

simulations for two specifications of ϕ0: Figure 1 refers to ϕ0(Z) = 0.95Z2 + 0.25 while

Figure 2 refers to ϕ0(Z) =
2
9Z

2 − 2
9Z + 5

9 .

We show in the first graph of both Figures (graphs 1a and 2a) the estimation result for

αn = 0.3: the magenta curve is the prior mean curve while the black curve is the true ϕ∗
and the red curve is the regularized posterior mean ϕ̂α. The second graph of both Figures

(graphs 1b and 2b) represents the posterior mean of ϕ with α = 0, i.e. the mean of the

non regularized posterior distribution µσ,yn .
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(a) Regularized Posterior Mean Estimate with

αn = 0.3.
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Figure 1: Case I. Conjugate Model with fz,w known and smooth ϕ∗. Graphs for ϕ0(Z) =

0.95Z2 + 0.25 and σ0 = 200.
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Figure 3 represents the kernel smoothing estimators of the prior and posterior densities

of σ2. We have used a standard Gaussian kernel and a bandwidth equal to 0.05. In red is

drawn the prior density, while with the blue and the dashed-dotted green line we represent

the posterior densities corresponding to the prior means ϕ0(Z) = 0.95Z2 + 0.25 (called

’posterior density 1st’ in the graph) and ϕ0(Z) =
2
9Z

2 − 2
9Z + 5

9 (called ’posterior density

2nd’ in the graph), respectively. The true value σ2∗ , the prior and posterior means are also

shown.

Case II. Conjugate Model with fz,w known and irregular ϕ∗.

The true value of the IV regression is ϕ∗(Z) = exp(−|Z|). The prior distributions for

σ2 and ϕ are specified as in Case I but the variance parameter is σ0 = 2 and the prior

mean ϕ0 is alternatively specified as ϕ0(Z) = exp(−|Z|)− 0.2 or ϕ0(Z) = 0. The results

concerning ϕ0(Z) = exp(−|Z|) − 0.2 and αn = 0.4 are reported in Figure 4 while the

results for ϕ0(Z) = 0 and αn = 0.3 are in Figure 5. The kernel estimators of the prior

and posterior distributions of σ2, together with its posterior mean estimator, are shown

in Figure 6. The interpretation of the graphs in each figure is the same as in Case I.

Case III. fz,w unknown, σ2 known and smooth ϕ∗.

In this simulation we have specified a prior only on ϕ since σ2 is supposed to be known.

The prior distribution for ϕ is specified as in Case I with same ϕ0’s and σ0 = 20. We

show in Figures 7 the results obtained by using a kernel estimator for fz,w as described in

Section 4. We have used a multivariate Gaussian kernel and a bandwidth equal to 0.1.

5.1 Data driven method for choosing α

In inverse problem theory there exist several parameter choice rules which determine

the regularization parameter αn on the basis of the performance of the regularization

method under consideration. These techniques are often known under the name of error

free and we refer to Engl et al. (2000) Section 4.5 and the references therein for a re-

view of them. We propose in this section a data-driven method that rests upon a slight

modification of the estimation residuals derived when the regularized posterior mean ϕ̂α

is used as a point estimator of the IV regression. Our method is a variation of the error

free technique presented by Engl et al. (2000) p. 101.

The use of residuals instead of the estimation error ||ϕ̂α − ϕ∗|| is justified only if the

residuals are adjusted in order to preserve the same speed of convergence as the estimation

error. In particular, as it is noted in Engl et al. (2000), there exists a relation between the

estimation error and the residuals rescaled by a convenient power of 1
αn

. Let ϑα denote

the residual we are considering, we have to find the value d such that asymptotically

||ϑα||
αd

∼ ||ϕ̂α − ϕ∗||,
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Figure 2: Case I. Conjugate Model with fz,w known and smooth ϕ∗. Graphs for ϕ0(Z) =
2
9Z

2 − 2
9Z + 5

9 and σ0 = 200.
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Figure 3: Case I. Conjugate Model with fz,w known and smooth ϕ∗. Prior and posterior

distributions of σ2. The label ’1st’ refers to the simulation with ϕ0(Z) = 0.95Z2 + 0.25,

while ’2nd’ refers to the simulation with ϕ0(Z) =
2
9Z

2 − 2
9Z + 5

9 .
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αn = 0.4.
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Figure 4: Case II. Conjugate Model with fz,w known and irregular ϕ∗. Graphs for ϕ0(Z) =

exp(−|Z|)− 0.2 and σ0 = 2.
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Figure 5: Case II. Conjugate Model with fz,w known and irregular ϕ∗. Graphs for ϕ0(Z) =

0 and σ0 = 2.
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Figure 6: Case II. Conjugate Model with fz,w known and irregular ϕ∗. Prior and posterior

distributions of σ2. The label ’1st’ refers to the simulation with ϕ0(Z) = exp(−|Z|)− 0.2,

while ’2nd’ refers to the simulation with ϕ0(Z) = 0.
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(a) Estimated Regularized Posterior Mean for

ϕ0(Z) = 0.95Z2 + 0.25, σ0 = 20 and αn = 0.3.
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Figure 7: Case III. Conjugate Model with fz,w unknown and smooth ϕ∗.
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where ”∼” means ”of the same order of”. Hence, it makes sense to take ||ϑα||
αd as error

estimator and to select the optimal αn as the one that minimizes the ratio:

α̂∗
n = argmin

||ϑα||
αd
n

.

In the light of this argument, even if the classical residual y(n) −K(n)ϕ̂α would seem

the natural choice, it is not acceptable since it does not converge to zero at the good rate.

