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Abstract

In this paper, we study how access pricing affects network competition when sub-

scription demand is elastic and each network uses non-linear prices and can apply

termination-based price discrimination. In the case of a fixed per minute termination

charge, we find that a reduction of the termination charge below cost has two oppos-

ing effects: it softens competition but helps to internalize network externalities. The

former reduces mobile penetration while the latter boosts it. We find that firms al-

ways prefer termination charge below cost for either motive while the regulator prefers

termination below cost only when this boosts penetration.

Next, we consider the retail benchmarking approach (Jeon and Hurkens, 2008)

that determines termination charges as a function of retail prices and show that this

approach allows the regulator to increase penetration without distorting call volumes.
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1 Introduction

In most countries, there are competing wireless telecommunication networks. Even though

different operators may adopt different standards,1 there is ubiquitous interconnection across

different networks in that a customer can communicate with any other customer regardless

of whether the latter subscribes to the same or to a rival network. This interconnection

requires operators’ agreement over termination charges: How much should operator A pay

to operator B in case a call originating from network A terminates on network B and vice

versa? Since this termination charge enters as a cost (for off-net calls) and as revenue

(from termination of incoming calls), it affects competition in the retail market, which in

turn determines the total number of subscribers. In this paper, we study the socially and

privately optimal termination charges when subscription demand is elastic.

Although inelastic subscription demand is a standard assumption in the literature on

two-way access pricing,2 this assumption is often not satisfied even in developed countries.

For instance, according to the latest statistics from International Telecommunication Union

(ITU),3 the mobile penetration rate (defined as mobile cellular subscribers per 100 inhabi-

tants) in 2007 is 83.88 for Japan, 90.20 for Korea and 86 for USA.4 In developing countries,

the mobile penetration rate is low but growing fast: for instance, in Africa, the average

penetration rate is 28.49 in 2007 but the number of subscribers increased by a factor 5 be-

tween 2002 and 2007. What is more striking is the comparison with the fixed phone lines.

For instance, in Africa, the fixed phone penetration rate is extremely low and changes little

(it increased from 2.69 to 3.21 between 2002 and 2007).5 The overall trend in developing

countries shows that fast growing mobile communications have overtaken and replaced the

stagnating fixed phone communications as the main means of telecommunications.

The huge impact of mobile telecommunications on economic development leads us to

raise the following questions. First, what is the socially optimal regulation of termination

charges when one accounts for the social welfare gains generated by a boost in mobile pen-

etration? Second, in the absence of regulation, what is the termination charge that firms

1This is the case in USA and India where there is no mandatory standard. For instance, in India,
Reliance Communications, the industry number two, uses CDMA standard while its two state-run rivals,
Bharat Sanchar Nigam and Mahanagar Telephone Nigam, use GSM standard (Financial Times, ”Indian
operators battle for 3G share”, June 8 2009).

2This literature is about how termination charges affect competition among interconnected networks and
the pioneers are Armstrong (1998) and Laffont, Rey and Tirole (1998a,b).

3See http://www.itu.int/ITU-D/icteye/Indicators/Indicators.aspx (accessed on June 17, 2009).
4The average penetration rate in Europe is 111.14 but this high rate is due to subscribers having multiple

phone numbers.
5In India, the fixed phone penetration rate even decreased from 3.93 to 3.37 for the same period while

the mobile subscribers increased by a factor 18 during the same period to 19.98 in 2007.

2



would agree on? Does the private incentive coincide with the social incentive in terms of

choosing termination charge or boosting penetration rates? We address these questions in a

setting with Calling-Party-Pays (CPP) principle6 in which consumers’ subscription demand

is elastic and network operators compete with non-linear prices and can apply termination-

based price discrimination. We study two different approaches to determine termination

charges.

First, we consider the standard approach based on a fixed (per-minute) termination

charge and study how the termination charge affects profits, penetration, and social welfare.

