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Abstract: This paper considers a semiparametric version of the transfor-
mation model ϕ(Y ) = β′ X + U under exogeneity or instrumental variables
assumptions (E(U |X) = 0 or E(U |instruments ) = 0). This model is used
as an example to illustrate the practice of the estimation by solving linear
functional equations. This paper is specially focused on the data driven se-
lection of the regularization parameter and of the bandwidths. Simulations
experiments illustrate the relevance of this approach.

Keywords: Integral Equations. Tikhonov regularization. Instrumental
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1 Introduction
The objective of this paper is to provide a simple guideline for the estimation
of functional econometric parameters based on Tikhonov regularization of ill
posed linear inverse problems.

We concentrate our presentation around a class of examples, namely the
transformation models. This model is characterized by the relation:

ϕ(Y ) = β′X + U

and has been extensively studied in the econometric literature following in
particular the paper by Horowitz (1996). The origin of the transformation
models is probably the Box Cox model where ϕ(Y ) = ya−1

a
if a 6= 0 and

ln y if a = 0. Several extensions of this family of transformation have
been proposed (see Horowitz (1998) chapter 5 for references). These models
are essentially parametric and have been estimated under endogeneity using
instruments by GMM. In this paper, we treat this model semiparametrically:
ϕ is a functional element and β is a vector of parameters. We assume that ϕ
is monotonous and a particular example is the case ϕ = S−1 where S is the
cumulative distribution or the survivor of a random variable. This example
covers in particular market shares models (Y is the observed proportion of
individuals who take the choice 1 between 0 and 1. The choice 1 is selected
if an individual characteristic θ is greater than β′X + U and 1 − S is the
c.d.f. of θ). An extension of this market share model covers the econometric
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models derived from the theory of two sided markets. For example, let us
take the credit card market. The share of users of the credit card depends
on the share of stores which accept the credit card and the share of stores
depends on the share of users. This creates a system of transformation models
which may be analysed in a limited information approach by transformation
models with endogenous variables (see Rochet and Tirole (2003), Argentesi
and Fillistrucchi, (2007)).

Many others examples and references to previous papers may be found in
the Horowitz's book. In particular this class of model includes semiparamet-
ric analysis of durations models where ϕ is the integrated hazard function.
Many new references consider this model and these references may be found
e.g. in Linton, Sperlich and Van Keilegom (2008).

Two main di�erences characterize our model. We do not assume indepen-
dence between U and X and we consider two cases : X exogenous de�ned
by E(U |X) = 0 or X endogenous. In that case the model is estimated using
instrumental variables.

For identi�cation reasons we normalize β such that one element is equal
to one and we consider the model:

ϕ(Y ) = Z + β′W + U (1.1)
where Z may be endogenous. In that case we assume that there exists a
vector R of instruments such that E(U |R, W ) = 0.

The simplest case consists in the model ϕ(Y ) = Z +U where E(U |Z) = 0
(exogeneity condition). Even in this case the parameter of interest ϕ should
be considered as the solution of the equation

E(ϕ(Y )|Z) = Z (1.2)
or in terms of density function

∫
ϕ(y)f(y|z)dy = z. (1.3)

Then the estimation of ϕ may be obtained by �rst the estimation of
the conditional expectation operator E(ϕ(Y )|Z) and second by solving the
equation (1.2). The more general model (1.1) under an instrumental variables
assumption satis�es the condition:

E(ϕ(Y )|W,R) = E(Z|W,R) + β′W (1.4)
where the two conditional expectations may be estimated and the equation
(1.3) needs to be solved w.r.t. ϕ and β in order to estimate the parameters.

2



This example illustrates the inverse problems approach in econometrics.
The economic theory de�nes a structural model where the (possibly func-
tional) parameters ϕ are linked with the observation scheme by a (functional)
equation A(ϕ, F ) = 0 where F is the data cumulative distribution function.
The statistical analysis is then performed in two steps.

First we estimate the equation using for example an i.i.d. sample of
data whose distribution is F and secondly we solve the equation in order
to recover the parameters of interest. This approach is very common in
econometric and a usual example is provided by GMM where the parameters
ϕ and F are linked by a relation EF (h(X, ϕ)) = 0.

The main question coming from the nonparametric approach concern
the ill posedness of the inversion. The solution of the equation may not
exist or is not in general a continuous function of the estimated part of the
equation. The estimation is then not consistent in many cases. There exists
several ways to treat this problem: we can reduce the parameter space to
be compact (see Ai and Chen (2003) or Newey Powell (2003)) or we can
keep general the parameter space by introducing a regularized solution in
the equation. Instead of solving A(ϕ, F ) = 0 the principle is to minimize a
penalized criterium

‖A(ϕ, F )‖2 + α‖ϕ‖2 (1.5)
where the norms are suitably chosen and where α goes to zero at a suit-
able rate. The minimization of (1.5) leads to the Tikhonov regularization
approach but other regularizations may be used.