In reverse, convergence is satisfied by the projected residuals defined as

ϑα = Ω
1
2
0K

∗
(n)y(n) − Ω

1
2
0K

∗
(n)K(n)ϕ̂α

which for simplicity we rewrite as ϑα = T ∗
(n)y(n) − T ∗

(n)K(n)ϕ̂α, using the notation T ∗
(n) =

Ω
1
2
0K

∗
(n) and T(n) = K(n)Ω

1
2
0 .

In order to explain our data-driven method we have to introduce the notion of qualifica-

tion of a regularization method. Under the assumption ϕ∗ ∈ Φβ, we call the qualification

β0 of the regularization method the largest value of β such that ||ϕ̂α − ϕ∗||2 = Op(α
β)

for 0 < β < β0; the qualification of Tikhonov regularization is β0 = 2, see Engl et al.

(2000) Sections 4.1, 4.2 and 5.1. The data-driven method that we use requires that the

qualification of the regularization be at least equal to β0 ≥ β+2, which is impossible for a

Tikhonov regularization. We have to substitute the Tikhonov regularization scheme, used

to construct ϕ̂α, with an iterated Tikhonov scheme. In our case, it is enough to iterate

only two times, so that the qualification will be 4, the resulting operator A
(2)
α takes the

form: A
(2)
α = (αΩ0K

∗
(n)C

−1
n,α + Ω0K

∗
(n))C

−1
n,α and it replaces Aα in (8). We denote with

ϕ̂
(2)
α the regularized posterior mean obtained by using operator A

(2)
α and with ϑ

(2)
α the

corresponding projected residuals. Then, we have the following Lemma.

Lemma 3 Let ϕ̂
(2)
α be the regularized posterior mean obtained through a two-times-iterated

Tikhonov scheme in the conjugate case described in Assumption 3 and ϑ
(2)
α = T ∗

(n)(y(n) −
K(n)ϕ̂

(2)
α ). Under assumptions 4 and 5, if αn → 0, α2

nn→ ∞ and δ∗ ∈ Φβ for some β > 0,

then

||ϑ(2)α ||2 = Op

(

αmin(β+2,4)
n +

1

n

)

.

The rate of convergence given in Lemma 3 can be made equivalent, up to negligible

terms, to the rate given in Theorem 2 (i) by dividing ||ϑ(2)α ||2 by α2
n. Hence, once we have

performed estimation for a given sample, we construct the curve ||ϑ(2)
α ||2
α2
n

, as a function

of αn, and we select the value of the regularization parameter which minimizes it. The

minimization program does not change if we take an increasing transformation of this

ratio, for instance we have considered the logarithmic transformation. This simplifies the

graphical representation of the curve.

A result similar to Lemma 3 can be derived when the density fz,w is unknown and the

nonparametric method described in subsection 4.1 is applied. In this case we denote T̂ ∗
(n) =

Ω
1
2
0 K̂

∗
(n) the estimates of the corresponding T ∗

(n) and we define the estimated projected

residual as: ϑ̂
(2)
α = T̂ ∗

(n)(y(n) − K̂(n)Ê
(2)
α (ϕ|y(n))), where Ê

(2)
α (ϕ|y(n)) has been obtained by
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using a two-times iterated Tikhonov scheme for constructing Â
(2)
α . We obtain the following

result:

Lemma 4 Let Ê
(2)
α (ϕ|y(n)) be the estimated regularized posterior mean obtained through

a two-times-iterated Tikhonov scheme in the unknown operator case described in Section

4.1 and ϑ̂
(2)
α = T̂ ∗

(n)(y(n) − K̂(n)Ê
(2)
α (ϕ|y(n))). Under assumptions 4 and 5, if αn → 0,

α2
nn→ ∞ and δ∗ ∈ Φβ for some β > 0, then

||ϑ̂(2)α ||2 = Op

(

αβ+2
n + (

1

n
+ h2ρ)(αβ

n +
1

α2
n

(
1

n
+ h2ρ) +

1

α2
nn

) +
1

n

)

.

In the previous Lemma we have implicitly assumed that Assumptions B.1-B.5 of Darolles

et al. (2003) are satisfied. It is necessary to rescale the residual by 1
α2
n
to reach the same

speed of convergence given in Theorem 4.

The graphical results of a numerical implementation concerning our data-driven method

can be found in an additional appendix available at

http://didattica.unibocconi.it/mypage/index.php?IdUte=107247&idr=11421&lingua=ita/.

6 Conclusions

We have proposed in this paper a new Quasi-Bayesian method to make inference on

an IV regression ϕ defined through a structural econometric model. The main feature

of our method is that it does not require any specification of the functional form for ϕ,

though it allows to incorporate all the prior information available. A deeper analysis of

the role played by the prior distribution is an important issue for future research.

Our estimator for ϕ is the mean of a slightly modified posterior distribution whose

moments have been regularized through a Tikhonov scheme. We show that this estimator

can be interpreted as the mean of an exact posterior distribution obtained with a sequence

of Gaussian prior distributions for ϕ that shrink as αnn increases. Alternatively, we mo-

tivate the regularized posterior mean estimator as the minimizer of the penalized mean

squared error.

Frequentist asymptotic properties are analyzed; consistency of the regularized poste-

rior distribution and of the regularized posterior mean estimator are stated.

Several possible extensions of our model can be developed. First of all, it would be

interesting to consider other regularization methods, different than Tikhonov scheme, and

to analyze the way in which the regularized posterior mean is affected. We could also

consider Sobolev spaces, instead of Hilbert spaces, with regularization methods that use

differential norms.