We find that both the firms and the regulator want to depart from cost-based termination

charge (and hence want to distort call volumes) in order to affect consumer subscription.

In particular, a reduction in termination charge creates two opposing effects: It softens

competition but it also helps to internalize network externalities. The former reduces mobile

penetration while the latter expands it. Depending on which of the two effects dominates,

there can be conflicts or alignments of interests between the firms and the regulator regarding

whether they prefer termination charge below or above cost.

Second, we study the retail benchmarking approach that determines termination charges

as a function of retail prices. We extend the approach from the setting without termination-

based price discrimination and with inelastic subscription demand (considered in Jeon and

Hurkens, 2008) to the setting with termination-based price discrimination and with elastic

subscription demand. We show that for a given fixed (reciprocal) termination charge, we

can find a family of access pricing rules that induce firms to charge on-net price equal to

on-net cost and off-net price equal to off-net cost but the equilibrium fixed fee decreases with

the strength of the feedback from the retail prices to access payment. The result implies

that the regulator can increase consumer subscription without creating any distortion in call

volumes. Our access pricing rules intensify retail competition since a firm can reduce its

access payment to rival firms by reducing its average retail prices.

In the case of the standard approach, we extend the models of Gans and King (2001)

and Calzada and Valletti (2008) (who consider inelastic subscription demand) and Dessein

(2003) (who does not allow for termination-based price discrimination). Our innovation

is to identify the interplay between the two opposing effects associated with a change in

termination charge. When total subscription demand is inelastic, firms suffer from the usual

business stealing effect and prefer termination charge below cost to soften competition in

6CPP is prevalent while Receiving-Party-Pays (RPP) is used in some countries such as the U.S.A. and
Hong Kong. See Jeon-Laffont-Tirole (2004) and Cambini-Valletti (2008) for the analysis of RPP with inelastic
subscription demand.
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the case of termination-based price discrimination (Gans and King, 2001): when termination

charge is lower than termination cost, on-net price is higher than off-net price and therefore

consumers prefer to belong to the smallest network all other things being equal, which

reduces firms’ incentive to steal customers. Therefore, firms prefer termination charge below

cost whereas the regulator prefers termination charge equal to cost. Recently, Calzada and

Valletti (2008)7 and Armstrong and Wright (2009)8 find a similar result.9

When total subscription demand is elastic, on top of the business stealing effect firms

suffer from a network externality effect. In order to isolate the effect of internalizing net-

work externalities from the competition-softening effect, we first study a benchmark of “two

interconnected islands” in which each island is occupied by a monopolist facing an elastic

subscription demand. There is no competition between the two monopolists since consumers

cannot move from one island to the other. In this benchmark, when a monopolist attracts

an additional customer, he creates positive externalities to the other monopolist since the

latter’s consumers can enjoy off-net calls to the additional customer. Since the two monop-

olists fail to fully internalize these externalities, the total number of subscribers is smaller

than the number when both islands are occupied by one identical monopolist. We find that

termination charge below cost, by increasing the degree of interconnection, helps them to

internalize better the network externalities and thus expands market penetration.10 When

consumers enjoy off-net calls, firms realize that raising one’s fixed fee reduces the size of

the other network and thus hurts its own customers. This negative feedback on one’s own

customers increases with the degree of interconnection.

It is useful to note that competing firms would like to choose termination charge in order

7They consider a Logit model with inelastic subscription (i.e. full subscription) while Gans and King
(2001) consider the Hotelling model with inelastic subscription.

8They consider an extension of the Hotelling model that allows for elastic demand. Although they focus on
the case in which the fixed to mobile (FTM) termination charge and the mobile to mobile (MTM) termination
charge are the same due to arbitrage, when they study the case in which the two can be separately chosen,
they find that firms prefer the MTM charge below cost (due to competition-softening effect à la Gans-King)
while the regulator prefers the charge above cost.

