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1 Introduction

Timing is a key feature of many economic decisions, like the adoption of a technology, the

marketing of a product, or the patenting of an invention. It is also an important dimension

of many decisions that are less directly of an economic nature, such as, for instance, the

decision by an academic when to publicize new results or theories. As these examples

suggest, timing is particularly important when innovations are at stake. Indeed, in many

cases, the success of a new idea or of a new product does not only depend on their intrinsic

features, or on how much effort has been put into their design, but also on exogenous factors,

like their complementarity or substitutability with existing ideas or products, the quality of

infrastructures, the maturity of a market, or the development of institutions. Because these

factors evolve over time in a way that is largely beyond the control of innovators, the latter

must be careful about the timing of their decisions.

Timing decisions are also complex because they are very often made under competitive

pressure, in environments in which there is little or no value in being a follower. For instance,

the discoverer of a new production process must not only care about how well his invention fits

the current technological and economic context, but also about the presence of competitors

who may preempt him by developing and patenting a similar process, and thus deprive him

of the fruit of his efforts. In that respect, a peculiarity of competitive innovation is that it is

often difficult for the parties involved to actually identify their competitors, precisely because

innovators have a strong incentive to keep their inventions secret in order to let them mature

optimally. Take the example of an academic who wakes up one morning with a promising

idea. After some bibliographical search, he realizes that nobody has written on this topic

yet. Alas, as we all too well know, this does not mean that nobody is currently working on

it. Indeed, somebody else may already have had a similar idea, and may be waiting for the

optimal time to publish it; even if this is not the case, the longer our academic develops his

idea, the more likely it becomes that a competitor eventually gets the same idea and finds

therefore himself in a position to preempt him. This paper accordingly studies strategic

timing decisions in a game where innovation opportunities randomly and secretly accrue to

players over time.

To do so, we consider a simple preemption game with two potential competitors. Its

distinctive feature is that each player effectively comes into play at some exogenous random

time that is her private information, and whose distribution is common knowledge. In the

light of the above examples, the time at which a player comes into play may be interpreted

as the time at which she discovers a new idea. From that time on, she can make a move
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whenever she likes. Making a move may for instance consist in patenting the new idea. By

construction, it is only once one of the players has moved that it becomes common knowledge

that there actually was an active player in the game: indeed, when a player comes into play,

she does not know whether or not the other player is already present, and, in the latter case,

she does not observe when her competitor eventually comes into play. As soon as one of

the players moves, the game is effectively terminated, and this player receives a payoff that

depends only on the time at which she moved, while the other player receives nothing. The

payoff from moving first is assumed to be positive and increasing over some range, which

generates a first mover advantage, and leads to the basic tradeoff between letting the value

of one’s idea grow, and increasing the probability of being preempted by a competitor one

did not identify. There are two sources of non-stationarity in the model: the first is that the

payoff from moving first is not constant over time, while the second is that the probability

that a player will come into play in the next instant conditional on not having come into

play yet may increase over time.

We characterize the perfect Bayesian equilibria of this game. First, we prove a uniqueness

result: all equilibria give rise to the same distribution for each player’s moving time. When

the hazard rate of the distribution of the random time at which players come into play is

higher than the growth rate of the payoff from moving first, which is the case beyond some

time threshold T ∗
2 , the unique continuation equilibrium involves for each player to move as

soon as she comes into play, because the risk of being preempted is too high compared to

the benefits of waiting any longer. By contrast, the equilibrium distribution of each player’s

moving time is such that players who come into play before time T ∗
2 are indifferent between

moving at any point in some time interval [T ∗
1 , T ∗

2 ]. Second, we describe different ways of

constructing an equilibrium over this time interval. An equilibrium in pure strategies can

be easily exhibited, but it has the undesirable feature that it crucially depends on the time

at which players come into play, which is a payoff irrelevant variable. We show that one

can construct a unique simple equilibrium, in which, if a player that came into play at some

time t has not moved yet by time t′ > t, then she should not behave from time t′ on any

differently than if she had come into play at time t′. A key feature of this equilibrium is that

players who come into play before time T ∗
2 move according to mixed strategies: moving early

is associated with low preemption risk but also low payoffs, while moving later is associated

with higher payoffs but also higher preemption risk.

Our explicit characterization of the distribution of each player’s moving time in any

equilibrium, as well as of the players’ strategies in the simple equilibrium, naturally lends
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itself to an analysis of how competitive pressure evolves over time, as well as to comparative

statics analyses with respect to the distribution of the random time at which players come

into play. We find that competition is fiercer near the lower bound T ∗
1 of the support of the

distribution of equilibrium moving times; it then tends to decrease until time T ∗
2 , after which

it increases again, reflecting that players who come into play after time T ∗
2 do not delay their

move, unlike those who come into play before time T ∗
2 . In the context of patenting, this leads

for instance to the novel prediction that patenting activity should be a U-shaped function

of time. Overall, competition becomes less fierce whenever the distribution of the random

time at which players come into play undergoes a positive shift in the sense of the monotone

likelihood ratio property. In particular, this reduces the extent to which first mover rents

are dissipated in equilibrium.

Finally, one can interpret our results in terms of reputation. The basic idea is that, over

the time interval [T ∗
1 , T ∗

2 ], it is worthwhile for each player to make her competitor believe

that she has not come into play yet: this induces her competitor to delay one’s move, which

allows her to reap potentially higher payoffs. Yet, an interesting feature of our model is that

reputations tend to erode: as time elapses, it becomes increasingly difficult to maintain a

reputation of not having come into play yet.

Related Literature Our paper is rooted in the literature on the strategic adoption of a

new technology, and especially that dealing with first mover advantages.1 In the case where

firms can commit to adoption times, Reinganum (1981) shows that the equilibrium exhibits

diffusion, and that the firm that adopts first enjoys a higher profit than its rival. By contrast,

in the polar case where firms cannot commit to adoption times, Fudenberg and Tirole (1985)

show that there exists a subgame-perfect equilibrium in which no first mover advantage can

be sustained, and payoffs are equalized across firms.2 An interpretation of our results is that

they bridge the gap between the Reinganum’s (1981) precommitment model and Fudenberg

and Tirole’s (1985) no commitment model. Indeed, if the rate at which players come into

play is low, then, conditional on coming into play, each player behaves much like the first

mover in Reinganum (1981), because she believes that it is very unlikely that she will actually

face competition. By contrast, if the rate at which players come into play grows without

bound, then each player believes that it is very likely that she has a competitor from the

onset, so that the threat of preemption is high, which leads to Fudenberg and Tirole’s (1985)

full rent dissipation result in the limit.

1See Reinganum (1989) and Hoppe (2002) for useful surveys of the literature.
2Given our simplifying assumption that the follower receives a zero payoff, this would be the only subgame-

perfect equilibrium in the complete information version of our game.
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These seminal contributions have been extended in several directions. Riordan (1992)

shows that price and entry regulation may make preemption strategies less attractive, and

slow down the pace of technology adoption. Dutta, Lach, and Rustichini (1995) model the

strategic behavior of firms in the development phase of R&D when firms choose the quality

of the good they produce; they show that there are two types of equilibria: a preemption

equilibrium, and a maturation equilibrium that induces staggered innovations. Hoppe and

Lehmann-Grube (2005) extend the model of Fudenberg and Tirole (1985) by introducing

the possibility for firms to have access to a better technology in case of late adoption. As a

result, the leader’s payoff need not be hump-shaped, and may therefore exhibit several local

maxima. They provide conditions under which there exists a unique equilibrium outcome,

in which there is either rent equalization or a second mover advantage. Finally, Argenziano

and Schmidt-Dengler (2007) extend Fudenberg and Tirole’s (1985) duopoly model to an

arbitrary number of firms.

Our model is closely related to Hendricks (1992). In his setup, firms compete for the

adoption of a new technology, but may differ in their innovative capabilities: a firm may be

an innovator, and thus be unconstrained in the time at which it adopts the new technology,

or an imitator, and then be constrained to act as a follower. Each firm is uncertain about

the innovative capability of its rival. Hendricks (1992) constructs a reputational equilibrium

in which each firm delays adoption in order to convince its rival that it is an imitator. He

shows that this mechanism alleviates rent dissipation compared to Fudenberg and Tirole’s

(1985) complete information model. In contrast with Hendricks (1992), a distinctive feature

of our model is that players’ types are not fixed at time 0; rather, players may come into play

continuously over time, as new ideas accrue to them. Reputations are then more difficult to

maintain, and tend to erode over time.

Hopenhayn and Squintani (2008) study a preemption game with private information in

which players’ information stochastically evolves over time. This may for instance capture

the fact that R&D competitors may improve their innovations over time, while keeping

breakthroughs secret until patenting their innovations. Hopenhayn and Squintani (2008)

construct an equilibrium in which each player terminates the game as soon as her private

state crosses a time decreasing threshold which is characterized as the solution to an ordinary

differential equation. They also find that durations are longer than when information is

public, but possibly shorter than in the collusive outcome. Our model is simpler in that we

suppose that players can experience only one breakthrough, that corresponds to the time at

which they come into play. A distinctive contribution of our analysis is that we prove the
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existence of a unique equilibrium distribution for each player’s moving time, which we can

fully characterize, and which allows us in turn to explicitly compute the hazard rate of the

first moving time.

Brunnermeier and Morgan (2009) propose a theoretical and experimental investigation of

clock games, in which players receive, at a random point in time, some signal about a payoff

relevant state variable. Players’ clocks are de-synchronized as a result of this randomness.

When there is a tradeoff between the gains from waiting and the fear of being preempted,

a player’s timing decision crucially depends on her predicting the other players’ clock times.

Because of the stationarity that is built in their model, Brunnermeier and Morgan (2009) can

construct equilibria where each player waits a deterministic amount of time before exiting

the game. This contrasts with our model, where there is an optimal date at which all players

would like to move if they were not threatened by preemption. As a result, and no matter

whether the equilibrium is in pure or mixed strategies, players in our model typically do not

choose to wait the same amount of time before moving.

Continuous-time timing games are known to generate modeling issues. For instance,

Fudenberg and Tirole (1985) emphasize that, even in simple examples such as the “grab

the dollar” game, it is not a priori obvious how to formulate the continuous-time version of

the game as a limit of its discrete-time version when the time interval between consecutive

periods goes to zero.3 To overcome this difficulty, they enlarge each player’s strategy space

in the continuous-time game by introducing, on top of the distribution of her moving time,

a function that measures the intensity with which she moves “just after” times at which this

distribution jumps to 1. Heuristically, this function measures the intensity of an interval

of consecutive atoms. Other authors, following Dutta and Rustichini (1993), use ad-hoc

randomization devices to rule out coordination failures. By contrast, an attractive feature

of our model is that we rely on a standard definition of a strategy and that coordination

failures only play a minor role in our analysis.