The regularized solutions of ill posed inverse problems are standard in
numerical analysis and in image treatment and have been introduced in
econometric to solve GMM estimation in in�nite dimension (see Carrasco
and Florens (2000)) and in non parametric estimation using instrumental
variables (see Florens (2003), Darolles, Florens and Renault (2003), Hall and
Horowitz (2005), Carrasco, Florens and Renault (2007)).
The main objective of this paper is to present an introduction to inverse
problems, both on its practical implementation and on the main mathe-
matical arguments of the derivation of the rate of convergence. This paper
also contains di�erent contributions to this literature. Identi�cation of the
transformation model without independence is based on standard tools but
it contains new results. For example, the estimation of the transformation
model under mean independence condition is a contribution of this paper.
The rate of convergence of the estimators is not derived in previous articles
on inverse problems on instrumental variables. the demonstration is founded
on general arguments which have been developed in, e.g. Carrasco et al.
(2007). The selection of α we suggest is derived from a known technic and
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cross validation selection of bandwidth is standard but the recursive applica-
tion of these approaches have not been presented previously in the literature.
This paper is not a survey of inverse problems in econometrics (see e.g. Flo-
rens (2003) and Carrasco et al. (2007) for more examples of application of
this theory). However we may locate our basic examples in the general class
of ill posed inverse problems.
The main characteristics of our example is to be linear, with an integral un-
known operator. This operator is a conditional expectation operator. Linear
inverse problems take the form Tϕ = r and usually only r is estimated and
T is given. This is not true in our case and Tϕ is equal to the conditional
expectation of ϕ given some random elements. Other relevant models be-
long to this class, essentially the basic nonparametric instrumental variables
model (Y = ϕ(Z) + U,E(U |W ) = 0) which leads to E(ϕ(Z|W )) = E(Y |W ),
very similar to the model treated in section 5. This question has been ad-
dressed in Darolles, Florens and Renault (2003) and Hall, Horowitz (2003)
in particular. This nonparametric inverse problem has been extended to ad-
ditive models (see Florens, Johannes and Van Bellegem (2005)) or has been
used to test parametric (see Horowitz(2006)) or exogeneity assumptions (see
Blundell, Horowitz (2007)). In all that cases, this problem is ill posed be-
cause T is a compact integral operator. The problem becomes well posed
if equations ϕ + Tϕ = r are considered where T may be still an unknown
conditional expectation operator (see Mammen and Yu (2008)). The liter-
ature on inverse problems is essentially theoretical in econometrics but an
empirical application is presented in Blundell, Chen and Kristensen (2007).
The link between instrumental variables and simultaneous equations models
is treated in Chernozhukov, Imbens and Newey (2007).
Linear ill posed inverse problems where the operator is not the expectation
operator are relevant in econometrics. A class of examples is based on the
covariance operators (Tϕ = E(X < W,ϕ >)) estimated by T̂ϕ = 1

n
Σxi <

wi, ϕ > which de�nes an ill posed problem if the data are functional data
(see Cardot and Johannes (2009), Florens and Van Belleghem (2009)). An
illustration is the linear instrumental regression model with many regressors
and instruments (see Carrasco (2008)). The di�erent forms of deconvolution
problems (when the operator is the convolution with a known or unknown
density) has generated a huge literature and is particularly adapted to many
econometrics problems. (see e.g. Carrasco and Florens (2000) or Bonhomme
and Robin (2008)). More recently the researchers have been interested to
non linear inverse problems motivated by non separable models (to treat
quantile regression under endogeneity , for example, see Horowitz and Lee
(2007), Gagliardini and Scaillet (2007), Chernozhukov, Gagliardini and Scail-
let (2008) or by a general approach to GMM with functional parameters (see,
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Chen and Pouzo (2008 a and b). These models create di�cult numerical ques-
tions. Other non linear inverse problems come from game theoretic models
(see Florens and Sbai (2009)). Inverse problems in more complex spaces or
using other classes of operators may be founded in Hoderlein, Klemelä and
Mammen (2009) and in Gautier and Kitamura (2008)).

The paper is organized as follows. In section 2, the model is described
and the identi�cation is examined. Section 3 presents a simple example in
more details. Some asymptotic properties are considered in section 4 and
semiparametric extension and instrumental variable approach are studied in
section 5. Numerous simulations and some technical details are reported in
Appendix I and II.

2 An example of a semi parametric transfor-
mation model

We assume that all the variables and functions that we consider are square
integrable. The model satis�es:

ϕ(Y ) = Z + β′W + U

Y ∈ IR Z ∈ IR W ∈ IRk (2.1)

where U is an unobservable noise. The model is semiparametric and the
parameter space contains a non decreasing function ϕ and a vector β ∈ IRk.
Equation (2.1) may be completed by one of these hypothesis.

Exogeneity: E(U |Z,W ) = 0 (2.2)

Instrumental Variables: E(U |R, W ) = 0 (2.3)
where R is a random vector.
As we will see below, these mean independence conditions are su�cient, up
to some regularity assumptions, to identify the ϕ and β elements and an esti-
mation procedure will be naturally derived from condition (2.2) or (2.3). The
Box Cox models or their extensions are naturally developed in the regression
case, i.e. with E(U | Z) = 0 and not under an independence assumption
between U and Z. The main motivation of the analysis of the problem under
these weaker assumptions is to consider cases where high order moments of
U may depend on (Z,W ) or (R,W ). Practically, heteroscedasticity is ex-
tremely common in empirical research. The theory where U and (Z,W ) are
independent is well established but this is not the case where Z is endogenous.
In that case the treatment of the problem will lead to a non linear integral
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equation problem (as in Horowitz and Lee (2007)) that may be di�cult to
analyse.It follows that in the endogenous case the mean independence condi-
tions leads to a more simple procedure for the estimation of ϕ and β. If we
trust into the full independence and if we want to use a non linear Tikhonov
procedure (or other regularization methods for the non linear inverse prob-
lem), our estimator will provide a natural (because consistent) initial value
for the required recursive procedure.
To analyze the identi�cation of these model, we need to recall two important
concepts extensively used in the theory of resolution of inverse problems
involving conditional expectation operators.

