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Abstract

We propose a dynamic competitive equilibrium model of limit order trading,

based on the premise that investors cannot monitor markets continuously. We

study how limit order markets absorb transient liquidity shocks, which occur when

a significant fraction of investors lose their willingness and ability to hold assets.

We characterize the equilibrium dynamics of market prices, bid-ask spreads, order

submissions and cancelations, as well as the volume and limit order book depth

they generate.
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Investors do not trade each and every asset continuously. They face a multiplicity of

tasks to which they must allocate time and effort. They must participate in meetings,

interact with customers and comply with reporting requirements. In order to make

efficient financial decisions, they need to collect and process information regarding asset

supply and demand, as well as the fundamentals of underlying cash flows. In doing so

they must decide which assets to monitor in priority. Because these activities take time,

they prevent investors from continuously making trading decisions.1

That all investors are not continuously trading reduces liquidity (Demsetz, 1968,

Garbade and Silber, 1979). However, investors can use the order book to leave limit

orders in the market. In the words of Harris (2003): “Limit orders represent absent

traders [enabling them] to participate in the markets while they attend to business

elsewhere.”

The goal of this paper is to analyze the equilibrium dynamics of the order book

in this context. We focus on market dynamics following liquidity shocks. Liquidity

shocks arise when a significant fraction of the investor population is affected by a

change in its willingness and ability to hold assets, as in Grossman and Miller (1988).

This can occur because of changes in the characteristics of assets. For example, many

institutions are required to sell bonds which lose their investment grade status, or to

sell stocks when they are de-listed from exchanges or indices (see Greenwood, 2005).

Alternatively, liquidity shocks can reflect events affecting the overall financial situation

of a population of investors; for example, Funds experiencing large outflows must sell

their holdings, as documented by Coval and Stafford (2007). For regulatory reasons,

after large losses, banks must sell risky assets, as discussed by Berndt, Douglas, Duffie,

and Ferguson (2005) for the corporate debt market. Khandaniy and Lo (2008) discuss

how deteriorating credit portfolios and the need to reduce risk exposure compelled

hedge funds to execute large sales in equity markets in the second week of August 2007,

corresponding to a severe liquidity shock.

To analyze the equilibrium reaction of limit order markets to liquidity shocks, we

address the following questions: How do prices react and adjust? What are the dynam-

ics of liquidity supply and demand and the corresponding evolution of the order book,

trading volume and transactions costs? What are the optimal orders for investors?

1Corwin and Coughenour (2008) find empirically that specialists allocate effort towards certain
stocks, which results in them trading less frequently the other stocks they are entrusted with.
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We study these issues in a dynamic rational expectations model: anticipating the

dynamics of prices and of the order book, agents design their optimal orders. In equilib-

rium, these orders give rise to the anticipated market dynamics. We consider an infinite

horizon, continuous–time market with a continuum of rational, risk–neutral competi-

tive investors. Each investor can hold up to one unit of the asset. The asset is in fixed

supply and a fraction of the investors is initially endowed with one unit. Investors de-

rive a utility flow from holding the asset. For high-valuation investors this utility flow

is greater than for low-valuation investors. To model the aggregate liquidity shock, we

follow Duffie, Gârleanu, and Pedersen (2007) and Weill (2007) and assume that at time

0 all investors switch to the low-valuation type. Then, as time passes, some investors

switch back to a high valuation. More precisely, each investor is associated with a

Poisson process and switches back to high-valuation at the first jump in this process.

Efficiency would require that low-valuation investors sell to high-valuation investors.

Such efficient reallocation of the asset is delayed, however, because all investors are not

continuously trading on the market. To model discontinuous market presence, we follow

Duffie, Gârleanu, and Pedersen (2005) and assume that final investors make contact

with the market at Poisson arrival times. The greater the intensity of this Poisson

process, the greater the frequency with which investors make contact with the market.

When making contact with the market, investors can place limit orders to sell or

buy, and, if they already have orders in the order book, they can cancel or modify them.

Marketable limit orders (i.e., sell orders at prices lower than or equal to the best bid

and buy orders at prices greater than or equal to the ask) hit the market quotes and

are immediately executed. Non–immediately executed limit orders are stored in the

order book. The dynamics of the order book, in particular the evolution of the bid–ask

spread and its depth at the quotes, are endogenous.

In equilibrium, trading occurs in continuous time, but volume, which is initially

very low, gradually increases until it reaches a maximum and then progressively dies

out. Furthermore, the equilibrium transaction price drops sharply at the time of the

liquidity shock, then gradually recovers until it reverts to its long term equilibrium level.

The initial price drop and low level of trading are the immediate consequences of the

liquidity shock. The hump–shaped pattern of trading volume and the progressive price

recovery reflect the delayed and gradual adjustment of the market due to discontinuous

market presence.
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High valuation investors, when making contact with the market, place buy orders,

while low-valuation investors place orders to sell. The reaction of the limit order market

to the liquidity shock can be decomposed into two phases. In the first phase, buy orders

are placed at very low prices; these set the bid quote and are hit by market orders to

sell. But, as time passes buy orders are placed at higher and higher prices. In the second

phase, buy orders have reached such high prices that they now hit the ask quotes in

the order book. The behavior of the low-valuation investors also varies during the two

phases. Initially, they are indifferent between i) placing limit orders to sell at high

prices or ii) immediately hitting the bid quote. During this first period, their non–

immediately executed orders are placed at lower and lower ask prices. In the second

phase, the low-valuation investors place market orders to sell.

Thus, after the shock, there is initially a convergence process, by which the market

ask quote declines and the market bid quote increases. Correspondingly, the bid–ask

spread declines and depth on the ask side of the order book grows, beginning at high

prices, then at progressively lower prices. What is the rationale for this pattern? For

a low-valuation investor considering how to price her limit sell order, the following

tradeoff arises: If she sets a higher price, the benefit is that she gets a better deal. But

the cost is that she must wait longer. The cost of waiting is the time value of money,

minus the expected utility derived from holding the asset while waiting. Consider a

given execution time. For early investors, the probability of switching to high valuation

prior to this time is higher than for investors arriving on the market later. Thus, at

this execution time, the expected utility derived from holding the asset while waiting is

higher for early investors than for late investors. Consequently, early investors have a

lower cost of waiting and place orders to sell at higher prices than late investors. Hence,

the order book progressively fills on the ask side, first at high prices and subsequently

at progressively lower prices.

Our theoretical analysis generates several empirical implications in line with stylized

facts. Order placement activity concentrates at the best quotes and orders of similar

type tend to follow each other (in the first phase of our equilibrium there is a sequence of

market sell orders, while in the second phase there is a sequence of market buy orders.)

Both of these implications are in line with the order book and flow dynamics empirically

evidenced by Biais, Hillion, and Spatt (1995). The implications of our theoretical model

are also in line with the empirical findings of Da and Gao (2007) and Khandaniy and

4



Lo (2008), that after a liquidity shock there is a sharp decline in price and strong order

flow imbalance reflecting selling pressure, and then the price gradually recovers.

Progress in communications technology and the computerization of exchanges and

trading rooms have reduced the cost of market access. An important recent develop-

ment is algorithmic trading, which increases the speed with which investors can process

information and which reduces the cost of implementing trading strategies. In the lan-

guage of our model, this corresponds to an increase in the rate at which investors make

contact with the market. Hendershott, Jones, and Menkveld (2007) offer an empirical

study of these developments. Their proxy for algorithmic trading is the ratio of the

number of messages (new order placements, cancelations and modifications) to volume

traded. They find that this ratio increases, especially as the market becomes more com-

puterized. In the context of our model, this ratio can be analyzed, along with its link to

the rate at which traders make contact with the market. Consistent with the evidence

of Hendershott, Jones, and Menkveld, we show that as the rate at which investors make

contact with the market grows larger, so too does the ratio of the number of messages

to trading volume. This result stems from two facts. On the one hand, trading volume

is bounded above by its Walrasian level, which is finite. On the other hand, as the rate

at which investors make contact with the market grows larger, traders place more de-

manding orders and cancel and modify them frequently and quickly. This is in line with

the stylized fact that on electronic markets, with the progress of algorithmic trading,

cancelations have become very frequent (see Hasbrouck and Saar, 2002). Hasbrouck

and Saar (2009) provide evidence that quickly cancelled limit orders often correspond

to modifications, whereby the order is resubmitted at another price or transformed into

a market order. These two phenomena become prevalent in our equilibrium as the

intensity of contact with the market grows large.

This paper is the first to introduce limit orders into the liquidity paradigm initiated

by Duffie, Gârleanu, and Pedersen (2005).2 By doing so, we add to the rich literature

2Duffie, Gârleanu, and Pedersen (2002) apply the paradigm to markets for borrowing stocks.
Vayanos and Wang (2007), Weill (2008) and Vayanos and Weill (2008) study cross-sectional asset
pricing in multi-asset extensions of the original model. Lagos and Rocheteau (2009) and Gârleanu
(2009) demonstrate that relaxing the asset holding constraint can have important impact on asset
prices and on the entry decisions of intermediaries. Mı́nguez Afonso (2008) study the externalities
involved in investors’ entry decisions. Weill (2007), Lagos, Rocheteau, and Weill (2007) and Weill
(2008) study the liquidity provision of intermediaries in response to liquidity shocks similar to the one
studied in the present model. Finally, Duffie and Manso (2007) and Golosov, Lorenzoni, and Tsyvinski
(2008) study the diffusion of private information about asset payoffs in search-and-matching financial
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on limit order markets (see the insightful survey by Parlour and Seppi, 2008). The

first dynamic models of limit order books were offered by Foucault (1999) and Parlour

(1998). The former proposes an elegant rational expectations model in which orders

reflect the anticipations of traders about future market prices, but traders and orders

survive only one period. The latter provides a rich analysis of the dynamics of depth

with long lived orders, but the bid and ask quotes are exogenous. Foucault, Kadan, and

Kandel (2005) offer an interesting analysis of long lived orders and endogenous quotes,

but only quote improving orders are allowed, while cancelations and modifications are

ruled out. Rosu (2009) presents a fully dynamic model, where traders arrive on the

market at Poisson times; he provides an insightful analysis of the game played by

strategic traders, and characterizes Markov perfect equilibria, where only the number of

buyers and sellers matters. Because traders are large relative to the market, their orders

have an impact on prices, which Rosu (2009) characterizes. While these papers take a

game theoretic approach to analyze interactions between traders with market power,

we study a continuum of competitive agents, where orders reflect investors’ marginal

valuation of the asset rather than strategic considerations. This different approach

demonstrates that, with imperfect monitoring and discontinuous market presence, the

forces of competition and market clearing yield order book dynamics consistent with

several stylized facts. It also enables us to study how, in this context, the joint evolution

of pricing, orders and cancelations reflect the structure of valuations in the population

of investors as well as the trading technology.

The next section presents our model. Section 2 characterizes the equilibrium. Sec-

tion 3 presents implications from our analysis. Section 4 discusses the robustness of our

results. The last section presents our conclusions. Proofs not given in the text are in

the appendix. Further useful computations and results, as well as an extension of our

model are available in the addendum to this paper (Biais and Weill, 2009).

markets. Asset liquidity has also been analyzed within the monetary search models of Kiyotaki and
Wright (1989) and Lagos and Wright (2005): see, for instance, Lagos (2005), Lester, Postelwaite, and
Wright (2009a,b) and Rocheteau (2009).
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1 Model

1.1 Asset and agents

Consider the market for an asset, in positive supply s ∈ [0, 1). The economy operates in

continuous time and is populated by a [0, 1] continuum of infinitely lived, competitive

and risk-neutral investors who discount the future at the same rate r > 0. Investors can

hold either zero or one unit of the asset and derive either high or low utility from holding

the asset. For high-utility investors, the utility flow per unit of time is normalized to

θ(t) = 1. For low-utility investors, it is equal to θ(t) = 1 − δ, where δ > 0. There is

also a Treasury bill with return r.

At time 0, the market is hit by an aggregate liquidity shock, reducing the utility

flow to 1− δ for all investors. But the liquidity shock is transient. Thus, as time goes

by, investors randomly switch back to the high utility state, and stay there forever.

For simplicity, we assume that the times at which investors switch back to high–utility

are exponentially distributed, with parameter γ, and are independent across investors.