9Very recently, Jullien, Rey, and Sand-Zantman (2009) extend LRT (1998a, b)’s model of inelastic par-
ticipation by adding ”pure receivers” who get a constant utility from receiving calls (independently of the
volume of calls) and have elastic participation. They find that in the absence of termination-based price
discrimination, this induces firms to prefer termination charge above cost because of a competition-softening
effect: losing a caller to a rival network increases the profit that the original network makes from terminat-
ing calls on its pure receivers. They find that this result extends to the case with termination-based price
discrimination if there are many pure receivers with elastic subscription demand.

10To some extent, this effect is similar to the result of Katz and Shapiro (1985) that an increase in
compatibility among competing networks increases the total number of subscribers. However, in their paper,
firms are engaged in Cournot competition and the cost of achieving compatibility is a fixed cost and hence
does not directly affect the retail competition (i.e. only demand increasing effect of compatibility remains).
In our model, firms compete with non-linear tariffs and interconnection is mediated by the access charge
that directly affects retail competition through off-net price: in particular, reducing access charge below cost
distorts off-net call volume.
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to make the outcome closer to the outcome that a monopolist owning both networks would

choose. When termination charge is equal to termination cost and subscription demand is

elastic, there are two possible cases: market penetration under duopoly can be either higher

or lower than the one under monopoly. In the first case, firms want to decrease market pene-

tration (and thus, consumer surplus) while, in the second case, they want to increase market

penetration (or consumer surplus). A rather surprising result is that in both cases, firms

prefer having termination charge below cost. The reason is that consumer surplus is larger

under duopoly than under monopoly exactly when the business stealing effect dominates the

network externality effect so that firms prefer to soften competition, which requires a low

termination charge. Consumer surplus is lower under duopoly than under monopoly exactly

when the network externality effect dominates the business stealing effect. Thus firms prefer

to internalize the network effect better, which again requires termination charge below cost.

The regulator always prefers larger consumer surplus so that in the first case it prefers to

strengthen competition by means of a termination charge above cost, while in the second

case it favors a termination charge below cost (in fact, in this case, the socially optimal

access charge is lower than the one preferred by the firms).

Our result in the standard approach based on a fixed termination charge is reminiscent

of Dessein (2003)’s finding. Dessein considers a setting without termination-based price dis-

crimination and with elastic demand and shows that firms again prefer to have a termination

charge below cost while the regulator prefers a termination charge above cost when the busi-

ness stealing effect dominates. However, since without termination-based price discrimina-

tion, termination charges do not affect profits in the extreme case of inelastic subscription,11

he does not clearly disentangle the two opposing effects as we do. In Dessein’s model, both

business stealing and network externality effects are present. However, without termination-

based price discrimination it is not clear how a change in termination charge can soften

competition or help to internalize the network externality. In contrast, with termination-

based price discrimination, there is only a business stealing effect in the extreme case of

competition with inelastic subscription (as in Gans and King (2001)) while there is only a

network externality effect in the other extreme case of two interconnected islands (i.e., no

competition with elastic subscription).

Most of the literature on two-way access pricing considers the termination charge as

a fixed (per minute) price.12 In this paper we depart from this approach and are inter-

11This is the so-called profit neutrality result: Laffont-Rey-Tirole (1998a), Dessein (2003), Hahn(2004).
12See, for instances, Armstrong (1998), Armstrong and Wright (2009), Calzada and Valletti (2008), Cam-
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ested in applying a retail benchmarking approach to determine termination charges. In

Jeon and Hurkens (2008) we introduced this approach successfully in a framework without

termination-based price discrimination and with inelastic subscription demand. We showed

that when networks compete in linear prices, by choosing the benchmarking rule appro-

priately, a regulator can achieve the Ramsey outcome, without knowing demand function.

We also showed that when networks compete with non-linear prices, our approach allows to

achieve both static efficiency (marginal cost pricing) and dynamic efficiency (optimal invest-

ment). The approach also allows to increase consumer surplus by inducing lower fixed fees.