The paper is organized as follows. We present the model in Section 2. In Section 3,

we characterize the distribution of each player’s moving time, show how to construct an

equilibrium, and draw the main economic implications of our analysis. Section 4 concludes.

2 The Model

Time is continuous, and indexed by t ≥ 0. There are two players, 1 and 2. In what follows,

i refers to an arbitrary player and j to the other player. Each player i comes into play at

3See also the discussion in Fudenberg and Tirole (1991, Chapter 4, Section 5).
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some random time τ i ≥ 0. Here τ i can be interpreted as the time at which player i discovers

a new idea, the existence of a new investment opportunity, or the possibility to adopt a

new technology. In particular, player i cannot move before time τ i. It will sometimes be

convenient to say that player i is born at time τ i, and to refer to τ i as her date of birth.

Actions and Payoffs Both players are risk-neutral and discount future utilities at rate

r > 0. Like in standard timing games, each player i has a single opportunity to make a

move. The difference is that this must occur at some time t ≥ τ i, reflecting that no player

can move before being born. If player i moves first, at time t, she obtains a payoff L(t)

evaluated in terms of time 0 utilities, while player j obtains a zero payoff. If players i and

j move simultaneously, they each obtain a negative payoff S(t) evaluated in terms of time

0 utilities. This payoff structure is adopted mainly to simplify the exposition;4 it arises for

instance in an investment timing game where two firms contemplate investing on a market

that can accommodate only one of them because Bertrand competition would otherwise

drive profits to zero. Denoting by P (t) the monopoly profit flow at time t and by C(t) the

cost of investing at time t, the functions L and S are given in this case by

L(t) =

∫ ∞

t

e−rsP (s) ds− e−rtC(t),

S(t) = − e−rtC(t)

(1)

for all t ≥ 0. More generally, we maintain the following assumption throughout the paper.

Assumption 1 The function L is twice continuously differentiable, and there are times

T2 > T1 > 0 such that the following holds:

L(t) < 0 if t ∈ [0, T1),

L(t) > 0 if t ∈ (T1,∞),

L̇(t) > 0 if t ∈ [0, T2),

L̇(t) < 0 if t ∈ (T2,∞),

L̈(t) ≤ 0 if t ∈ [T1, T2].

(2)

Thus the function L vanishes at time T1 only, L(T1) = 0, reaches its unique maximum at

time T2, L̇(T2) = 0, and is concave over [T1, T2].

4In particular, extending the analysis to the case where the follower receives a nonzero payoff would raise
no additional conceptual difficulty.
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In the investment timing game example, these assumptions hold for instance when the

monopoly profit flow grows at a constant rate µ, with 0 < µ < r, and the investment cost is

constant over time and given by C > 1
r−µ

P (0). Formula (1) then yields

L(t) = e−rt

[
eµt

r − µ
P (0)− C

]

for all t ≥ 0, and times T1 and T2 are respectively given by eµT1 = (r−µ)C
P (0)

and eµT2 = rC
P (0)

. It

is straightforward to verify that the function L is concave over [T1, T2].

Times T1 and T2 have straightforward game-theoretic interpretations. Suppose that both

players can move as of time 0, and that this fact is common knowledge, like in a standard

preemption game. At time T1, each player is indifferent between moving first and becoming

a leader, or not moving and becoming a follower, because both options yield her a zero

payoff. This corresponds to the unique subgame-perfect equilibrium outcome of the complete

information preemption model of Fudenberg and Tirole (1985), in which a single player moves

at time T1.
5 By contrast, time T2 is the time at which it would be optimal for each player to

move if she believed that she were not threatened by her competitor’s moving first. When

the players are two firms that can invest on a market that can accommodate only one of

them, like in the investment timing game example, this corresponds to the unique equilibrium

outcome of the complete information precommitment model of Reinganum (1981), in which

one firm invests at time T2 and the other firm stays out of the market.6

Information We assume that the players’ dates of birth τ 1 and τ 2 are independently and

identically distributed according to a continuously differentiable distribution function F with

positive density Ḟ over R++. In addition, we will maintain the following standard assumption

throughout the paper.

Assumption 2 The hazard rate Ḟ
1−F

of F is nondecreasing over R+.

The date of birth of each player is her private information, or type. In particular, when a

player comes into play, she does not know whether or not the other player was already born.

5As discussed in the Introduction, the proper formulation of this result requires an appropriate extension
of the players’ strategy spaces.

6To see this, note that if firm i stays out of the market, it is optimal for firm j to invest at time T2.
Conversely, suppose that firm j commits to invest at time T2. Investing at any time t > T2 cannot a
best response for firm i, as it would earn no revenue because of Bertrand competition, while incurring the
investment cost C(t). Investing at time t ≤ T2 yields firm i a profit

∫ T2

t

e−rsP (s) ds− e−rtC(t),

which is maximal for t = T2 and equal there to −e−rT2C(T2). Hence firm i is better off staying out of the
market altogether, and the strategy profile (T2,∞) is an equilibrium in precommitment strategies.
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Nor does she observe when the other player comes into play when this event takes place after

her own birth. The only information that accrues to each player during the course of the

game is whether and when her competitor makes a move, which effectively terminates the

game. As stressed in the Introduction, a distinctive feature of our model compared to most

analyses of preemption games is that competition is only potential: a player never knows

for sure whether she indeed has a competitor, except when it is too late and she has been

preempted. Our model shares this feature with the reputation model of Hendricks (1992).

However, unlike in his model, a driving force of our analysis is that, as time goes by, it

becomes less and less likely that each player was not born yet. We will come back to this

important issue in Subsection 3.3.

Finally, it should be noted that our model can be seen as a perturbation of two limit

situations. To illustrate this point, suppose that F is exponential with parameter λ, so

that the hazard rate of F is constant and equal to λ. Then, letting λ go to 0 leads to the

precommitment model of Reinganum (1981), because each player, if ever born, believes that

it is very unlikely that she ever will have a competitor. By contrast, letting λ go to ∞ leads

to the preemption model of Fudenberg and Tirole (1985), in which it is common knowledge

from time 0 on that each player has a competitor.

Strategies We shall use a standard definition of a strategy in a timing game. That is, we

start for each player with a distribution function over her moving time, and we roll it over

using Bayes’ rule. Our presentation follows Laraki, Solan, and Vieille (2005). A mixed plan

for player i of type τ i is given by a distribution function over [τ i,∞].7 A strategy for player

i of type τ i is a collection (Gi
t(· ; τ i))t≥τ i of mixed plans with associated Lebesgue–Stieltjes

measures (dGi
t(· ; τ i))t≥τ i such that

• for each t ≥ τ i, SuppdGi
t(· ; τ i) ⊂ [t,∞], and

• for each t′ > t ≥ τ i and every Borel set A ⊂ [t′,∞],
∫

A

dGi
t(s; τ

i) = [1−Gi
t(t

′; τ i)]

∫

A

dGi
t′(s; τ

i). (3)

The first condition is a properness condition that states that Gi
t(· ; τ i) is a mixed plan in the

subgame that starts at date t. The second condition is a consistency condition that states

7Observe that by including ∞ in the support of the distribution, we allow player i never to move. A
mixed plan corresponds to what is called a strategy in the timing game literature (see for instance Owen
(1968, Chapter IV, Section 5), or Pitchik (1981)). However, this approach does not allow one to specify how
players behave in all possible subgames, that is, in the present case, at any time where none of them has
moved yet. This is why it is more suitable to define a strategy as a collection of mixed plans, one for each
subgame.
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that, as long as a plan does not require player i to act with probability 1, the continuation

plans can be computed by Bayes’ rule. We will write Gi
τ i(· ; τ i) = Gi(· ; τ i) in order to

simplify notation. Finally, we shall assume that for any Borel set A ⊂ R+, the mapping

τ i 7→ ∫
A

dGi(t; τ i) is measurable, so that the mapping defined by (τ i, A) 7→ ∫
A

dGi(t; τ i) is

a well defined transition function. This in turn allows one to compute quantities such as

P[i moves over A] =
∫∞
0

∫
A

dGi(t; τ i) dF (τ i).

Simple Equilibria We shall be particularly concerned in characterizing simple perfect

Bayesian equilibria of our timing game that have the property that, for each player i, the

strategies (Gi
t(· ; τ i))t≥τ i of types τ i > 0 are, whenever possible, derived using Bayes’ rule

from the strategy (Gi
t(· ; 0))t≥0 that player i adopts when born at time 0, and therefore

ultimately from the mixed plan Gi(· ; 0). That is, for each t ≥ τ i > 0 such that Gi(τ i; 0) < 1,

Gi(t; τ i) =
Gi(t; 0)−Gi(τ i; 0)

1−Gi(τ i; 0)
. (4)

It should be noted that, in such an equilibrium, Gi(t; τ i) represents both

• the probability that type τ i of player i moves by time t ≥ τ i, and

• the probability that a type τ̃ i ≤ τ i of player i moves between times τ i and t conditional

on not having moved before time τ i.

Indeed, since (4) holds at τ̃ i as well as at τ i, it is easy to check using (3) that

Gi
τ i(t; 0) =

Gi(t; 0)−Gi(τ i; 0)

1−Gi(τ i; 0)
=

Gi(t; τ̃ i)−Gi(τ i; τ̃ i)

1−Gi(τ i; τ̃ i)
= Gi

τ i(t; τ̃ i)

for all t ≥ τ i ≥ τ̃ i > 0 such that Gi(τ i; 0) < 1. In particular, Gi
τi
(t; 0) = Gi(t; τi) for all

types τ i ≥ 0. That the existence of a simple equilibrium is a plausible conjecture intuitively

reflects the fact that all players’ types in our incomplete information timing game have the

same underlying payoff function once they are born, so that the players’ preferences in this

game do not satisfy a strict single-crossing condition. As a result, if type τ̃ i of player i has

not yet moved by time τ i ≥ τ̃ i, she need not behave differently from type τ i after time τ i.

3 Equilibrium Analysis

In this section, we first derive necessary properties that must hold true of any equilibrium.