APPENDIX

A Proofs

In all the proofs that follow we use the following notation:
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- (σ2∗ , ϕ∗) is the true parameter having generated the data according to model (4);

- H(Ω0) = R.K.H.S(Ω0);

- if (ϕ∗ − ϕ0) ∈ H(Ω0), we write (ϕ∗ − ϕ) = Ω
1
2
0 δ∗, δ∗ ∈ L2

F (Z);

- In is the identity matrix of order n;

- I : L2
F (Z) → L2

F (Z) is the identity operator defined as ϕ ∈ L2
F (Z) 7→ Iϕ = ϕ;

- T = KΩ
1
2
0 , T : L2

F (Z) → L2
F (W );

- T(n) = K(n)Ω
1
2
0 , T(n) : L

2
F (Z) → R

n;

- T̂(n) = K̂(n)Ω
1
2
0 , T̂(n) : L

2
F (Z) → R

n;

- T ∗ = Ω
1
2
0K

∗, T ∗ : L2
F (W ) → L2

F (Z);

- T ∗
(n) = Ω

1
2
0K

∗
(n), T

∗
(n) : R

n → L2
F (Z);

- T̂ ∗
(n) = Ω

1
2
0 K̂

∗
(n), T̂

∗
(n) : R

n → L2
F (Z);

- Ω
1
2
0 =

∫

Rp ω̄0(s, Z)f(s)ds;

- g(Z,wi) =
∫

Rp ω̄0(s, Z)
f(s,wi)

f(s)f(wi)
f(s)ds;

- Φβ = R(T ∗T )
β
2 and Φγ = R(T ∗T )

γ
2 for β, γ > 0;

- {λjn, ϕjn, ψjn}nj=1 is the singular value decomposition (SVD) of T(n), that is, {λ2jn}nj=1

are the nonzero eigenvalues of the selfadjoint operator T(n)T
∗
(n) (and also of T ∗

(n)T(n))

written in decreasing order, λjn > 0 and the following formulas hold

T(n)ϕjn = λjnψjn and T ∗
(n)ψjn = λjnϕjn, j = 1, . . . , n (15)

see e.g. Engl et al. (2000) Section 2.2;

- Cn = ( 1nIn + T(n)T
∗
(n)).

A.1 Proof of Lemma 2

In this proof the limits are taken for n→ ∞. We say that the sequence of probability measures µσ,y
n

on an Hilbert space L2
F (Z), endowed with the Borel σ-field E, converges weakly to a probability

measure δϕ∗
if

||
∫

a(ϕ)µσ,y
n (dϕ)−

∫

a(ϕ)δϕ∗
(dϕ)|| → 0, P σ∗,ϕ∗,w − a.s. (or in P σ∗,ϕ∗,w-probability)

for every bounded and continuous functional a : L2
F (Z) → L2

F (Z). The probability measure δϕ∗

denotes the Dirac measure on ϕ∗.

We prove that this convergence is not satisfied at least for one functional a. We consider the
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identity functional a : φ 7→ φ, ∀φ ∈ L2
F (Z), so that we have to check convergence of the posterior

mean. For simplicity, we set ϕ0 = 0, then the posterior mean is

E(ϕ|y(n)) = Ω0K
∗
(n)

( 1

n
In +K(n)Ω0K

∗
(n)

)−1

y(n)

and we have to prove that the L2
F -norm ||E(ϕ|y(n))− ϕ∗|| → 0 P σ∗,ϕ∗,w-a.s. By decomposing

E(ϕ|y(n))− ϕ∗ =

A
︷ ︸︸ ︷

Ω0K
∗
(n)

( 1

n
In +K(n)Ω0K

∗
(n)

)−1

ε(n)

− (I − Ω0K
∗
(n)

( 1

n
In +K(n)Ω0K

∗
(n)

)−1

K(n))ϕ∗
︸ ︷︷ ︸

B

.

we get the lower bound: ||E(ϕ|y(n)) − ϕ∗|| ≥
∣
∣
∣||A|| − ||B||

∣
∣
∣. We will prove that ||A|| → ∞ and

||B|| → 0. We start by considering ||A|| and we prove that it is not convergent by contradiction.

First, we remark that, by the Cauchy-Schwarz inequality, ∀ϕ ∈ L2
F (Z)

||A||||ϕ|| ≥< Ω
1
2

0 T
∗
(n)

( 1

n
In + T(n)T

∗
(n)

)−1

ε(n), ϕ >=< T ∗
(n)

( 1

n
In + T(n)T

∗
(n)

)−1

ε(n),Ω
1
2

0 ϕ >

and, without loss of generality, we can take ϕ such that ||ϕ|| = 1, so that

||A|| ≥< T ∗
(n)

( 1

n
In + T(n)T

∗
(n)

)−1

ε(n),Ω
1
2

0 ϕ > := < A1,Ω
1
2

0 ϕ > . (16)

Next, we study the convergence to zero of A and we expand A1 by using the SVD of T(n) in

the following way

< A1,Ω
1
2

0 ϕ > =

n∑

j=1

< T ∗
(n)(

1

n
In + T(n)T

∗
(n))

−1ε(n), ϕjn >< ϕjn,Ω
1
2

0 ϕ >

=
n∑

j=1

< ε(n), (
1

n
In + T(n)T

∗
(n))

−1T(n)ϕjn >< ϕjn,Ω
1
2

0 ϕ >

=
n∑

j=1

λjn
1
n
+ λ2jn

< ε(n), ψjn >< ϕjn,Ω
1
2

0 ϕ >

as it results from (15). Let us suppose that 1
n

plays the role of a regularization parameter and

call it αn; by definition of regularization scheme, see e.g. Kress (1999) Definition 15.7 p. 270,

A should converge to 0 with probability 1 as n → ∞. Let {ξj , j ≥ 1} be independent random

variables with E(ξj) = 0 and V ar(ξj) = 1, j ≥ 1. Under Assumption 2, < ε(n), ψjn >=
σ∗√
n
ξj since

E(< ε(n), ψjn >) = 0 and cov(< ε(n), ψjn >,< ε(n), ψkn >) =
σ∗√
n
< ψjn, ψkn > which is equal to

