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Abstract

In production theory and efficiency analysis, we are interested in estimating the
production frontier which is the locus of the maximal attainable level of an output
(the production), given a set of inputs (the production factors). In other setups,
we are rather willing to estimate an input (or cost) frontier that is defined as the
minimal level of the input (cost) attainable for a given set of outputs (goods or services
produced). In both cases the problem can be viewed as estimating a surface under shape
constraints (monotonicity, . . . ). In this paper we derive the theory of an estimator of
the frontier having an asymptotic normal distribution. The basic tool is the order-m
partial frontier where we let the order m to converge to infinity when n → ∞ but at a
slow rate. The final estimator is then corrected for its inherent bias. We thus can view
our estimator as a regularized frontier estimator which, in addition, is more robust
to extreme values and outliers than the usual nonparametric frontier estimators, like
FDH. The performances of our estimators are evaluated in finite samples through some
Monte-Carlo experiments. We illustrate also how to provide, in an easy way, confidence
intervals for the frontier function both with a simulated data set and a real data set.

Key words : Production function, Free Disposal Hull, Nonparametric frontier, Robust
estimation, Extreme values, Tail index.
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1 Introduction and Basic Concepts

In production theory and efficiency analysis, we are interested in estimating the production

frontier which is the locus of the maximal attainable level of an output (the production),

given a set of inputs (the production factors). In other setups, we are rather willing to

estimate an input (or cost) frontier that is defined as the minimal attainable level of the

input (cost) for a given set of outputs (goods or services produced). In both cases the

problem can be viewed as estimating a surface under shape constraints (monotonicity,. . . ).

The efficiency score of a given unit is then determined by an appropriate distance (in the

output direction, or in the input direction) of this unit to the optimal frontier.

Formally (we will in this paper focus the presentation in the input orientation case, where

we want to estimate the minimal cost frontier1), let x ∈ R+ denote the input (or the cost

of production) and y ∈ R
q
+ be the vector of goods or services produced. The attainable set

(feasible combinations of input and outputs) is defined as

Ψ = {(x, y) ∈ R+ × R
q
+ | y can be produced by x}. (1.1)

A minimal assumption often accepted for Ψ is the free disposability of the inputs and of

the outputs, namely, if (x, y) ∈ Ψ, then (x′, y′) ∈ Ψ for any pairs (x′, y′) such that x′ ≥ x

and y′ ≤ y. This implies a monotonicity property of the frontier surface. Sometimes (not

in this paper), the hypothesis of the convexity of Ψ is also assumed (see Shephard, 1970

for a comprehensive overview of the underlying economic models used in prodution theory).

The efficient boundary of Ψ, in the input oriented case, is represented by the minimal input

frontier function

ϕ(y) = inf{x | (x, y) ∈ Ψ}, (1.2)

and the Farrell-Debreu efficiency score of a unit operating at the level (x0, y0) is given by

the ratio ϕ(y0)/x0, which gives a number between zero and one. An efficiency equal to

one corresponds to an input-efficient unit (being on the minimal input frontier) and more

generally ϕ(y0)/x0 ≤ 1 gives the reduction of input (cost) the firm should reach to be

considered as input-efficient.

A popular nonparametric estimator of the attainable set is the Free Disposal Hull (FDH)

estimator proposed by Deprins, Simar and Tulkens (1984). The FDH is the smallest mono-

tone set enveloping the data points, it relies only on the free disposability assumption and

its asymptotic properties have been established (Park, Simar and Weiner, 2000 and Daouia,

1The presentation for the output oriented case, where we want to estimate the maximal production
frontier, is a straightforward adaptation of what is done here. In the appendix, we give a summary of the
notations and main results for that case.
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Florens, Simar, 2008). More details will be given below. Another nonparametric estima-

tor, the Data Envelopment Analysis (DEA), initiated by Farrell (1957) and popularized by

Charnes, Cooper and Rhodes (1978), can be justified when the convexity of Ψ is moreover

assumed. Its asymptotic properties have been established in Kneip et al. (2008). A recent

survey of the available statistical tools for making inference in these nonparametric models

can be found in Simar and Wilson (2008).

The FDH estimator: basic properties

The attainable set Ψ can be seen as the support of the random vector (X, Y ) defined on an

appropriate probability space. It will be useful to describe the joint distribution of (X, Y )

by its joint survivor function:

SXY (x, y) = Prob(X ≥ x, Y ≥ y) = S(x|y)SY (y), (1.3)

where S(x|y) = Prob(X ≥ x | Y ≥ y) and SY (y) = Prob(Y ≥ y). Notice that the conditional

survivor function S(x|y) is non-standard, since the condition is Y ≥ y.

Cazals, Florens and Simar (2002) have shown that under the free disposability assump-

tion, the minimal input function ϕ(y) can equivalently be defined as

ϕ(y) = inf{x |S(x|y) < 1}. (1.4)

Since the attainable set is unknown, it has to be estimated from a sample of i.i.d. units

Xn = {(Xi, Yi) | i = 1, . . . , n}. The free disposal hull of Xn is the FDH estimator

Ψ̂ = {(x, y) | y ≤ Yi, x ≥ Xi, i = 1, . . . , n}, (1.5)

providing the FDH estimator of the frontier ϕ(y)

ϕ̂(y) = inf{x | Ŝ(x|y) < 1} = min
{i:Yi≥y}

Xi, (1.6)

where Ŝ(x|y) = ŜXY (x, y)/ŜY (y) with ŜXY (x, y) = (1/n)
∑n

i=1 1I(Xi ≥ x, Yi ≥ y) and

ŜY (y) = (1/n)
∑n

i=1 1I(Yi ≥ y). Park et al. (2000) have obtained the limiting distribution

of FDH estimators in a full multivariate set-up under some regularity conditions. The most

general asymptotic result in our setup here is given by Daouia et al. (2008) and can be

summarized as follows.

Under the regularity condition (Corollary 2.2 in Daouia et al., 2008)

SY (y)(1− S(x|y)) = ℓy

(
x − ϕ(y)

)ρy
+ o

(
(x − ϕ(y))ρy

)
, as x ↓ ϕ(y), (1.7)
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with ℓy > 0, ρy > q and ϕ(y) being differentiable in y with strictly positive first partial

derivatives, we have2 as n → ∞

(nℓy)
1/ρy

(
ϕ̂(y) − ϕ(y)

) L−→ Weibull(1, ρy). (1.8)

In addition, the joint density of (X, Y ) near the frontier function can be expressed as

f(x, y) = cy(x − ϕ(y))βy + o
(
(x − ϕ(y))βy

)
, as x ↓ ϕ(y), (1.9)

where cy > 0 and βy = ρy − (q + 1). Since βy > −1, the asymptotic result covers the cases

−1 < βy < 0, where the density tends to infinity at the frontier, at a speed of the power

ρy − (q + 1), the case βy = 0 where the density has a jump at the frontier (ρy = q + 1) and

the cases βy > 0 where the joint density decays to zero at a speed of the power ρy − (q + 1).