In particular, we prove that all equilibria give rise to the same distribution for each player’s

moving time. We then establish that an equilibrium exists, and we show how to construct a

unique simple equilibrium, which we discuss in detail. All the proofs are in the Appendix.
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3.1 Necessary Conditions

In the equilibrium analysis, it will be convenient to distinguish three intervals of types.

Late Types Consider first some type τ i ≥ T2 of player i, and suppose that player j has

not moved yet at time τ i. Then, since L is strictly decreasing over [T2,∞), type τ i has no

incentive to delay her move, if she believes that there is a probability 0 that she will thereby

tie with player j. This is for instance the case if the following properties hold:

P1 The types τ j < T2 move with probability 1 before time T2, that is:

P[j moves over [0, T2) |τ j < T2] = 1,

P2 Each type τ j ≥ T2 moves immediately at time τ j.

Property P1 ensures that type τ i faces no competition from types τ j < T2. Property P2

along with the fact that the distribution of each player’s type has no atom implies that type

τ i has a probability 0 of tying with some type τ j ≥ T2. Hence, provided property P1 is

satisfied, we have constructed a continuation equilibrium over [T2,∞) such that each player

i that is born during this time interval moves immediately at time τ i. It should be noted

that these plans also describe the off-equilibrium path behavior of each player: at any time

t ≥ T2 at which no player has moved yet, it is optimal for any player who was born before

time t to move at time t.

Our first result shows that the above continuation equilibrium is actually unique.

Lemma 1 In any equilibrium, properties P1 and P2 hold for each player.

For each t ≥ 0, let Gi(t) be the unconditional probability that player i moves by time t

in equilibrium and let dGi be the corresponding Lebesgue–Stieltjes measure that describes

the equilibrium distribution of player i’s moving time. The key step in the proof of Lemma

1 consists in showing that dGi has no atom over [T2,∞). It follows from Lemma 1 that

G1(t) = G2(t) = F (t) for all t ≥ T2.

Our next result shows that, in equilibrium, the distributions dG1 and dG2 have the same

support, and that their common support is connected.

Lemma 2 In any equilibrium, SuppdG1 = SuppdG2 = [T̃1,∞) for some T̃1 ∈ [T1, T2].

As a result, the distribution functions G1 and G2 are strictly increasing over [T̃1,∞). Note

that, a priori, T̃1 may depend on the equilibrium under consideration. Observe also that

T̃1 ≥ T1, since moving before time T1 is a strictly dominated strategy.
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Intermediate Types What happens before time T2? Suppose first for the sake of the

argument that player j always moves immediately when she is born, at time τ j. This means

that player j’s moving time is distributed according to F . As a result, any type τ i ≤ T2 of

player i faces a simple problem. Indeed, if she decides to move at some time t ∈ [τ i, T2], she

obtains an expected payoff equal to
[

1− F (t)

1− F (τ i)

]
L(t) (5)

in terms of time 0 utilities. Let time T ∗
2 be implicitly defined by

L̇(T ∗
2 )

L(T ∗
2 )

=
Ḟ (T ∗

2 )

1− F (T ∗
2 )

. (6)

That T ∗
2 is uniquely defined by (6) and lies in (T1, T2) follows from Assumptions 1 and 2.8

It is straightforward to check that the maximum of (5) over t ∈ [τ i,∞) is attained at T ∗
2 if

τ i ≤ T ∗
2 and at τ i if τ i > T ∗

2 . Equation (6) states that, at time T ∗
2 , the growth rate of the

payoff from moving first is equal to the rate at which the other player moves, conditional

on not having moved before T ∗
2 . Hence, the marginal benefit of delaying one’s move by an

infinitesimal amount of time dt, L̇(T ∗
2 ) dt, exactly compensates the corresponding expected

marginal loss. That loss is in turn equal to the probability that one’s competitor is born

during the time interval [T ∗
2 , T ∗

2 + dt) conditional on not being born before T ∗
2 ,

[
Ḟ (T ∗2 )

1−F (T ∗2 )

]
dt,

multiplied by the foregone benefit, L(T ∗
2 ).

Consider now any type τ i ∈ [T ∗
2 , T2) of player i, and suppose that player j has not moved

yet at time τ i. Then, if the following properties hold:

P1∗ Each type τ j < T ∗
2 moves with probability 1 before time T ∗

2 , that is:

P[j moves over [0, T ∗
2 ) |τ j < T ∗

2 ] = 1,

P2∗ Each type τ j ≥ T ∗
2 moves immediately at time τ j,

type τ i has no incentive to delay her move. This implies as above that there exists a

continuation equilibrium over [T ∗
2 , T2) such that any player i who is born during this time

interval moves immediately at time τ i. The intuition for this result is more subtle than for the

time interval [T2,∞), where the gains of moving first are strictly decreasing. Indeed, there

are gains from waiting to move over [T ∗
2 , T2), as L is strictly increasing over that range. Yet,

because L̇(t) <
[

Ḟ (t)
1−F (t)

]
L(t) for all t ∈ (T ∗

2 , T2), these gains are offset by the probability that

8Indeed, L̇
L is positive and strictly decreasing over (T1, T2), with limt↓T1

L̇(t)
L(t) = ∞ and L̇(T2)

L(T2)
= 0, and Ḟ

1−F

is positive and nondecreasing over (T1, T2].
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the other player is born and immediately moves, implying a foregone benefit L(t). In this

equilibrium, competition over [T ∗
2 , T2) really takes place at the margin. Indeed, if a player i

is born during this time interval, she knows that she is the first player to be born. It is her

fear that a competitor born during the infinitesimal time interval (τ i, τ i + dt] may actually

preempt her that leads her to move immediately at time τ i. Like over the time interval

[T2,∞), these strategies also describe the off-equilibrium path behavior of any player.

We now show that this continuation equilibrium is in fact unique. One first has the

following lemma.

Lemma 3 In any equilibrium, the distributions dG1 and dG2 have no atom over (T ∗
2 , T2].

If follows from Lemma 1 that no player born before time T2 wants to move after that time.

Thus, for each player i and any time t ∈ [T ∗
2 , T2), the function (1− Gi)L necessarily attains

a maximum over [t, T2], for, otherwise, there would exist some type τ j ∈ [T ∗
2 , T2) of player j

with no best response. Lemmas 2 and 3 deliver useful insights into the structure of the sets

arg maxs∈[t,T2]{[1− Gi(s)]L(s)} for t ∈ (T ∗
2 , T2). First, there cannot exist a time t ∈ (T ∗

2 , T2)

and a number ε > 0 such that arg maxs∈[t,T2]{[1−Gi(s)]L(s)} = {t + ε}. Indeed, if this were

the case, all the types of player j born over [t, t + ε] would have no other best response than

to move at time t+ε, so that the distribution of dGj would have an atom at time t+ε, which

is ruled out by Lemma 3.9 Second, the function (1− Gi)L is necessarily nonincreasing over

the interval (max{T̃1, T
∗
2 }, T2], which is not empty as T̃1 < T2 by property P1. Indeed, if

there were some times s and t in this interval with s < t and [1−Gi(s)]L(s) < [1−Gi(t)]L(t),

then, for some number ε > 0, no type of player j would be willing to move over the time

interval (s, s + ε).10 But then SuppdGj would not contain this interval, and therefore, as

s > T̃1, would not be connected, which is ruled out by Lemma 2. It follows that for each

t ∈ (max{T̃1, T
∗
2 }, T2), arg maxs∈[t,T2]{[1−Gi(s)]L(s)} is either reduced to {t}, or is a closed

interval with lower bound t. One can actually rule out this latter scenario, which leads to

the following result.

Lemma 4 In any equilibrium, properties P1∗ and P2∗ hold for each player.

It follows from Lemma 4 that G1(t) = G2(t) = F (t) for all t ≥ T ∗
2 . An important

by-product of Lemma 4 is that T̃1 is lower than T ∗
2 .

9Observe that if T̃1, the lower bound of Supp dGj , were itself lower than t + ε, there would also be a
contradiction with Lemma 2, since Supp dGj would then not contain the interval (t, t + ε) and therefore
would not be connected.

10Since the function Gi is right-continuous, this would remain true even if dGi had an atom at s.
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Early Types In contrast to what happens over the time interval [T ∗
2 ,∞), immediately

moving when she is born cannot be part of any player i’s equilibrium strategy before time

T ∗
2 . Indeed, because L̇(t) >

[
Ḟ (t)

1−F (t)

]
L(t) for all t ∈ (T1, T

∗
2 ), player j, when born before time

T ∗
2 , would then have an incentive to wait until that time before moving. This would in turn

lead player i to delay slightly her move, thus destroying the conjectured equilibrium. Instead,

we conjecture that, in any equilibrium, all the types born before time T ∗
2 are indifferent to

move at any time between some time T ∗
1 and time T ∗

2 . Given the continuation equilibrium

characterized in Lemma 4, it follows that the equilibrium payoff of any such type is

[1− F (T ∗
2 )]L(T ∗

2 ) (7)

in terms of time 0 utilities. Time T ∗
1 is the lower bound of the distribution of each player’s

moving time common to all equilibria, so that T̃1 = T ∗
1 in any equilibrium. It is pinned down

by the requirement that each player must be indifferent between moving at time T ∗
1 or at

time T ∗
2 , and moves with probability 1 after time T ∗

1 . That is, given (7),

L(T ∗
1 ) = [1− F (T ∗

2 )]L(T ∗
2 ). (8)

We now formally establish these conjectures. The following lemma parallels Lemma 3.

Lemma 5 In any equilibrium, the distributions dG1 and dG2 have no atom over [T̃1, T
∗
2 ].

Using similar arguments as in the case of intermediate types, one can check that Lemmas

2 and 5 imply that for each player i, the function (1−Gi)L is necessarily nonincreasing over

the interval [T̃1, T
∗
2 ]. The following lemma states that it is actually constant over [T ∗

1 , T ∗
2 ].

Lemma 6 In any equilibrium, G1(t) = G2(t) = 1− L(T ∗1 )

L(t)
for all t ∈ [T ∗

1 , T ∗
2 ].

To simplify notation, we shall hereafter denote by G(t) the unconditional probability that

any given player moves by time t in equilibrium. Lemmas 4 and 5 imply that this probability

is uniquely determined in equilibrium:

G(t) =





0 if t < T ∗
1 ,

1− L(T ∗1 )

L(t)
if T ∗

1 ≤ t < T ∗
2 ,

F (t) if t ≥ T ∗
2 .