First a random element A is say to be strongly identi�ed by B given C if
E(g(A,C)|B, C) = 0 a.s. implies g = 0 a.s. for any square integrable func-
tion g. (see Florens, Mouchart and Rolin (1990)). This concept has been
introduced in statistics under the name "completeness" in a particular case.
Secondly a random element A is said to be measurably separated to an other
random element B if equality g(A) = h(B) a.s. implies g = h = constant
a.s. (see also Florens, Mouchart, Rolin (1990)). This concept has also along
history in statistics in the theory of su�cient and ancillary statistics.

Identi�cation theorem may then be written as follows.

Theorem 2.1: Let us consider model (2.1) under the exogeneity condition
(2.2).

Let us assume:

• Assumption A1: E(WW ′) is invertible and W only contains non con-
stant variables,

• Assumption A2: Y is strongly identi�ed by Z given W ,

• Assumption A3: Y and W are measurably separated.

Then ϕ and β are identi�ed.

Proof: Let us consider two solutions ϕ0, β0 and ϕ1, β1 to equation (2.1). Then
if ϕ = ϕ1 − ϕ0 and β = β1 − β0 we have

E(ϕ(Y )|W,Z) = β′W (2.4)
and we have to proof that this implies ϕ = 0 and β = 0. Equation (2.4) and
A2 implies ϕ(Y ) − β′W = 0 and A3 implies that ϕ(Y ) = β′W = c where c
is a real constant. As W is not constant β′W = c implies c = 0 and then
β = 0 under 1. Finally ϕ(Y ) = 0. ¥
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An analogous proof gives the following generalization :

Theorem 2.2: Let us consider model (2.1) under (2.3). If we assume A1,
A3 and A2' where:

• Assumption A2′ : Y is strongly identi�ed by R given W .

Then ϕ and β are identi�able.

The assumptions of Theorems 2.1 and 2.2 do not seem to be immediately in-
terpretable. However they can be illustrated by the following comments. The
assumption A3 (Y and W are measurably separated) is essentially a support
condition (for a precise statement see Florens, Heckman, Meghir and Vyt-
lacil (2008), theorem 2). It means that there does not exist an exact relation
between W and Y or equivalently that the derivative of W is w.r.t. Y is zero.
Then ϕ(Y ) − β′W = 0 implies dϕ

dY
= 0 and ϕ = constant. This hypothesis

is false is Z + U is constant which is an extreme dependence between Z and
the noise U . More generally it is su�cient that Z + U may vary indepen-
dently of W to verify the assumption. Assumption A2 is more severe. For
simplicity we may eliminate W (or we can consider the question with respect
to the conditional distribution of W = w, w �xed). The assumption A2 is
a dependence condition between Y and Z. It is known that if Y and Z are
jointly normal, this assumption is equivalent to rank Cov(Y, Z)) = 1. Gen-
eral characterizations of this dependence are more di�cult (see for example
a recent contribution of d'Haultfoeuille (2008)). Intuitively this assumption
means there exists no function of Y non correlated to any function of Z. If
this assumption is false the theory is essentially preserved but ϕ may not be
fully estimable but only up to any function of Y orthogonal to any function
of Z. The recent developments on "set identi�cation" may applied in that
case.

Remark 2.1: The model analysed in theorem 2.1 can be extended to the
case where ϕ(Y ) becomes a function of ϕ(Y, Ξ) where Ξ are some exogenous
variables. However extension of Theorems 2.1 and 2.2 to that case requires
that Ξ and W should be measurably separated. This condition excludes
the case where Ξ and W have some common elements. Common elements
between Ξ and W prevent the identi�cation of the model. Moreover assump-
tions A2 should be modi�ed by "Y is strongly identi�ed by Z given Ξ and
W". Similar extensions of theorem 2.2 may be done also.
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Remark 2.2: All the variables we consider in the paper are assumed for
simplicity continuous variables. All our results applied but some hypothesis
may be false in presence of discrete variables. For example, hypothesis A2 is
no longer true if Y is continuous and Z discrete but the case Y discrete and Z
continuous usually satis�es A2. In case of instrumental variables approach,
R should be continuous if Y is continuous. In all cases, W may contain
discrete variables but if Y is discrete the support conditions A3 need to be
check carefully. If Y may take only a �nite number of values, the functional
estimation problem becomes a �nite dimensional question and the di�culty
of ill posedness disappears.