However, if firms compete in non-linear prices and subscription demand is inelastic, lower

fixed fees do not increase social welfare. To maximize social welfare it is enough to set the

termination charge equal to cost. In the present paper, with elastic subscription demand,

the retail benchmarking approach may be more useful since it induces lower fixed fees which

increases penetration, which in turn affects social welfare.

We show that for a given fixed (reciprocal) termination charge, we can find a family

of access pricing rules parameterized by κ(≤ 1) such that all the access pricing rules in

the family induce firms to charge on-net price equal to on-net cost and off-net price equal

to off-net cost but the equilibrium fixed fee decreases with κ where κ = 0 corresponds to

the standard approach based on the fixed termination charge. The result implies that the

regulator can increase mobile penetration without creating any distortion in call volumes.

The regulator may also use the rule to maintain the number of subscribers (and therefore

consumer surplus) and to reduce the distortion in call volume. Such a rule would improve

efficiency and increase profits. Furthermore, we show that when the regulator and the firms

have the same information about demand and cost structure, there is a simple modification

of our rules that achieves the Ramsey outcome (i.e. firms charge all prices including the

fixed fee just at costs and consumer subscription is maximized).

The rest of the paper is organized as follows. In section 2, we introduce the Logit model

formulation of network competition with elastic subscription demand,13 explain how rational

consumer expectations are formed and describe the Ramsey benchmark. Expectations about

network size are important since consumers care about the size of each network. In section 3

we characterize the unique symmetric equilibrium in case of a fixed per minute termination

bini and Valletti (2008), Carter and Wright (1999, 2003), Dessein (2003, 2004), Gans and King (2000, 2001),
Hahn (2004), Hermalin and Katz (2001, 2004), Laffont, Marcus, Rey and Tirole (2003), Laffont, Rey and
Tirole (1998a,b), Jeon, Laffont and Tirole (2004), Valletti and Cambini (2005) and Wright (2002).

13For an introduction of logit models see Anderson and de Palma (1992) and Anderson, de Palma and
Thisse (1992).
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charge close to cost. In order to disentangle the business stealing effect from the network

externality effect, we also analyze a model of two interconnected monopolistic networks. In

section 4 we introduce the retail benchmarking approach and show that it outperforms any

rule based on fixed (per minute) termination charges. In section 5 we show that, if the reg-

ulator has the same information as the networks, a minor modification of the benchmarking

rule induces the Ramsey outcome. Section 6 concludes. The Appendix collects some proofs.

2 The model

Our model is standard and identical to that of Laffont-Rey-Tirole (1998b) except the elastic

subscription demand for which we use the Logit specifications. After presenting the model,

we describe rational expectations and the Ramsey outcome.

2.1 The Logit Model

We consider competition between two mobile operators.14 Each firm i (i = 1, 2) charges

a fixed fee Fi and may discriminate between on-net and off-net calls. Firm i’s marginal

on-net price is written pi and its off-net price is written p̂i. The total mass of consumers

is normalized to 1. Consumer’s utility from making calls of length q is given by a concave

and increasing utility function u(q). Demand q(p) is defined by u′(q(p)) = p. The marginal

cost of a call equals c and the termination cost equals c0(≤ c). The reciprocal access price

(equivalently, termination charge) is denoted a. Therefore, the marginal cost of on-net calls

is c while that of off-net calls is ĉ = c+a−c0. Networks incur a fixed cost of f per subscriber.

We define v(p) = u(q(p)) − pq(p). Note that v′(p) = −q(p). We also make the standard

assumption of a balanced calling pattern, which means that the fraction of calls originating

from a given subscriber of a given network and completed on another given (including the

same) network is equal to the fraction of subscribers to the terminating network.