(9)

Each player born before T ∗
2 is indifferent between moving at any time t ∈ [T ∗

1 , T ∗
2 ]:

[1− G(t)]L(t) = L(T ∗
1 ) (10)
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for all t ∈ [T ∗
1 , T ∗

2 ]. Note that a special case of (10) is (8), since G(T ∗
2 ) = F (T ∗

2 ). For each

t ∈ (T ∗
1 , T ∗

2 ), (10) can be rewritten in differential form as follows:

L̇(t)

L(t)
=

Ġ(t)

1− G(t)
. (11)

Equation (11) states that, at any time t ∈ (T ∗
1 , T ∗

2 ), the marginal benefit of delaying one’s

move by an infinitesimal amount of time dt, L̇(t) dt, exactly compensates the corresponding

expected marginal loss, which is equal to the probability that one’s competitor will move

during the time interval [t, t + dt) conditional on not having moved before t,
[

Ġ(t)
1−G(t)

]
dt,

multiplied by the foregone benefit L(t).

3.2 Equilibrium Existence

Lemmas 4 and 6 pin down a unique candidate for the equilibrium distribution of each

player’s moving time. We now construct equilibrium strategies that actually generate this

distribution. We first construct a non-simple pure strategy equilibrium, and then characterize

the unique simple equilibrium.

A Non-Simple Equilibrium A key insight of Lemma 4 is that there exists a unique

continuation equilibrium from time T ∗
2 on: at any time t ≥ T ∗

2 at which no player has moved

yet, it is optimal for any player who was born before or at time t to move immediately.

Therefore, since no player moves before time T ∗
1 , constructing an equilibrium requires only

specifying the players’ behavior over [T ∗
1 , T ∗

2 ]. To do so, we rely on Lemma 6, which states

that each player born before time T ∗
2 must be indifferent between moving at any point in

this time interval. The only condition to be satisfied is that the unconditional distribution

of each player’s moving time be consistent with the postulated equilibrium strategies; that

is, it must be equal to the average of the type-dependent distributions of moving times. For

each player i, these are given by the mixed plans (Gi(· ; τ i))τ i≤T ∗2 , and so one must have

∫ t

0

Gi(t; τ i) dF (τ i) = G(t) (12)

for all t ∈ [T ∗
1 , T ∗

2 ]. Now, observe that F (t) > G(t) for all t < T ∗
2 .11 One can thus define a

strictly increasing mapping σ : [0, T ∗
2 ] → [T ∗

1 , T ∗
2 ] by

F (σ−1(t)) = G(t)

11Indeed, by (11), Ġ(t)
1−G(t) = L̇(t)

L(t) > Ḟ (t)
1−F (t) for all t ∈ (T ∗1 , T ∗2 ). Since G(T ∗2 ) = F (T ∗2 ), integrating yields

ln(1− G(t)) > ln(1− F (t)) and thus F (t) > G(t) for all t ∈ (T ∗1 , T ∗2 ). Finally F (t) > 0 = G(t) for all t ≤ T ∗1 .
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for all t ∈ [T ∗
1 , T ∗

2 ]. By construction, σ(0) = T ∗
1 , σ(τ) > τ for all τ < T ∗

2 and σ(T ∗
2 ) = T ∗

2 .

Let then each type τ i ≤ T ∗
2 of player i move at time σ(τ i), that is:

Gi(t; τ i) = 1{σ(τ i)≤t} (13)

for all t ≥ τ i. It then follows that
∫ t

0

Gi(t; τ i) dF (τ i) =

∫ t

0

1{τ i≤σ−1(t)} dF (τ i) = F (σ−1(t)) = G(t)

for all t ∈ [T ∗
1 , T ∗

2 ], as required. One has the following result.

Proposition 1 There exists a pure strategy equilibrium in which

• each player’s type τ ≤ T ∗
2 moves at time σ(τ), and

• each player’s type τ > T ∗
2 moves immediately at time τ .

The Simple Equilibrium The equilibrium constructed in Proposition 1 is not simple in

the sense of Section 2. Indeed, it follows from (4) and from the fact that no player ever

moves before T ∗
1 that, in a simple equilibrium, all the types τ < T ∗

1 of each player should

behave in exactly the same way. This is not the case in the above equilibrium, since each

type τ < T ∗
1 moves at time σ(τ), where σ is a strictly increasing function. In particular,

this equilibrium is not Markov perfect, since players condition their behavior on a payoff

irrelevant variable, namely their date of birth.12 As discussed in the Introduction, we view

this as an artificial feature of this equilibrium.

We now show that there exists a unique simple equilibrium. This equilibrium is symmetric

and completely characterized by the mixed plan G(· ; 0) of type 0 of each player. Since dG
has no atom, and each type τ < T ∗

2 moves with probability 1 before time T ∗
2 , the function

G(· ; 0) must be continuous over [0, T ∗
2 ], with G(T ∗

1 ; 0) = 0 and G(T ∗
2 ; 0) = 1. The support

of the corresponding distribution dG(· ; 0) can be characterized as follows.

Lemma 7 SuppdG(· ; 0) = [T ∗
1 , T ∗

2 ].

It follows from Lemma 7 that G(t; 0) < 1 for all t < T ∗
2 , so that, according to (4), the

behavior of each type τ < T ∗
2 can be inferred from that of type 0 by Bayes’ rule. In line with

(12), the consistency condition

∫ t

0

G(t; τ) dF (τ) = G(t) (14)

12See Maskin and Tirole (2001) for a definition of Markov perfect equilibrium.
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must hold for all t ∈ [T ∗
1 , T ∗

2 ].13 Imposing the simplicity requirement (4), we obtain that

∫ t

0

[
G(t; 0)−G(τ ; 0)

1−G(τ ; 0)

]
dF (τ) = G(t) (15)

for all t ∈ [T ∗
1 , T ∗

2 ]. One has the following result.

Proposition 2 There exists a unique simple equilibrium, in which

• each player’s type τ < T ∗
2 moves according to the mixed plan G(· ; τ) = G(· ;0)−G(τ ;0)

1−G(τ ;0)
,

where G(· ; 0) = 0 over [0, T ∗
1 ] and

G(t; 0) = 1−
[
F (t)− G(t)

F (T ∗
1 )

]
exp

(
−

∫ t

T ∗1

dF (τ)

F (τ)− G(τ)

)
(16)

for all t ∈ [T ∗
1 , T ∗

2 ].

• each player’s type τ ≥ T ∗
2 moves immediately at time τ .

3.3 Discussion

Coordination Failures In any equilibrium, the distribution of each player’s moving time

has no atom; as a result, the probability of a joint move is zero. Therefore coordination

failures only play a limited role in our analysis: actually, the assumption that they are

always detrimental to both players is only used in the proof that the distribution of each

player’s moving time is uniquely determined in equilibrium (see the proofs of Lemmas 1,

2, and 4). By contrast, models that use a discrete-time game with very short time lags to

represent continuous time, following Simon and Stinchcombe (1989), explicitly need to rule

out coordination failures, typically through the use of an ad-hoc randomization device, as

in Dutta and Rustichini (1993), Dutta, Lach, and Rustichini (1995), Hoppe and Lehmann-

Grube (2005), or Argenziano and Schmidt-Dengler (2007). In the alternative formulation

of Fudenberg and Tirole (1985), coordination failures are crucial for determining moving

intensities off the equilibrium path, although they cannot arise in equilibrium.

Strength of Competition To obtain more information on how the players compete in

the simple equilibrium, it is useful to determine the shape of the function G(· ; 0). One has

the following results.

Corollary 1 G(· ; 0) is strictly concave over [T ∗
1 , T ∗

2 ].

13Notwithstanding the appearances, (14) is not a standard integral equation: indeed, the unknown in (14)
is the kernel G, while F is given. Observe that (13) already yields one particular solution to this equation.
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Corollary 2 Ġ(T ∗
2 ; 0) = 0.

Corollary 1 implies that the probability that a player born before time T ∗
2 will move during

the time interval [t, t + dt] is smaller, the larger is t ∈ [T ∗
1 , T ∗

2 ). Consistent with this insight,

Corollary 2 implies that, when dt is small, the probability that such a player moves during

the time interval [T ∗
2 − dt, T ∗

2 ] is very small, namely of the order o(dt). Therefore, players

born between times T ∗
1 and T ∗

2 are more likely to move close to their dates of birth than

close to time T ∗
2 . Overall, competition is fiercer close to time T ∗

1 , and then tends to decrease.

This property, which actually holds in any equilibrium, is reflected in the rate at which

players moves. To see that, note that since players move independently, the distribution

function of the first moving time is 1− (1−G)2. It then follows from (11) that over the time

interval [T ∗
1 , T ∗

2 ], the corresponding hazard rate is 2 L̇
L
, which is strictly decreasing there by

Assumption 1. Now, no player born before time T ∗
2 ever moves after time T ∗

2 , and any player

born after time T ∗
2 moves immediately. Thus, over the time interval [T ∗

2 ,∞), the hazard

rate of the first moving time is 2 Ḟ
1−F

, which is nondecreasing by Assumption 2. Our model

thus delivers the prediction that the hazard rate of the first moving time, 2 max
{

L̇
L
, Ḟ

1−F

}
,

is nonmonotonic over [T ∗
1 ,∞), and tends to increase after having reached a minimum at T ∗

2 .

Eroding Reputations To understand how competition evolves with time, an interesting

quantity to focus on is the probability that a given player is not yet born by time t given

that no player has moved yet by this time. This probability is the same in any equilibrium.

Denoting it by q(t), we have the following result.

Corollary 3 For each time t ≥ 0, one has:

q(t) =





1− F (t) if t ≤ T ∗
1 ,

[1−F (t)]L(t)
L(T ∗1 )

if T ∗
1 < t ≤ T ∗

2 ,

1 if t > T ∗
2 .

(17)

Since no player moves before time T ∗
1 in equilibrium, the probability that a given player

is not born by time t ≤ T ∗
1 is just the unconditional probability 1 − F (t). Symmetrically,

since any player moves before time T ∗
2 when born before time T ∗

2 and moves immediately

when born after time T ∗
2 , the probability that a given player is not born by time t > T ∗

2

given that no player has moved by this time is 1. Over the interval (T ∗
1 , T ∗

2 ), the mapping

t 7→ q(t) continuously increases from 1− F (T ∗
1 ) to 1, as is easily checked from the definition

of time T ∗
2 .
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In line with Hendricks (1992), one can interpret q(t) as the reputation of each player at

time t if she has not moved by then. In equilibrium, before time T ∗
2 , it is worthwhile for each

player to make her opponent believe that she is not born yet: this induces her opponent to

delay one’s move, which potentially allows her to reap higher payoffs. By contrast, at time

T ∗
2 , the reputation of each player is equal to 1 and thus cannot improve anymore: this is the

flip side of the fact that it is no longer optimal for each player to delay one’s move beyond

time T ∗
2 , because the risk of getting preempted overcomes the remaining gains from waiting.