3 Estimation by Tikhonov regularization
We illustrate our analysis by the particular simple case

ϕ(Y ) = Z + U E(U |Z) = 0 (3.1)
We assume that we are i.i.d. sample of (Y, Z) is available and denoted

by (yi, zi)i = 1, ..., n. Equation (3.1) implies

E(ϕ(Y )|Z) = Z (3.2)
and the usual kernel smoothing estimation gives the following empirical

counterpart of this equation.
n∑

i=1

ϕ(yi)K

(
z − zi

hn

)

n∑
i=1

K

(
z − zi

hn

) = z (3.3)

where K is a univariate kernel and hn the bandwidth. This equation has
no solution in general because there does not exist a linear combination of
the functions K( z−zi

hn
)

Σn
i=1K( z−zi

hn
)
equal to z. The resolution of equation (3.2) is then

ill posed. We then adopt a Tikhonov regularization which is based on the
minimization of

‖Tϕ− Z‖2 + α‖ϕ‖2 (3.4)
where Tϕ = E(ϕ(Y )|Z) (T is an operator from L2

Y to L2
Z de�ned w.r.t.

the true data distributions) and the two norms are L2 norms. (‖ϕ‖2 =∫
ϕ2(z)f(z)dz if f is the true density of Z). This minimization leads to the

�rst order condition:
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αϕ + T ∗Tϕ = T ∗Z (3.5)
where T ∗ is the adjoint operator of T . A general theory for adjoint operators
is not necessary here and it is su�cient to note that T ∗ is the conditional
expectation operator of functions of Z given Y . Then the �rst order condition
of minimization of (3.4) is:

αϕ(y) + E(E(ϕ(Y )|Z)|Y = y) = E(Z|Y = y) (3.6)
The empirical counter part of this equation may be written:

αϕ(y) +

n∑
j=1

n∑
i=1

ϕ(yi)K

(
zj − zi

hn

)

n∑
i=1

K

(
zj − zi

hn

) K

(
y − yj

hn

)

n∑
j=1

K

(
y − yj

hn

)

=

n∑
j=1

zjK

(
y − yj

hn

)

n∑
j=1

K

(
y − yj

hn

) (3.7)

This equation may be solved in two steps. Consider �rst equation (3.7)
for y = y1, ..., yn. Then (3.7) reduces to a matrix equation:

αϕ̄ + CY CZϕ̄ = CY z̄ (3.8)
where ϕ̄ is the vector of the (ϕ(yj))j=1,...,n, z̄ the vector of (zj)j=1,...,n and CZ

and CY two n× n matrices:

CZ =




K

(
zj − zi

hn

)

∑
i K

(
zj − zi

hn

)




j,i=1,...,n

CY =




K

(
yl − yj

hn

)

∑
j K

(
yl − yj

hn

)




l,j=1,...,n

Equation (3.8) has a solution

ˆ̄ϕα = (αI + CY CZ)−1CY Z̄ (3.9)
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involving the inversion of an n× n matrix1

If we want ϕ(y) for a value y which does not belongs to the sample we
may use equation (3.7) for which ϕ(y) may be derived immediately from the
knowledge of ˆ̄ϕα.

Remark 3.1: In the particular case of market share models, the random
variable Y is constrained to belong to the [0, 1] interval. In that case we are
faced to boundary problems in the kernel estimation. We solved this di�culty
by using boundary kernels in the estimation of conditional expectations given
Y . We use boundary gaussian kernel de�ned e.g. in Li and Racine (2006).

Remark 3.2: The model implies that ϕ is monotonous non increasing.
We don't impose this restriction in our estimation even if the minimization
of (3.4) under constraint is feasible (see e.g. Engl, Hanke and Neubauer
(2000)). The estimation without monotony constraint illustrate in a better
way the impact of the selection of α because the monotony constraint is a
regularization and the distinction between the impact of the penalization by
α‖ϕ‖2 and the constraint is not easy. Moreover our model is then a little
more general and not restricted to usual transformation models.

The implementation of our method depends on the selection of the band-
widths in the di�erent kernel estimations and on the value of the regulariza-
tion parameter α.
The bandwidths may be chosen using many methods. We will compare two
of them:

i) "Naive" bandwidth. As recommended by many authors (see e.g. Silver-
man (1986))we may choose 1.059 × standard deviation of the variable
×n−

1
5 .

ii) Cross validation. Recall that the bandwidth may be chosen for the esti-
mation of E(g(A)|B) by minimization of the sum of square of the resid-
uals computed using the leave-out-method (the residual of an observa-
tion is computed by dropping out this observation in the estimation).
We then have three bandwidths to compute: the one corresponding
to E(Z|Y ), the one corresponding to E(ϕ(Y )|Z) and �nally the band-
width of the estimation of E(E(ϕ(Y )|Z)|Y ). The last two bandwidths
require a preliminary estimation of ϕ in order to be computed.

1The Tikhonov regularization needs this inversion of a possibly large matrix. If n is
very large, other methods like Landweber-Fridman regularization may be used which do
not requires inversion.
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The selection of α (given the bandwidth) is also a standard issue in reg-
ularized solution of linear equations. We adopt a version of the principle
described in Engl et al (2000). This method consists in the following proce-
dure.

i) For any (small) value of α compute the estimation of ϕ by an iterated
Tikhonov approach. This estimation is de�ned by:

ˆ̄ϕα
2 = (αI + CY CZ)−1CY z̄ + α ˆ̄ϕα

= (αI + CY CZ)−1[CY + (αI + CY CZ)−1CY ]z̄

Even if our �nal estimate will be based on usual (non iterated) Tikhonov
regularization, iterated method is necessary to determine α optimal for
the non iterated scheme

ii) minimize the following sum of square

SS(α) =
1

α

n∑
j=1




∑n
i=1 ϕ̂

α

(2)(yi)K

(
zj − zi

hn

)

∑
K

(
zj − zi

hn

) − zj




2

(3.10)

The idea is to minimize the norm of the residuals of the integral equa-
tion E(ϕ(Y )|Z) = z where the conditional expectation is replaced by its
estimator, the norm by the empirical mean of the squares and the ϕ by its
estimator. This norm should be divided by α in order to admit a minimum.
We will show in section 4 that the value of α which leads to the optimal
rate of convergence of our estimator should be proportional to n−

4
5(β+1) .Engl

et al.(2000) show that the value of α which minimizes (3.1) satis�es this
condition and then this value of α may be call optimal in the rate sense. 2.