0 for j 6= k and equal to
σ2
∗

n
for j = k. Then,

lim
n→∞

< A1,Ω
1
2

0 ϕ > = lim
n→∞

n∑

j=1

λjn < ε(n), ψjn >

(αn + λ2jn)
< ϕjn,Ω

1
2

0 ϕ > (17)

= lim
n→∞

n∑

j=1

λjn
σ∗√
n
ξj

(αn + λ2jn)
< ϕjn,Ω

1
2

0 ϕ >

≥ lim
n→∞

σ∗√
n

n∑

j=1

λjnξj

αn + λ1n
< ϕjn,Ω

1
2

0 ϕ > (18)

= lim
n→∞

σ∗√
n(αn + λ1n)

n∑

j=1

λjnξj < ϕjn,Ω
1
2

0 ϕ > (19)
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since λ1n ≥ λjn, j ≥ 1. We remark that {λjnξj < ϕjn,Ω
1
2

0 ϕ >, j ≥ 1} are independent random

variables with mean 0, finite second moment and such that
∑∞

j=1 λ
2
jnE(ξ

2
j ) < ϕjn,Ω

1
2

0 ϕ >2< ∞.

The last convergence follows from the fact that, as n → ∞, λ2jn converges to the eigenvalues of

KΩ0K
∗ and KΩ0K

∗ is trace-class, that is, tr(KΩ0K
∗) :=

∑∞
j=1 λ

2
j < ∞. The operator KΩ0K

∗

is trace-class because Ω0 is trace-class, K is bounded and tr(KΩ0K
∗) ≤ ||K||tr(Ω0)||K∗||, see

Kato (1995) p. 522. Moreover, ||Ω
1
2

0 ϕ||2 < ∞. From the Khintchine-Kolmogorov Convergence

Theorem, see e.g. Chow and Teicher (1997) p.113, it follows that
∑∞

j=1 λjnξj < ϕjn,Ω
1
2

0 ϕ >< ∞
with probability 1. Then, < A1,Ω

1
2

0 ϕ >→ 0 if and only if
√
nαn → ∞, i.e. if and only if αn → 0

slower than
√
n. This implies that αn cannot be equal to 1

n
and if it is equal to 1

n
the term (19)

diverges and then limn→∞ < A1,Ω
1
2

0 ϕ > diverges with probability 1. Inequality (16) allows to

conclude that ||A|| → ∞ with probability 1.

Next, let consider term B: B = (I − Ω
1
2

0 (
1
n
I + T ∗

(n)T(n))
−1T ∗

(n)K(n))Ω
1
2

0 δ∗. Then,

||B|| ≤ ||Ω
1
2

0 ||||
1

n
(
1

n
I + T ∗

(n)T(n))
−1δ∗||

= ||Ω
1
2

0 ||
1

n

(∑

j

< δ∗, ϕjn >
2

( 1
n
+ λ2jn)

2

) 1
2

which converges to 0. This concludes the proof.

A.2 Proof of Theorem 2

(i) We develop ϕ̂α − ϕ∗ in two terms:

ϕ̂α − ϕ∗ =

A
︷ ︸︸ ︷

−(I − Ω0K
∗
(n)

(

αnIn +
1

n
In +K(n)Ω0K

∗
(n)

)−1

K(n))(ϕ∗ − ϕ0)

+Ω0K
∗
(n)

(

αnIn +
1

n
In +K(n)Ω0K

∗
(n)

)−1

ε(n)
︸ ︷︷ ︸

B

.

Under Assumption 4

||A|| ≤ ||

A1
︷ ︸︸ ︷

(I − Ω
1
2

0 T
∗
(n)(αnIn + T(n)T

∗
(n))

−1K(n))Ω
1
2

0 δ∗ ||

+||Ω
1
2

0 T
∗
(n)(αnIn +

1

n
In + T(n)T

∗
(n))

−1 1

n
In(αnIn + T(n)T

∗
(n))

−1T(n)δ∗
︸ ︷︷ ︸

A2

||

||A1|| = ||Ω
1
2

0

[

αn(αnI + T ∗T )−1δ∗ + αn[(αnI + T ∗
(n)T(n))

−1 − (αnI + T ∗T )]δ∗
]

||

≤ ||Ω
1
2

0 ||
(

||αn(αnI + T ∗T )−1δ∗||+ ||(αnI + T ∗
(n)T(n))

−1||||T ∗
(n)T(n) − T ∗T ||||αn(αnI + T ∗T )−1δ∗||

)

||A1||2 = O(αβ
n +

1

α2
nn
αβ
n)

since if δ∗ ∈ Φβ and Assumption 5 holds, then ||αn(αnI + T ∗T )−1δ∗|| = O(α
β
2
n ), see Carrasco et

al. (2007) and ||T ∗
(n)T(n) − T ∗T ||2 ≤ E(||T ∗

(n)T(n) − T ∗T ||2) = O( 1
n
), where E(·) is the expectation

taken with respect to f(wi), because E(T ∗
(n)T(n)) = T ∗T and V ar(T ∗

(n)T(n)) is of order
1
n
.

Next, we rewrite ||A2|| = ||Ω
1
2

0 (αnI +
1
n
I + T ∗

(n)T(n))
−1 1

n
T ∗
(n)T(n)(αnI + T ∗

(n)T(n))
−1δ∗|| and by

using similar developments as for A1 we get ||A2||2 = O( 1
α4

nn
2 (α

β
n + 1

α2
nn
αβ
n)) which is negligible

with respect to ||A1||2.