Hence the law of large numbers (Sun, 2006) applies and the measure of high-utility

investors at time t, denoted by µh(t), is equal to 1 − e−γt. That is, the measure of

high–utility investors at time t is equal to the probability of being high–utility at that

time, conditional on being low–utility at time zero. Because all investors start in the

low state, we have µh(0) = 0.

Conditional on being in the low state at time t, the probability that an individual

investor has switched to the high state by time u ≥ t is:

πh(t, u) =
µh(u)− µh(t)

1− µh(t)
. (1)

The numerator is the measure of investors who switch from low to high in the interval

[t, u], and the denominator is the measure of investors who are still in the low state at

time t. Dividing by (u − t) and taking the limit as u goes to t, we obtain the hazard

rate of switching from low to high utility at time t, which is equal to γ.

Note that, since

s < 1 = lim
t→∞

µh(t), (2)

it follows that, in the steady state, the marginal investor has a high utility. We denote
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by Ts the time at which the measure of investors with high–utility reaches s:

µh(Ts) = s.

The evolution of µh(t) and the construction of Ts are illustrated in Figure 1.3

µh(t)

s

time

1

Ts

0

0

Figure 1: The time path of the fraction µh(t) = 1− e−γt of high-valuation investors

1.2 Walrasian Equilibrium

First consider the benchmark case where market monitoring is perfect and costless and

all investors are permanently ready to trade. The investors are competitive and take the

market-clearing price p(t) as given. In equilibrium, p(t) must be such that the marginal

investor is indifferent between holding the asset and holding the Treasury bill. After

time Ts, the mass of investors who derive high–utility from holding the asset is greater

than s. Hence the marginal investor is a high–utility type and the price is:

p(t) =
1

r
.

3An alternative specification, closer in spirit to Grossman and Miller (1988), would be to assume that
investors come from two separate populations: a population of low–valuation investors who initially
hold the asset, and a population of high–valuation investors who progressively enter the economy
according to the function µh(t). In Section IV of the Addendum (Biais and Weill, 2009), we show that
this approach would yield similar results.
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Before time Ts, in contrast, the marginal investor derives low–utility from holding the

asset. Hence, the price must be such that,

rp(t) = 1− δ + ṗ(t).

This equality ensures that, during a small time interval [t, t+dt], the marginal investor

is indifferent between holding the Treasury bill and holding the asset. Indeed, the left–

hand–side of the inequality is the instantaneous return on investing p(t) dollars in the

Treasury bill. The right–hand–side sums the marginal-investor utility flow from holding

one share, and the capital gain from buying one share at t and selling it at t + dt. The

above conditions imply that, at time t ≤ Ts, the Walrasian price is equal to:

p(t) =
1− δ

r
+

δ

r
e−r(Ts−t).

Thus, the price deterministically increases until it reaches 1/r at Ts. One may

wonder why investors do not immediately bid up this predictable price increase? This

is because the demand for the asset builds up slowly: on the extensive margin, high-

valuation investors cannot hold more than one unit of the asset; and, on the intensive

margin, the recovery from the aggregate liquidity shock occurs progressively as investors

switch back to high utility flows. Such slow demand build up has been observed in many

markets (see e.g., Coval and Stafford, 2007) and reflects “limits to arbitrage.”4

The greater the initial liquidity shock (δ), the lower the price. Also, the lower the

rate at which agents switch back to high utility (γ), the greater the time it takes for

the market to recover (Ts), and the lower the price.

In the Walrasian market, trading volume can be readily characterized. Before time

Ts, µh(t) < s and all high–utility investors hold one share. Conversely, the only investors

who do not hold the asset are low–utility types. Hence there is a mass 1 − s of low

utility investors who do not own the asset. Trading occurs as these investors switch (at

rate γ) to high utility and purchase the asset from low–utility owners. This generates

an instantaneous trading volume equal to γ(1 − s)dt. After time Ts, all assets are in

the hands of high-valuation investors forever, and the trading volume is zero.

4See Lagos and Rocheteau (2009) and Gârleanu (2009) for a comprehensive analysis of position
limits in search-and-matching financial markets.
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2 Trading with imperfect monitoring

2.1 How the limit order book works

Denote by ρ > 0 the intensity of market monitoring and assume that investors establish

contact with the market at Poisson arrival times with intensity ρ. Contact times are

independent across investors and independent from investors’ utility processes.5 When

an investor contacts the market, she trades through a limit order book. She can place

market buy or sell orders immediately executed at the current ask or bid. Otherwise she

can place limit sell (resp. buy) orders at prices strictly above (resp. below) the current

market quotes, which are not immediately executed. When contacting the order book,

investors can also update and cancel any existing limit order. We assume that order

placement, modification or cancelation are costless.

A limit order to sell submitted at time t at limit price p is filled after the first time

the market price is greater than or equal to p, according to standard price and time

priority rules. That is, it is executed at the limit price p i), before sell orders at higher

prices (price priority) and ii) before limit sell orders at the same price submitted after t

(time priority). The case of limit buy orders is symmetric. In equilibrium, the number

of (market or limit) buy orders executed at time t at the current market price p(t) must

equal the number of (market or limit) sell orders filled at that price.

2.2 Equilibrium

We consider competitive equilibria where investors take the price and order book process

as given, and respond to this process by placing optimal limit or market, buy or sell

orders. In equilibrium, the price and order book process resulting from these orders is

that which had been anticipated by the agents, and the market clears at each point in

time.

In the remainder of this paper, we restrict our attention to the class of monotone

limit order equilibria (MLOE), defined as equilibria whose price paths have the following

property:

– deterministic, bounded, piecewise continuously differentiable,

5In Section 4, we relax this assumption and consider what happens when, with some probability,
investors contact the market as soon as their type changes. There we show that the qualitative features
of our equilibrium are robust to that extension.
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– strictly increasing over some initial time interval [0, Tf ), for some 0 ≤ Tf ≤ ∞,

– constant at all subsequent times, [Tf ,∞).

These restrictions are satisfied, in particular, by the Walrasian price path decribed

above.

2.3 A Unique Candidate Equilibrium

2.3.1 Elementary Properties of an Equilibrium

We first show that a MLOE must have the following elementary properties:

Lemma 1. In an MLOE, i) p(Tf ) = 1/r, ii) Tf < ∞, and iii) Tf > 0.

To see why points i) and ii) in Lemma (1) hold, note that, if either Tf < ∞

and p(Tf ) < 1/r, or if Tf = ∞ and p(Tf) = limt→∞ p(t) ≤ 1/r, then at each time

p(t) < 1/r, implying that high-valuation investors find it strictly optimal to buy and

hold the asset. Thus, asymptotically all high-valuation investors would hold the asset,

which is impossible given that the asset supply s is less than the asymptotic measure

of high-valuation investors, limt→∞ µh(t) = 1. If, on the other hand p(Tf) > 1/r, then

for all t large enough no investor would be willing to hold the asset, which also cannot

be the basis of an equilibrium.

To see why point iii) holds, note that if Tf = 0, the price is immediately equal to

1/r at time zero. But, at that time all investors have a low-valuation and thus prefer

to sell since the price is 1/r. Thus, the market supply in a time interval of length ∆

around zero is ρs∆ + o(∆). By the same token, since the measure of high-valuation

investors is very close to zero, the demand is of order o(∆). So the market cannot clear.

Our next lemma states that there is no limit buy order before Tf :

Lemma 2. In an MLOE, when coming into contact with the market during [0, Tf), an

investor does not find it optimal to submit a limit buy order.

This lemma stems from the fact that a limit order to buy at price p < p(t) will never

be executed and can therefore be ignored, while a limit buy order at price p > p(t) is

executed immediately at price p(t) and is therefore equivalent to a market order.

Given that Lemma 2 allows us to ignore limit-buy orders, we may categorize in-

vestors into 6 types. An investor’s type includes her utility flow (high “h,” or low “ℓ”)
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and her ownership status (non–owner “n,” or owner). We also distinguish asset owners

who have not previously placed a limit sell order in the order book (“o”) from owners

who have previously placed a limit sell order in the book (“b”). Of course, these in-

vestors differ in terms of their limit prices, but we need not keep track of these at this

stage of the analysis. The set of investor types is, then:

{hn, ℓn, ho, ℓo, hb, ℓb} .

2.3.2 The demand of high-valuation investors

First, it is easy to show that, in an MLOE, the asset demand of high-valuation investors

has essentially the same form as in the Walrasian case:

Lemma 3. In an MLOE the following trading plan is strictly optimal for high-valuation

investors coming into contact with the market at time t ∈ [0, Tf):

ho: hold on to the asset until at least Tf ;

hb: cancel any previously placed limit order, then behave as ho;

hn: buy immediately, then behave as ho.

After Tf , the same plan is weakly optimal.

The trading plan of hn investors reflects that, since the price is increasing towards

1/r, it is optimal to buy as quickly as possible. Together with investors’ ability to

submit limit sell orders, the lemma implies:

Lemma 4. The price path is continuous.

Indeed if the increasing price process were to jump up at some time t ∈ [0, Tf ], an

investor would strictly prefer to submit a limit order to sell immediately after the jump,

rather than a (market or limit) sell order just before the jump. Thus, the asset supply

just before the jump would be zero. This contradicts market clearing since Lemma 3

shows that the demand is strictly positive at all times t ∈ [0, Tf).
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2.3.3 The supply of low-valuation investors

Next, we study the problem of low-valuation investors. To that end, it is convenient to

identify a sell order with its execution time, which we denote by z. Consider an investor

who contacts the market at time t. If she places a market sell order, it is immediately

executed, i.e., z = t. Since the price is strictly increasing over [0, Tf), a limit sell order

at price p(z) ∈ (p(t), 1/r) corresponds to execution time z > t. Submitting no sell order

or submitting limit prices above 1/r results in no execution, which can be identified

with execution time z = ∞. Lastly, the execution time for the limit price 1/r belongs to

[Tf ,∞) and is determined by time priority; as will become clear below, in equilibrium

this must be equal to Tf . Now let Vℓn(t) be the value (maximum attainable utility) of

an ℓn investor and Vℓb(t, z) be that of a ℓb investor with a previously submitted limit-sell

order to be executed at time z > t. To determine which orders are optimal, we study

the function

Nℓ(t, z) ≡ Vℓb(t, z)− [Vℓn(t) + p(t)], (3)

which is the net utility of submitting a limit sell order to be executed at z, rather than

a market sell order. The value obtained with the latter is the current market price p(t),

plus continuation value Vℓn(t).

To analyze Nℓ(t, z), consider the derivative ∂Nℓ(t, z)/∂z, which is the marginal value

of increasing execution time by dz and behaving optimally thereafter. Note first that

the change in execution time is relevant only if the next contact time with the market is

greater than z, an event occurring with probability e−ρ(z−t). In that event, the increase

in execution time has two effects. First, the investor enjoys the asset longer, until z+dz,

and receives the expected utility

Et[θ(z)] dz = (1− δ) dz + δπh(t, z) dz, (4)

i.e. the investor always enjoys utility flow 1− δ, but on top of this she may enjoy δ if

she has switched to high–utility at some point in the interval [t, z], which happens with

probability πh(t, z). The second effect is that the limit order is executed at time z + dz

instead of time z. The corresponding net utility is

p(z + dz)

1 + rdz
− p(z) dz = (ṗ(z)− rp(z))dz, (5)
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where ṗ(z) is the left derivative of the price path, which is well defined given that the

price is continuous (Lemma 4) and piecewise continuously differentiable by assumption.

The first term on the right-hand side of (5) is the capital gain of selling at a later time.

The second term is the time cost of delaying the sale. Taking the two effects of equations

(4) and (5) together, multiplying by the discount factor e−r(z−t) and by the probability

e−ρ(z−t) that the execution time is indeed greater than the next contact time, we obtain

the marginal value of increasing the execution time z:

∂Nℓ

∂z
(t, z) = e−(r+ρ)(z−t) [1− δ + δπh(t, z) + ṗ(z)− rp(z)] . (6)

Integrating over [t, z], and keeping in mind that Nℓ(t, t) = 0, because a limit order to

sell at time z = t clearly yields the same utility as a market sell order at time t, we

obtain our next lemma:

Lemma 5. For a low-valuation investor, the net utility of submitting a limit sell order

is

Nℓ(t, z) =

∫ z

t

(1− δ + δπh(t, u) + ṗ(u)− rp(u)) e−(r+ρ)(u−t) du. (7)

But when z ≥ Tf , we have p(z) = 1/r: thus, equation (6) shows that

∂Nℓ

∂z
(t, z) < 0 when z ≥ Tf . (8)

This has two implications.