The timing of the game is as follows:

First, a reciprocal access price (= termination charge) a is chosen either by the firms

or by the regulator. Second, each firm i (= 1, 2) chooses simultaneously retail tariffs Ti =

(Fi, pi, p̂i). Third, consumers form expectations about the number of subscribers of each

network i (βi) with β1 ≥ 0, β2 ≥ 0 and β1 + β2 ≤ 1 and make subscription decisions. We

will write β0 = 1− (β1 +β2) for the number of consumers expected to remain unsubscribed.

14We consider neither the fixed phone networks nor the calls between the fixed phone networks and the
mobile phone networks.
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We consider rational expectations equilibria (see the next subsection for details). This implies

that all consumers will have the same expectations. Given such expectations, utility from

subscribing to network 1 equals

V1 = β1v(p1) + β2v(p̂1)− F1,

while subscribing to network 2 yields

V2 = β2v(p2) + β1v(p̂2)− F2.

Finally, not subscribing at all yields utility V0.

Define U1 = V1 + µε1, U2 = V2 + µε2, and U0 = V0 + µε0. The parameter µ > 0 reflects

the degree of product differentiation in a Logit model. A high value of µ implies that most

of the value is determined by a random draw so that competition between the firms is rather

weak. The noise terms εk are random variables of zero mean and unit variance, identically

and independently double exponentially distributed. They reflect consumers’ preference for

one good over another. A consumer will subscribe to network 1 if and only if U1 > U2 and

U1 > U0; he will subscribe to network 2 if and only if U2 > U1 and U2 > U0; he will not

subscribe to any network otherwise. The probability of subscribing to network i is denoted

by ℘i (where ℘0 represents the probability to remain unsubscribed). This probability is given

by

℘i =
exp[Vi/µ]∑2

k=0 exp[Vk/µ]
. (1)

Expectations are rational if ℘i = βi for all i. For given rational expectations, the profit of

network i is equal to

Πi = ℘i [℘i(pi − c)q(pi) + ℘j(p̂i − ĉ)q(p̂i) + Fi − f ] + ℘i℘j(a− c0)q(p̂j).

The first term reflects the retail profit made on subscribers while the second term reflects

the wholesale profit from termination of incoming calls.

Consumer surplus in the Logit model has been derived by Small and Rosen (1981) as

(up to a constant)

CS = µ ln

(
2∑

k=0

exp(Vk/µ)

)
= V0 − µ ln(℘0), (2)

where the right-hand side follows from (1). Clearly, consumer surplus is increasing in market
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penetration 1− ℘0.

2.2 Rational Expectations

As stated before, for expectations to be rational, βi = ℘i must hold for all i. For any

price schedules (T1, T2), such self-fulfilling expectations exist as these are fixed points of the

mapping ℘ : ∆2 → ∆2 where ℘(β1, β2) = (℘1, ℘2). We can show:

Lemma 1 For any price schedules (T1, T2), rational expectations (℘1, ℘2) are uniquely de-

fined as long as µ is sufficiently high.

Proof. See Appendix.

If µ is relatively low (that is, operators are highly substitutable) and rational expectations

are not uniquely defined, one can potentially construct many equilibria by having even the

tiniest of deviations lead to expectations (and thus subscriptions) that jump discontinuously,

in the direction that makes such deviations unprofitable. We find it reasonable to restrict

attention to equilibria where rational expectations are continuous functions of the tariffs.

Uniqueness of continuous rational expectations requires a milder condition on µ.

In particular, let expectation β be rational when tariffs (T1, T2) are chosen, where Ti =

(Fi, pi, p̂i) for i = 1, 2. Let T ′
1 = (F ′

1, p
′
1, p̂

′
1) be an alternative tariff with small deviations in

usage prices and fixed fee such that

β1v(p1) + β2v(p̂1)− F1 = β1v(p′1) + β2v(p̂′1)− F ′
1.

That is, the alternative tariff yields exactly the same utility if expectations are not changed.