Remark 1.1. The regularity condition (1.7) is a particular case of the more general extreme

value regularity condition (see Daouia et al., 2008 for details)

SY (y)(1 − S(x|y)) = Ly

(
1

x − ϕ(y)

)
(x − ϕ(y))ρy ,

where Ly is a slowly varying function and ρy > 0 is the tail index. For instance, if (X, Y )

is uniformly distributed over Ψ = {(x, y)|0 ≤ y ≤ x ≤ 1}, we have Ly(·) = ℓy = ℓ = 1 and

ρy = ρ = 2 and (1.7) is satisfied.

If X = Y 1/2 exp(U) where Y is uniform over [0, 1] and U , independent of Y , is Exponen-

tial with parameter λ = 3, we have ρy = ρ = 2 and Ly

(
1

x−ϕ(y)

)
= ℓy + o

(
(x − ϕ(y))

)
when

x ↓ ϕ(y), with ℓy = ℓ = 3 and (1.7) is satisfied.

Order-m frontier and robust estimator of the frontier

By construction, since it envelops all the data points, the FDH estimator (and its convexified

version, the DEA estimator) is very sensitive to outliers and extreme data points. Cazals

et al. (2002) suggested to define a benchmark frontier that is less extreme than the full

frontier function ϕ(y). Indeed, the latter can be defined as the minimal achievable input

level for firms producing at least the level y, see (1.4). A less extreme benchmark, based on

the concept of order-m frontier, is defined as the expected minimal input value among m

peers drawn at random in the population of units producing at least the level y, where m is

a natural number (m ≥ 1). Formally,

ϕm(y) = E [min(X1, . . . , Xm)|Y ≥ y] , (1.10)

2The Weibull distribution is related to the Exponential distribution: W ∼ Weibull(1, c) ⇔ W c ∼ Exp(1).
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provided the expectation exists. We have the following equivalences

ϕm(y) =

∫ ∞

0

Sm(u|y) du = ϕ(y) +

∫ ∞

ϕ(y)

Sm(u|y) du. (1.11)

It can be seen that ϕm(y) → ϕ(y) as m → ∞.

A nonparametric estimator of ϕm(y) is given by pluging the empirical version of S(u|y)

in (1.11) to obtain

ϕ̂m(y) =

∫ ∞

0

Ŝm(u|y) du. (1.12)

For fixed m, it has been shown that
√

n
(
ϕ̂m(·) − ϕm(·)

) L−→ G(0, Ω) where G is a gaussian

process with covariance function Ω given in Cazals et al. (2002). In particular, for any given

y and a fixed value of m, we have as n → ∞,

√
n

σ(m, y)

(
ϕ̂m(y) − ϕm(y)

) L−→ N (0, 1), (1.13)

where

σ2(m, y) = E

[
m1I(Y ≥ y)

SY (y)

∫ ∞

0

(
Sm−1(u|y)1I(X ≥ u) − Sm(u|y)

)
du

]2

. (1.14)

It is clear that if m → ∞, ϕ̂m(y) will converge to the FDH estimator ϕ̂(y). Cazals et al.

show that if m = mn → ∞ fast enough when n → ∞, the resulting estimator has the same

asymptotic properties than the FDH estimator

(nℓy)
1/ρy

(
ϕ̂mn

(y) − ϕ(y)
) L−→ Weibull(1, ρy).

Of course, for finite n, the resulting estimator ϕ̂mn
(y) does not envelop all the data points

and so provides a robust version of the FDH estimator.

In this paper we address the problem of the regularization of the FDH estimator. The

central question is the following: is it possible to find a sequence of mn converging to infinity

as n → ∞, but slowly enough to keep an asymptotic normal distribution. We will find

this sequence and so obtain a regularized nonparametric estimator of the frontier having an

asymptotic normal distribution and being robust to outliers and extreme data points. This

motivates the development of the theory for order-m frontiers, when m tends to infinity.

Related work is Daouia et al. (2008) where the links between frontier estimation and

extreme values theory are established. By doing so, they revisit and extend former results

on the asymptotic behavior of the FDH estimator. Extreme value theory allows also to

extend the properties of another partial frontier, the order-α quantile frontier (see Aragon,
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Daouia and Thomas-Agnan, 2005) providing an alternative robust estimator of the frontier

function. The duality between order-m and order-α frontier has been investigated by Daouia

and Gijbels (2009). They show in particular, that even if the order-α quantile frontiers have

global better robustness properties (higher breakdown value), it appears that once they

breakdown, they become less resistant to outliers than the order-m frontiers.

Section 2 gives the main theoretical result of this paper: the estimation of the order-m

frontier when m tends to infinity (subsection 2.1) and how to implement an estimator of the

frontier ϕ(y) in practice (subsection 2.2). Section 3 addresses the problem of estimating the

unknown parameters of the asymptotic distribution. Section 4 illustrates how the procedure

works in practice with simulated data and with a real data set. Section 5 concludes.

2 The Main Result

2.1 Estimation of the order-m frontier when m → ∞
We start with a preliminary lemma which controls, as m → ∞, the variance of the order-m

estimator ϕ̂m(y) given in (1.14).

Lemma 2.1. Under the regularity condition (1.7), we have for any y such that SY (y) > 0,

as m → ∞

k1,y m1−2/ρy ≤ σ2(m, y) ≤ k2,y m2−2/ρy , (2.1)

where k1,y and k2,y are some positive constants.