First, at any time, low-valuation investors do not find it optimal to submit limit

orders with execution time z > Tf . This leads to the next lemma, pinning down the

execution time of a limit sell order at price 1/r.

Lemma 6. In an MLOE, at any time t < Tf , a limit sell order at price 1/r is executed

at time Tf .

Intuitively, if the execution time were strictly larger than Tf , then low-valuation

investors would prefer to submit limit sell orders at a price just below 1/r, which would

be executed just before Tf . But this also implies that the measure of limit sell orders

at price 1/r would be zero, and therefore the execution time for orders placed at price

1/r would be equal to Tf , a contradiction.

The second implication of (8) is that a low-valuation investor holding on to his

his asset will find it optimal to submit some limit sell order. Consider, for instance,
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the submission of a limit order with a limit price just below 1/r, executed just before

Tf , and focus on the case where the investor does not re–contact the market prior to

that time, so that his initial order is relevant. Then there are two scenarios: either

the investor has switched to high utility by Tf , and since the limit price is 1/r he is

indifferent between selling and not selling. Or, the investor still has low–utility, in which

case he strictly prefers to sell at price 1/r. This yields our next lemma:

Lemma 7. A low-valuation investor strictly prefers to submit some (limit or market)

sell order executed at some time z ≤ Tf , rather than simply holding on to her asset

until her next contact time with the market (z = ∞).

Based on Lemma 6 and 7, there is no loss of generality in restricting attention to

execution times in [t, Tf ]. Optimal sell orders are, then, characterized by the correspon-

dences:

Φ(t) = arg max
z∈[t,Tf ]

Nℓ(t, z)

φ(t) = Φ(t) ∩ (t, Tf ].

In words, the set Φ(t) contains all optimal execution times, and the set φ(t) contains

the execution times of optimal, not immediately executed, limit sell orders. Namely, if

t ∈ Φ(t), then placing a market order is optimal, while if z ∈ φ(t), then placing a limit

sell at price p(z) is optimal.

This bring us to a key property of our model: investors who contact the market

relatively early are more willing to choose relatively late execution times.

Proposition 1. Consider some contact time t and suppose there is some z ∈ φ(t).

Then, for all t′ ∈ (t, z], Φ(t′) ⊆ [t′, z]. In particular, Φ(z) = {z}.

That is, if the investor contacting the market at time t finds it optimal to place a

limit order to sell executed at time z > t, then the trader contacting the market at a

later time t′ > t finds it optimal to place an order executed earlier, i.e., between t′ and

z. In particular, a low-valuation owner contacting the market at time z would place a

sell order executed at time z, i.e. a market sell order.

To prove the proposition, we re-scale the net utility Nℓ(t, z) by e−(r+ρ)t and take the
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derivative with respect to z:

∂

∂z

[
e−(r+ρ)tNℓ(t, z)

]
= e−(r+ρ)z [1− δ + δπh(t, z) + ṗ(z)− rp(z)] . (9)

This is simply the marginal value of delaying, but measured in time-zero consumption

units. Observe that the derivative (9) is decreasing in the contact time t; indeed,

the only way it depends on the contact time t is through the probability πh(t, z) that

during [t, z] there was a switch to high utility. Now, that probability is higher for early

t’s because early investors have more time to switch to high utility during [t, z]. This

property makes the low-valuation investor’s problem sub-modular: the cross-derivative

of the future value with respect to the “type” (the contact time) and the “action” (the

execution time) is negative. This implies that low types, who contact the market early,

choose higher actions, i.e., limit orders with higher limit prices that are executed at

later times. Thus, as time passes, sellers place limit orders at lower and lower prices.

This is similar to undercutting except that it is not driven by strategic considerations.

Rather, it stems from the evolution of the agent’s preferences toward liquidity.

2.3.4 Market Clearing

The next proposition describes the implications of market–clearing for the supply stem-

ming from low–valuation agents before Ts:

Proposition 2. In an MLOE, market clearing implies that the following trading plan

must be optimal for low-valuation investors coming into contact with the market at time

t ∈ [0, Ts ∧ Tf):

ℓo: sell with a market order; or place a limit order executed at some time z ∈ φ(t);

ℓb: cancel previously placed limit order and behave as ℓo;

ℓn: stay put.

In addition, during any measurable set of times T ⊆ [0, Ts∧Tf ), low-valuation investors

collectively submit a measure
∫

T
ρ(s−µh(t)) dt of limit sell orders to be executed at some

time z ≥ Ts ∧ Tf .

It is important to keep in mind that Proposition 2 does not establish the optimality

of the trading plan. Instead, it shows what trading plan low-valuation investors must
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follow in order for the market to clear, given the restrictions imposed by Proposition 1.

We will verify optimality below, in Section 2.4.

To prove the proposition, consider any measurable set of times T ⊆ [0, Ts∧Tf ). The

total measure of high-valuation investors contacting the market during T is equal to
∫

T
ρµh(t) dt, and the total measure of assets brought to the market is equal to

∫

T
ρs dt.

According to Proposition 3 all high-valuation investors must exit the market with one

unit of the asset. Since for all t < Ts, we have the inequality µh(t) < s, this implies

that there remains a measure

∫

T

ρ(s− µh(t)) dt > 0 (10)

of assets that must be held by some other investors. Since limit-buy orders are not

submitted, the assets cannot be held by investors who previously posted limit-buy

orders. Therefore, the measure of assets given by (10) must be held by the low-valuation

investors who contact the market during T. In turn, we know from Lemma 7 that a

low-valuation investor who contacts the market and chooses to hold on to an asset finds

it optimal to submit some limit sell order. Hence, the measure of assets given by (10)

must be held by low valuation agents willing to postpone their sales and correspondingly

place limit orders to be executed at later times. Thus, the measure of limit sell orders

submitted during T must be greater than or equal to (10).

In the appendix we show that, at all times in [0, Ts ∧ Tf ), limit orders are never

executed. Thus, during T buy orders are executed against market sell orders and

low-valuation investors must find it optimal to submit market sell orders. A further

implication is that all limit sell orders submitted during T can be executed only at

z ≥ Ts ∧ Tf . Lastly, this implies that the measure of limit sell orders submitted during

T must be exactly equal to (10). Indeed, the only way there could be a strict inequality

is if the measure of assets supplied to the market were greater than
∫

T
ρs dt, which is

impossible since limit-sell orders are never executed. The next step is to show:

Lemma 8. In an MLOE, Tf > Ts.

Suppose instead that Tf ≤ Ts. By Proposition 2, at all times in t ∈ [0, Tf), φ(t) 6= ∅,

i.e., investors submit limit orders. Proposition 2 showed that φ(t) ≥ Ts ∧ Tf = Tf , and

Lemma 7 showed that φ(t) ≤ Tf . Thus, φ(t) = Tf for all t ∈ [0, Tf). Now, since any
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limit order submitted in [0, Tf) is executed with a probability bounded away from zero,6

This results in a positive measure of orders being executed exactly at time Tf . But this

cannot be the basis of an equilibrium since, on the other side of the market, there are

no market buy orders and the measure of investors who contact the market exactly at

time Tf is equal to zero. Thus we can state our next proposition.

Proposition 3. In an MLOE the following trading plan is strictly optimal for low-

valuation investors coming into contact with the market at (almost all) times t > Ts:

ℓo: sell with a market order;

ℓb: cancel previously placed limit order and behave as ℓo;

ℓn: stay put.

In addition, during any measurable set of times T ⊆ (Ts, Tf), a measure
∫

T
ρ (µh(t)− s) dt

of limit sell orders is executed.

Proceeding as above, we know that during T there is a cumulative measure
∫

T
ρµh(t) dt

of high-valuation investors who all exit the market with one unit of the asset. Since

µh(t) > s, it follows that the asset demand of high-valuation investors cannot be met

using
∫

T
ρs dt, the measure of assets supplied by those investors who contact the market

during T. Thus, asset demand must be met by the limit order book, and the measure

of limit sell orders executed from the book must be greater than:

∫

T

ρ (µh(t)− s) dt. (11)

Note that this implies in particular that limit orders are executed at almost all times

in t ∈ (Ts, Tf). Thus, by Proposition 1, Φ(t) = {t} at almost all times t ∈ (Ts, Tf) and

market sell orders are strictly optimal for low-valuation investors. One can easily show

that this is also true at t ≥ Tf .

Next, we argue that the measure of executed limit-sell orders must, in fact, be equal

to (11). Indeed, there are only two reasons why it could be strictly greater than (11).

First, there could be a positive measure of limit buy orders, which is ruled out by

6Indeed, a limit sell order submitted at time t corresponding to execution time z > t will be executed
if the investor does not manage to re-contact the market and cancel it, which occurs with probability
e−ρ(z−t) ≥ e−ρTf > 0.
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Lemma 2. Second, low-valuation investors could submit a positive measure of market

buy orders. But this is impossible since we just showed that market sell orders are

strictly optimal at almost all times in (Ts, Tf).

We proceed with additional properties of the correspondence φ(t), which specifies

the optimal execution times of orders placed at time t:

Proposition 4. The correspondence φ(t) is i) non-empty, ii) single valued, ii) strictly

decreasing, iv) continuous in t ∈ [0, Ts) and v) satisfies φ(0) = Tf and limt→Ts
φ(Ts) =

Ts.

The intuition is that, otherwise, there would be either holes or atoms in the limit

order book. Holes cannot be the basis of an equilibrium since we know that limit

orders must be executed at almost all times in (Ts, Tf). Atoms are not consistent with

equilibrium either since there are no limit-buy orders and, at any point in time, the

demand originating from those investors who contact the market is a “flow” of measure

zero.7

The next proposition states the integral equation, which pins down the function

φ(t):

Proposition 5. For all t ∈ [0, Ts), φ(t) is the unique solution of:

∫ φ(t)

t

ρ (s− µh(u)) e−ρ(φ(t)−u) du = 0. (12)

In order to prove this Proposition, we let L(z, φ(t)) denote the cumulative number

of orders in the book at time z, to be executed before time φ(t). By construction,

L(z, φ(t)) = 0 for z ≤ t and for z ≥ φ(t). For z ∈ [t, φ(t)], we derive an ordinary

differential equation (ODE) for L(z, φ(t)) in several steps.

First, we know from Proposition 2 that the measure of new limit sell orders submit-

ted during [u, v] ⊆ [0, Ts) is equal to
∫ v

u
ρ(s−µh(z)) dz. We also know from Proposition

3 that the measure of limit orders executed during any time interval [u, v] ⊆ (Ts, Tf)

is
∫ v

u
ρ(µh(z) − s) dz. In addition to these new order submissions and executions, all

investors with a limit order outstanding who establish a new contact with the market

find it strictly optimal to cancel their limit sell order. This results in a cumulative

7Note that the continuity of φ(t) means that limit orders are executed at all times in (Ts, Tf).
This implies in turn that the trading plan of Proposition 3 is optimal everywhere instead of almost
everywhere.
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number of cancelations equal to
∫ v

u
ρL(z, φ(t)) dz. Putting these results together, we

find that

L(v, φ(t))− L(u, φ(t)) = −

∫ v

u

ρL(z, φ(t)) dz

︸ ︷︷ ︸

cancelations

+

∫ v

u

ρ (s− µh(z)) dz

︸ ︷︷ ︸

new submissions and executions

Taking derivatives yields the ODE:8

∂L

∂z
(z, φ(t)) = −ρL(z, φ(t)) + ρ (s− µh(z)) .

Integrating this ODE with initial condition L(t, φ(t)) = 0, we obtain that L(z, φ(t)) is

given by the left-hand side of equation (12). One easily sees that this equation has a

unique solution z > Ts.