Then it is clear that expectation β is also rational when tariffs (T ′
1, T2) are chosen. The

restriction of continuous rational expectations then implies that expectations must remain

fixed when tariffs are changed locally such that utility for its subscribers remains constant,

given these expectations. By repeatedly applying the same argument one can see that

continuous rational expectations will remain fixed when p1 is changed into c and p̂1 is changed

into ĉ, as long as F1 is changed into F ′
1 = β1(v(c)− v(p1))+β2(v(ĉ)− v(p̂1))+F1. The same

can be done with prices of network 2. In the next section we use this argument to establish

the perceived marginal cost pricing principle, which says that it is optimal for each firm to

set usage prices at perceived marginal cost. Now, given that firms use perceived marginal

cost pricing, the uniqueness of rational expectations is guaranteed if termination charge is

close to termination cost and µ > v(c)/4, which we will assume.

9



Assumption 1

µ > v(c)/4. (3)

Lemma 2 If firms set usage prices equal to perceived marginal cost, rational expectations

are unique if a ≈ c0 and Assumption 1 holds.

Proof. See Appendix.

It will be convenient for the subsequent analysis to establish the relation between fixed

fee F and the number of subscribers per firm ℘ in a symmetric equilibrium candidate in

which firms price usage at perceived marginal cost, (F, c, ĉ). From (1) and the assumption

of rational expectations one obtains immediately:

F = ℘(v(c) + v(ĉ))− µ ln

(
℘

1− 2℘

)
− V0. (4)

2.3 Ramsey outcome

Consider now the Ramsey outcome defined as the outcome that maximizes social welfare

under the break-even constraint of each firm. First, because of symmetry, we can look for the

outcome among symmetric tariffs T = (F, p, p̂). Second, given T = (F, p, p̂), maximizing so-

cial welfare requires each firm to realize zero profit. Otherwise, the social planner can further

decrease F , which increases social welfare because it increases the number of subscribers and

therefore creates positive network externalities on the existing subscribers. Third, given the

binding zero profit constraint, maximizing consumer surplus (2) is equivalent to maximizing

V (= V1 = V2), which requires marginal cost pricing (p = p̂ = c) and F = f . Therefore, the

Ramsey outcome is characterized by

p = p̂ = c, F = f.

Note that in the case of inelastic subscription, the Ramsey outcome is characterized by p =

p̂ = c and F ≥ f since the fixed fee does not affect social welfare. With elastic subscription,

because of the positive network externalities, the social planner wants to increase the number

of subscribers as long as the break-even constraint is satisfied: in fact, the first best outcome

requires the social planner to subsidize each firm because of network externalities. Namely,

the social planner would like to set usage prices equal to marginal cost and choose fixed fee

F and per firm number of subscribers ℘ as to maximize the sum of consumer surplus and
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industry profit,

V0 − µ ln(1− 2℘) + 2℘(F − f),

subject to the rational expectations condition (4). It is easily verified that this requires

F < f .

3 Competition with a fixed per minute termination

charge

In this section, we analyze the case with a constant reciprocal termination charge a.

3.1 Preliminary results

3.1.1 Marginal cost pricing

Let R(p) = (p−c)q(p). Although the number of subscribers ℘i and ℘j depend on V0 and tariff

schedule T1, T2. we will omit arguments for expositional simplicity. Profit can be written as

follows

Πi = ℘i[℘iR(pi) + ℘jR(p̂i) + Fi − f ] + ℘i℘j(a− c0)(q(p̂j)− q(p̂i)). (5)

Firm i maximizes profits by setting Ti, holding Tj constant. Note that a change in marginal

price pi or p̂i while holding Fi fixed will affect not only the number of i’s subscribers but also

that of j’s subscribers. For example, a decrease in Fi will make network i more attractive and

will thus attract some subscribers of j and will also attract some consumers who previously

did not subscribe to any network. This then makes it also more attractive to subscribe

to network j relative to staying unsubscribed, because of the network effect. It will be

convenient to apply a change of variables and let network i maximize profits by choosing

pi, p̂i, and ℘i, holding pj, p̂j and Fj fixed. This can be done because of the assumption of

continuous rational expectations, as explained in the previous section.