Proof: We first obtain after some elementary algebraic manipulations that the variance can

be expressed as

σ2(m, y) =
2m2

SY (y)

∫ ∞

ϕ(y)

∫ ∞

ϕ(y)

Sm(u|y)Sm−1(v|y)(1− S(v|y))1I(u ≥ v) du dv. (2.2)

(i) Searching a minorant of σ2(m, y) when m → ∞. We first notice that

σ2(m, y) =
2m2

SY (y)

∫ ∞

ϕ(y)

Sm−1(v|y)F (v|y)

[∫ ∞

v

Sm(u|y) du

]
dv,

where F (v|y) = 1 − S(v|y). So that for all δ > 0, we have

σ2(m, y) ≥ 2m2

SY (y)

∫ ϕ(y)+δ

ϕ(y)

Sm−1(v|y)F (v|y)

[∫ v+δ

v

Sm(u|y) du

]
dv,

≥ 2m2δ

SY (y)

∫ ϕ(y)+δ

ϕ(y)

Sm−1(v|y)F (v|y)Sm(v + δ) dv.
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Since Sm−1(v|y) ≥ Sm−1(v + δ|y) ≥ Sm(v + δ|y), we have

σ2(m, y) ≥ 2m2δ

SY (y)

∫ ϕ(y)+δ

ϕ(y)

S2m(v + δ|y)F (v|y) dv,

≥ 2m2δ

SY (y)
S2m(ϕ(y) + 2δ|y)

∫ ϕ(y)+δ

ϕ(y)

F (v|y) dv.

Now, if δ ↓ 0, by the regularity condition (1.7) we have that

∫ ϕ(y)+δ

ϕ(y)

F (v|y) dv ≥ cy

ρy + 1

δρy+1

2
, (2.3)

where cy =
ℓy

SY (y)
. When δ ↓ 0, it is also easy to see from (1.7) that

S(ϕ(y) + 2δ|y) ≥ 1 − 2cy(2δ)
ρy = exp

[
log

(
1 − 2cy(2δ)

ρy
)]

.

Therefore S2m(ϕ(y)+2δ|y) ≥ exp
[
2m log

(
1−2cy(2δ)

ρy
)]

. Since lim
δ↓0

log
(
1 − 2cy(2δ)

ρy
)

−2cy(2δ)ρy
= 1,

for sufficiently small δ > 0 we have
log

(
1 − 2cy(2δ)

ρy
)

−2cy(2δ)ρy
≤ 2. So, when δ ↓ 0 we have

S2m(ϕ(y) + 2δ|y) ≥ e−8mcy(2δ)ρy
. Pluging these results in the latter inequality for σ2(m, y)

we have as δ ↓ 0

σ2(m, y) ≥ 2m2δ

SY (y)
e−8mcy(2δ)ρy cy

ρy + 1

δρy+1

2
.

Choosing δ = (1/m)1/ρy , we have as m → ∞

σ2(m, y) ≥ k1,y m1−2/ρy . (2.4)

(ii) Searching a majorant of σ2(m, y) when m → ∞. From (2.2) we have

σ2(m, y) ≤ 2m2

SY (y)

∫ ∞

ϕ(y)

∫ ∞

ϕ(y)

Sm(u|y)Sm−1(v|y)(1− S(v|y)) du dv,

≤ 2m2

SY (y)

[
(ϕm(y) − ϕ(y))(ϕm−1(y) − ϕ(y)) − (ϕm(y) − ϕ(y))2

]

≤ 2m2

SY (y)
(ϕm(y) − ϕ(y))2

[
ϕm−1(y) − ϕ(y)

ϕm(y) − ϕ(y)
− 1

]

Now, by the regularity condition (1.7), the equation (2.5) in Daouia et al. (2008) and from

the definition (1.10) of ϕm, we have as m → ∞

ϕm(y) − ϕ(y) = Γ

(
1 +

1

ρy

) (
1

m ℓy

)1/ρy

+ o(m−1/ρy ). (2.5)
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Therefore, as m → ∞,

σ2(m, y) ≤ 2m2

SY (y)

[
Γ2(1 + 1/ρy)(mℓy)

−2/ρy + o(m−2/ρy )
]
≤ k2,ym

2−2/ρy ,

where k2,y is a positive constant. This completes the proof of the lemma. �

The following theorem gives the basic results of our paper, it specifies under which condi-

tion on the sequence mn, the asymptotic distribution of ϕ̂mn
(y) is still a Normal distribution.

Theorem 2.1. Under the regularity condition (1.7), and if mn = c n1/3−ε (log log n)−2/3 for

some constants c > 0 and ε ∈ (0, 1/3), we have for any y such that SY (y) > 0, as n → ∞
√

n

σ(mn, y)

(
ϕ̂mn

(y) − ϕmn
(y)

) L−→ N (0, 1). (2.6)

Proof: In the proof, to simplify the notation, we will denote mn by m, keeping in mind that

m = mn → ∞ when n → ∞ at the rate given by mn. Let us define

Ry
m,n =

(
ϕ̂m(y) − ϕm(y)

)
− m

∫ ∞

ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y) − S(u|y)

]
du.

So the object of interest for the theorem can be written as

√
n

σ(m, y)

(
ϕ̂m(y) − ϕm(y)

)
=

m
√

n

σ(m, y)

∫ ∞

ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du

+

√
n

σ(m, y)
Ry

m,n. (2.7)

(i) We first prove that
√

n
σ(m,y)

Ry
m,n

a.s.−→ 0 as n → ∞. Since ϕ̂(y)
a.s.
≥ ϕ(y), we have

Ry
m,n

a.s.
=

∫ ∞

ϕ(y)

(
Ŝm(u|y)− Sm(u|y)

)
du − m

∫ ∞

ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du.

Now, consider the following Taylor expansion
∫ ∞

ϕ(y)

(
Ŝm(u|y)− Sm(u|y)

)
du = m

∫ ∞

ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y)− S(u|y)

]
du

+
1

2
m(m − 1)

∫ ∞

ϕ(y)

[
Ŝ(u|y)− S(u|y)

]2
bm−2
y (u) du,

where, Ŝ(u|y) ∧ S(u|y) ≤ by(u) ≤ Ŝ(u|y) ∨ S(u|y). So, we obtain:

Ry
m,n

a.s.
=

1

2
m(m − 1)

∫ ∞

ϕ(y)

[
Ŝ(u|y) − S(u|y)

]2
bm−2
y (u) du.
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By the Law of Iterated Logarithms, we know that sup
u

∣∣Ŝ(u|y)− S(u|y)
∣∣ a.s.
≤ C

( log log n

n

)1/2

for some constant C, so we have
√

n

σ(m, y)

∣∣Ry
m,n

∣∣ a.s.
≤ 1

2

m(m − 1)

σ(m, y)

C2 log log n√
n

∫ ∞

ϕ(y)

bm−2
y (u) du. (2.8)

Let us now analyze the behavior of
∫ ∞

ϕ(y)
bm
y (u) du when m → ∞. We can write

∫ ∞

ϕ(y)

bm
y (u) du =

∫ ∞

ϕ(y)

(
S(u|y) + ry(u)

)m
du,

for some ry(u) such that Ŝ(u|y)∧S(u|y)−S(u|y) ≤ ry(u) ≤ Ŝ(u|y)∨S(u|y)−S(u|y). Note

that |ry(u)| ≤ C
( log log n

n

)1/2

. Since (S(u|y)+ry(u))m−Sm(u|y)
ry(u)

= m
(
S(u|y) + gy(u)

)m−1
, for

some gy(u) such that |gy(u)| ≤ |ry(u)|, we obtain
∫ ∞

ϕ(y)

(
S(u|y) + ry(u)

)m
du ≤

∫ ∞

ϕ(y)

Sm(u|y) du

+ mC
( log log n

n

)1/2
∫ ∞

ϕ(y)

(
S(u|y) + gy(u)

)m−1
du.