The bandwidth and α may be chosen sequentially: we start by naive
bandwidths an we minimize (3.10) in order to get a �rst value of ϕ which
may be used to improve the bandwidth by cross validation. A new value of
α is then obtained from the minimization of α. The process may be then
recursively updated.

2The proof given by Engl et al. (2000) is done in the case where the operator T is
known. The extension of the proof in the case of unknown T operator is given in the
Appendix II
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4 Asymptotic properties
Even if this paper is focused on practical implementation, this section gives a
low technical �avor of the asymptotic analysis. The objective of this section
is to provide the general method for the analysis of the rate of convergence
of an estimator derived from a Tikhonov regularization. We concentrate this
study to the case of model (3.1) and refers to di�erent papers for more general
cases.

Let us recall that the estimator ϕ̂α is the solution of the equation (3.6)
where the conditional expectations operators Tϕ = E(ϕ(Y )|Z) or T ∗ψ =
E(ψ(Z)|Y ) are replaced by kernel estimators T̂ or T̂ ∗ de�ned analogously to
T̂ . In an abstract way we have

ϕ̂α = (αI + T̂ ∗T̂ )−1T̂ ∗Z (4.1)
The asymptotic properties of ϕ̂∗ are based on two properties of the kernel

estimation.

i) First we consider ‖T̂ϕ− Z‖2 =
∫

((T̂ϕ)(z)− z)2f(z)dz.
Using usual results on the kernel smoothing we will assume that our
problem is su�ciently regular in order to have

‖T̂ϕ− Z‖2 ∼ O
(

1
nhn

+ h2ρ
n

)
.

In this expression ρ is the minimum value between the smoothness of ϕ
and the order of the kernel. We simplify our presentation by considering
probability kernels and twice continuous functions and then 3ρ = 2. All
the O in the paper are in probability.

ii) We also assumed that the two norms of ‖T̂ − T‖2 and ‖T̂ ∗ − T ∗‖2

are O
(

1
nh2

n
+ h4

n

)
. Intuitively these results are based on the rate of

convergence of the kernel estimator of the joint density of Y and Z to
the true density. 4. Note that T̂ ∗ is an estimator of T ∗ and not the
adjoint of T̂ .

An important component of the calculus of the rate of convergence is the
regularity assumption on ϕ. As we will see in Appendix II the asymptotic
analysis involves a term:

3See Darolles et al.(2003) or Hall and Horowitz (2005)
4See Darolles, Florens et al. (2003)
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C = (αI + T ∗T )−1T ∗T ϕ− ϕ = −α(αI + T ∗T )−1 ϕ

This term represents the di�erence between the true function and the regu-
larized solution of the "true" problem Tϕ = r ((αI + T ∗T )−1 T ∗Tϕ).

The value ‖C‖ is called the regularization bias. ‖C‖ → 0 if α → 0 but not
uniformly w.r.t. ϕ. In order to control the rate of decline of ‖C‖2 when
α → 0 ϕ should be constrained to be an element of a regularity class : ϕ is
said to have the regularity β > 0 (w.r.t. the joint data generating process)
if ‖C‖2 ∼ O(αβ). For example (see Carrasco et al.(2007)) if there exists a
function ψ(z) such that ϕ(y) = E(ψ(Z)|Y = y) ϕ has the regularity 1. The
characterization of the regularity is a very complex question which is not
treated here (see e.g. Carrasco et al (2007)). Note �nally that a constraint
imposed by Tikhonov regularization is that β ≤ 2. If β > 2, it should be
replaced by 2.

Theorem 4.1 Under the previous hypothesis i, ii and the regularization
condition on ϕ we have:

‖ϕ̂α − ϕ‖2 = O

(
1

αnhn

+
h4

n

α
+

1

αnh2
n

αmin(β+1,2) +
h4

n

α
αmin(β+1,2) + αβ

)

¥
The estimator is then consistent if α → 0 and hn → 0 such that αnh →

∞, h4

α
→ 0 and α[1−min(β+1,2)]nh2

n →∞.
The question is now to select the optimal value of α and to derive the

speed of convergence. In our approach hn is selected by cross validation con-
structed from estimation of conditional expectations given a single variable.
Then hn is proportional to n−

1
5 . In that case the optimal choice of α is

obtained by balancing 1

αn
4
5
and αβ and leads to α = n−

4
5
(β+1).

In that case it is clear that the two other terms are negligible and we get:

‖ϕ̂α − ϕ‖2 ∼ O
(
n−

4β
5(β+1)

)

The component n−
4
5 is due to non parametric estimation and the factor

β
β+1

follows from the resolution of the integral equation. Note that this rate
is the actual rate of our procedure characterized by a speci�c choice of the
regularization parameters.
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The optimality of this rate of convergence is a complex question and we just
give in this paper an intuitive answer. Our rate is optimal under our hypoth-
esis which do not link the regularity conditions of the kernel estimation and
of the inverse problem. Intuitively the speed of convergence of the kernel es-
timation is based on di�erentiability conditions of ϕ and on the joint density
of Y and Z. The source condition (‖ C ‖2 ∼ O(αβ)) is based on the Fourier
decomposition of ϕ on the singular vectors basis of T. In general ρ and β are
not related. However if the source condition is derived from a degree of ill
posedness of T and from a regularity condition on ϕ both measured relatively
to the di�erential operator (de�ning an Hilbert scale), the rate may be im-
proved under this set of stronger hypothesis. This analysis has been done by
Chen and Reiss (2007) and Johannes, Van Bellegem and Vanhems (2007).
See also Darolles et al.(2003) for a discussion on the minimax property of
inverse problems solutions. We just consider here the consistency and the
rate of convergence but the asymptotic normality may also be examined (see
Darolles et al. (2003) and Horowitz (2007)).