Note that from (1) one immediately deduces that

℘i

1− ℘i

=
exp [Vi/µ]

exp[Vj/µ] + exp[V0/µ]
. (6)

From (6), one has

Fi = ℘iv(pi) + ℘jv(p̂i)− µ log

[
℘i

1− ℘i

(exp[Vj/µ] + exp[V0/µ])

]
.
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Holding everything but pi and Fi fixed, one obtains

∂Fi/∂pi = ℘iv
′(pi).

Similarly, holding everything but p̂i and Fi fixed, one obtains

∂Fi/∂p̂i = ℘jv
′(p̂i).

Note that if pi is changed while keeping ℘i, p̂i, pj, p̂j and Fj fixed, then also ℘j will

remain fixed. Maximizing Πi with respect to on-net price pi (keeping ℘i fixed) thus yields

0 =
∂Πi

∂pi

= ℘2
i (R

′(pi) + v′(pi)) = ℘2
i (pi − c)q′(pi).

Hence, pi = c. In words, on-net calls are priced at marginal cost.

Maximizing Πi with respect to off-net price p̂i (keeping ℘i fixed) yields

0 =
∂Πi

∂p̂i

= ℘i℘j(R
′(p̂i) + v′(p̂i)− (a− c0)q

′(p̂i)) = ℘i℘j(p̂i − c− a + c0)q
′(p̂i).

Hence, p̂i = c + a− c0 ≡ ĉ. In words, off-net calls are priced at perceived marginal cost (i.e.

the off-net marginal cost). We thus obtain the standard “perceived” marginal cost pricing

result under non-linear pricing as in LRT (1998b).

Summarizing, we have:

Proposition 1 Under the assumption of continuous rational expectations, it is optimal for

each firm to price on-net call at the marginal cost (c) and off-net call at the perceived off-net

marginal cost (c + a− c0).

In the sequel we will write v = v(c) and v̂ = v(ĉ) to reduce notation.

3.1.2 Net business stealing vs. net network externality

For the equilibrium analysis and for comparative statics exercises we will perform later, it

will be necessary to know how the number of subscribers to one of the networks changes

when fixed fees are varied. Note that an increase in the fixed fee of network 1, everything else

equal, will decrease the number of subscribers to network 1 and will increase the subscribers

to network 2. However, a change in F1 also affects rational expectations. In particular,
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consumers will realize that network 1 will become smaller and that may make network 2

also less attractive. So an increase in the fixed fee of network 1 could potentially reduce

the number of subscribers to network 2. The following lemma describes exactly when this

happens.

Lemma 3 Suppose networks use tariffs T1 = (F1, c, ĉ) and T2 = (F2, c, ĉ). Then

∂℘1

∂F1

= − ℘1

dµ2
((1− ℘1)µ− ℘2(1− ℘1 − ℘2)v) (7)

and
∂℘2

∂F1

= −℘1℘2

dµ2
(v̂(1− ℘1 − ℘2)− µ) (8)

where

dµ2 = µ2 + µ[(℘2
1 − ℘1)v + (℘2

2 − ℘2)v + 2℘1℘2v̂] + ℘1℘2(1− ℘1 − ℘2)(v
2 − v̂2).

If a is close to c0 and Assumption 1 holds, then d > 0 and

∂℘1

∂F1

< 0,
∂℘1

∂F1

+
∂℘2

∂F1

< 0

and
∂℘2

∂F1

> 0 if and only if ∇ = µ− v̂(1− ℘1 − ℘2) > 0.

Proof. See Appendix for the proof.