Applying the same argument for the exponent m − 1, one can find
∫ ∞

ϕ(y)

(
S(u|y) + gy(u)

)m−1
du ≤

∫ ∞

ϕ(y)

Sm−1(u|y) du

+ (m − 1)C
( log log n

n

)1/2
∫ ∞

ϕ(y)

(
S(u|y) + hy(u)

)m−2
du.

for some hy(u) such that |hy(u)| ≤ |gy(u)| ≤ |ry(u)|. It is clear that
∫ ∞

ϕ(y)

(
S(u|y) + hy(u)

)m−2
du ≤

∫ ∞

ϕ(y)

(
Ŝ(u|y) ∨ S(u|y)

)m−2
du

≤
∫ ∞

ϕ(y)

(
Ŝm−2(u|y) ∨ Sm−2(u|y)

)
du ≤

∫ ∞

ϕ(y)

Ŝm−2(u|y) du +

∫ ∞

ϕ(y)

Sm−2(u|y) du.

So, when m → ∞,
∫ ∞

ϕ(y)

(
S(u|y)+ hy(u)

)m−2
du

a.s.
= o(1). So finally we obtain when m → ∞,

∫ ∞

ϕ(y)

bm
y (u) du

a.s.
≤

(
ϕm(y) − ϕ(y)

)
+ mC

( log log n

n

)1/2(
ϕm−1(y) − ϕ(y)

)

+m(m − 1)C2
( log log n

n

)
o(1). (2.9)

Plugging in (2.8) the results (2.9) and (2.5) and using Lemma 2.1, we obtain for m → ∞,

√
n

σ(m, y)

∣∣Ry
m,n

∣∣ a.s.
≤ C2m2

2
√

k1,ym1/2−1/ρy

log log n√
n

{
[
Γ(1 + 1/ρy)ℓ

−1/ρy + o(1)
]

×
(
m−1/ρy + mC

( log log n

n

)1/2
m−1/ρy

)
+ m2C2 log log n

n
o(1)

}
,
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so that
√

n

σ(m, y)

∣∣Ry
m,n

∣∣ a.s.
≤ m3/2 log log n√

n
(K1 + o(1)) + m5/2 (log log n)3/2

n
(CK1 + o(1))

+ m7/2+1/ρy
(log log n)2

n3/2
o(1), (2.10)

where K1 is some positive constant. Since under the condition of the theorem m = mn =

c n1/3−ε (log log n)−2/3 all the terms in the r.h.s. of the last inequality converges to 0 when

n → ∞, we obtain

√
n

σ(m, y)
Ry

m,n
a.s.−→ 0 as n → ∞. (2.11)

(ii) We now will prove the leading term of (2.7) converges to a standard normal. We can

rewrite this leading term as

√
n m

σ(m, y)

∫ ∞

ϕ(y)

Sm−1(u|y)
[
Ŝ(u|y) − S(u|y)

]
du =

SY (y)

ŜY (u)

n∑

i=1

Wn,i√
n σ(m, y)

,

where Wn,i =
(
m/SY (y)

) ∫ ∞
ϕ(y)

Sm−1(u|y)
[
1I(Xi ≥ u, Yi ≥ y)−S(u|y)1I(Yi ≥ y)

]
du. It is easy

to see that E(Wn,i) = 0 and V(Wn,i) = σ2(m, y). By the Lindberg-Feller theorem (Serfling,

1980, p. 29) we have

1√
n

n∑

i=1

Wn,i

σ(m, y)

L−→ N (0, 1), as n → ∞, (2.12)

under the Liapounoff condition, i.e. if

nE
(
|Wn,i|3

)

[
nV(Wn,i)

]3/2
−→ 0, as n → ∞. (2.13)

The Liapounoff condition is easy to check under the assumptions of the theorem. Indeed,

E
(
|Wn,i|3

)
= E

(
W 2

n,i|Wn,i|
)

and since
∣∣1I(Xi ≥ u, Yi ≥ y) − S(u|y)1I(Yi ≥ y)

∣∣ ≤ 1, we have

|Wn,i| ≤
m

SY (y)

∫ ∞

ϕ(y)

Sm−1(u|y)du =
m

SY (y)

(
ϕm−1(y) − ϕ(y)

)
.

So, E
(
|Wn,i|3

)
≤

(
m/SY (y)

)(
ϕm−1(y) − ϕ(y)

)
σ2(m, y) and we obtain

nE
(
|Wn,i|3

)

[
nV(Wn,i)

]3/2
≤ m√

nSY (y)

ϕm−1(y) − ϕ(y)

σ(m, y)
.
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Under the regularity condition (1.7), Lemma 2.1 and (2.5), we have, as m → ∞, σ2(m, y) ≥
k1,ym

1−2/ρy and ϕm−1(y) − ϕ(y) ∼ Γ(1 + 1/ρy)
( 1

ℓy(m − 1)

)1/ρy
, so that

nE
(
|Wn,i|3

)

[
nV(Wn,i)

]3/2
≤ K2

m1/2

√
n

,

where K2 is some poistive constant. The r.h.s. of the latter inequality tends to zero if n → ∞
and m → ∞ such that m/n → 0 which is the case for the sequence m = mn given in the

assumption of the theorem. Finally, since
(
SY (y)/ŜY (y)

) a.s.−→ 1, as n → ∞, we obtain the

desired result. �

Rate of convergence

It is interesting to analyze the resulting rate of convergence of the estimator as a function

of n. We have as n → ∞, τn

(
ϕ̂m(y) − ϕm(y)

) L−→ N (0, 1) with τn =
√

n/σ(m, y) and

m = mn = c n1/3−ε (log log n)−2/3. We know by Lemme 2.1 that as n → ∞,

k1,yc
1−2/ρyn(1/3−ε)(1−2/ρy )−1(log log n)−(2/3)(1−2/ρy ) ≤ τ−2

n

≤ k2,yc
2−2/ρyn(1/3−ε)(2−2/ρy )−1(log log n)−(2/3)(2−2/ρy ).