The reputation of each player i evolves according to

q̃(t) =





q(t) if player i has not moved by time t,

0 if player i has moved by time t.

Now, observe that, as long as q̃(s) > 0, one has, if s < t ≤ T ∗
2 ,

E[q̃(t) |Fs] = E[P[Player i is not yet born by time t |Ft] |Fs]

= P[Player i is not yet born by time t |Fs]

< P[Player i is not yet born by time s |Fs]

= q̃(s),

where Fs and Ft represent the public information at times s and t, and the strict inequality

follows from the fact that there is a positive probability that a player is born between time s

and time t. As a result, the reputation of each player follows a submartingale. Specifically,

suppose that T ∗
1 ≤ s < t ≤ T ∗

2 and q̃(s) > 0. An explicit calculation then yields

E[q̃(t) |Fs] = P[Player i is not yet born by time t |Fs] q(t)

=

[
1− G(t)

1− G(s)

]{
[1− F (t)]L(t)

L(T ∗
1 )

}

=

[
1− F (t)

1− F (s)

]
q̃(s),

(18)

where the second inequality follows from (17), and the second from (10) and (17) again.

One can check from (18) that the expected instantaneous rate of decline of each player’s

reputation is equal to the hazard rate of the players’ type distribution:

lim
t↓s

1

q̃(s)
E

[
q̃(t)− q̃(s)

t− s
|Fs

]
= − Ḟ (s)

1− F (s)
, (19)
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reflecting that the key driving force in the evolution of players’ reputations is the rate at

which players actually come into play. It should be observed that, since the hazard rate

of F is assumed to be nondecreasing over R+, the closer one moves to time T ∗
2 , the faster

the players’ reputations tend to decline on average. Another implication of (19) is that the

higher the hazard rate of the players’ type distribution, the faster the players’ reputations

tend to decline on average.14 Similarly, it follows from (17) that q̇
q

= − Ḟ
1−F

+ L̇
L

over [T ∗
1 , T ∗

2 ],

so that the higher the hazard rate of the players’ type distribution, the slower the players’

reputations conditional on none of them moving tend to grow on average.

It is useful to contrast these findings with those of Hendricks (1992). In his model, a firm

can be an innovator, or an imitator. Firms compete for the adoption of a new technology.

While an innovator has no constraint on the time at which it can adopt, an imitator cannot

adopt before an innovator does. The reputation of a firm is the posterior belief that it is an

imitator given that no firm has adopted yet. Observe that, in this case, the reputation of

a firm follows by construction a martingale, since it is equal to the posterior probability of

a fixed event: being an imitator. In our model, by contrast, reputations tend to erode: as

time elapses, it becomes increasingly difficult to maintain a reputation of not being born.

As a result, players are less ready to wait before moving and players move immediately from

time T ∗
2 onwards, while in Hendrick’s (1992) model, an innovator may in equilibrium wait

until time T2 > T ∗
2 to adopt.

Comparative Statics Last, we analyze how the simple equilibrium is affected by a change

in the players’ type distribution. Specifically, consider a family of distribution functions Fθ

parameterized by θ ∈ R, which satisfies the monotone likelihood ratio property (MLRP);

that is, the mapping t 7→ Ḟθ1
(t)

Ḟθ0
(t)

is nondecreasing whenever θ1 > θ0. As is well known, this

implies both that Fθ1 first order stochastically dominates Fθ0 , and that the hazard rate of

Fθ1 is below that of Fθ0 ,
Ḟθ1

1−Fθ1
≤ Ḟθ0

1−Fθ0
. A natural question is to determine the impact on the

equilibrium distributions of moving times of a shift of the players’ type distribution function

from Fθ0 to Fθ1 . Assuming for simplicity that the mapping (θ, t) 7→ Fθ(t) is continuously

differentiable, and denoting by T ∗
1,θ and T ∗

2,θ the lower and upper bounds of the support of

the equilibrium mixed plan Gθ(· ; 0) of type 0, given players’ type distribution function Fθ,

one first has the following result, which actually holds in any equilibrium.

Corollary 4 If the family {Fθ}θ∈R satisfies MLRP, times T ∗
1,θ and T ∗

2,θ are nondecreasing

functions of θ.

14This is for instance the case if, given a family {Fθ}θ∈R that satisfies MLRP, one considers a shift from
θ1 to θ0 < θ1, see the comparative statics analysis below.
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Corollary 4 reflects that, from the point of view of each player, an increase in θ induces

at any time a reduction in the risk of actually having a competitor. Therefore, once born,

each player is willing to wait more before moving. The following result sharpens this insight

by focusing on Gθ(· ; 0) itself.15

Corollary 5 If the family {Fθ}θ∈R satisfies MLRP, so does the family {Gθ(· ; 0)}θ∈R.

As an illustration, consider the case of the family of exponential distribution functions

{Fθ}θ∈R++ with parameters λ = 1
θ
. A positive shift in θ corresponds to a negative shift in λ

and thus to a reduction in the MLRP sense in the risk of actually having a competitor. As

shown by Corollaries 4 and 5, this leads players to move later on average, as the fear of being

preempted decreases. When θ goes to ∞, the fear of preemption vanishes, both times T ∗
1,θ

and T ∗
2,θ go to time T2, and the equilibrium payoff of a player born before time T2 goes to

L(T2). This corresponds to the outcome of the precommitment model of Reinganum (1981).

By contrast, when θ goes to 0, the fear of preemption becomes extreme, both times T ∗
1,θ and

T ∗
2,θ go to time T1, and the equilibrium payoff of a player born before time T1 goes to 0. This

corresponds to the outcome of the preemption model of Fudenberg and Tirole (1985). The

distribution of the first moving time then converges weakly to a Dirac mass at time T1 and

all rents are dissipated in the limit.

4 Concluding Remarks

In this paper, we investigated the impact of private information in a standard preemption

context. One interpretation of the game we study is that ideas randomly and secretly accrue

to players over time. Once a player has an idea, she can publicize it in exchange for an

immediate reward, or let it mature as a function of the overall economic environment; the

second option however involves a preemption risk. We characterized the distribution of

each player’s moving time, and showed that there exists a unique simple equilibrium in

which a player’s behavior is independent of the date at which an idea occurred to her. Our

model delivers richer empirical implications than standard preemption models with complete

information. In particular, we found that competitive pressure is nonmonotonic over time,

and that private information tends to alleviate rent dissipation.

15One needs to be slightly cautious here since, as shown in Corollary 4, the distributions {dGθ(· ; 0)}θ∈R do
not have the same supports: if θ1 > θ0, the support of dGθ1(· ; 0) is shifted to the right compared to that of
dGθ0(· ; 0). This does not prevent us to define likelihood ratios, however, provided infinite values are allowed.
We adopt throughout the convention 0

0 = 0, which enables us to deal with non-overlapping supports.
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Our analysis focused on the case where the value of an idea only depends on exogenous

factors, such as the market conditions at a given date. In particular, it is independent of

the time at which this idea occurred to a player; as a result, early discovery of an idea

does not in itself give an edge on one’s competitors, besides giving one the opportunity to

publicize this idea earlier. Yet, it is easy to think of examples in which the value of an idea

for a player also depends on how long she has had this idea: for instance, the value of an

academic project depends on how much effort has been put into it, and hence, indirectly, on

how long its bearer has entertained it. It would be interesting, in future research, to extend

the analysis of this paper to take this possibility into account.
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Appendix

Throughout the Appendix, we adopt the convention that all types’ payoffs are evaluated in

terms of time 0 utilities. Lemmas 1 to 3 deal with potential atoms in the distributions of

players’ moving times. Note that if there were an atom at t in the equilibrium distribution

of player i’s moving time, then, by virtue of the equality

P[i moves at t] =

∫ ∞

0

[Gi(t; τ i)−Gi(t−; τ i)] dF (τ i),

there would be a positive measure of types of player i who move at t with positive probability.

Therefore moving at t should be a best response for all these types, an observation we rely

several times upon in what follows.

Proof of Lemma 1. For each t ≥ 0, let Gi(t) be the unconditional probability that player i

moves by time t in the conjectured equilibrium, and let dGi be the corresponding Lebesgue–

Stieltjes measure. The function L is strictly decreasing over [T2,∞), and so is the function

(1−Gi)L. It follows that, if dGi has no atom over [T2,∞), the unique best response of each

type τ j ≥ T2 is to move immediately at time τ j. Now, assume by way of contradiction that

dGi has an atom at time t ≥ T2, and consider type t of player j. Since Gi is right-continuous,

the supremum of the payoff she can obtain by moving later than time t is [1 − Gi(t)]L(t).

But this supremum cannot be reached, since, as S(t) < 0, she would obtain a strictly lower

payoff [1 − Gi(t)]L(t) + [Gi(t) − Gi(t−)]S(t) by moving at time t. Thus, if dGi has an atom

at time t ≥ T2, type t of player j has no best response, a contradiction. Hence property P2

holds: each type τ j ≥ T2 moves immediately at time τ j in equilibrium. Now, just like dGi,

dGj has no atom over [T2,∞), and in particular at time T2. As the types τ j < T2 have no

incentive to move later than time T2, property P1 follows. ¥

Proof of Lemma 2. From Lemma 1 along with the fact that moving before time T1 is a

strictly dominated strategy, [T2,∞) ⊂ SuppdGi ⊂ [T1,∞) for each player i. Now, suppose

that SuppdGi is not connected. Then there exists an interval (s, t) ⊂ [T1, T2) such that

s > min SuppdGi and player i moves with probability 0 over (s, t), Gi(t−) − Gi(s) = 0.