5 Extensions to endogenous variables and semi-
parametric models

Let us �rst consider the model ϕ(Y ) = Z + U where Z is endogenous and
E(U |R) = 0 where R is a real instrumental variable. We now solve the
empirical counterpart of:

αϕ(y) + E(E(ϕ(Y )|R)|Y ) = E(E(Z|R)|Y ) (5.1)
Using the same arguments as in section 3 it may be shown that the vector

ˆ̄ϕα veri�es:

ˆ̄ϕα = (αI + CY CR)−1CY CRZ̄

where CR is de�ned analogously to CY or CZ .
The asymptotic properties of these estimator are very similar to these

studied in Darolles et al (2003). The choice of α and of the bandwidth is
done analogously to the case where Z is exogenous.

Let us now analyze semiparametric estimation : We �rst consider the
simple case of model (1.1) where W ∈ IR under an exogeneity assumption:

ϕ(Y ) = Z + βW + U E(U |Z,W ) = 0 (5.2)
We adopt a sequential approach extending the back�tting principle fre-

quently used in semiparametric statistics.

14



• If ϕ is given, β may be obtained OLS method where the dependent vari-
able is ϕ(Z)−Z and the explaining variable is W because E(U |W ) = 0

• If β is given, our approach is identical to the one presented in section
3 replacing Z by Z + βW because E(U |Z + βW ) = 0.

The algorithm iterates these two steps up to convergence. An initial value
for β should be selected and should be not too far to the true value. In many
cases 0 may be a suitable initial value.

This algorithm converges to the solution of the set of the the two equa-
tions:

E(W (ϕ(Y )− βW )) = 0 (5.3)

E(ϕ(Y )|Z + βW ) = Z + βW (5.4)
The second equation is actually regularized and transformed into

αϕ(y) + E[E(ϕ(Y )|Z + βW )|Y = y]
= E[Z + βW |Y = y]

(5.5)

We extend this analysis by considering Z as an endogenous variable and
we use two instruments R and W . The computations are also realized using
a recursive algorithm:

• The step where ϕ is given is analogous to the �rst step if Z is exogenous.

• The step where β is given is performed by solving:

αϕ(y) + E(E(ϕ(Y )|R,W )|Y = y)
= E(E(Z + βW |R,W )|Y = y)

(5.6)

where the conditional expectations are replaced by their empirical counter-
parts.

The di�erent bandwidths and the α parameter are computed by purely
data driven methods as in section 3. In the sequential algorithms these
parameters are updated at each step of the algorithms.

The key question concern the asymptotic properties of the estimator of
the parametric β. It has been proved (see Ai and Chen (2003) and Florens
et al (2005)) that β is asymptotically normal and converges at √n speed.
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6 Conclusion
This paper proposes an approach to the transformation model based on a
conditional mean hypothesis and not on an independence condition between
the exogenous variables (or the instrumental variables) and the residual. This
weaker assumption leads to estimate the functional parameter by solving an
integral equation of type I and then to construct estimators with di�erent
rates of convergence from the usual √n rate. The treatment of the endo-
geneity of some variables is however easier under this weaker assumption.

This family of semiparametric transformation models is taken in this pa-
per as a class of examples of econometric inverse problems. We want to show
that despite the technicality of the mathematical framework the technology
of Tikhonov regularization is easy to implement. We illustrate this simplicity
using numerous simulations presented in the paper.

The usual di�culty of the practical use of nonparametric technics is the
selection of the bandwidths and of the regularization parameters. We present
in this paper a purely data driven strategy for these bandwidths and para-
meters. We illustrate by simulations the relevance of our methods.

This paper is not a pure theoretical contribution but we present in section
4 the main intuitions of the analysis of asymptotic properties, essentially the
consistency and the rate of convergence.
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APPENDIX I: Simulation results
AI 1 -Simulation in the non parametric model under exogeneity
This Appendix illustrates our procedures by a Monte Carlo simulation 5.

The exogenous variable Z is drawn from a N(0, 1.22) and U is independently
generated by a N(0, 0.32). The survivor S is a logistic function (S(t) = 1

1+e−t )

or equivalently ϕ(y) = ln 1−y
y
. Figure 1 shows the sample (the yi is on

the horizontal axes and zi on the vertical one), the true function and three
estimations with naive bandwidth and arbitrarily values of α. The sample
size is n = 500. Intuitively great values of α lead to a �at line and very small
values to a curve oscillating around the true one.

The minimization of α is represented by the curve in �gure 2 where the
function SS(α) de�ned in (3.10) is represented (the corresponding estimation
is represented in �gure 3). In �gure 4 same estimation using optimal α is
represented for a smaller sample of 200. In these �gures, bandwidth are naive
bandwidth. We show in �gure 5 the change of estimation by two recursive
evaluations of the bandwidth by cross validation and by selection of optimal
α. In all these �rst 5 �gures, one draw of the sample only is treated.