2.3.5 The price path

The first-order necessary condition for the execution time φ(t) to be optimal at time

t ∈ [0, Ts) is

∂Nℓ

∂z
(t, φ(t)) = 0⇔ rp(t) = 1− δ + δπh(φ

−1(t), t) + ṗ(t), (13)

after applying equation (6) and rearranging. This leads to the following intuition:

consider an order that will be filled at time t ∈ [Ts, Tf ]. This order was placed previously,

at time φ−1(t). At that time, the investor optimally chooses the price of the limit order,

to equalize the cost of waiting a short while longer before execution, rp(t), with the

benefits of trading slightly later but at a better price. That benefit is equal to the

expected flow of utility from holding the asset, 1 − δ + δπh(φ
−1(t), t), plus the price

increase, ṗ(t).

Another optimality condition is that, during [0, Ts), a low-valuation investor must

be indifferent between selling immediately with a market sell order, or selling with a

limit sell order executed at time φ(t). Thus, the net utility of submitting a limit-sell

order executed at time φ(t) is Nℓ(t, φ(t)) = 0. Given that φ(Ts) = Ts and Nℓ(t, t) = 0,

8Clearly, L(z, φ(t)) is bounded by s so we can bound above the integrand above and obtain that
L(z, φ(t)) is Lipchitz with coefficient 2ρs, and therefore continuous. Since the integrand is continuous,
L(z, φ(t)) is continuously differentiable with respect to z.
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this is the same as:
dNℓ

dt
(t, φ(t)) =

∂Nℓ

∂t
(t, φ(t)) = 0.

where the first equality follows from the envelope condition. Taking derivatives in

equation (7), using Nℓ(t, z) = 0, this equation becomes:

1− δ + ṗ(t)− rp(t) = δ

∫ φ(t)

t

∂πh

∂t
(t, u)e−(r+ρ)(u−t) du. (14)

This yields the following intuition. As time elapses during [0, Ts), the “marginal” low-

valuation investor must remain indifferent between market sell or limit sell orders. That

is, his value of delaying the submission of a market sell order must be equal to his value

of delaying the submission of a limit sell order, holding the optimal execution time,

φ(t), constant. The value of delaying submission of a market sell order is given by the

left-hand side of equation (14), while the value of delaying submission of a limit sell

order is, on the right-hand side, the change in the expected present value of utility flows

over the interval [t, φ(t)]. Taken together, this gives:

Proposition 6. In an MLOE, before Tf , the price path solves the ODEs:

t ∈ [0, Ts], rp(t) = 1− δ − δ

∫ φ(t)

t

∂πh

∂t
(t, u)e−(r+ρ)(u−t) du + ṗ(t) (15)

t ∈ [Ts, Tf ], rp(t) = 1− δ + δπh(φ
−1(t), t) + ṗ(t), (16)

and, for t ≥ Ts, p(t) = 1/r.

2.3.6 Uniqueness

Taken together, the propositions of this section imply that an MLOE is uniquely char-

acterized: investors’ trading plans follow Proposition 3, 2, and 3 with execution times

given by Proposition 5. On the other hand, the price is given by Proposition 6. This

allows us to state our uniqueness theorem.

Theorem 1. If an MLOE exists, it is unique.

2.4 Completing the Existence Proof

The next step is to show that the price path and trading plans are indeed the basis

of an equilibrium. To that end, we first note that, by construction of the trading
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plans, the market clears at each date: supply expressed at the current market price is

equal to current demand. Next, we observe that, so long as the price of Proposition

6 is strictly increasing over [0, Tf ], we know from Proposition 3 that high-valuation

investors’ trading plan is optimal at all times, and from Proposition 3 that the low-

valuation investors’ trading plan is optimal after Ts. Thus, in order to establish that our

candidate is indeed an equilibrium, we need only show that the price path of Proposition

6 is strictly increasing over [0, Tf ] and that the trading plan of low-valuation investors is

optimal over [0, Ts]. We prove these properties in the appendix, leading to our existence

theorem:

Theorem 2. There exists an MLOE.

3 Implications

3.1 Trading volume

During the time interval [0, Ts], the dynamics of the measure of hn investors is

µ̇hn(t) = −ρµhn(t) + γµℓn(t), (17)

where µhn(t) and µℓn(t) denote the measure of hn and ℓn investors, and µ̇hn(t) =

d/dt[µhn(t)]. The first term on the right-hand side of (17) arises because, during a

short time interval, there is a flow ρµhn(t) of hn investors who contact the market. All

of them submit market buy orders and become ho investors. The second term arises

because there is a flow γµℓndt of ℓn investors who switch to a high utility.

Since µhn(t) + µℓn(t) = 1 − s, we have that µℓn = 1 − s − µhn(t) which, together

with (17) implies that

µ̇hn(t) = −(ρ + γ)µhn(t) + γ(1− s).

With the initial condition that µhn(0) = 0, solving this ODE gives:

µhn(t) =
γ(1− s)

ρ + γ

(
1− e−(ρ+γ)t

)
.

During the interval [t, t + dt] a fraction ρdt of the hn investors contact the market.
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Hence, prior to Ts, instantaneous trading volume is equal to:

V(t) = ρµhn(t) = γ(1− s)
ρ

ρ + γ

(
1− e−(ρ+γ)t

)
(18)

Equation (18) yields our first implication.

Implication 1. Trading volume with imperfect monitoring is lower than its Walrasian

counterpart (γ(1− s)).

To study how the intensity of market monitoring affects trading volume, differentiate

V( · ) in (18) with respect to ρ. This yields

∂V

∂ρ
(t) =

γ(1− s)

(ρ + γ)2
e−(ρ+γ)t(γe(ρ+γ)t − γ + ρ(ρ + γ)t),

which is positive. This yields our second implication:

Implication 2. Trading volume increases with the intensity of market monitoring.

This is intuitive. If high-utility investors can contact the market more often, trading

volume goes up. Note also that, as ρ goes to infinity, volume goes to γ(1− s), which is

the trading volume in the Walrasian market.

Since (18) is symmetric in ρ and γ we also obtain the following implication.

Implication 3. Trading volume increases in the rate at which low utility investors

switch to high utility.

Indeed, in this model it is the buyer side of the market that constrains trading, so

if there are more high utility investors eager to buy, there is more trade. An increase

in γ generates an increase in the flow of new high utility investors.

On the other hand, inspecting (18), one can see that volume goes down with s. This

is similar to what happens in the Walrasian case and arises because trading volume

reflects the number of low-valuation non-owners who switch to high utility and later

contact the market: an increase in s mechanically reduces the number of non-owners,

and results in a decrease in volume.
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3.2 The number of orders in the book

As in the proof of Proposition 5, we let L(z, φ(t)) denote the stock of limit orders in

the book at time z, to be executed before time φ(t):

L(z, φ(t)) =

∫ z

t

ρ (s− µh(u)) e−ρ(z−u) du.

Setting t = 0, this yields the stock of limit orders in the book at time z:

L(z) ≡ L(z, φ(0)) =

∫ z

0

ρ (s− µh(u)) e−ρ(z−u) dz. (19)

Substituting the value of µh(t) in equation (19), we get:

L(z) =

∫ z

0

ρ
(
s− 1 + e−γu

)
e−ρ(z−u) du.

So the derivative of L(z) with respect to γ is:

∫ z

0

−ue−γue−ρ(z−u) du < 0.

Thus, we state our next implication.

Implication 4. The smaller the rate γ at which investors switch back to high utility,

the greater the need to use limit orders to wait for counterparties, and the larger the

number of orders accumulated in the book.

The implication suggests that when the liquidity shock is severe so that it takes a

long time for investors to recover their willingness to hold the asset, the limit order

book is very useful.

3.3 How the limit order market absorbs the liquidity shock

As discussed in Section 3, before time Ts, the flow of low-valuation investors is greater

than the flow of high-valuation investors. We interpret this as a buyers’ market. In

this context, low-valuation investors who own the asset are indifferent between placing

limit orders to sell and market orders to sell. These market orders are immediately

executed, at the current market price, against the flow of orders to buy. The latter

can be interpreted as marketable orders to buy, setting the bid price, which is also the
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current transaction price.

In contrast after time Ts, the flow of low-valuation investors is lower than the flow of

high-valuation investors. We interpret this as a sellers’ market. High-valuation investors

buy at the limit selling price established by previously placed orders, i.e., the buyers

hit the ask quote.

We summarize this in the following implication.

Implication 5. After the liquidity shock, there are two market regimes: before Ts, there

is a buyers’ market, in which market orders to sell repeatedly hit the bid quote, while

after Ts there is a sellers’ market, in which market orders to buy repeatedly hit the ask

quote. And, during the first phase, there is a sequence of new limit orders to sell placed

within the best quotes and undercutting each other.

These patterns are consistent with the stylized facts observed in limit order markets

- in particular, the fact that similar order types tend to follow each other (see Biais,

Hillion, and Spatt (1995), Griffiths, Smith, Turnbull, and White (2000) and Ellul,

Holden, Jain, and Jennings (2007)).

Our results also have implications for the dynamics of the spread and the order book

during these two regimes. These are illustrated in Figure 2. The following implication

is in line with the figure.

Implication 6. Just after liquidity shock, the spread is large. Then, limit orders to

sell accumulate in the order book, driving down the ask quote, and limit buy orders are

placed at higher and higher levels. This results in a decrease in the bid–ask spread.

Also, the number of orders in the book is very low just after the shock. But, as new

limit orders to sell are placed in the book, depth progressively builds up. Yet, at some

point, cancelations and executions of market buy orders lead to a decrease in the stock

of limit orders in the book.

3.4 Technological Change

Over the last 20 years, the technology involved in exchange trading has improved dra-

matically. The ability for investors to observe market quotes and trades and rapidly

place orders has expanded. Agents increasingly rely on computers to collect and process

information, generate alerts on market movements and inform trading and investment
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Figure 2: Price and order book dynamics

decisions. An extreme and important form of the development of such computerization

has been the growth of algorithmic trading.

Hendershott, Jones, and Menkveld (2007) offer interesting evidence on these issues.

They proxy algorithmic trading by the ratio of the number of new orders, modifications

and cancelations (i.e., messages) to trading volume. The idea is that, without algo-

rithmic trading, investors will use a few large orders, while with algorithmic trading

they will split up these orders in several smaller ones and often cancel and revise these

orders. Hendershott, Jones, and Menkveld also take advantage of the fact that, during

the period of their study, the NYSE progressively implemented its “autoquote” sys-

tem, which facilitates the placement of electronic orders, and thus algorithmic trading.

These authors find that, as “autoquote” was implemented, the proxy for algorithmic
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trading (i.e., the ratio of messages to volume) went up.

Our analysis offers a framework to shed light on these technological evolutions. The

growth of algorithmic trading and exchange computerization correspond to an increase

in the speed with which agents contact the market, i.e., in our model an increase in ρ.

For simplicity, in this subsection, we focus on the case where ρ goes to infinity, i.e., the

market approaches the continuous trading Walrasian benchmark. Our first result is:

Implication 7. For each t ∈ (0, Ts], as ρ goes to infinity, the number of orders in the

book at time t converges to

lim
ρ→∞

L(t) = s− µh(t).

Since, in the limit µho(t) = µh(t), it follows that s − µh(t) is equal to the number

of assets in the hands of low-utility investors. Therefore, in the limit, although agents

can effectively trade continuously, the limit order book is not empty. Intuitively, low-

valuation investors who choose not to trade now always post a limit order, because there

remains a remote chance that they are not able to re-contact the market very quickly.

Correspondingly, since orders in the book are associated with limit prices greater than

p(Ts) > p(t), the bid-ask spread at time t < Ts converges to some non-zero limit. Now,

turning to the behavior of cancelations:

Implication 8. For each t ∈ (0, Ts), as ρ goes to infinity, the flow of cancelations goes

to infinity. Moreover, it is strictly increasing in ρ, for sufficiently large ρ.

The intuition for this result is as follows: at any time t < Ts, the flow of cancelation

is equal to

C(t) = ρL(t).

Thus, since the order book does not become empty as ρ goes to infinity, the flow of

cancelations goes to infinity. The proof of monotonicity is in the appendix. Finally,

consider the flow of messages and its relation to trading volume, the statistics studied

empirically by Hendershott, Jones, and Menkveld (2007):

Implication 9. For each t ∈ (0, Ts), as ρ goes to infinity, the ratio of messages to

volume goes to infinity. Moreover, it is strictly increasing in ρ, for sufficiently large ρ.