We remember that ρy = βy + q + 1, where q ≥ 1 and βy > −1 (see the discussion after (1.9)

above). In the particular case where the extreme value index ρy ≥ 2 we get as n → ∞

c1n
−(1/3)(1−1/ρy )+1/2(log log n)(1/3)(2−2/ρy ) ≤ τn ≤ c2n

1/2(log log n)(1/3)(1−2/ρy ).

This case is of particular interest when the joint density of (X, Y ) has a jump at the frontier

(i.e. βy = 0, an often used assumption in the econometric literature). We have clearly in

this case as q ↓ 1,

c1

(
n log log n

)1/3 ≤ τn ≤ c2n
1/2,

and as q ↑ ∞,

c1n
1/6(log log n)2/3 ≤ τn ≤ c2n

1/2(log log n)1/3.

So, even if the data dimension explodes, the convergence rate does not deteriorate too much

avoiding thus, in a sense and partly, the “curse of dimensionality” that is typical of many

nonparametric estimators.
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2.2 Estimation of the frontier ϕ(y)

Since ϕm(y) → ϕ(y) as m → ∞, the result of the preceding section can be used to define

an estimator of the “full” frontier itself. From Theorem 2.1, if mn < n1/3(log log n)−2/3, we

have
√

n

σ(mn, y)

(
ϕ̂mn

(y) − ϕ(y) − Bmn
(y)

) L−→ N (0, 1), (2.14)

where from (2.5),

Bmn
(y) = ϕmn

(y) − ϕ(y) = Γ

(
1 +

1

ρy

) (
1

mn ℓy

)1/ρy

+ o(m−1/ρy

n ). (2.15)

We see that the value of the bias introduced by using the order-mn estimator to estimate

the full frontier is bounded below
(√

n/σ(mn, y)
)
Bmn

(y) > K3n
1/3(log log n)1/3 for some

constant K3, and this does not vanish when n → ∞.

So, in practice for large values of n (and so of m), we will rather use the following

asymptotic approximation:

ϕ̂m(y) − ϕ(y) ≈ N (Bm(y),
σ2(m, y)

n
), (2.16)

where for doing practical inference Bm(y) and σ(m, y) have to be consistently estimated. A

consitent estimator of σ(m, y) is provided by a plugging version of (2.2), whereas, a consistent

estimator of Bm(y) can be obtained through the leading part of (2.15) once ρy and ℓy are

known or consistently estimated. The next section suggest a way for estimating these two

parameters, using the properties of order-m frontiers.

3 Consistent estimators of ρy and ℓy

We will use here an approach inspired by the classical Pickand’s tail index estimator, analyzed

and developed in our frontier setup in Daouia et al. (2008). The Pickand’s estimator is

based on comparing different quantile-type estimators of the frontier. As well known from

the literature, and illustrated in Daouia et al., the estimator is rather unstable and provide

disappointing results unless the sample size is larger than, say 1000. Daouia et al. (2008)

also analyze a moment estimator providing slightly better behavior in moderated sample

sizes (say larger than 500).

In this paper, we adapt the approach by using the order-m estimator of the frontier

instead of the order-α quantile estimator of the frontier. Indeed, when considering the
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asymptotic expression for ϕm(y)−ϕ(y) given by (2.5) for the values m, am and a2m, where

a is some fixed integer with a ≥ 2, we see that

lim
m→∞

ϕm(y) − ϕam(y)

ϕam(y) − ϕa2m(y)
= a1/ρy .

This suggests the following estimator

ρ̂y = log(a)

{
log

( ϕ̂m(y) − ϕ̂am(y)

ϕ̂am(y) − ϕ̂a2m(y)

)}−1

. (3.1)

It is also easy to see that

lim
m→∞

1

m

[
Γ(1 + 1/ρy)

(
1 − a−1/ρy

)

ϕm(y) − ϕam(y)

]ρy

= ℓy,

that can lead to the estimator of ℓy

ℓ̂y =
1

m

[
Γ(1 + 1/ρ̂y)

(
1 − a−1/ρ̂y

)

ϕ̂m(y) − ϕ̂am(y)

]ρ̂y

. (3.2)

The consistency of these estimators is provided by the following theorems.

Theorem 3.1. Under the regularity conditions of Theorem 2.1,

ρ̂y
P−→ ρy and ℓ̂y

P−→ ℓy as n → ∞, (3.3)

for any y such that SY (y) > 0,

Proof: By Theorem 2.1, we have ϕ̂m(y) − ϕm(y) = Op

(
σ(m, y)/

√
n
)
. Now, by (2.5), and

by Lemma 2.1, we obtain

ϕ̂m(y) − ϕ(y) = Cy

(
1

m

)1/ρy

+ o
(
m−1/ρy

)
+ Op

(m1−1/ρy

√
n

)

where Cy = Γ
(
1 + 1

ρy

)(
1
ℓy

)1/ρy

. Similarly we have for all a ≥ 2

ϕ̂am(y) − ϕ(y) = Cy

(
1

am

)1/ρy

+ o
(
m−1/ρy

)
+ Op

(m1−1/ρy

√
n

)

ϕ̂a2m(y) − ϕ(y) = Cy

(
1

a2m

)1/ρy

+ o
(
m−1/ρy

)
+ Op

(m1−1/ρy

√
n

)
.

Now by doing the differences we have

m1/ρy
(
ϕ̂m(y) − ϕ̂am(y)

)
= Cy

(
1 − 1/a1/ρy

)
+ o(1) + Op

( m√
n

)

(am)1/ρy
(
ϕ̂am(y) − ϕ̂a2m(y)

)
= Cy

(
1 − 1/a1/ρy

)
+ o(1) + Op

( m√
n

)
,
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leading to

ϕ̂m(y) − ϕ̂am(y)

ϕ̂am(y) − ϕ̂a2m(y)
= a1/ρy

Cy

(
1 − 1/a1/ρy

)
+ o(1) + Op

(
m√
n

)

Cy

(
1 − 1/a1/ρy

)
+ o(1) + Op

(
m√
n

) .