Finally, 50 Monte Carlo replications of the model (where n = 100) are
drawn and 50 curves are estimated (and represented in �gure 6) using naive
bandwiths and optimal α for each simulation. This �gure illustrates graphi-
cally the distribution of the estimator. We have check the sensitivity of our
results by modifying some assumptions. We �rst increased the variance of
the error term in the equation (0.32 is replaced by 0.62). The results are very
similar to the previous one and the Monte Carlo simulation for a sample size
of 100 are represented in �gure 6a. Secondly we have replaced the function ϕ
by ϕ(Y ) = tg(2π Y ). The design of Z is modi�ed (Zi ∼ N(0, 0.42)) and the
results are given in �gure 6b by a Monte Carlo simulation. Here also results
are very similar.
A theory for the joint determination of α and the bandwiths has not yet be
developed. Our simulations experiments show that many couples α and hn

will give an identical result. If hn is �xed arbitrarily in a suitable interval, α
will "adapt" itself to give "good" results. This conjecture needs to be check
theoretically.

5All the codes are available from the authors upon request
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Figure 1: Estimation under di�erent values of α (one draw)
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Figure 3: Estimation under data driven value of α
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AI 2 - Simulation in the non parametric model under endogeneity
We illustrate section 5 extension by some simulations. The function ϕ(y))
is still equal to ln 1−y

y
, U and R are independent and both N(0; 0, 32). The

variable Z is equal to aR + bU + ε where a = 2.5, b = 2, ε is N(0, 0.0152).
Figure 7 to 9 have the same de�nitions as �gure 1 to 3 but with Z endogenous.
Figure 10 shows the impact of the bandwidth improvement. This graph
concerns a single drawn of the data set but �gure 11 shows the results of 50
monte carlo simulations with optimal α and selection of bandwidths by cross
validation for each simulation (case n = 100).
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Figure 10: Estimation under di�erent bandwiths (one draw)
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AI 3 - Asymptotic properties of the estimator of the parametric β
Two models have been simulated. In the exogenous case n = 50, ϕ(y) and
U remain identical, Z ∼ N(0, 0.82) W ∼ N(0, 1) and β = 0.5. In the en-
dogenous case, n = 200 Z = aR + bU + ε where a = 2, 6 b = 2, 1. The
others elements remain the same. In each case 50 monte carlo replications
are generated and we represent the monte carlo distribution of the estimator
of β with the values of the mean (�gure 12 and 14). The �gures 13 and 15
represent the di�erent estimators of ϕ with naive bandwidth and optimal α
for each simulation. Our conclusion deduced from the simulation concerning
the bandwith and the regularization parameter is the following. The simulta-
neous choice of hn and α is not "identi�ed" in the sense that there probably
exists a curve of hn and α space such that each element gives the same result.
In other terms, the selection procedure of α adapts to the choice of hn (in
a reasonable "set") in order to give a "good" result. This conjecture will be
examined in the future works.
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APPENDIX II: Complements on asymptotic prop-
erties
This appendix will �rst give some details on the derivation of the rate result
given in theorem 4.1.

AII 1 -Proof of Theorem 4.1

i) Let us �rst start with the following remark.
In the previous practical computations the kernel estimation of E(ϕ(Y )|Z)
was based on formulae (3.3), i.e.:

(T̂ϕ)(z) =

n∑
i=1

ϕ(yi)K

(
z − zi

hn

)

n∑
i=1

K

(
z − zi

hn

)

The asymptotic theory we present in this section is actually based on
a slightly di�erent expression of T̂ϕ, namely:

(T̂ϕ)(z) =

n∑
i=1

[∫
ϕ(y)

1

hn

K

(
y − yi

hn

)
dy

]
K

(
z − zi

hn

)

∑n
i=1 K

(
z − zi

hn

)

and the same modi�cation is done for T̂ ∗. Actually this last expression
is obtained by estimating

∫
ϕ(y)f(y|z)dy (where f is the density of Y

and Z) by replacing f by its kernel estimator.
This modi�cation is motivated by the following argument. The �rst
estimator de�ned above is a non bounded estimator. To see this point
we can imagine two functions ϕ, and ϕ2 very closed in the square norm
sense (E ((ϕ1(Y )− ϕ2(Y )))2 small) but such that T̂ϕ1 and T̂ϕ2 are very
di�erent. This unboundness property complicates the proofs. However
the second estimator de�ned a bounded operator and T̂ is continuous.
To see the di�erence between the two computations we �rst remark
that with this new expression the empirical counter part of (3.6) now
becomes:
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αϕ(y) +
1

n∑
i=1

K

(
y − yj

hn

)

n∑
j=1

K

(
y − yj

hn

) ∫



n∑
i=1

∫
ϕ(y)

1

hn

K

(
y − yi

hn

)
dy ×

K
(

z−zi

hn

)

n∑
i=1

K

(
z − zi

hn

)



×

1

hn

K(
z − zj

hn

)dz

=

n∑
j=1

zjK

(
y − yj

hn

)

n∑
j=1

K

(
y − yj

hn

)

Let us multiply this equation by 1
hn

K
(

y−y`

hn

)
(` = 1, ..., n). After inte-

gration of the two sides of the equation with respect to ` we get the
same system as in (3.8) except that K