The flow of messages at time t is

M(t) = ρµℓo(t) + 2ρµℓb(t) + ρµhb(t) + ρµhn(t),
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which is the sum of four components:

– The flow ρµℓo(t) of ℓo investors contacting the market, whose message is an order

to sell.

– Twice the flow of ρµℓb(t) of ℓb investors who contact the market, because these

agents send two messages: they cancel their sell order and submit another one.

– The flow ρµhb(t) of hb investors contacting the market, whose message is to cancel

their limit sell order.

– The flow ρµhn(t) of hn investors contacting the market, whose message is to

submit a market order to buy.

Rearranging, we obtain:

M(t) = ρ

(

µℓo(t) + µℓb(t)− µhn(t)

)

+ ρ

(

µℓb(t) + µhb(t)

)

+ 2ρµhn(t)

= ρ

(

µℓo(t) + µℓb(t) + µℓn(t)− µℓn(t)− µhn(t)

)

+ ρL(t) + 2V(t)

= ρ

(

1− µh(t)− (1− s)

)

+ ρL(t) + 2V(t)

= ρ

(

s− µh(t)

)

+ ρL(t) + 2V(t).

= ρ

(

s− µh(t)

)

+ C(t) + 2V(t).

That is, the flow of messages is the sum of the flow ρ(s−µh(t)) of new limit orders, the

flow C(t) of cancelations, and twice the volume. One sees that, although the volume

is bounded, the number of messages goes to infinity as ρ goes to infinity. The ratio of

messages to volume is equal to

M(t)

V(t)
= 2 +

ρ

(

s− µh(t)

)

+ C(t)

V(t)
.

The proof that this ratio increases in ρ is in the appendix.
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4 Robustness

In this section, we examine the robustness of our results to relaxing i) the assumption

that preference switching times and market contact times are independent, and ii) the

assumption that the intensity of preference switching (γ) is constant.

4.1 Synchronizing contact times with switching times

Investors could benefit from synchronizing switching and contact times. In particular,

this could enable them to avoid the execution of a limit sell order after switching

to a high valuation. As we show below, our results are robust to allowing for such

synchronization.

Consider the following variant of our framework: as in the main model, we let an

investor’s total intensity of contact with the market be ρ, and a low-valuation investor’s

switching intensity be γ. We depart from the main model by assuming that a low-

valuation investor can partially synchronize his switching time with his contact time.

Namely, we assume that, conditional on switching to a high-valuation, a low-valuation

investor instantly contacts the market with probability ε ∈ [0, 1]. To keep low-valuation

investors’ total contact intensity equal to ρ, we assume that he makes additional contacts

with the market, at independent Poisson arrival times with intensity ρ− γε. Note that

if ε = 0, we obtain of course our main model without synchronization. If ε = 1, then

there is perfect synchronization and switching times always coincide with contact times.

In between, there is partial synchronization.

What is, under partial synchronization, a low-valuation investor’s marginal value of

increasing his execution time z? As before, the change in execution time is relevant

only if the investor does not re-establish contact between the contact time, t, and the

execution time, z. Conditional on this event, the marginal value is:

∂

∂z

[
e−(r+ρ)tNℓ(t, z)

]
= e−(r+ρ)z [1− δ + δπε

h(t, z) + ṗ(z)− rp(z)] ,

but with πε
h(t, z) ≡ 1− e−γ(1−ε)(z−t). This is the same formula as before except that the

probability πε
h(t, z) is different. To understand why, recall that πε

h(t, z) is the probability

that one’s utility is high at time z conditional on having a low utility at time t, and

not contacting the market during [t, z]. Thus, the switching intensity that matters for
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πε
h(t, z) is γ(1−ε) < γ, the arrival intensity of a switching time that is not synchronized

with a contact time.

Our key observation is that, although the marginal future value of delaying differs,

as long as ε < 1 it remains a decreasing function of the contact time, t. This implies

that the result of Proposition 1 goes through identically: low valuation investors find

it optimal to undercut each others so long as there is some (possibly arbitrarily small)

synchronization problem.

Having established that the order submission problem of low-valuation investors is

essentially the same as before, one can solve for an MLOE characterized by two times

T1 < T2 where at any time t ∈ [0, T1], low-valuation investors submit limit orders to be

executed at some time φ(t) ∈ [T1, T2], for some strictly decreasing function φ(t). This

is stated in the next proposition, whose proof is sketched in the appendix.

Proposition 7 (Equilibrium with Synchronization). Suppose ρs > γε and ε < 1. Then

there is an MLOE that is identical to that of Theorems 1 and 2 after making the change

of variable πε
h(t, z) = 1− e−γ(1−ε)(z−t) and µε

h(t) = 1− (1− γε/ρ)e−γt.

The Proposition shows that our main results continue to hold if investors can syn-

chronize their switching times and their contact times, as long as two conditions are

satisfied.

The first condition is that ρs > γε. If this condition is not satisfied, the price

immediately adjusts to 1/r and limit orders are never submitted. The reason is that,

with synchronization, the sample of investors in contact with the market is no longer

representative of the overall population. Instead, it is biased toward high-valuation

investors. The added buying pressure can be large enough to make the number of

high-valuation investors in contact with the market larger than the number of assets

brought to the market, even at time zero.9 In that case, high-valuation investors must be

made indifferent between holding the asset or not holding it, and the price immediately

adjusts to 1/r. In that case, as we already know from Proposition 4, all low-valuation

investors in contact with the market find it optimal to submit market sell orders.

The second condition is that ε < 1. If this condition is not satisfied, then although

the equilibrium characterization would also work, low-valuation investors are indifferent

9This is, in fact, the meaning of condition ρs ≤ γε: the flow of assets brought to the market, ρs, is
less than the flow of low-valuation investors who switch to highvaluation at time zero, and immediately
make contact with the market.
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regarding the execution time of their limit order. It would then be possible to construct

other equilibria where successive limit orders to sell would no longer necessarily undercut

each other. Thus, as long as the limit order book at T1 remains constant, different

patterns of evolution of the order book before T1 are consistent with equilibrium. The

proposition suggests, however, a natural way to select among all these equilibria: by

setting ε arbitrarily close to 1, investors face a small synchronization problem and

strictly prefer to adopt decreasing order submission strategies.

4.2 Time varying switching rate

Returning to the case where the times at which agents switch to high utility and at which

they contact the market are independent, consider now the case where the intensity of

switching, γ, is time-varying.

In this generalized framework, let the hazard rate of switching be some positive

function γ(t), resulting in the aggregate dynamics:

µh(t) = 1− e−
∫ t

0
γ(z) dz.

Then, one easily shows that the entire uniqueness proof goes through identically; the

existence result, however, may fail to hold. This is because, for some specifications

of γ(t), the price path of Proposition 6 may fail to be increasing. The next corollary

provides such a counterexample.

Corollary 1. Suppose that the hazard rate of switching is γ̄ initially, during some time

interval [0, T̄ ], and γ < γ̄ for t ≥ T̄ . Let γ̄ → ∞, holding γ̄T̄ constant. Then, for γ̄

large enough, the price of Proposition 6 is decreasing for t ∈ [0, T̄ ].

The intuition is that, as time elapses during the initial time interval [0, T̄ ] without

switching, we progressively approach the interval [T̄ ,∞), where the switching intensity

is much lower. Thus, a low valuation investor becomes more and more pessimistic about

her probability of switching in the near future. Now recall that that price must keep

these increasingly pessimistic low-valuation investors indifferent between selling imme-

diately and waiting until the best execution time or the next contact time (whichever

comes first). Corollary 1 shows that, when γ̄ is large enough, low-valuation investors’

pessimism increases so much that the price stated in Proposition 6 declines.
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Note that the effect of Corollary 1 relies on making low-valuation investors more

and more pessimistic about their probability of switching before the execution time or

the next contact time. If ρ →∞, the next contact time comes much more rapidly than

the execution time, and the probability of switching to high utility becomes negligible

anyway. Thus, the effect of Corollary 1 does not operate. In that case, we obtain the

following corollary.

Corollary 2. Suppose that γ(t) is continuously differentiable and strictly positive.

Then, if ρ is large enough, the price of Proposition 6 is strictly increasing.

Together with our findings discussed above that, even when ρ goes to infinity, the

limit order book does not become empty and the bid–ask spread remains strictly pos-

itive, Corollary 2 shows that our equilibrium is quite robust to letting ρ become very

large.

5 Conclusion

This paper offers a continuous time model of order book dynamics, in which the ar-

rival of traders is random. The order flow, including the placement of limit orders,

cancelations & modifications, as well as the dynamics of prices and trading volume, are

endogenous. We find that, after a liquidity shock, there are two phases. First, there is

a “buyers’ market,” in which the flow of sell orders exceeds the flow of buy orders and

trades hit the bid quote. During that phase, the bid-ask spread is initially high, but

progressively tightens, while in parallel, the depth in the order book builds up. Second,

there is a “sellers’ market, ” in which the flow of buy orders exceeds the flow of buy

orders, and trades hit the ask side of the order book. The dynamics generated by our

model match the stylized facts on order books, with clustering of activity at the best

quotes, undercutting, and serial correlation in order types.

Our model also sheds light on the consequences of the increased computerization of

markets & the growth of algorithmic trading. Our analysis implies that these changes

imply an increase in trading volume and an even stronger increase in message traffic,

corresponding to frequent cancelations and modifications. These results also corrobo-

rate empirical evidence.
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In future research we plan to extend this framework to endogenize information and

market structures.
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A Proofs

A.1 Proof of Lemma 1

To keep the appendix short, we omit the proof and relegate it to the Addendum, Section I.1, page 2.

A.2 Proof of Lemma 3

After Tf , since p(Tf ) = 1/r, a high-valuation investor is indifferent between buying and selling the

asset. Next, consider what happens before Tf .

First, consider a high valuation agent who does not own the asset (hn) and contacts the market at

time t ∈ [0, Tf). If he behaves according to the prescribed trading plan of purchasing the asset at t and

afterwards follows the optimal policy of keeping the asset, his value is 1/r− p(t). To check optimality,

by the Bellman principle it suffices to rule out one-stage deviations, whereby an investors deviates once

from the prescribed plan, and follows it thereafter. If the high–valuation non–owner deviates once by

not submitting a market buy order his value is

Vhn(t) = E

[

e−r(τ−t)

(
1

r
− p(τ)

)]

, (20)

where τ is the next of the agent’s contact with the market. This is strictly less than

1

r
− p(t), (21)

because the price is strictly increasing and because of discounting. Note that, by Lemma 2 we do not

need to check deviation involving limit buy orders.

Second consider a high-valuation investor who owns the asset. The value of following the prescribed

plan of holding on to the asset until at least Tf , is equal to 1/r. If the agent deviates once and submits

an order to sell at time z ≥ t, his value is:

Et

[∫ z∧τ

t

e−r(u−t) du + e−r(z∧τ−t)

(

(p(z) + Vhn(z))) I{z<τ} +
1

r
I{z≥τ}

)]

=
1

r
+ Et

[

e−r(z∧τ−t)

(

p(z) + Vhn(z))−
1

r

)

I{z<τ}

]

,

where Vhn(z) is defined in equation (20). The value above lower than 1
r
, because, from equations

(20)-(21), it follows that p(z) + Vhn(z) − 1/r < 0 for all z < Tf . This shows that a high-valuation

investor is strictly better off holding on to her asset until at least Tf . QED

A.3 Proof of Lemma 4

We start by a preliminary lemma:

Lemma 9. The difference between the value derived from placing a limit sell order to be executed at

time z and placing a market sell order is

N(t, z) = −p(t) + Et

[∫ z∧τ

t

θ(u)e−r(u−t) du + e−r(z∧τ−t)p(z ∧ τ)

]

. (22)
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The proof goes as follows. Consider a “limit order investor” who submits at time t a limit sell

order to be executed at time z, and a “market order investor” who submits at time t a market sell

order. These investor have different value (maximum attainable utilities) for three reasons.

1. First, of course, at time t, the market order investor sells immediately so he receives p(t) while

the limit order investor receives nothing at that time.

2. Second, the limit order investor continues to hold the asset until either the execution time z or

the next contact time τ with the market, enjoying the utility:

∫ z∧τ

t

e−r(u−t)θ(u) du,

given any realization of the valuation and contact time processes.