29



Let consider term B. A similar decomposition as for A gives

||B||2 ≤ ||Ω
1
2

0 ||2
(

||T ∗
(n)(αnIn + T(n)T

∗
(n))

−1ε(n)
︸ ︷︷ ︸

B1

||2

+||T ∗
(n)(αnIn +

1

n
In + T(n)T

∗
(n))

−1(
1

n
In)(αnIn + T(n)T

∗
(n))

−1ε(n)
︸ ︷︷ ︸

B2

||2
)

||B1||2 ≤ ||(αnI + T ∗
(n)T(n))

−1||2||T ∗
(n)ε(n)||2

and T ∗
(n)ε(n) =

1√
n

[
1√
n

∑

i εig(Z,wi)
]

= 1√
n
Op(1) because, by the Central Limit Theorem (CLT)

the term in squared brackets converges toward a gaussian random variable. Then ||B1||2 =

Op(
1

α2
nn

). Lastly, ||B2||2 = Op(
1

α2
nn

2

1
α2

nn
) and since 1

n
converges to zero faster than αn, it is negligi-

ble with respect to ||B1||2. Summarizing, ||ϕ̂α−ϕ∗||2 = Op((α
β
n+

1
α2

nn
αβ
n)(1+

1
α4

nn
2 )+

1
α2

nn
(1+ 1

α2
nn

2 ))

that, simplifying the term that are negligible becomes Op(α
β
n+

1
α2

nn
αβ
n+

1
α2

nn
) and then ||ϕ̂α−ϕ∗||2

goes to zero if αn → 0 and α2
nn→ ∞.

To prove the intuition in Remark 3 we simply have to replace ||B||2 with E||B||2 so that

||T ∗
(n)ε(n)||2 is replaced by E||T ∗

(n)ε(n)||2 which is of order 1
n
too.

(ii) By the Chebishev’s Inequality, for a sequence ǫn with ǫn → 0,

µσ,y
α {ϕ ∈ L2

F (Z); ||ϕ− ϕ∗|| ≥ ǫn} ≤ Eα(||ϕ− ϕ∗||2|y(n), σ2)

ǫ2n
=

1

ǫ2n
(||ϕ̂α − ϕ∗||2 + σ2trΩy,α)

where Eα(·|y(n), σ2) denotes the expectation taken with respect to µσ,y
α . Since,

Ωy,α =

C
︷ ︸︸ ︷

Ω
1
2

0 [I − T ∗
(n)(αnIn + T(n)T

∗
(n))

−1T(n)]Ω
1
2

0 (20)

+Ω
1
2

0 T
∗
(n)[(αnIn + T(n)T

∗
(n))

−1 − (αnIn +
1

n
In + T(n)T

∗
(n))

−1]T(n)Ω
1
2

0
︸ ︷︷ ︸

D

then, tr(Ωy,α) = tr(C) + tr(D). By using properties and the definition of the trace function, we

get

lim
n→∞

tr(C) = lim
n→∞

tr[αn(αnI + T ∗
(n)T(n))

−1Ω0] = lim
n→∞

n∑

j=1

αn

αn + λ2jn
< Ω0ϕjn, ϕjn >

= lim
n→∞

n∑

j=1

αnλ
2κ
jn

αn + λ2jn

< Ω0ϕjn, ϕjn >

λ2κjn
≤ ακ

n lim
n→∞

n∑

j=1

< Ω0ϕjn, ϕjn >

λ2κjn

which is an Op(α
κ
n) under the assumption that limn→∞

∑n

j=1
<Ω0ϕjn,ϕjn>

λ2κ
jn

<∞. Then, tr(C) → 0

as αn → 0. The tr(D) is less or equal than tr[T(n)Ω0T
∗
(n)(αnIn + T(n)T

∗
(n))

−1] and in a similar

way as for term tr(C), it is easy to prove that tr(D) = O(ακ 1
n
). By the Kolmogorov’s Theorem,

σ2 = Op(1) since E[σ
2|y(n)] = Op(1) by Theorem 3. Then, σ2tr(Ωy,α) → 0 and by using the result

on convergence of ||ϕ̂α − ϕ∗|| in (i) we can conclude.

(iii) We use the decomposition (20) (where the first term does not include 1
n
In and the second one

does.) We have to consider the squared norm in L2
F (Z) of σ2Ωy,αφ: ||σ2Ωy,αφ|| ≤ |σ2|(||Cφ|| +

||Dφ||). By the Kolmogorov’s Theorem |σ2| = Op(1) if and only if E[(σ2)2|y(n)] = Op(1). Since

the second moment of σ2 is E[(σ2)2|y(n)] = V ar(σ2|y(n)) + E
2(σ2|y(n)), it follows from Theorem 3
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that |σ2|2 = Op(1). Moreover,

||Cφ||2 ≤ ||Ω
1
2

0 ||2||[I − (αnI + T ∗
(n)T(n))

−1T ∗
(n)T(n)]Ω

1
2

0 φ||2 = ||Ω
1
2

0 ||2||αn(αnI + T ∗
(n)T(n))

−1Ω
1
2

0 φ||2

≤ ||Ω
1
2

0 ||2
(

||αn(αnI + T ∗T )−1Ω
1
2

0 φ||2 + ||αn[(αnI + T ∗
(n)T(n))

−1 − (αnI + T ∗T )−1]Ω
1
2

0 φ||2
)

and ||αn(αnI + T ∗T )−1Ω
1
2

0 φ||2 = O(αβ
n) if Ω

1
2

0 φ ∈ Φβ and T is one-to-one on L2
F (Z). Moreover,

the second term in brackets is an O( 1
α2

nn
αβ
n) and ||Ω

1
2

0 ||2 = O(1) since Ω0 is a compact operator,

so we get ||Cφ||2 = O(αβ
n + 1

α2
nn
αβ
n).