As m/
√

n → 0 as n → ∞, the ratio on the right hand side converges in probability to 1, so

that

ϕ̂m(y) − ϕ̂am(y)

ϕ̂am(y) − ϕ̂a2m(y)

P−→ a1/ρy ,

which gives ρ̂y
P−→ ρy. On the other hand, since

m1/ρy
(
ϕ̂m(y) − ϕ̂am(y)

)
= Γ(1 + 1/ρy)(1 − 1/a1/ρy)(ℓy)

−1/ρy + o(1) + Op

( m√
n

)
,

we have by using m/
√

n → 0 and ρ̂y
P−→ ρy as n → ∞,

1

m

[
Γ(1 + 1/ρ̂y)

(
1 − a−1/ρ̂y

)

ϕ̂m(y) − ϕ̂am(y)

]ρ̂y

P−→ ℓy,

which gives ℓ̂y
P−→ ℓy. �

Practical choice of a and m

The choice of an optimal a and m is an open theoretical issue, but in practice, in the examples

and simulations below, we have chosen for m, mn = N
1/3
y , where Ny =

∑n
i=1 1I(Yi ≥ y) is

the number of observations with Yi ≥ y. This choice guarantees by Theorem 2.1 the regular

behavior of the estimator ϕ̂mn
(y) as n → ∞ and as seen above, it guarantees also the

consistency of the estimators ρ̂y and ℓ̂y. The choice of a ≥ 2 is much less important: the

results are rather stable relative to this choice. Higher values of a will give more weights to

extreme data points. It turns out that in all the Monte-Carlo experiments below, the choice

a = 10 provided quite reasonable estimates with nice behavior of the estimators. When

working with particular samples, and for the estimation of ρy, we have to tune the choice of

a and m more carefully to obtain sensible results (see below), but even in these cases, for

estimating the frontier function, in a second step, the choice a = 10 and m = N
1/3
y provided

always nice results.

For the final evaluation of the confidence intervals for ϕ(y), we use the normal approxi-

mation centered at ϕ̃(y), the bias-corrected order-m estimate:

ϕ̃(y) = ϕ̂m(y) − B̂m(y), (3.4)
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where B̂m(y) is the plug-in version of Bm(y), replacing ρy and ℓy by their consistent estimators

derived above. Of course by doing so, we will increase the variance of the estimator ϕ̂m(y),

so we estimate this variance by a bootstrap algorithm. This is illustrated in the next section.

4 Illustrative Examples

4.1 Some Monte-Carlo experiments

To facilitate the comparison with the results obtained in Daouia et al. (2008), we have chosen

in the illustrations the output orientation3. Here, the bias corrected regularized estimator is

given by ϕ̃(x) = ϕ̂m(x) + B̂m(x).

Uniform distribution

We first simulate, as in Daouia et al., random samples (Xi, Yi), i = 1, . . . , n uniformly

distributed on the triangle limited by the frontier ϕ(x) = x with 0 ≤ x ≤ 1. Table 1 displays

the results. The estimation is performed for x = 1, so that the sample sizes n coincide with

the “effective” sample size Nx, the number of observation at the left of x = 1. We computed

also the estimators with the known true value of ρ, which in this example is ρ0 = 2.

We observe a nice behavior of our estimators, with an increasing accuracy, as expected,

when the effective sample size Nx increases. The estimation of ρ and ℓ is not an easy task,

but still we have a reasonable behavior, with the simple rule we have chosen for m and a:

m = N
1/3
x and a = 10. The estimator ϕ̃ has a very nice behavior for all values of Nx. It is a

regularized estimator with an approximate normal distribution but in addition, it has much

better properties than the usual FDH estimator (both in term of bias and mean squared

error). It should be noticed, that the estimation of the frontier is stable to the choice of

the order-m base estimator because the correction for the bias performs quite well for most

of the chosen values of m. This is not true for the estimation of ρ and ℓ, even if we have

nice results: here the choice of an optimal m and a remains an open issue, and mainly for

the estimation of the tail index ρ. The cost of estimating ρ (which in most econometric

applications is supposed to be equal to p + 1, i.e. there is a jump of the joint density of

(X, Y ) at the frontier) appears clearly when comparing the results for the estimation of the

frontier when the true value of ρ = 2 is known: they are much better.

Finally, by looking to Tables 1 and 3 in Daouia et al. (2008) using also Pickand’s estimator

of ρ, but with quantile-type frontiers, we see that we obtain much more accurate estimators

of both ρ and ϕ. To summarize this comparison, we have here, in the same scenario, with

3We can find in the appendix the change of the notations.
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comparable sample sizes, a gain of the MSE when estimating ρ by a factor of the order 1000,

8, 6 and 1.3 for the samples sizes 100, 500, 1000 and 5000, respectively. In addition, for

this comparison, we selected in the Tables from Daouia et al., the best order of the quantile

whereas here, we selected the order m and a given by our simple rule.

For the estimation of the frontier point, the gain of the MSE has a factor of the order

450, 70, 150 and 60 (respectively). We observe also some qualitative gain when estimating

the frontier when ρ is known, but here the gain is of a factor ranging from 2.5 to 5 when Nx

goes from 500 to 5000. Again in this comparison, we selected, in the results from the Tables

in Daouia et al., the best value of the quantile order.

Also, as a general comparison bewtween the two approaches (using the order-m here and

using the order-α quantile as in Daouia et al., 2008), we can say that with the approach

here, we gain a lot in terms of the stability of the estimators with respect to the choice of

the order of the base estimator. Tables 1 and 3 in Daouia et al. indicate indeed a huge

sensitivity to the choice of the quantile order when defining the base estimator (the MSE

can change by a factor of several thousands if the wrong order is selected) and this was not

the case here where we observe a great stability in the estimation of the frontier (we do not

reproduce the results to save place).

Table 1: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: Uniform case, true values are ϕ0 = 1, ρ0 = 2 and ℓ0 = 1

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -0.423441 0.405546 -0.086590 0.167862 -0.030069 0.103272 0.006700 0.032857

ℓ̂ 0.129996 0.143781 0.134017 0.140254 0.123555 0.109258 0.090057 0.052087

ℓ̂(ρ0) 0.436484 0.357537 0.183585 0.063740 0.129845 0.031946 0.071624 0.009915

ϕ̃ -0.070644 0.008321 -0.017592 0.001231 -0.008925 0.000501 -0.002371 0.000087
ϕ̃(ρ0) -0.035497 0.003719 -0.011318 0.000603 -0.006952 0.000255 -0.002778 0.000053
ϕ̂F DH -0.090498 0.010401 -0.040257 0.002071 -0.028140 0.000993 -0.012811 0.000206

Beta densities for the efficiency term

Now, we analyze the results with different behaviors of the density of the efficiencies at the

frontier points (density tending to infinity, having a jump or converging to zero at the frontier

points). We select the following model Y = X V where X ∼ Unif(0, 1) and V ∼ Beta(β, β)

with values of β = 0.5, 1 and 3. Note that in all the cases, E(V ) = 0.5. Again we focus

the results for the value x = 1, so that Nx = n. The results are shown in Tables 2 to 4.