Extend (s, t) maximally to the left, that is, assume s ∈ SuppdGi. Then, since L is strictly

increasing over [T1, T2], and hence over (s, t), no type of player j has ever an incentive to

move over (s, t), Gj(t−)− Gj(s) = 0. It is easy to check that it is impossible for dGi to have

an atom at time s. For, otherwise, the payoff of any type of i from moving at time s would

be [1− Gj(s)]L(s) + [Gj(s)− Gj(s−)]S(s). But, since Gj(t−)− Gj(s) = 0 and S(s) < 0, this

is strictly less than [1− Gj(s + ε)]L(s + ε) for all ε ∈ (0, t− s), so that any type of player i
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who moves at time s would be strictly better off moving at time s + ε, a contradiction. By

symmetry, it is also impossible for dGj to have an atom at time s, so that Gj is continuous

at time s. Now, observe that since s ∈ SuppdGi and (s, t) ∩ SuppdGi = ∅, there is for each

ε > 0 a positive probability that player i moves over (s − ε, s]. Her payoff from doing so is

bounded above by [1 − Gj(s − ε)]L(s). But, since Gj(t−) − Gj(s) = 0 and Gj is continuous

at time s, this is strictly less than [1−Gj(t− ε)]L(t− ε) for ε close enough to 0, so that any

type of player i who moves over (s− ε, s] would be strictly better off moving at time t− ε, a

contradiction. This shows that SuppdGi is connected over [T1, T2]; since it contains [T2,∞),

SuppdGi is of the form [T̃ i
1,∞) for some T̃ i

1 ∈ [T1, T2]. One clearly must have T̃ i
1 = T̃ j

1 .

Indeed, suppose for instance that T̃ i
1 < T̃ j

1 . Then, since L is strictly increasing over [T1, T2],

for each ε > 0 small enough, any type of player i who moves over [T̃ i
1, T̃

i
1 + ε) would be

strictly better off moving over [T̃ j
1 − ε, T̃ j

1 ), a contradiction. Hence the result. ¥

Proof of Lemma 3. The following observation is useful. Since the function (1 − Gi)L is

strictly decreasing over [T2,∞), no type τ j < T2 of player j wants to move later than time

T2. For each t ∈ [T ∗
2 , T2), (1 − Gi)L must then have a maximum over [t, T2], for, otherwise,

there would exist some type τ j ∈ [T ∗
2 , T2) of player j with no best response, a contradiction.

Now, it follows from the proof of Lemma 1 that for each player i, dGi has no atom at time

T2. Suppose then that dGi has an atom at time t ∈ (T ∗
2 , T2); in that case (1 − Gi)L jumps

downward at time t, with [1 − Gi(t−)]L(t−) > [1 − Gi(t)]L(t). There are then two cases to

consider.

Case 1 Suppose first that maxs∈[t,T2] {[1−Gi(s)]L(s)} ≥ [1−Gi(t−)]L(t−), and therefore

maxs∈[t,T2] {[1 − Gi(s)]L(s)} > [1 − Gi(t)]L(t). Then there exists ε ∈ (0, T2 − t) such that

no type of player j wants to move over [t, t + ε], Gj(t + ε) − Gj(t−) = 0. Since L is strictly

increasing over [t, t+ε], any type of player i who moves at time t could then strictly increase

her payoff from [1− Gj(t)]L(t) to [1− Gj(t + ε)]L(t + ε) = [1− Gj(t)]L(t + ε) by moving at

time t + ε rather than at time t, a contradiction.

Case 2 Suppose next that maxs∈[t,T2] {[1−Gi(s)]L(s)} < [1−Gi(t−)]L(t−). Then no type

τ j < t of player j wants to move at or later than time t. It follows that dGj has no atom

at time t, so that Gj is continuous at time t, and that Gj(t) = F (t). Denoting by D−Gj the

lower left Dini derivative of Gj, one then has16

D−Gj(t) = lim inf
h↓0

P[j moves over (t− h, t]]

h
≥ lim inf

h↓0
P[j is born over (t− h, t]]

h
= Ḟ (t).

16See Royden (1988, Chapter 5, Section 1) or Giorgi and Komlósi (1992) for definitions and properties of
Dini derivatives.
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Moreover, using the fact that 1 − Gj and L are nonnegative and continuous at time t, and

that L is continuously differentiable at time t, one gets

D−[(1− Gj)L](t) = −D−Gj(t)L(t) + [1− Gj(t)]L̇(t) = −D−Gj(t)L(t) + [1− F (t)]L̇(t),

where D−[(1− Gj)L] is the upper left Dini derivative of (1− Gj)L. It follows that

D−[(1− Gj)L](t) ≤ −Ḟ (t)L(t) + [1− F (t)]L̇(t) < 0

since t > T ∗
2 . Therefore any type of player i who moves at time t could strictly increase her

payoff by moving slightly before time t rather than at time t, a contradiction. The result

follows. ¥

Proof of Lemma 4. The proof goes through a sequence of steps.

Step 1 One first shows that, for each player i, the function (1−Gi)L is strictly decreasing

over (max{T̃1, T
∗
2 }, T2]. Suppose the contrary holds, and let [si, ti] ⊂ (max{T̃1, T

∗
2 }, T2] be a

maximal interval over which it is constant. Then the function (1−Gj)L is strictly decreasing

over [si, ti]. Indeed, suppose by way of contradiction that (1 − Gj)L is constant over some

maximal interval [sj, tj] whose interior intersects that of [si, ti], and assume without loss of

generality that tj ≥ ti > sj. Since (1−Gi)L is nonincreasing over (max{T̃1, T
∗
2 }, T2], one has

[1− Gi(ti)]L(ti) > [1− Gi(t)]L(t) for all t > ti by definition of time ti. This implies that no

type τ j ≤ ti of player j wants to move later than time ti, so that Gj(ti) = F (ti). Proceeding

as in Case 2 of the proof of Lemma 3, one can then show that D−[(1 − Gj)L](ti) < 0.

Thus (1−Gj)L cannot be constant over [sj, ti], a contradiction. It follows that if (1−Gi)L is

constant over [si, ti], (1−Gj)L must be strictly decreasing over this interval. Thus, in analogy

with properties P1 and P2, the types τ i < ti of player i move with probability 1 before time

ti, and each type τ i ∈ [si, ti] of player i moves immediately at time τ i. But, if this were true,

one would have Gi = F over [si, ti], which is impossible since the function (1 − F )L is not

constant, but rather strictly decreasing over [si, ti] ⊂ [T ∗
2 , T2]. This contradiction establishes

that (1− Gi)L is strictly decreasing over (max{T̃1, T
∗
2 }, T2].

Step 2 One next shows that T̃1 < T ∗
2 . Indeed, if T̃1 ≥ T ∗

2 , then, by Step 1, for each player

i, the function (1−Gi)L is strictly decreasing over (T̃1, T2], and hence on (T̃1,∞). Hence no

type τ j < T̃1 wants to move later than time T̃1. Since each of these types can guarantee a

positive payoff by moving over (T1, T̃1), and since T̃1 is the lower bound of SuppdGj, they

must all move with probability 1 at time T̃1. Thus dGj has an atom of mass F (T̃1) at time

T̃1. But so does dGi by symmetry. Hence, since S(T̃1) < 0, for ε > 0 small enough, all the
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types τ j ≤ T̃1−ε of player j would be strictly better off moving at time T̃1−ε and obtaining

a payoff [1−Gi(T̃1−ε)]L(T̃1−ε) = L(T̃1−ε), than moving at time T̃1 and obtaining a payoff

[1− Gi(T̃1)]L(T̃1) + [Gi(T̃1)− Gi(T̃−
1 )]S(T̃1). This contradiction establishes that T̃1 < T ∗

2 .

Step 3 Steps 1 and 2 together imply that, for each player i, the function (1 − Gi)L is

strictly decreasing over (T ∗
2 , T2]. It is then easy to check along the lines of the proof of

Lemma 1 that dGi has no atom at T ∗
2 , for, otherwise, type T ∗

2 of player j would have no best

response, a contradiction. Hence property P2∗ holds: each type τ j ≥ T ∗
2 moves immediately

at time τ j in equilibrium. Now, just like dGi, dGj has no atom at time T ∗
2 . As the types

τ j < T ∗
2 have no incentive to move strictly later than time T ∗

2 , property P1∗ follows. ¥

Proof of Lemma 5. It follows from the proof of Lemma 4 that for each player i, dGi has

no atom at time T ∗
2 . Suppose then that dGi has an atom at time t ∈ [T̃1, T

∗
2 ), and consider

any type τ j < t of player j. The supremum of the payoff she can obtain by moving before

time t is [1−Gi(t−)]L(t), which, since Gi(t) > Gi(t−), is strictly more than [1−Gi(t)]L(t+ε)

for ε > 0 small enough. Since [1−Gi(t)]L(t + ε) is itself an upper bound for the payoff that

player j can obtain by moving over [t, t + ε], it follows that no type τ j < t of player j moves

over this interval. In particular, dGj has no atom at time t, so that Gj is continuous at time

t, and only the types τ j ∈ [t, t + ε] of player j possibly move over [t, t + ε]. Denoting by

D+Gj the upper right Dini derivative of Gj, one then has

D+Gj(t) = lim sup
h↓0

P[j moves over (t, t + h]]

h
≤ lim sup

h↓0

P[j is born over [t, t + h]]

h
= Ḟ (t).

Moreover, using the fact that 1 − Gj and L are nonnegative and continuous at time t, and

that L is continuously differentiable at time t, one gets

D+[(1− Gj)L](t) = −D+Gj(t)L(t) + [1− Gj(t)]L̇(t) ≥ −D+Gj(t)L(t) + [1− F (t)]L̇(t),

where D+[(1−Gj)L] is the lower right Dini derivative of (1−Gj)L, and the inequality follows

from the facts that Gj(t) ≤ F (t) and L̇(t) > 0. It follows that

D+[(1− Gj)L](t) ≥ −Ḟ (t)L(t) + [1− F (t)]L̇(t) > 0

since T ∗
2 > t ≥ T̃1 ≥ T1. Therefore any type of player i who moves at time t could strictly

increase her payoff by moving slightly after time t rather than at time t, a contradiction.