Term ||Dφ||2 is equivalent to term ||A2||2 in point (i) except that δ∗ is replaced by Ω
1
2

0 φ, but this

does not modify the speed of convergence since both these two elements belong to the β-regularity

space Φβ . Hence, ||Dφ||2 = O( 1
α4

nn
2 (α

β
n+

1
α2

nn
αβ
n)). Summarizing, ||Ωy,αφ||2 = Op((1+

1
α4

nn
2 )(α

β
n+

1
α2

nn
αβ
n)) which becomes Op(α

β
n + 1

α2
nn
αβ
n) once the fastest terms are neglected and which implies

that ||σ2Ωy,αφ|| → 0 in P σ∗,ϕ∗,w-probability.

A.3 Proof of Theorem 3

The posterior mean E(σ2|y(n)) is asymptotically equal to

E(σ2|y(n)) ≈ 1

n
(y(n) −K(n)ϕ0)

′C−1
n (y(n) −K(n)ϕ0)

=

A
︷ ︸︸ ︷

1

n
(K(n)(ϕ∗ − ϕ0))

′C−1
n (K(n)(ϕ∗ − ϕ0))

+
2

n
(K(n)(ϕ∗ − ϕ0))

′C−1
n ε(n)

︸ ︷︷ ︸

B

+
1

n
ε′(n)C

−1
n ε(n)

︸ ︷︷ ︸

C

.

Under Assumption 4,

A =
1

n
< K(n)Ω

1
2

0 δ∗, C
−1
n K(n)Ω

1
2

0 δ∗ >=
1

n
< δ∗, T

∗
(n)C

−1
n T(n)δ∗ >

≤ 1

n
||δ∗||||(

1

n
I + T ∗

(n)T(n))
−1T ∗

(n)T(n)||||δ∗|| = Op

( 1

n

)

since ||( 1
n
I + T ∗

(n)T(n))
−1T ∗

(n)T(n)|| = O(1).

Term C requires a little bit more computations. First we have to remark that, by the Binomial

Inverse Theorem, C−1
n = nIn − n2T(n)(I + nT ∗

(n)T(n))
−1T ∗

(n); hence,

C = ε′(n)ε(n) − nε′(n)T(n)(I + nT ∗
(n)T(n))

−1T ∗
(n)ε(n) (21)

C − σ2
∗ ≤ (ε′(n)ε(n) − σ2

∗) + nε′(n)T(n)(I + nT ∗
(n)T(n))

−1T ∗
(n)ε(n).

It is easy to see that ε′(n)ε(n) − σ2
∗ = Op(

1√
n
) and that

T ∗
(n)ε(n) =

1

n

∑

i

εig(Z,wi)

n(I + nT ∗
(n)T(n))

−1T ∗
(n)ε(n) =

1

n

∑

i

εi

(

(
1

n
I + T ∗

(n)T(n))
−1g(Z,wi)

)

.

The second term in (21) becomes

nε′(n)T(n)(I + nT ∗
(n)T(n))

−1T ∗
(n)ε(n) = < T ∗

(n)ε(n), (
1

n
I + T ∗

(n)T(n))
−1T ∗

(n)ε(n) >

≤ ||T ∗
(n)ε(n)||

∣
∣
∣

∣
∣
∣(
1

n
I + T ∗

(n)T(n))
−1T ∗

(n)ε(n)

∣
∣
∣

∣
∣
∣.
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The first norm is an Op(
1√
n
) since ||T ∗

(n)ε(n)|| ≤ 1√
n

[
1√
n

∑

i εi||g(Z,wi)||
]

and the term in squared

brackets is an Op(1) because it converges toward a gaussian random variable (by the CLT).

If g(Z,wi) ∈ Φγ , for γ > 1, then there exists a function h(Z,wi) ∈ L2
F (Z) such that g =

(T ∗T )
γ
2 h(Z,wi) and hence

||( 1
n
I + T ∗

(n)T(n))
−1T ∗

(n)ε(n)|| = ||

C1
︷ ︸︸ ︷

1

n

∑

i

εi

(

(
1

n
I + T ∗T )−1(T ∗T )

γ
2 h(Z,wi)

)

||

+|| 1
n

∑

i

εi

(

[(
1

n
I + T ∗

(n)T(n))
−1 − (

1

n
I + T ∗T )−1]g(Z,wi)

)

︸ ︷︷ ︸

C2

||

||C1|| ≤ n√
n

1√
n

∑

i

|εi| ||
1

n
(
1

n
I + T ∗T )−1(T ∗T )

γ
2 ||

︸ ︷︷ ︸

=Op(n
−

γ
2 )

||h(Z,wi)||

= Op(
√
nn− γ

2 ) = Op

(( 1√
n

)γ−1)

.

||C2|| ≤ 1

n

∑

i

|εi|
∣
∣
∣

∣
∣
∣

( 1

n
I + T ∗

(n)T(n)

)−1∣
∣
∣

∣
∣
∣||T ∗

(n)T(n) − T ∗T ||
∣
∣
∣

∣
∣
∣

( 1

n
I + T ∗T

)−1

(T ∗T )
γ
2

∣
∣
∣

∣
∣
∣||h(Z,wi)||

= Op

(( 1√
n

)γ+1)

which converges faster than ||C1||. Hence, (C − σ2
∗) = Op(

1√
n
+ ( 1

n
)

γ
2 ). Finally,

B =
2

n
< ε(n), C

−1
n T(n)δ∗ >=

2

n
< T ∗

(n)C
−1
n ε(n), δ∗ >

≤ 2

n
||δ∗||||T ∗

(n)C
−1
n ε(n)|| = Op

(( 1

n

) γ+1

2
)

.

since ||T ∗
(n)C

−1
n ε(n)|| = ||( 1

n
I + T ∗

(n)T(n))
−1T ∗

(n)ε(n)|| and its rate has been computed for term C.

Therefore, E(σ2|y(n))− σ2
∗ = Op

(
1
n
+ 1√

n
+
(

1√
n

)γ+1

+
(

1√
n

)γ)

= Op((
1√
n
)γ∧1).