3. Third, there is a difference in continuation utility at z ∧ τ . In order to calculate this difference,

consider as before a given realization of the utility and contact time process and distinguish

two cases. First, if z ∧ τ = z, i.e. if the execution time comes before the next contact time,

then the difference in continuation utility is simply p(z). Indeed, the limit order is executed,

the limit-order investor becomes a non-owner with the same valuation and contact time history

as the market order investor, so from time z on he has the same continuation utility. If, on

the other hand, z ∧ τ = τ , i.e. if the next contact time comes before the execution time, then

the difference in continuation utility is also p(τ). Indeed at their next contact time the only

difference between the limit order and the market order investor is that the limit order investor

owns the asset. The limit order investors can always sell his asset and obtain the continuation

utility of the market order investor, by adopting the same trading plan. The same is true for

the market order investor when he purchases the asset. Thus, the difference in continuation

utility at time τ between the two investors is simply the value p(τ) of the asset.

Thus, given any realization of the contact time and valuation processes, the net utility of a limit

order is:

−p(t)
︸ ︷︷ ︸

point 1

+

∫ z∧τ

t

θ(u)e−r(u−t) du

︸ ︷︷ ︸

point 2

+ e−r(z∧τ−t)p(z ∧ τ)
︸ ︷︷ ︸

point 3

.

Thus, after taking expectation bearing in mind that the distribution of contact time and valuation

processes are the same for the limit order and market order investor, we obtain that the net utility of

submitting a limit sell order rather than selling is as given in the lemma. QED

Let us now prove that the price path is continuous. First the price is constant for all t ∈ (Tf ,∞)

so, obviously, it is also continuous in that interval. Consider now any time t ∈ [0, Tf ]. By construction,

in an MLOE, the price is increasing so it cannot have negative jumps; thus, the only thing we need

to show is that the price cannot have positive jumps. Towards a contradiction, suppose there were a

positive price jump at some time v ∈ [0, Tf ]. Consider a small time interval before v where the price

is continuous (such an interval must exist given that the price is assumed to be piecewise continuously

differentiable). Now take any time u in that interval, and any investor who contacts the market at

some t ≤ u. Let us calculate the net-utility of submitting a sell order at a price just slightly below
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p(v+), which is executed at time v, rather than a sell order executed at time u:

N(t, v+)−N(t, u) = Et

[

I{u≤τ}

(

−p(u)e−r(u−t) +

∫ v∧τ

u

θ(z)e−r(z−t) dz + e−r(v∧τ−t)p(v+ ∧ τ)

)]

≥ Et

[

I{u≤τ}

(

−p(u)e−r(u−t) + e−r(v∧τ−t)p(v+ ∧ τ)
)]

= Et

[

I{u≤τ}e
−r(u−t)

E

[

−p(u) + e−r(v∧τ−u)p(v+ ∧ τ) | τ ≥ u
]]

= Et

[

I{u≤τ}e
−r(u−t)

]

× E

[

−p(u) + e−r(v∧τ−t)p(v+ ∧ τ) | τ ≥ u
]

= e−(r+ρ)(u−t)
{

−p(u) + E

[

e−r(v∧τ−u)p(v+ ∧ τ) | τ ≥ u
]}

≥ e−(r+ρ)(u−t)
{

−p(u) + Pr(τ ≥ v | τ ≥ u)e−r(v−u)p(v+)
}

≥ e−(r+ρ)v
{

−p(v) + e−(r+ρ)(v−u)p(v+)
}

.

The equality between third to the fourth line follows because the only random variable in the expecta-

tion is τ , so the conditional expectation E
[
−p(u) + e−r(v∧τ−u)p(v+ ∧ τ) | τ ≥ u

]
is in fact a determin-

istic function of u. The last inequality shows that N(t, v+)−N(t, u) is bounded below by a continuous

function of u, independent of the contact time t, with limit e−(r+ρ)v {−p(v) + p(v+)} > 0 as u goes

to v. Hence, for all execution times u close enough to v, investors strictly prefer to delay their order

until v+ because they foresee the jump. It follows that, in a small time interval to the left of v, there

are no limit-sell order nor market sell order executed. On the other hand, since v < Tf , we know from

Lemma 3 that the demand originating from high-valuation non-owners is positive. To see why, note

that the measure of high-valuation non-owners in the overall population is bounded below by:

e−ρt(1− s)µh(t),

which is the measure of high-valuation non-owners who never contacted the market at time t. Indeed,

e−ρt is the measure of investors who, at time t, have never contacted the market. Since they never had

the opportunity to trade, the proportion of non-owner in this subpopulation stays the same over time

so it must be equal to its time-zero value, 1− s. This explains the second term of the product. Lastly,

each of these investors is equally likely to be have valuation at time t, with a probability µh(t). Thus,

in any time interval of length ∆ before, v, the cumulative demand originating from high valuation

investors is bounded below by:

ρe−ρv(1− s)µh(v)∆ + o(∆).

Since we know from above that the supply is zero, it follows that the market does not clear, a contra-

diction. QED
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A.4 Proof of Lemma 5

We start from equation 28 in Lemma 9.

Nℓ(t, z) = −p(t) + Et

[∫ z∧τ

t

θ(u)e−r(u−t) du + e−r(z∧τ−t)p(z ∧ τ)

]

= Et

[∫ z∧τ

t

(

Et [θ(u)] e−r(u−t) du− p(t) + e−r(z∧τ−t)p(z ∧ τ)
)]

(23)

= Et

[∫ z∧τ

t

(1− δ + δπh(t, u)) e−r(u−t) du− p(t) + e−r(z∧τ−t)p(z ∧ τ)

]

(24)

= Et

[∫ z∧τ

t

(1− δ + δπh(t, u) + ṗ(u)− rp(u)) e−r(u−t) du

]

(25)

= Et

[∫ z

t

I{u≤τ} (1− δ + δπh(t, u) + ṗ(u)− rp(u)) e−r(u−t) du

]

=

∫ z

t

Et

[
I{u≤τ}

)
(1− δ + δπh(t, u) + ṗ(u)− rp(u)) e−r(u−t) du (26)

=

∫ z

0

(1− δ + δπh(t, u) + ṗ(u)− rp(u)) e−(r+ρ)(u−t) du, (27)

where equation (23) follows because of the independence between the contact time and the valuation

process, equation (24) follows because of the definition of πh(t, u), equation (25) follows because p(t)

is continuous and piecewise continuously differentiable, so we can write that

p(t2)e
−r(t2−t1) − p(t1) =

∫ t2

t1

(ṗ(u)− rp(u)) e−r(u−t1),

on any interval [t1, t2]. Equation (26) follows after changing the order of the expectation and the

integration sign and noting that, at each time u, I{u≤τ} is the only random variable in the integrand.

Lastly, equation (27) follows from the fact that Pr(τ ≥ u | τ ≥ t) = e−ρ(u−t). QED

A.5 Proof of Lemma 6

To keep the appendix short, we omit the proof and relegate it to Addendum, Section I.2, page 3.

A.6 Proof of Proposition 1

Consider any time t and suppose there exists z ∈ φ(t). Then, we have that for all z′ > z,

0 ≤ Nℓ(t, z)−Nℓ(t, z
′)⇔ 0 ≥

∫ z′

z

(1− δ + δπh(t, u) + ṗ(u)− rp(u)) e−(r+ρ)(u−t) du

⇒ 0 >

∫ z′

z

(1− δ + δπh(t′, u) + ṗ(u)− rp(u)) e−(r+ρ)(u−t′) du ⇔ 0 < Nℓ(t
′, z)−Nℓ(t

′, z′),

for all t′ ∈ (t, z], and where the move from a weak to a strict inequality follows because πh(t, u) is

strictly decreasing in t. This means that, for all t′ ∈ (t, z] the execution time z strictly dominates

all subsequent execution times, implying that Φ(t′) ⊆ (t, z]. Since execution times must be greater

than submission times, i.e. Φ(t′) ⊆ [t′,∞), the result follows. In the special case when t′ = z, then
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we obtain that Φ(z) = {z}, since it is included in {z} and can’t be empty (being the argmax of a

continuous function over a compact set).

A.7 Proof of Proposition 2

The only two things left to show to establish the proposition are that limit-sell orders are never executed

during (0, Ts ∧ Tf ) and that low valuation investors find it optimal to submit market and limit sell

orders at all times during [0, Ts ∧ Tf ).

A.7.1 Limits sell orders are never executed during (0, Ts ∧ Tf )

Suppose that, during (0, Ts ∧ Tf ), limit orders are executed at all times in some set T. Our goal is to

show that T = ∅.

By, Proposition 1, for all z ∈ T, φ(z) = ∅. That is, when contacting the market at all times in T,

low-valuation investors do not submit limit orders. But we know that limit-sell orders are submitted

at almost all times in [0, Ts ∧ Tf ). Therefore, the set T must be of measure zero. Now consider

some execution time z ∈ T, corresponding to a limit order at price p(z), submitted at some time

t < z. By Proposition 1, at all times t′ ∈ (t, z), investors submit orders with execution times in

[t′, z]. The probability that such a limit order is executed is greater than e−ρ(z−t′), the probability

that an investor does not get a chance to re-contact the market and cancel his order by time z. Clearly,

e−ρ(z−t′) ≥ e−ρ(z−t). Now, applying the the law of large numbers, it follows that the fraction of limit

orders submitted during [t, z] that are executed during [t, z] is greater than e−ρ(z−t). Thus, using

equation (10) the total number of limit sell orders submitted and executed during [t, z] is greater than:

[∫ z

t

ρ(s− µh(u)) du

]

e−r(z−t) > 0. (28)

Now, since the set of execution times in (0, Ts ∧ Tf ) is of measure zero, it follows that the positive

measure (28) of limit sell orders is executed during a measure zero set of times, T
′. But Lemma 2

showed that investors do not submit limit buy orders, so the cumulative asset demand during T
′ is

less than the cumulative number of investors who contact the market during T
′, which is equal to zero

because T
′ is of measure zero. Thus we have a positive measure of asset supplied, but at the same

time a measure zero of asset demanded, which contradicts market clearing. QED

A.7.2 Low-valuation investors find it optimal to submit market and limit

sell orders at all times t ∈ [0, Ts ∧ Tf)

We know that these properties must be true at almost all times in [0, Ts ∧ Tf). Therefore, given any

time t ∈ [0, Ts ∧ Tf ), there is a sequence tk converging towards t such that {tk, zk} ⊆ Φ(tk) for some

zk > tk. Moreover, because limit sell orders are never executed during (0, Ts∧Tf ), and always executed

before Tf (Lemma 7), we know that zk ∈ [Ts ∧ Tf , Tf ]. Since the sequence zk is bounded, it has a

subsequence converging to some (t, z), where z ≥ Tf . By the Theorem of the Maximum (see, e.g.,

Theorem 3.6 in Stokey and Lucas, 1989) the correspondence Φ( · ) is upper hemi continuous, and so

(t, z) ∈ Φ(t). This establishes that, at time t, submitting a market sell order and submitting a limit

sell orders are both optimal. QED
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A.8 Proof of Proposition 4

Point i) is a re-statement of a finding in Proposition 2: low-valuation investors submit limit sell orders

at all times in [0, Ts).

As for point ii), suppose to the contrary that for some t ∈ [0, Ts), φ(t) has more than one element,

say z1 < z2 ∈ (Ts, Tf)2. Then by Proposition 1, for all t′ ∈ [0, t), φ(t′) ≥ z2 and for all t′ ∈ (t, Ts),

φ(t′) ≤ z1. Thus, there is a “hole” in the limit-order book, in that no limit order are executed during

the interval (z1, z2). But this contradicts Proposition 3 according to which limit orders have to be

executed at almost all times during (z1, z2).

For the point iii), we already know from Proposition 1 that φ(t) is decreasing so the only thing left

to show is that it is strictly decreasing. Suppose to the contrary that φ(t) has a “flat spot,” i.e. that it

is constant equal to z over some interval [t, t′]. By Proposition 2 there is a strictly positive measure of

limit orders submitted during [t, t′], and all these limit orders are executed with a probability bounded

away from zero. Thus, there is a positive measure limit orders executed exactly at time z. But this

can’t be the basis of an equilibrium since, on the other side of the market, there are no market buy

order (Lemma 2) and the asset demand originating from investors contacting the market exactly at

time z is zero.