Hence the result. ¥

Proof of Lemma 6. Suppose first by way of contradiction that the function (1 − Gi)L is

not constant over [T̃1, T
∗
2 ]. Since it is nonincreasing over this interval, there must exist some
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time t ∈ [T̃1, T
∗
2 ) such that [1−Gi(t)]L(t) > [1−Gi(s)]L(s) for all s ∈ (t, T ∗

2 ]. It follows that

no type τ j < t of player j moves over (t, T ∗
2 ], and hence only the types τ j ∈ [t, T ∗

2 ] of player

j possibly move over (t, T ∗
2 ]. Proceeding as in the proof of Lemma 5, one can then show that

D+[(1− Gj)L](t) > 0. But this is impossible, since the function (1 − Gj)L is nonincreasing

over [T̃1, T
∗
2 ], just like (1 − Gi)L. This contradiction establishes that (1 − Gi)L is constant

over [T̃1, T
∗
2 ]. Since Gi(T ∗

2 ) = F (T ∗
2 ), it follows from (7) and (8) that Gi(t) = 1 − L(T ∗1 )

L(t)
for

all t ∈ [T̃1, T
∗
2 ]. To conclude the proof, observe that since dGi has no atom at time T̃1, one

must have T̃1 = T ∗
1 . The result follows. ¥

Proof of Proposition 1. If a player plays as prescribed, the distribution of her moving

time is dG. Hence each type τ ≤ T ∗
2 of her opponent is indifferent between moving at any

time t ∈ [T ∗
1 , T ∗

2 ], and thus may as well move at time σ(τ). This gives rise to mixed plans

G(·; τ) for each player such that G(t; τ) = 1{σ(τ)≤t} for all t ≥ τ if τ ≤ T ∗
2 , and G(t; τ) = 1 for

all t ≥ τ if τ > T ∗
2 . To complete the description of the equilibrium, one needs to specify for

each player’s type τ her off-equilibrium path behavior at any time t posterior to the time at

which she is supposed to move in equilibrium. An obvious way to do so is to let her behave

just like type t from time t on by setting Gt(s; τ) = G(s; t) for all s ≥ t. Hence the result. ¥

Proof of Lemma 7. Suppose by way of contradiction that G(s; 0) = 1 for some s ∈ [T ∗
1 , T ∗

2 ),

and let t = inf {s ≥ T ∗
1 |G(s; 0) = 1} so that type 0 of each player moves with probability

1 by time t. One cannot have t = T ∗
1 , for, otherwise, by simplicity of the equilibrium, all

the types τ ≤ T ∗
1 of each player would move at time T ∗

1 , which is impossible since dG has

no atom. Hence t > T ∗
1 . By simplicity of the equilibrium again, no type τ < t of any player

moves over (t, T ∗
2 ], and hence only the types τ ∈ [t, T ∗

2 ] of each player possibly move over

(t, T ∗
2 ]. Proceeding as in the proof of Lemma 5, one can then show that D+[(1−G)L](t) > 0.

But this is impossible, since, by construction, the function (1−G)L is constant over [T ∗
1 , T ∗

2 ].

Hence the upper bound of the set SuppdG(· ; 0) is T ∗
2 . Since this set is connected with lower

bound T ∗
1 , just like SuppdG, the result follows. Observe that an identical argument would

go through in an asymmetric simple equilibrium. ¥

Proof of Proposition 2. One only needs to show that there exists a unique solution

G(· ; 0) to (15) that is continuous over [0, T ∗
2 ], and that it is given by (16). A measurable

mapping G : [0, T ∗
2 ] → [0, 1] is admissible if G = 0 over [0, T ∗

1 ), 0 ≤ G < 1 over [0, T ∗
2 ), and

∫ t

0
dτ

1−G(τ)
< ∞ for all t ∈ [0, T ∗

2 ). One first has the following lemma.

Lemma 8 Any admissible solution G(· ; 0) to (15) is continuous over [0, T ∗
2 ), differentiable

over (T ∗
1 , T ∗

2 ), and strictly increasing over [T ∗
1 , T ∗

2 ).
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Proof of Lemma 8. By construction, G is continuous over [0, T ∗
2 ]. Using (9) along with

the fact that T2 > T ∗
2 > T ∗

1 > T1, it is easy to check that G is differentiable over (T ∗
1 , T ∗

2 ),

with Ġ > 0 over this interval. Now, as G(· ; 0) is admissible, it follows by (15) that

G(t; 0) =
G(t) +

∫ t

0
G(τ ;0) dF (τ)

1−G(τ ;0)∫ t

0
dF (τ)

1−G(τ ;0)

(20)

for all t < T ∗
2 . For any such t, the functions within the integrals in (20) are integrable over

[0, t]. Because F is continuously differentiable, this implies that these integrals are themselves

continuous functions of t < T ∗
2 . Moreover, as G(· ; 0) is admissible, the denominator of (20) is

bounded away from 0. Therefore, since G is continuous over [0, T ∗
2 ), so is G(· ; 0), as claimed.

Because 0 ≤ G(· ; 0) < 1 on [0, T ∗
2 ) by admissibility, it follows that the functions with the

integrals in (20) are continuous over [0, T ∗
2 ). This implies that these integrals are themselves

differentiable functions of t < T ∗
2 . Therefore, since G is differentiable over (T ∗

1 , T ∗
2 ), so is

G(· ; 0), as claimed. One can then differentiate (15) to obtain

Ġ(t; 0)

∫ t

0

dF (τ)

1−G(τ ; 0)
= Ġ(t) (21)

for all t ∈ (T ∗
1 , T ∗

2 ). As the integral in (21) is positive and Ġ > 0 over (T ∗
1 , T ∗

2 ), it follows

that G(· ; 0) is strictly increasing over [T ∗
1 , T ∗

2 ). Hence the result. ¥

From now on, let G(· ; 0) be an admissible solution to (15). To solve (21), define

I(t) =

∫ t

0

dF (τ)

1−G(τ ; 0)
(22)

for all t ∈ [T ∗
1 , T ∗

2 ), so that (21) can be rewritten as

Ġ(t; 0)I(t) = Ġ(t) (23)

for all t ∈ (T ∗
1 , T ∗

2 ). Lemma 8 implies that I is twice differentiable over (T ∗
1 , T ∗

2 ), with İ > 0

over this interval. One now eliminates Ġ(· ; 0) from (23). Differentiating (22) twice yields

Ġ(t; 0) = Ḟ (t)

İ(t)

[
− F̈ (t)

Ḟ (t)
+ Ï(t)

İ(t)

]
for all t ∈ (T ∗

1 , T ∗
2 ). Substituting in (23) yields

Ḟ (t)

[
− F̈ (t)

Ḟ (t)
+

Ï(t)

İ(t)

]
= Ġ(t)

[
İ(t)

I(t)

]
(24)

for all t ∈ (T ∗
1 , T ∗

2 ). Now define

H(t) =
İ(t)

I(t)
(25)
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for all t ∈ [T ∗
1 , T ∗

2 ). Lemma 8 implies that the function H is differentiable over (T ∗
1 , T ∗

2 ), and

it is easy to check from (25) that Ï
İ

= Ḣ
H

+ H over this interval. Substituting in (24) then

yields the following Bernoulli equation for H:

Ḣ(t) =

[
F̈ (t)

Ḟ (t)

]
H(t) +

[
Ġ(t)

Ḟ (t)
− 1

]
H(t)2 (26)

for all t ∈ (T ∗
1 , T ∗

2 ). Dividing (26) by H(t)2 > 0 yields a linear differential equation in

Z = − 1
H

(see for instance Walter (1998, Chapter I, Section 2)):

Ż(t) = −
[

F̈ (t)

Ḟ (t)

]
Z(t) +

Ġ(t)

Ḟ (t)
− 1. (27)

The general solution to the nonhomogeneous equation (27) can be found by the method of

variation of parameters. Specifically, Z(t) is of the form φ(t) exp
(
− ∫ t

T ∗1
F̈ (s)

Ḟ (s)
ds

)
=

Ḟ (T ∗1 )φ(t)

Ḟ (t)

for some function φ. Plugging this back into (27) yields Ḟ (T ∗
1 )φ̇ = Ġ − Ḟ , which, given that

Z = − 1
H

, leads the general solution to (26):

H(t) =
Ḟ (t)

F (t)− G(t) + K2

, (28)

for some constant K2 yet to be determined. One can check from (6) and (9) that for H

to be defined over the whole interval [T ∗
1 , T ∗

2 ), as required, one must have K2 ≥ 0, because

the denominator of (28) precisely vanishes at T ∗
2 whenever K2 = 0. From (25) and (28), it

therefore follows that I is of the form

I(t) = K1 exp

(∫ t

0

dF (τ)

F (τ)− G(τ) + K2

)
, (29)

for some positive constant K1 yet to be determined. It is then straightforward to recover

G(· ; 0) from (22) and (29). This yields

G(t; 0) = 1−
[
F (t)− G(t) + K2

K1

]
exp

(
−

∫ t

0

dF (τ)

F (τ)− G(τ) + K2

)
(30)

for all t ∈ (T ∗
1 , T ∗

2 ). The constants K1 and K2 are pinned down by requiring respectively that

G(T ∗
1 ; 0) = 0, which follows from the admissibility of G(· ; 0), and that limt↑T ∗2 G(t; 0) = 1,

which amounts to say that G(· ; 0) is continuous at T ∗
2 . Since F (t) ≥ G(t) for all t ≤ T ∗

2 , with

equality only at t = T ∗
2 , imposing the second of these conditions in (30) leads to K2 = 0.

The constant K1 is then obtained by letting G(T ∗
1 ; 0) = 0. Using (30) along with the facts

that K2 = 0 and G(T ∗
1 ) = 0, this yields K1 = F (T ∗

1 ) exp
(
− ∫ T ∗1

0
dF (τ)

F (τ)−G(τ)

)
. Substituting in

(30) yields (16), as required. From (21) and (29), it then follows that

Ġ(t; 0) =

[
Ġ(t)

F (T ∗
1 )

]
exp

(
−

∫ t

T ∗1

dF (τ)

F (τ)− G(τ)

)
> 0, (31)
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for all t ∈ (T ∗
1 , T ∗

2 ), which confirms that G(· ; 0) is strictly increasing over this interval.