(
y`−yj

hn

)
and K

(
zj−zi

hn

)
are now

replaced by

∫ 1
hn

K

(
y − y`

hn

)
K

(
y − yj

hn

)

∑
j

K

(
y − yj

hn

) dy and
∫ 1

hn

K

(
z − zj

hn

)
K

(
z − zi

hn

)

∑
i

K

(
z − zi

hn

) dz

These approximations introduce errors with the same magnitude as the
bias of the kernel and then they may be neglected.

ii) Let us now come back to formulae (4.1). First we may remark that
(αI + T̂ ∗T̂ ) is invertible for n su�ciently large. Indeed assumption
section 4 implies that ‖T̂ T̂ −TT‖2 goes to 0 which imply that the eigen
values of αI + T̂ ∗T̂ converges uniformly to the eigen values of αI +T ∗T .
These eigen values have the form α + λ2

j where λ2
j is a (positive) eigen

value of T ∗T and are then strictly positive. This property is then also
true for αI + T̂ ∗T̂ .

iii) Now consider ‖ϕ̂α−ϕ‖2. We want to analyze the rate of the convergence
to zero of this norm.

33



We have

ϕ̂α − ϕ = (αI + T̂ ∗T̂ )−1T̂ ∗Z − ϕ

= (αI + T̂ ∗T̂ )−1T̂ ∗Z − (αI + T̂ ∗T̂ )−1T̂ ∗T̂ϕ

+ (αI + T̂ ∗T̂ )−1T̂ ∗T̂ϕ− (αI + T ∗T )−1T ∗Tϕ

+ (αI + T ∗T )−1T ∗Tϕ− ϕ

= A + B + C

From the properties of a norm

‖ϕ̂α − ϕ‖ ≤ ‖A‖+ ‖B‖+ ‖C‖

Let us consider the �rst term:

‖A‖ = ‖(αI + T̂ ∗T̂ )−1(T̂ ∗Z − T̂ ∗T̂ϕ)‖

We used here these properties:

‖(αI + T̂ ∗T̂ )−1T̂ ∗(Z − T̂ϕ)‖ ≤ ‖(α + T̂ ∗T̂ )−1T̂ ∗‖‖Z − T̂ϕ‖

The �rst norm ‖(αI + T̂ ∗T̂ )−1T̂ ∗‖ is equal to the larger eigen value of
the operator. These eigen values converges to λj

α+λ2
j
(λj =

√
λ2

j) and are
then smaller than 1√

α
. Using the assumption i) of section 4 we get that

‖(αI + T̂ ∗T̂ )−1T̂ ∗(Z − T̂ϕ)‖2 ∼ O

(
1

α

(
1

nhn

+ h4
n

))

Using elementary algebra, the second term B veri�es:

B = (αI + T̂ ∗T̂ )−1T̂ ∗
[
(T̂ − T ) + (T̂ ∗ − T ∗)

]
Tα(αI + T ∗T )−1ϕ

We have �rst remarked that ‖(αI+T̂ ∗T̂ )−1T̂ ∗‖ = O( 1√
α
) and that ‖T̂−

T‖ or ‖T̂ − T‖ are O
(

1√
n hn

+ h2
n

)
. The last term, identical to α(αI +

T ∗T )−1T ∗ϕ is the regularity bias of T ∗ϕ equal to O(
√

αmin(β+1,2)).
Then:
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‖B‖2 = O

(
1

α

(
1

nh2
+ h4

)
αmin(β+1,2)

)

Finally we have seen in section 4.1 that ϕ is assumed su�ciently regular

‖|C‖|2 = αβ. ¥

AII 2 - Speed of convergence of the data driven selection of α
Let us consider the main elements of the proof. if n is large SS(α) de�ned
in (3.10) is almost equal to:

1

α
‖ T̂ ϕ̂α

(2) − Z ‖2

T̂ ϕ̂α
(2) − Z = T̂ (αI + T̂ ∗T̂ )−1[T̂ ∗ + α(αI + T̂ ∗T̂ )−1T̂ ∗](Z − T̂ϕ)

+ T̂ (αI + T̂ ∗T̂ )−1[T̂ ∗ + α(αI + T̂ ∗T̂ )−1T̂ ∗]T̂ϕ

= A + B

as ‖ T̂ (αI + T̂ ∗T̂ )−1T̂ ∗ + α(αI + T̂ ∗T̂ )−1T̂ ∗ ‖ is bounded.

‖ A ‖2 = O ( 1
nhn

+ h4
n)

The second term is equal to B = B1 + B2 where

B1 = T (αI + T ∗T )−1(T ∗ + α(αI + T ∗T )−1T ∗)Tϕ

and

B2 = T̂ (αI + T̂ ∗T̂ )−1(T̂ ∗ + α(αI + T̂ ∗T̂ )−1T̂ ∗)T̂

− T (αI + T ∗T )−1(T ∗ + α(αI + T ∗T )−1T ∗)T

‖ B1 ‖2 is the regularization bias of Tϕ equal to αβ+1 if β ≤ 2 (see Engl
et al. (2000). The last term is negligible using arguments identical to the end
of the proof of the theorem 4.1 but based on the algebra of iterated Tikhonov
regularization.

Then
1

α
‖ T̂ ϕ̂α

(2) − Z ‖2 ∼ O (
1

α
(

1

nhn

+ h4
n) + αβ)

and the minimization of this expression gives an α which converges to zero
at the optimal rate. ¥
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