In the first case the density tends to infinity at the frontier, and the FDH estimator should

be performant. It is indeed the case but our regularized estimator do even slightly better

for Nx = 100 but much better for larger Nx reaching both less Bias and MSE. Again, the
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estimation of ρ and ℓ is more difficult but our rule of thumb (m = N
1/3
x and a = 10) shows

nice behavior of the estimators. When β increases (jump at the frontier for β = 1 and going

smoothly to zero when β = 3), the results for the estimators of the frontier deteriorate a

little, as expected but our regularized estimator is always better than the FDH estimator

both for bias and MSE. In this latter case, we illustrate the estimation of the frontier for the

full range of X in the next section.

Table 2: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: case of the Beta(0.5, 0.5), true values are ϕ0 = 1, ρ0 = 1.5 and ℓ0 =
0.4244.

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -0.063176 0.168646 0.146422 0.111090 0.123820 0.061474 0.096074 0.021250

ℓ̂ 0.310572 0.124454 0.237085 0.075298 0.201660 0.052083 0.141359 0.024371

ℓ̂(ρ0) 0.341740 0.138351 0.188876 0.039628 0.153513 0.025683 0.092683 0.009117

ϕ̃ -0.053538 0.005929 -0.007142 0.000553 -0.004477 0.000217 -0.000053 0.000022
ϕ̃(ρ0) -0.048796 0.005060 -0.020620 0.000787 -0.014593 0.000391 -0.005882 0.000062
ϕ̂F DH -0.072121 0.007519 -0.024156 0.000848 -0.016576 0.000391 -0.005347 0.000042

Table 3: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: case of the Beta(1, 1), true values are ϕ0 = 1, ρ0 = 2 and ℓ0 = 0.5.

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -0.331901 0.444470 0.086348 0.248021 0.109707 0.135392 0.138556 0.065002

ℓ̂ 0.359753 0.193566 0.280033 0.109485 0.253591 0.087861 0.201901 0.053630

ℓ̂(ρ0) 0.506769 0.342331 0.273330 0.088737 0.222238 0.055914 0.141044 0.021551

ϕ̃ -0.091613 0.015110 -0.018562 0.002537 -0.009895 0.001006 0.000817 0.000188
ϕ̃(ρ0) -0.059530 0.007942 -0.027354 0.001641 -0.019782 0.000782 -0.009198 0.000161
ϕ̂F DH -0.120797 0.018561 -0.055114 0.003931 -0.039773 0.001989 -0.017015 0.000375

Table 4: Bias (Bias) and Mean Squared Error (MSE) of the estimates over 1000 Monte-
Carlo simulations: case of the Beta(3, 3), true values are ϕ0 = 1, ρ0 = 4 and ℓ0 = 2.5.

Nx = 100 Nx = 500 Nx = 1000 Nx = 5000
Bias MSE Bias MSE Bias MSE Bias MSE

ρ̂ -2.053562 4.921744 -0.825120 4.708721 -0.630922 2.096024 -0.419817 0.647445

ℓ̂ -1.068665 1.595360 -1.057668 1.413049 -1.042189 1.310455 -0.967238 1.047182

ℓ̂(ρ0) 0.348089 5.674396 -0.585639 0.849339 -0.670422 0.725935 -0.742065 0.634133

ϕ̃ -0.199484 0.051431 -0.063119 0.030965 -0.041521 0.013676 -0.018208 0.003018
ϕ̃(ρ0) -0.019372 0.008809 0.005711 0.002002 0.008604 0.001276 0.011473 0.000432
ϕ̂F DH -0.237955 0.061255 -0.155909 0.026241 -0.131248 0.018605 -0.086933 0.008159
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4.2 Estimation of the frontier function

One simulated sample

We first illustrate the behavior of the frontier estimate in the case of a beta density for the

efficiencies, with the model described in the preceding subsection. We show the case where

the density is converging smoothly to zero at the frontier (β = 3). For estimating the frontier

function over the full range of X, it seems reasonable to assume that the function ρx = ρ

is constant over the range of X (which is true in the simulated scenario). We estimate this

value by a trimmed mean of the local values ρ̂x computed over a fixed grid of 100 values

of x from 0.25 till 1 (the trimming is used to eliminate local numerical instability when

computing (3.1)). In this step of estimating ρx, we got better results by taking m = N
1/3
x

but a = 5. We obtained the value 3.5126 where the true value is 4. Then we compute

the values ℓ̂x and ϕ̃(x) on the same grid of values for x. Here we have chosen, as in the

Monte-Carlo experiments, the value of m = N
1/3
x and a = 10. The 95% confidence intervals

for each value of x were obtained by using the normal approximation, centered on ϕ̃(x) and

variance estimated by a bootstrap algorithm.

The results are quite sensible and we see in Figure 1 that our estimate is better than

the FDH estimate (closer to the true frontier). On the left panel we see clearly that the

pointwise confidence intervals cover the true frontier. In particular it appears in this sample

that the FDH estimator is even outside the 95% confidence intervals for all x. We can also

appreciate the robustness of the frontier estimate (relative to the FDH estimator) looking

to the right panel, when we add one outlier in the data set (keeping our original estimate

of ρ). Of course, in practice, we could easily detect this outlier (even for dimension p > 1,

because it is far outside the confidence interval at this point). Once this is observed, and as

always when detecting potentail outliers, this point could be removed from the sample only

after a careful analysis.
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Figure 1: Linear frontier: Y = X V with V ∼ Beta(3, 3) and n = 1000. Right panel, with
one outlier at Xn+1 = 0.5, Yn+1 = 0.8. The base (biased) estimator ‘phi-m’ is ϕ̂m(x) and our
regularized estimator ‘phi-tilde’ is ϕ̃(x).

One real data example

We use the same real data example as in Cazals et al. (2002) and Daouia et al. (2008) on

the frontier analysis of 9521 French post offices observed in 1994, with X as the quantity

of labor and Y as the volume of delivered mail. In this illustration, we only consider the

n = 4000 observed post offices with the smallest levels xi.

We first start by assuming, as in most econometric frontier studies, that the joint density

of (X, Y ) has a jump on the frontier, so ρx = p+1 = 2. The cloud of points and the resulting

estimates are provided in Figure 2. The FDH estimator is clearly determined by only a few

very extreme points. If we delete 4 extreme points from the sample (represented by circles in

the figures), we obtain the pictures of the right panel: the FDH estimator changes drastically,

whereas the regularized estimator is very robust to the presence of these 4 extreme points.