For point iv), we note that since φ(t) is a decreasing function, it has countably many discontinuity

points. Now consider any discontinuity point, t. We must have φ(t+) < φ(t) since φ(t) is decreasing.

By Proposition 1, low-valuation investors contacting the market at t′ < t submit limit orders executed

at times z′ ≥ φ(t), and low-valuation investors contacting the market at t′ > t submit limit orders

executed at times z′ ≤ φ(t+). Thus, the measure of limit orders executed during the time interval

(φ(t+), φ(t)) is bounded above by the measure of low-valuation investors contacting the market exactly

at time t, which is equal to zero. But this is a contradiction since, by Proposition 2, there must be a

strictly positive measure of limit orders executed during this time interval.

Finally for point v), we know that ∂Nℓ/∂z(t, z) < 0 for z > Tf , so φ(t) ≤ Tf and in particular

φ(0) ≤ Tf . In addition we cannot have φ(0) < Tf because otherwise the measure of limit orders

executed during [φ(0), Tf ] would be zero, in contradiction with Proposition 3. Similarly, by Proposition

2 we must have limt→Ts
φ(t) = Ts because otherwise no limit order would be submitted at all times

close enough to Ts. QED

A.9 Proof of Proposition 6

Because low-valuation investors who contact the market at time t ∈ [0, Ts] must find it optimal to

submit a limit-sell order with execution time φ(t), it follows that

lim
z→φ(t)−

Nℓ(t, φ(t)) −Nℓ(t, z)

φ(t) − z
≥ 0

lim
z→φ(t)+

Nℓ(t, φ(t)) −Nℓ(t, z)

φ(t) − z
≤ 0

which gives, after taking left and right derivative in equation (7):

1− δ + δπh(t, φ(t)) + ṗ(φ(t))− − rp(φ(t)) ≤ 0 (29)

1− δ + δπh(t, φ(t)) + ṗ(φ(t))+ − rp(φ(t)) ≥ 0 (30)
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Note that p(z) is continuous and is assumed to be piecewise continuously differentiable. Thus, the

above inequalities have to hold with an equality except may be at countably many kink points. At a

kink point, either one of the two above inequality must be strict. For instance, suppose that

1− δ + δπh(t, φ(t)) + ṗ(φ(t))− − rp(φ(t)) > 0.

Then, because the price path is piecewise continuously differentiable and φ(t) is continuous, this strict

inequality must also hold for all t′ in a neighborhood of t. But, because of the optimality conditions

this means that p(z) has an uncountable number of kink points, which is a contradiction. The ODE

follows by using the optimality condition (29)-(30) with an equality, and letting z = φ(t).

Next we turn to the ODE (15) during [0, Ts]. At any time t < Ts, some low-valuation investors

submit limit sell orders to be executed at φ(t). At the same time, there is a positive demand originating

from high-valuation non-owners, so other low-valuation investors must submit market sell orders.

Therefore, in an equilibrium a low-valuation investor contacting the market during [0, Ts) must be

indifferent between the two, i.e.:

Nℓ(t, φ(t)) = 0 ⇔ p(t) =

∫ φ(t)

t

[1− δ + πh(t, u) + ṗ(u)− rp(u)] e−(r+ρ)(u−t) du. (31)

Recall our maintained assumption that p(t) is piecewise continuously differentiable. In any interval

where p(t) is continuously differentiable, we can take derivatives with respect to t and obtain the ODE

(15). Starting from the terminal condition given by the solution of ODE (16) evaluated at Tf , we can

solve the ODE (15) backward, in each interval where p(t) is continuously differentiable. Clearly this

yields to a price path that is, in fact, continuously differentiable everywhere. QED

A.10 Proof of Theorem 2

A.10.1 Low-valuation optimality

The only thing left to show is that the conjectured trading strategies are optimal at all time t ∈ [0, Ts).

By construction, investors are indifferent between submitting a market sell order, and a limit sell order

executed at time z = φ(t). The only thing we need to verify is that these two trading strategies achieve

the maximum of Nℓ(t, z) over [t, Tf ].

Plugging the ODE 16 for the price in [Ts, Tf ] into the derivative ∂Nℓ(t, z)/∂z, we find that:

e(r+ρ)(z−t) ∂Nℓ

∂z
(t, z) = δ

(

πh(t, z)− πh(φ−1(z), z)

)

= δ

(
µh(z)− µh(t)

1− µh(t)
−

µh(z)− µh(φ−1(z))

1− µh(φ−1(z))

)

= δ
1− µh(z)

(1− µh(t))(1 − µh(φ−1(z)))

(

µh(φ−1(z))− µh(t)

)

. (32)

Since φ−1(z) is decreasing and µh(t) increasing, it follows that the above expression is strictly positive

for z ∈ [Ts, φ(t)), and strictly negative for z ∈ (φ(t), Tf ]. Therefore, φ(t) achieves the strict maximum

of Nℓ(t, z) over [Ts, Tf ]: in words, the best execution time in [Ts, Tf ] is φ(t). Turning to z ∈ [t, Ts], we
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plug the ODE (15) in the formula (7) for Nℓ(t, z):

Nℓ(t, z) = δ

∫ z

t

e−(r+ρ)(u−t)

(

πh(t, u) +

∫ φ(u)

u

e−(r+ρ)(v−u) ∂πh

∂u
(u, v) dv

)

du.

Keeping in mind that πh(v, v) = 0, the first integral term can be written:

δ

∫ z

t

e−(r+ρ)(v−t)πh(t, v) dv = δ

∫ z

t

e−(r+ρ)(v−t)

(

−

∫ v

t

∂πh

∂u
(u, v) du

)

dv

= −δ

∫ z

t

∫ z

u

e−(r+ρ)(v−t) ∂πh

∂u
(u, v) dv du, (33)

where the third inequality follows from exchanging the order of integration. The second integral term,

on the other hand, is:

δ

∫ z

t

e−(r+ρ)(u−t)

∫ φ(u)

u

e−(r+ρ)(v−u) ∂πh

∂u
(u, v) dv du

= δ

∫ z

t

∫ φ(u)

u

e−(r+ρ)(v−t) ∂πh

∂u
(u, v) dv du (34)

Adding up the two integrals above, and keeping in mind that z ≤ Ts ≤ φ(u), we obtain

Nℓ(t, z) = δ

∫ z

t

∫ φ(u)

z

e−(r+ρ)(v−t) ∂πh

∂u
(u, v) dv du

which is negative because πh(u, v) is strictly decreasing in its first argument. Thus we have shown

that, for all z ∈ (t, Ts], Nℓ(t, z) < 0. This establishes that a low-valuation investor strictly prefers to

submit a market sell order than a limit-sell order to be executed at z ∈ (t, Ts]. QED

A.10.2 The price is increasing

We first verify that the price is increasing in [Ts, Tf ]. We first note that, at t = T−f , p(Tf ) = 1/r and

using the ODE (16):

ṗ(Ts) = 1− (1− δ)− δπh(0, Tf) = δ(1 − πh(0, Tf)) > 0.

Now, for t ∈ [Ts, Tf ], we note that φ−1(t) is continuously differentiable (see, in the Addendum, Section

II.1 page II.1) so that can differentiate (16). We obtain:

rṗ(t) =
d

dt
πh(φ−1(t), t) + p̈(t)

⇒ ṗ(t) =

∫ Tf

t

[
d

du
πh(φ−1(u), u)

]

e−r(u−t) du + e−r(Tf−t)ṗ(T−f ) > 0.

Indeed, because πh(t, u) is decreasing in t and increasing in u, and because φ−1(u) is decreasing, it

follows that d/du
[
πh(φ−1(u), u)

]
> 0.

We now turn to the interval [0, Ts] and show that under our assumption that the hazard rate of

switching is constant the price is increasing. Using the functional form πh(t, u) = 1 − e−γ(u−t) we
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obtain that d(t) = ṗ(t) solves the ODEs:

t ∈ [0, Ts] rd(t) = δγ

(

φ′(t)− 1

)

e−(r+ρ+γ)(φ(t)−t) + ḋ(t)

t ∈ [Ts, Tf ] rd(t) = δγ

(

1−
1

φ′ ◦ φ−1(t)

)

e−γ(t−φ−1(t)) + ḋ(t).

After integrating these two ODEs we obtain that, for t ∈ [0, Ts]:

d(t) = δγ

∫ Ts

t

e−r(u−t)

(

φ′(u)− 1

)

e−(r+ρ+γ)(φ(u)−u) du

+δγ

∫ φ(t)

Ts

e−r(u−t)

(

1−
1

φ′ ◦ φ−1(u)

)

e−γ(u−φ−1(u)) du

+e−r(φ(t)−t)d(φ(t)).

Now we make the change of variable v = φ−1(u) in the second integral. We obtain:

d(t) = δγ

∫ Ts

t

e−r(u−t)

(

φ′(u)− 1

)

e−(r+ρ+γ)(φ(u)−u) du

+δγ

∫ Ts

t

e−r(φ(v)−t)

(

1− φ′(v)

)

e−γ(φ(v)−v) dv

+e−r(φ(t)−t)d(φ(t)).

After collecting the first two lines, we obtain:

d(t) = δγ

∫ Ts

t

e−r(φ(u)−t)−γ(φ(u)−u)

(

1− φ′(u)

)(

1− e−ρ(φ(u)−u)
)

du + e−r(φ(t)−t)d(φ(t)).

The integrand in the first term is positive because φ′(u) < 0 and φ(u) ≥ u. We also have d(φ(t)) ≥ 0

since φ(t) ≥ Ts. So d(t) > 0, meaning that the price is indeed increasing. QED

A.11 Proof of Implication 7

To prove the result we first establish the following lemma.

Lemma 10 (Preliminary result). Let f(u) be some bounded measurable function, continuous at t.

Then ∫ t

0

f(u)ρeρ(u−t) du → f(t),

as ρ goes to infinity.

Because of continuity, given any ε > 0 there is some 0 < η < t such that |f(u) − f(0)| < ε/2 for
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all u ∈ [η, t]. Thus,

∣
∣
∣
∣

∫ t

0

f(u)ρeρ(u−t) du− f(t)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ t

0

(f(u)− f(t))ρeρ(u−t) du + e−ρtf(t)

∣
∣
∣
∣

≤ 2 sup |f(u)|

∫ η

0

ρeρ(u−t) du +

∫ t

η

ρeρ(u−t)|f(u)− f(t)| du + e−ρtf(t)

≤ 2 sup |f(u)|
(

eρ(η−t) − e−ρt
)

+
ε

2

(

1− eρ(η−t)
)

+ e−ρtf(0) ≤ ε,

for ρ large enough. QED

The result follows from applying the lemma . QED

A.11.1 Proof of Implication 8

To prove the result we first establish the following lemma.

Lemma 11. Suppose that f(u) is twice continuously differentiable over [0, t]. Then

ρ2

∫ t

0

f(u) [1 + ρ(u − t)] eρ(u−t) du → f ′(t),

as ρ goes to infinity.

To prove this lemma we start with a first integration by part, noting that:

d

du
(u− t)eρ(u−t) = [1 + ρ(u− t)] eρ(u−t).

This shows that

ρ2

∫ t

0

f(u) [1 + ρ(u− t)] eρ(u−t) du = ρ2
[

f(u)(u− t)eρ(u−t)
]t

0
− ρ2

∫ t

0

f ′(u)(u− t)eρ(u−t) du

= ρ2f(0)te−ρt − ρ2

∫ t

0

(u− t)f ′(u)eρ(u−t) du.

We integrate the second term by part again, differentiating ρ(u− t)f ′(u) and integrating ρeρ(u−t). We

obtain:

ρ2

∫ t

0

f(u) [1 + ρ(u− t)] eρ(u−t) du

= ρ2f(0)te−ρt − ρ

[

(u− t)f ′(u)eρ(u−t)

]t

0

+

∫ t

0

[f ′′(u)(u − t) + f ′(u)] ρeρ(u−t) du

= ρ2f(0)te−ρt + ρf ′(0)te−ρt +

∫ t

0

[f ′′(u)(u− t) + f ′(u)] ρeρ(u−t) du.