By the Chebishev’s Inequality,

νyn{σ ∈ R+; |σ2 − σ2
∗ | ≥ ǫn} ≤ E[(σ2 − σ2

∗)|y(n)]
1

ǫ2n

=
1

ǫ2n

[

V ar(σ2|y(n)) + (E(σ2|y(n))− σ2
∗)

2
]

.

Term (E(σ2|y(n)) − σ2
∗)

2 converges to 0 and it is of order ( 1
n
)γ∧1; the variance is V ar(σ2|y(n)) =

2E(σ2|y(n)) 1
ξ0+n−2 and it goes to 0 faster than the squared bias. Then, the posterior probability

of the complement of any neighborhood of σ2
∗ converges to 0.

A.4 Proof of Corollary 1

Let remark that

||(σ2, ϕ)− (σ2
∗ , ϕ∗)||R+×L2

F
(Z) = ||(σ2 − σ2

∗, ϕ− ϕ∗)||R+×L2
F
(Z)

=
√

< (σ2 − σ2
∗ , ϕ− ϕ∗), (σ2 − σ2

∗ , ϕ− ϕ∗) >R+×L2
F
(Z)

=
√

< (σ2 − σ2
∗), (σ

2 − σ2
∗) >R+

+ < (ϕ− ϕ∗), (ϕ− ϕ∗) >L2
F
(Z)

= (||σ2 − σ2
∗||2R+

+ ||ϕ− ϕ∗||2L2
F
(Z))

1
2
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≤
(

(||σ2 − σ2
∗ ||R+

+ ||ϕ− ϕ∗||L2
F
(Z))

2
) 1

2

= ||σ2 − σ2
∗ ||R+

+ ||ϕ− ϕ∗||L2
F
(Z)

where for clarity reasons we have specified the space to which each norm refers. Then,

νyn × µσ,y
α {(σ2, ϕ) ∈ R+ × L2

F (Z), ||(σ2, ϕ)− (σ2
∗ , ϕ∗)||R+×L2

F
(Z) > ǫn}

≤ νyn × µσ,y
α {(σ2, ϕ) ∈ R+ × L2

F (Z), ||σ2 − σ2
∗ ||R+

+ ||ϕ− ϕ∗||L2
F (Z) > ǫn}

= E
y(µσ,y

α {ϕ ∈ L2
F (Z); ||ϕ− ϕ∗||L2

F
(Z) > ǫn − ||σ2 − σ2

∗ ||R+
}|y(n)),

with E
y(·|y(n)) denoting the expectation taken with respect to νyn. Since µσ,y

α is a bounded and

continuous function of σ2, by definition of weak convergence of a probability measure and by

Theorem 3, this expectation converges in R+-norm toward

µσ∗,y
α {ϕ ∈ L2

F (Z); ||ϕ− ϕ∗||L2
F
(Z) > ǫn}

which converges to 0 by Theorem 2.

A.5 Proof of Theorem 4

The proof is very similar to that one for Theorem 2 (i), then we shorten it as much as possible.

We use the following decomposition:

Êα(ϕ|y(n))− ϕ∗ = −

A
︷ ︸︸ ︷

(I − Ω
1
2

0 T̂
∗
(n)(αnIn + T̂(n)T̂

∗
(n))

−1K̂(n))(ϕ∗ − ϕ0)

+Ω
1
2

0 T̂
∗
(n)[(αnIn +Σn + T̂(n)T̂

∗
(n))

−1 − (αnIn + T̂(n)T̂
∗
(n))

−1]K̂(n)(ϕ∗ − ϕ0)
︸ ︷︷ ︸

B

+Ω
1
2

0 T̂
∗
(n)(αnIn +Σn + T̂(n)T̂

∗
(n))

−1(η(n) + ε(n))
︸ ︷︷ ︸

C

||A||2 ≤ ||Ω
1
2

0 ||2||αn(αnI + T̂ ∗
(n)T̂(n))

−1δ∗||2

≤ ||Ω
1
2

0 ||2
(

||αn(αnI + T ∗T )−1δ∗||+

||αn(αnI + T̂ ∗
(n)T̂(n))

−1(T ∗T − T̂ ∗
(n)T̂(n))(αnI + T ∗T )−1δ∗||

)2

= Op(α
β
n + αβ−2

n ||T̂ ∗
(n)T̂(n) − T ∗T ||2)

||B||2 ≤ ||Ω
1
2

0 ||2
∣
∣
∣

∣
∣
∣

(

αnI +
(σ2

n
+ op(

1

n
)
)

I + T̂ ∗
(n)T̂(n)

)−1∣
∣
∣

∣
∣
∣

2∣
∣
∣

∣
∣
∣

(σ2

n
+ op(

1

n
)
)

I||2

|| T̂ ∗
(n)(αnIn + T̂(n)T̂

∗
(n))

−1T̂(n)δ∗
︸ ︷︷ ︸

B1

||2

B1 = (αnI + T̂ ∗
(n)T̂(n))

−1T̂ ∗
(n)T̂(n)δ∗

= (αnI + T ∗T )−1T ∗Tδ∗ + [(αnI + T̂ ∗
(n)T̂(n))

−1T̂ ∗
(n)T̂(n) − (αnI + T ∗T )−1T ∗T ]δ∗

= (αnI + T ∗T )−1T ∗Tδ∗ + (αnI + T̂ ∗
(n)T̂(n))

−1(T̂ ∗
(n)T̂(n) − T ∗T )αn(αnI + T ∗T )−1δ∗

||B1||2 = Op

(

αβ
n +

1

α2
n

||T̂ ∗
(n)T̂(n) − T ∗T ||2αβ

n

)

where we have used Assumptions 4, 5 and δ∗ ∈ R(T ∗T )
β
2 . Next, we prove that ||T̂ ∗