Again the confidence intervals were obtained by a bootstrap algorithm.
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Figure 2: Resulting estimator ϕ̃(x) for the French post offices with ρ = 2. In the left panel,
the 4 extreme data points (circles) are used in the estimation of the two frontier functions.

If we prefer to estimate ρx, we proceed as above by assuming that ρx = ρ is an unknown

constant and we average the values of ρ̂x obtained over a grid of values of x (again with

a trimmed mean). In our case here, larger values of m were needed for computing ρ̂x, to

avoid numerical instabilities in (3.1): we choose m = 10N
1/3
x keeping a = 10. In this first

step estimation of ρ, we only used the sample without the 4 outliers detected above. This

provided the estimator of ρ̂ = 3.3465, indicating that the density of the efficiencies is tending

to zero at the frontier, but not its first derivative; a reasonable result when looking to the

cloud of data points in Figure 2.

Then we proceed as usual for estimating the frontier with the full sample, as if the true

value of the tail index would be 3.3465, keeping the basic rule of thumb m = N
1/3
x and

a = 10, as in the Monte-Carlo exercices above. The results are displayed on the left panel

of Figure 3, we see that this higher value of ρ̂ (compared to ρ = 2 in Figure 2) push our

estimator to the North, as expected, because the correction for the bias is larger.

The right panel of the figure, where the 4 extreme data points are excluded from the

sample, indicates how the frontier estimate is robust to the outliers (as compared to FDH).

We observe again that after the first outlier, most of the FDH frontier is outside the 95%

confidence intervals.
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Figure 3: Resulting estimator ϕ̃(x) for the French post offices with ρ̂ = 3.3465. In the
left panel, the 4 extreme data points (circles) are used in the estimation of the two frontier
functions.

5 Conclusions

We have derived in this paper the theory of an estimator of a frontier function having an

asymptotic normal distribution. The basic tools is the order-m partial frontier where we let

the order m to converge to infinity when n → ∞ but at a slow rate. Indeed if the rate is too

fast, the order-m frontier will converge to quickly to the full frontier and the corresponding

estimator will converge to the FDH estimator, having a Weibull limiting distribution. The

final estimator is then corrected for its inherent bias. We thus can view our estimator as

a regularized frontier estimator which, in addition, is more robust to extreme values and

outliers than the usual nonparametric frontier estimators.

In addition, if the tail index ρy and the behavior of the conditional distribution of X

given that Y ≥ y near the frontier points is not known (ℓy), we provide an easy way to

estimate them consistently.

The performances of our estimators are evaluated in finite samples trough some Monte-

Carlo experiments, showing very nice regular behavior of the estimators in particular for

the estimator of the frontier. We illustrate also how to provide, in an easy way, confidence

intervals for the frontier function in a simulated data set where the FDH estimator gives

very poor results. We also illustrate our procedure with a real data set from the French Post

Offices.

Important research issues are still open and deserve for future work. This includes a way

for selecting an optimal m, which is particularly important for deriving the estimator of the
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tail index ρy. But this is known as a difficult problem in extreme values. Once ρy is well

estimated (or assumed to be known) the estimate of the frontier itself is much more robust

to the choice of the order m. An other trail of research would be to define estimators of ρy

and ℓy when they are considered as smoothed function of y.

Appendix: The Output Oriented Case

In this section we only give the useful notations and formulas for the output oriented case.

Here the attainable production set is defined as Ψ = {(x, y) ∈ R
p
+ × R+ | x can produce y}

and the production frontier is represented by the graph of the production function ϕ(x) =

sup{y | (x, y) ∈ Ψ}.. The distribution function of (X, Y ) can be denoted F (x, y) and F (·|x) =

F (x, ·)/FX(x) will be used to denote the conditional distribution function of Y given X ≤ x,

with FX(x) = F (x,∞) > 0. It has been proven in Cazals et al. (2002) that under the free

disposability assumption, the production function can equivalently be defined by

ϕ(x) = sup{y ≥ 0|F (y|x) < 1} (A.1)

The order-m partial frontier is now defined as

ϕm(x) = E
[
max(Y1, . . . , Ym)|X ≤ x

]
, (A.2)

where (Y1, . . . , Ym) are m i.i.d. random variables generated by the conditional distribution

of Y given X ≤ x. It is shown in Cazals et al. that ϕm(x) =
∫ ∞
0

(
1 − [F (u|x)]m

)
du =

ϕ(x) −
∫ ϕ(x)

0
[F (u|x)]m du, so that ϕm(x) → ϕ(x) as m → ∞.

Nonparametric estimators of these frontiers are obtained by plugging the empirical ver-

sion of the unknown distribution F (·|x) in the definition above. So we obtain

ϕ̂(x) = sup{y ≥ 0|F̂ (y|x) < 1} = max
{i:Xi≤x}

Yi (A.3)

ϕ̂m(x) = ϕ̂(x) −
∫ ϕ̂(x)

0

[F̂ (u|x)]m du, (A.4)

where F̂ (y|x) = F̂ (x, y)/F̂X(x) with F̂ (x, y) = 1/n
∑n

i=1 1I(Xi ≤ x, Yi ≤ y) and F̂X(x) =

1/n
∑n

i=1 1I(Xi ≤ x). For any given x and a fixed value of m, we have as n → ∞,

√
n

σ(m, x)

(
ϕ̂m(x) − ϕm(x)

) L−→ N (0, 1), (A.5)

where the variance can be written, as in (2.2), as

σ2(m, x) =
2m2

FX(x)

∫ ϕ(y)

0

∫ ϕ(y)

0

F m(y|x)F m−1(u|y)(1− F (u|x))1I(y ≤ u) dy du. (A.6)
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The regularity condition can be written here as

FX(x)(1 − F (y|x)) = ℓx(ϕ(x) − y)ρx + o(ϕ(x) − y)ρx , as y ↑ ϕ(x), (A.7)

where ℓx > 0, ρx > p and ϕ(x) is differentiable in x with strictly positive first partial

derivatives. Then, from the equation (2.5) in Daouia et al. (2008), we obtain the useful

relation, as m → ∞,

ϕ(x) − ϕm(x) = Γ

(
1 +

1

ρx

) (
1

m ℓx

)1/ρx

+ o(m−1/ρx). (A.8)

Then, the asymptotic theory given in Sections 2 and 3 can easily be adapted.
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