The result then follows by noting that the first two terms go to zero as ρ goes to infinity, and by

applying Lemma 10 to the third term. QED

The only thing that remains to be shown to establish the implication is that, for ρ large enough,

the number of cancellations increases with ρ. To see this first note that the derivative of the flow of

cancellations with respect to ρ is:
∂C

∂ρ
(t) = L(t) + ρ

∂L

∂ρ
(t).
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Also note that
∂L

∂ρ
(t) =

∫ t

0

(1 + ρ(u − t)) eρ(u−t) (s− µh(u)) du.

Thus, an application of Lemma 11 implies that ρ2∂L/∂ρ(t) goes to −µ̇h(t),as ρ goes to infinity. Hence

∂L∂ρ(t) goes to 0 and, for ρ large enough, ∂C/∂ρ(t) goes to s − µh(t) which is positive for t < Ts.

QED

A.12 Proof of Implication 9

We show that the ratio M(t)/V(t) increases with ρ, as long as ρ is large enough. This is equivalent to

show that
d

dρ
log

[

ρ(s− µh(t)) + L(t)

]

>
d

dρ
log V(t),

for ρ large enough. The left hand side of the above expression is

s− µh(t) + L(t) + ρ∂L

∂ρ

ρ

(

s− µh(t) + L(t)

) =
1

ρ

s− µh(t) + L(t) + o(1)

s− µh(t) + L(t)

=
1

ρ
+ o

(
1

ρ

)

. (35)

Now using equation (18), we obtain that

1

V(t)

∂V

∂ρ
=

1

ρ
−

1

ρ + γ
+

te−(ρ+γ)t

1− e−(ρ+γ)t

=
γ

ρ(ρ + γ)
+

te−(ρ+γ)t

1− e−(ρ+γ)t

= o

(
1

ρ

)

. (36)

Comparing (35) and (36), it the follows that M(t)/V(t) increases for ρ large enough. QED

A.13 Proof of Proposition 7

To construct a MLOE, we use a guess and verify method. We guess is that the equilibrium has the same

form as in the main model and is characterized by two times T1 < T2. The price is strictly increasing

over [0, T2] and constant equal to 1/r over [T2,∞). At all times t during some initial interval [0, T1],

low-valuation investors submit market sell orders and limit sell orders to be executed at φ(t) ∈ [T1, T2].

At all times during [T1,∞), low-valuation investors submit market sell orders. The times T1, T2 and

the function φ(t) have to be determined in equilibrium.

We then know from the main model (Proposition 3) that high-valuation investors submit market

buy orders when contacting the market during [0, T2), and are indifferent between buying or not

afterwards. As in the main model, the optimal order of a low-valuation investor is determined by the

net-utility Nℓ(t, z) of submitting at time t a limit-sell order executed at time z, rather than a market-sell

order. The derivation is the same as in the main model except for the fact that switching and contact

times are no longer independent. Formally, we let τρ−γε be the next contact time without simultaneous
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switching, and τγε be the next contact time with simultaneous switching, and τ = τρ−γε ∧ τγε be the

next contact time. Proceeding as in the Proof of Lemma 5, we find that:

Nℓ(t, z) = Et

[∫ z

t

I{u≤τρ−γε}I{u≤τγε} (θ(u) + ṗ(u)− rp(u)) e−r(u−t) du

]

=

∫ z

t

Et

[
I{u≤τρ−γε}

]
Probat [u ≤ τγε] (Et [θ(u) |u ≤ τγε] + ṗ(u)− rp(u)) e−r(u−t) du

=

∫ z

t

e−(r+ρ)(u−t)
(

1− δ + δ
[

1− e−γ(1−ε)(u−t)
]

+ ṗ(u)− rp(u))
)

du

=

∫ z

t

e−(r+ρ)(u−t) (1− δ + δπε
h(t, z) + ṗ(u)− rp(u))) du

where the second line follows from the independence between τγε and τρ−γε. Note that the expression is

the same as in the main model after the change of variable of the proposition. Given πε
h(t, z) and given

the strictly decreasing function φ(t) mapping [0, T1] onto [T1, T2], we construct the price path using

the ODE of Proposition 6. Going through the same argument as in the main model, one shows easily

that, given this price, the trading plans of investors with low-valuation are optimal. Lastly, given

the functional form of πε
h(t, z), we know from Section A.10.2 that the price path is indeed strictly

increasing over [0, T2].

All what’s left to determine, then, is the function φ(t) and the two times T1 and T2. To that end,

we note that at any time t ∈ [0, T2], there is a flow

ρµhn(t) + γεµℓn(t), (37)

of high-valuation investors who contact the market and demand one unit of the asset. In particular

the second term is the flow of low-valuation investors who switch to high and immediately contact the

market. On the other side of the market, we have a flow

(ρ− γε) (µℓo(t) + µℓb(t)) , (38)

of low-valuation investors who contact the market with one unit of the asset. It is important to keep in

mind that the relevant intensity of contact for equation (38) is not ρ but ρ−γε < ρ. This is because of

synchronization: some low-valuation owners contact the market but instantly switch to high, so they

do not submit any sell order. Subtracting (38) from (37), we find that the net buy order flow is

(ρ− γε) (µhn − µℓo(t)− µℓb(t)) − γε (µℓn(t) + µhn(t))

= (ρ− γε) (µh(t)− s) + γε (1− s)

= ρµh(t) + γε (1− µh(t))− ρs.

The first term is the flow of high-valuation investors who contact the market at each time. The

second term is the flow of low-valuation investors who switch to high and immediately contact the

market. The third term is the flow of assets brought to the market by all investors. The only difference

with the main model is, therefore, the second term. It arises because of synchronization: the market

is no longer representative of the overall population, but is instead biased towards high-valuation
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investors. This calculation allows us to write the net buy order flow as:

ρ (µε
h(t)− s) where µε

h(t) = 1−

(

1−
γε

ρ

)

e−γt.

Given that limit orders are canceled with intensity ρ, the construction of φ(t), T1 and T2 is exactly as

in the main model. That is, T1 solves µε
h(T1) = s, and φ(t):

∫ φ(t)

t

ρ(s− µh(z))eρ(z−φ(t)) dz = 0,

for all t ∈ [0, T1]. Finally, observing that T2 = φ(0) completes the proof. QED

A.14 Proof of Corollary 1

Let µ̃h(u) be the solution of ˙̃µh(u) = γ (1− µ̃h(u)) with initial condition 1− e−γ̄T̄ . Then the measure

of high valuation investors at time t is 1− e−γ̄t if t ≤ T̄ and µ̃h(t− T̄ ) if t ≥ T̄ . In particular, if we let

T̃s solve µ̃h(T̃s) = s, we have that Ts = T̄ + T̃s. For all t ≤ T̄ , the probability πh(t, u) of switching to

high in the interval [t, u], is given by:

u ≤ T̄ : πh(t, u) = 1− e−γ̄(u−t)

u ≥ T̄ : πh(t, u) = 1− e−γ̄(T̄−t)−γ(u−T̄ ).

For t ≥ T̄ we have, as before, πh(t, u) = 1 − e−γ(u−t). Now consider any t ≤ T̄ . From equation (15),

we have that:

ṗ(t) = rp(t)− (1− δ) + δ

∫ φ(t)

t

∂πh

∂t
(t, u)e−(r+ρ)(u−t) du

≤ δ + δ

∫ T̃s

t

∂πh

∂t
(t, u)e−(r+ρ)(u−t) du

where the second line follows because, in a MLOE, rp(t) ≤ 1, because ∂πh/∂t < 0, and T̃s ≤ Ts ≤ φ(t).

Now using the explicit expression for πh(t, u) above, we find that:

∫ T̃s

t

∂πh

∂t
(t, u)e−(r+ρ)(u−t) du

= −
γ̄

r + ρ + γ̄

[

1− e−(r+ρ+γ̄)(T̄−t)
]

−
γ̄e−γ̄(T̄−t)

r + ρ + γ

[

1− e−(r+ρ+γ)(T̃s−T̄ )
]

≤ −
γ̄e−γ̄T̄

r + ρ + γ

[

1− e−(r+ρ+γ)T̃s

]

→ −∞

as γ̄ → ∞, holding γ̄T̄ constant. Plugging this back into the expression for ṗ(t) it follows that, for γ̄

sufficiently large, ṗ(t) < 0. QED
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A.15 Proof of Corollary 2

We now show that the price is increasing in [0, Tf ] when ρ is large enough. First of all, the Walrasian

price is p∗(t) = 1/r for t ≥ Ts, and

p∗(t) =
1

r
−

δ

r

(

1− e−r(Ts−t)
)

,

for t < Ts. The price when ρ < ∞ is denoted by p(t). The idea of the proof is to that p(t) and its

first derivative, ṗ(t), both converges uniformly towards the Walrasian price as ρ goes to infinity. Since

ṗ∗(t) > 0 over [0, Ts), this implies that, if ρ is large enough, ṗ(t) > 0 for all t ∈ [0, Ts).

A.15.1 Uniform convergence of p(t).

First consider t ∈ [Ts, Tf ].

p(t) =

∫ Tf

t

[
1− δ + δπh(φ−1(u), u)

]
e−r(u−t) du +

1

r
e−r(Tf−t).

Thus,

0 ≤ p∗(t)− p(t) = δ

∫ Tf

t

[
1− πh(φ−1(u), u)

]
e−r(u−t) du

≤ δ

∫ Tf

t

e−r(u−t) du ≤
δ

r

[

1− e−r(Tf−t)
]

≤
δ

r

[

1− e−r(Tf−Ts)
]

.

Since, for t ≥ Tf , we have p(t) = 1/r = p∗(t), we obtain that

|p(t)− p∗(t)| ≤
δ

r

[

1− e−r(Tf−Ts)
]

,

for all t ≥ Ts. Given that Tf = φ(0) goes to Ts (see in the Addendum, Section ??, ??), the convergence

is uniform for all t ≥ Ts. Next, consider some t ≤ Ts. We have:

rp(t) = 1− δ + η(t) + ṗ(t),

where

η(t) ≡ −δ

∫ φ(t)

t

∂πh

∂t
(t, u)e−(r+ρ)(u−t) du.

Taking the difference with p∗(t), we obtain that

|p(t)− p∗(t)| = e−r(Ts−t)|p(Ts)− p∗(Ts)|+

∫ Ts

t

η(u)e−r(u−t) du

Now

∂πh

∂t
(t, u) =

∂

∂t

[
µh(u)− µh(t)

1− µh(t)

]

= −
1− µh(u)

[1− µh(t)]2
µ̇h(t).
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Since µh(t) is continuously differentiable, ∂πh/∂t can be bounded above over [0, φ(0)] by some constant

K. Note that, since φ(0) decrease in ρ (see in the Addendum, Section II.2 page 7) the bound will also

work for any larger ρ. We obtain that

0 ≤ η(t) ≤
δK

r + ρ

(

1− e−(r+ρ)(φ(t)−t)
)

≤
δK

r + ρ
.

Plugging this into the expression above we obtain

|p(t)− p∗(t)| ≤ e−r(t−Ts)|p(Ts)− p∗(Ts)|+
δK

r(r + ρ)

(

1− e−r(Ts−t)
)

.

Since p(Ts) → p∗(Ts) = 1/r, this establishes the uniform convergence of p(t) towards p∗(t) over the

interval [0, Ts].

A.15.2 Uniform convergence of ṗ(t) over [0, Ts).

To see that ṗ(t) converges uniformly towards its limit rp∗(t)− (1− δ), note that

ṗ(t) = rp(t) − (1− δ)− η(t),

so

|ṗ(t)− ṗ∗(t)| ≤ r|p(t)− p∗(t)|+ |η(t)| ≤ r|p(t)− p∗(t)|+
δK

r + ρ
,

which converges uniformly towards ṗ∗(t) as ρ goes to infinity.

A.15.3 The price is increasing for ρ large enough.

Indeed, recall that

ṗ∗(t) = δ
(

1− e−r(Ts−t)
)

> δ
(
1− e−rTs

)
> 0,

is uniformly bounded away from zero over [0, Ts). Since ṗ(t) converges to ṗ∗(t) uniformly for t ∈ [0, Ts),

the result follows. QED
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