To summarize, one has shown that there exists a unique nonnegative function G(· ; 0) that

is continuous and nondecreasing over [0, T ∗
2 ], strictly increasing over [T ∗

1 , T ∗
2 ], that satisfies

G(T ∗
1 ; 0) = 0 and G(T ∗

2 ; 0) = 1, and that solves (21) over (T ∗
1 , T ∗

2 ). To check that G(· ; 0)

solves (15) as required, one only needs to integrate (21) by parts, and then impose the

condition that G(· ; 0) = G = 0 over [0, T ∗
1 ]. The result follows. ¥

Proof of Corollary 1. According to (23), Ġ(· ; 0) = Ġ
I

over (T ∗
1 , T ∗

2 ). It then follows from

(9) and (29) along with the expressions of K1 and K2 derived in the proof of Proposition 2

that Ġ(· ; 0) is differentiable over this interval. Differentiating (23) and using (22) leads to

G̈(t; 0) =
Ġ(t; 0)

Ġ(t)

[
G̈(t)− Ġ(t; 0)

1−G(t; 0)
Ḟ (t)

]

for all t ∈ (T ∗
1 , T ∗

2 ). Since Ġ > 0 and Ġ(· ; 0) > 0 over (T ∗
1 , T ∗

2 ), one only needs to check that

G̈ ≤ 0 over this interval, which follows at once from (2) and (9). Hence the result. ¥

Proof of Corollary 2. Using (6), (8) and (9) along with the fact that G(t) = F (t) for all

t ≥ T ∗
2 , it is easy to check that G is differentiable at T ∗

2 , with

Ġ(T ∗
2 ) = Ḟ (T ∗

2 ). (32)

Thus, given (23), it is enough to establish that limt↑T ∗2 I(t) = ∞, where, by (29),

I(t) = K1 exp

(∫ t

0

dF (τ)

F (τ)− G(τ)

)

for all t ∈ [T ∗
1 , T ∗

2 ) and some constant K1 > 0, bearing in mind that K2 = 0. Now, since

F (T ∗
2 )−G(T ∗

2 ) = 0 and Ḟ (T ∗
2 )− Ġ(T ∗

2 ) = 0 by (32), a Taylor–Young expansion at T ∗
2 yields

F (τ)− G(τ) = o(τ − T ∗
2 ),

where limε→0
o(ε)

ε
= 0. In particular, since Ḟ (T ∗

2 ) > 0,

∫ t

0

dF (τ)

F (τ)− G(τ)
=

∫ t

0

dF (τ)

o(τ − T ∗
2 )

goes to ∞ as t goes to T ∗
2 . The result follows. ¥

Proof of Corollary 3. Since no player moves before time T ∗
1 , q(t) = 1−F (t) for all t ≤ T ∗

1 .

Since any player moves before T ∗
2 when born before T ∗

2 and moves immediately when born

after T ∗
2 , q(t) = 1 for all t > T ∗

2 . Consider now some time t ∈ (T ∗
1 , T ∗

2 ]. By Bayes’ rule,

q(t) =
1− F (t)

1− F (t) + F (t)p(t)
, (33)
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where p(t) is the probability that a given player has not yet moved by time t given that she

was born before time t. Formally:

p(t) =
1

F (t)

∫ t

0

[1−G(t; τ)] dF (τ) = 1− G(t)

F (t)
, (34)

where the second equality follows from (12). Plugging (34) into (33) and using (10) then

yields the result. ¥

Proof of Corollary 4. For each θ ∈ R, time T ∗
2,θ is defined by (6) given the type distribution

function Fθ. Since the mapping (θ, t) 7→ Fθ(t) is continuously differentiable, it follows from

the implicit function theorem that the derivative
dT ∗2,θ

dθ
is defined everywhere, with

dT ∗
2,θ

dθ
=

∂
∂θ

[
Ḟθ(T ∗2,θ)

1−Fθ(T ∗2,θ)

]

L̈(T ∗2,θ)L(T ∗2,θ)−L̇(T ∗2,θ)2

L(T ∗2,θ)2
− ∂

∂t

[
Ḟθ(T ∗2,θ)

1−Fθ(T ∗2,θ)

] . (35)

Now, observe that ∂
∂θ

[
Ḟθ(T ∗2,θ)

1−Fθ(T ∗2,θ)

]
≤ 0 by MLRP, and that ∂

∂t

[
Ḟθ(T ∗2,θ)

1−Fθ(T ∗2,θ)

]
≥ 0 by Assumption

2. Moreover, L̈(T ∗
2,θ) < 0 and L(T ∗

2,θ) > 0 by Assumption 1. Therefore (35) implies that
dT ∗2,θ

dθ
≥ 0 everywhere. Similarly, for each θ ∈ R, time T ∗

1,θ is defined by (8) given the type

distribution function Fθ. It is easy to check from (8) that the derivative
dT ∗1,θ

dθ
is defined

everywhere, with

L̇(T ∗
1,θ)

dT ∗
1,θ

dθ
=

{
[1− Fθ(T

∗
2,θ)]L̇(T ∗

2,θ)− Ḟθ(T
∗
2,θ)L(T ∗

2,θ)
} dT ∗

2,θ

dθ
− L(T ∗

2,θ)
∂Fθ(T

∗
2,θ)

∂θ

= −L(T ∗
2,θ)

∂Fθ(T
∗
2,θ)

∂θ
,

(36)

where the second equality follows from (6). Now, observe that
∂Fθ(T ∗2,θ)

∂θ
≤ 0 by MLRP.

Moreover, L̇(T ∗
1,θ) > 0 and L(T ∗

2,θ) > 0 by Assumption 1. Therefore (36) implies that
dT ∗1,θ

dθ
≥ 0 everywhere. The result follows. ¥

Proof of Corollary 5. One wishes to prove that the ratio
Ġθ1

(t;0)

Ġθ0
(t;0)

is nondecreasing in t

whenever θ1 > θ0. To avoid degenerate cases, suppose that [T ∗
1,θ0

, T ∗
2,θ0

] ∩ [T ∗
1,θ1

, T ∗
2,θ1

] has a

non-empty interior (T ∗
1,θ1

, T ∗
2,θ0

). By (31), one has

Ġθ1(t; 0)

Ġθ0(t; 0)
=
Ġθ1(t)Fθ0(T

∗
1,θ0

)

Ġθ0(t)Fθ1(T
∗
1,θ1

)
exp

(
−

∫ t

T ∗1,θ1

dFθ1(τ)

Fθ1(τ)− Gθ1(τ)
+

∫ t

T ∗1,θ0

dFθ0(τ)

Fθ0(τ)− Gθ0(τ)

)

for all t ∈ (T ∗
1,θ1

, T ∗
2,θ0

), where, by (9), Gθ(t) = 1− L(T ∗1,θ)

L(t)
for all (θ, t) ∈ R× [T ∗

1,θ, T
∗
2,θ]. Now,
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differentiating this expression with respect to t ∈ (T ∗
1,θ1

, T ∗
2,θ0

) leads to

d

dt

[
Ġθ1(t; 0)

Ġθ0(t; 0)

]
=

Fθ0(T
∗
1,θ0

)

Fθ1(T
∗
1,θ1

)
exp

(
−

∫ t

T ∗1,θ1

dFθ1(τ)

Fθ1(τ)− Gθ1(τ)
+

∫ t

T ∗1,θ0

dFθ0(τ)

Fθ0(τ)− Gθ0(τ)

)

×
{
G̈θ1(t)Ġθ0(t)− G̈θ0(t)Ġθ1(t)

Ġθ0(t)
2

(37)

+
Ġθ1(t)

Ġθ0(t)

[
− Ḟθ1(t)

Fθ1(t)− Gθ1(t)
+

Ḟθ0(t)

Fθ0(t)− Gθ0(t)

]}
.

It is easy to check from the definition of Gθ that G̈θ

Ġθ
does not depend on θ. Since

Ġθ1

Ġθ0

> 0

over (T ∗
1,θ1

, T ∗
2,θ0

), it therefore follows from (37) that one only needs to establish that the

mapping θ 7→ Ḟθ(t)
Fθ(t)−Gθ(t)

is nonincreasing over (θ0, θ1) for all t ∈ (T ∗
1,θ1

, T ∗
2,θ0

). By assumption,

the mapping (θ, t) 7→ Fθ(t) is continuously differentiable; moreover, as shown in the proof of

Corollary 4, the derivative
dT ∗1,θ

dθ
exists everywhere. One must therefore prove that the partial

derivative

∂

∂θ

[
Ḟθ(t)

Fθ(t)− Gθ(t)

]
=

∂Ḟθ(t)
∂θ

[Fθ(t)− Gθ(t)]− Ḟθ(t)
[

∂Fθ(t)
∂θ

− ∂Gθ(t)
∂θ

]

[Fθ(t)− Gθ(t)]2

is nonpositive for all (θ, t) ∈ (θ0, θ1) × (T ∗
1,θ1

, T ∗
2,θ0

). Since Fθ(t) > Gθ(t) for any t < T ∗
2,θ as

each player born before T ∗
2,θ delays her move in equilibrium, this amounts to show that

∂Ḟθ(t)

∂θ
≤ Ḟθ(t)

Fθ(t)− Gθ(t)

[
∂Fθ(t)

∂θ
− ∂Gθ(t)

∂θ

]
(38)

for any such pair (θ, t). Now, since the family {Fθ}θ∈R satisfies MLRP,

∂Ḟθ(t)

∂θ
≤ −

[
Ḟθ(t)

1− Fθ(t)

]
∂Fθ(t)

∂θ
. (39)

Given (39), a sufficient condition for (38) is thus

−
∂Fθ(t)

∂θ

1− Fθ(t)
≤

∂Fθ(t)
∂θ

− ∂Gθ(t)
∂θ

Fθ(t)− Gθ(t)
,

or, equivalently, using again the fact that Fθ(t) > Gθ(t),

∂Gθ(t)
∂θ

1− Gθ(t)
≤

∂Fθ(t)
∂θ

1− Fθ(t)
(40)

for all (θ, t) ∈ (θ0, θ1) × (T ∗
1,θ1

, T ∗
2,θ0

). Using the definition of Gθ, and proceeding as in the

proof of Corollary 4, one obtains that

∂Gθ(t)

∂θ
=

L(T ∗
2,θ)

∂Fθ(T ∗2,θ)

∂θ

L(t)

31



for all (θ, t) ∈ (θ0, θ1) × (T ∗
1,θ1

, T ∗
2,θ0

). Using this expression along with (8) and (10) then

yields that, for any such pair (θ, t),

∂Gθ(t)
∂θ

1− Gθ(t)
=

∂Fθ(T ∗2,θ)

∂θ

1− Fθ(T ∗
2,θ)

.

To obtain (40), one thus only needs to show that the mapping t 7→
∂Fθ(t)

∂θ

1−Fθ(t)
is nonincreasing

over (T ∗
1,θ1

, T ∗
2,θ0

) for all θ ∈ (θ0, θ1), since T ∗
1,θ ≤ T ∗

1,θ1
and T ∗

2,θ ≥ T ∗
2,θ0

for any such θ by

Corollary 4. Indeed, one has

∂

∂t

[
∂Fθ(t)

∂θ

1− Fθ(t)

]
=

∂Ḟθ(t)
∂θ

[1− Fθ(t)] + ∂Fθ(t)
∂θ

Ḟθ(t)

[1− Fθ(t)]2
,

which is nonpositive by (39). Hence the result. ¥
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