(n)T̂(n) −
T ∗T ||2 = Op(

1
n
+ h2ρ). For this, we notice that K̂∗

(n)K̂(n)ϕ has the same asymptotic behavior of
∫ ∫

ϕ(z)f̂(z|wi)dz
f̂(z,wi)

f̂(z)
dwi. In Darolles et al. (2003, Appendix B, under Assumptions B.1-B.5) it
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is proved that ||
∫ ∫

ϕ(z)f̂(z|wi)dz
f̂(z,wi)

f̂(z)
dwi−E(E(ϕ|W )|Z)||2 = Op(

1
nhp +h

2ρ) and it follows that

K̂∗
(n)K̂(n) is of the same order. Then, operator Ω

1
2

0 in T̂ ∗
n has a smoothing effect on the variance

term of the MISE of K̂∗
(n)K̂(n)ϕ which becomes of order 1

n
. This prove the results and implies that

||A||2 = Op(α
β
n + αβ−2

n ( 1
n
+ h2ρ)) and ||B||2 = Op(

1
α2

nn
αβ
n + 1

α2
nn

( 1
n
+ h2ρ)αβ−2

n ).

Lastly, term ||C||2 can be rewritten as

||C|| ≤ ||Ω
1
2

0 ||||
C1

︷ ︸︸ ︷

T̂ ∗
(n)(αnIn + T̂(n)T̂

∗
(n))

−1(η(n) + ε(n)) ||+ ||
C2

︷ ︸︸ ︷

T̂ ∗
(n)(αnIn + T̂(n)T̂

∗
(n))

−1(η(n) + ε(n)) ||

||C1||2 ≤ ||(αnI + T̂ ∗
(n)T̂(n))

−1||2||T̂ ∗
(n)(η(n) + ε(n))||2

=
(

||(αnI + T ∗T )−1||+ ||(αnI + T̂ ∗
(n)T̂(n))

−1(T̂ ∗
(n)T̂(n) − T ∗T )(αnI + T ∗T )||

)2

||T ∗
(n)(η(n) + ε(n)) + (T̂ ∗

(n) − T ∗
(n))(η(n) + ε(n))||

= Op(
1

α2
nn

+
1

α2
(
1

n
+ h2ρ)

1

α2
nn

)

since ||T̂ ∗
(n) − T ∗

(n)||2 ∼ ||T̂ ∗
(n)T̂(n) − T ∗T ||2 = Op(

1
n
+ h2ρ). Term C2 is developed as

||C2||2 ≤ ||Ω
1
2

0 ||2||(αnI + (
σ2

n
+ op(

1

n
))I + T̂ ∗

(n)T̂(n))
−1||2||(σ

2

n
+ op(

1

n
))I||2

||T̂ ∗
(n)(αnIn + T̂(n)T̂

∗
(n))

−1(η(n) + ε(n))||2

where the last norm is the same as term C1. Hence, ||C2||2 = Op(
1

α2
nn

+ 1
α2

n
( 1
n
+ h2ρ) 1

α2
nn

) and

||Êα(ϕ|y(n))−ϕ∗||2 = Op(α
β
n+

1
α2

nn
1
α2

n
( 1
n
+h2ρ) 1

α2
nn

) after having eliminated the negligible terms.

A.6 Proof of Lemma 3

We give a brief sketch of the proof and we refer to Fève and Florens (2010) for a more detailed

proof. Let Rα = (αIn + T(n)T
∗
(n))

−1 and Rα
(n) = (αIn + 1

n
In + T(n)T

∗
(n))

−1. We decompose the

residual as

ϑ(2)α =

A
︷ ︸︸ ︷

T ∗
(n)[I − (αK(n)Ω0K

∗
(n)R

α +K(n)Ω0K
∗
(n))R

α]K(n)(ϕ∗ − ϕ0)

+

B
︷ ︸︸ ︷

T ∗
(n)[(αK(n)Ω0K

∗
(n)R

α +K(n)Ω0K
∗
(n))R

α − (αK(n)Ω0K
∗
(n)R

α
(n) +K(n)Ω0K

∗
(n))R

α
(n)]K(n)(ϕ∗ − ϕ0)

+

C
︷ ︸︸ ︷

T ∗
(n)[I − (αK(n)Ω0K

∗
(n)R

α +K(n)Ω0K
∗
(n))R

α]ε(n)

+T ∗
(n)[(αK(n)Ω0K

∗
(n)R

α +K(n)Ω0K
∗
(n))R

α − (αK(n)Ω0K
∗
(n)R

α
(n) +K(n)Ω0K

∗
(n))R

α
(n)]ε(n)

︸ ︷︷ ︸

D

.

Standard computations similar to those one used in previous proof allows to show that: ||A||2 =

Op(α
β+2 + 1

n
), ||B||2 = Op(

1
n2 + 1

α2n2 + α2

n
), ||C||2 = Op(

1
n
+ 1

α2n2 ), ||D||2 = Op(
1

α2n3 + 1
α4n3 ).

A.7 Proof of Lemma 4

We give a brief sketch of the proof and we refer to Fève and Florens (2010) for a more detailed

proof. The same as the Proof of Lemma 3 with T(n), T
∗
(n), K(n) and K

∗
(n) replaced by T̂(n), T̂

∗
(n),

K̂(n) and K̂
∗
(n). Then, we have the same decomposition and we get: ||A||2 = Op(α

β+2+( 1
n
+h2ρ)),

||B||2 = Op(α
β+2 + ( 1

n
+ h2ρ)αβ), ||C||2 = Op(

1
α2n

( 1
n
+ h2ρ)), ||D||2 = Op(

1
n
+ 1

α2n
( 1
n
+ h2ρ)).
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