When one firm increases its fixed fee, it loses subscribers such that total market penetra-

tion (℘1 + ℘2) decreases. However, whether the rival firm loses or gains subscribers depends

on the sign of ∇ = µ− v(ĉ)℘0. If ∇ > 0, the rival firm gets more subscribers while if ∇ < 0,

it gets less subscribers. In what follows, we will say that there is a net business stealing

effect if ∇ > 0 and there is a net network externality effect if ∇ < 0. For instance, in the

extreme case of inelastic and full subscription (i.e. ℘1 + ℘2 = 1), we have ∇ = µ > 0 since

there is only a business stealing effect: all consumers who leave firm 1 subscribe to firm 2.

In general, when subscription is elastic, there exists a network externality effect since an

increase in the fixed fee of firm 1 reduces the total number of subscribers (℘1 + ℘2), which

reduces the utility from subscribing to any given network. If the network externality effect

dominates the business stealing effect, the number of subscribers of firm 2 decreases as firm
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1 increases its fixed fee.15

3.1.3 Unique symmetric equilibrium

Under the perceived marginal cost pricing (p1 = p2 = c and p̂1 = p̂2 = ĉ), profits can be

rewritten as

Πi = ℘i[℘jR(ĉ) + Fi − f ].

Thus
∂Πi

∂Fi

=
∂℘i

∂Fi

[℘jR(ĉ) + Fi − f ] + ℘i[
∂℘j

∂Fi

R(ĉ) + 1].

So the first order condition reads

0 =
∂℘i

∂Fi

(Fi − f) + ℘i + R(ĉ)

(
℘j

∂℘i

∂Fi

+ ℘i
∂℘j

∂Fi

)
.

Solving for a symmetric solution, and using the marginal effects on the number of sub-

scribers of networks 1 and 2 with respect to a change in the fixed fee of network 1 derived

in Lemma 3, yields

F − f =
−℘−R(ĉ) ℘2(−1+2℘)

µ−℘(1−2℘)(v+v̂)

∂℘i

∂Fi

.

This can be manipulated to yield F = F equil(℘, a) where

F equil(℘, a) := f +
µ− (1− 2℘)℘(v + v̂ + R(ĉ))

(1− ℘)µ− ℘(1− 2℘)v
(µ− ℘(v − v̂)) (9)

On the other hand, rational expectations, by means of equation (4), need to be satisfied.

We define:

FRE(℘, a) := ℘(v + v̂)− V0 − µ ln

[
℘

1− 2℘

]
. (10)

15More precisely, an increase in F1 induces some subscribers of 1 to switch to firm 2 and some others to
become unsubscribed. If consumers do not immediately adjust their expectations, the proportion of all the
consumers that leave firm 1, and then go to firm 2 (rather than becoming unsubscribed), is proportional to
β2/β0. Once consumers realize that the value of subscription is reduced because there are more unsubscribed
consumers, some of the subscribers of firm 2 will become unsubscribed. So firm 2 gains some subscribers due
to the business stealing effect, but also loses some subscribers due to the network externality effect. Clearly,
if β0 is relatively large, a relatively large fraction of consumers leaving firm 1 will become unsubscribed,
so that the network externality effect becomes large. In order to see whether the net effect is positive or
negative, note that, in the Logit model log(β2)− log(β0) = (V2 − V0)/µ. This implies that (when all usage
prices are c)

β2 = β0 exp[((1− β0)v − F2 − V0)/µ].

The derivative of the right-hand side with respect to β0 equals (1 + β0(−v/µ)) exp[((1− β0)v−F2−V0)/µ],
which is positive if and only if ∇ = µ− (1− β1 − β2)v > 0.
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The equilibrium number of subscribers per firm is thus found by solving F equil(℘, a) =

FRE(℘, a). We will denote this solution by ℘(a). In particular, for a = c0 the solution is

given by

[
f + µ

µ− 2℘(1− 2℘)v

(1− ℘)µ− ℘(1− 2℘)v

]
−

[
2℘v − V0 − µ ln

(
℘

1− 2℘

)]
= 0.

It can be shown (using Assumption 1) that there is a unique solution ℘∗ = ℘(c0) to this

equation. There will then also be a unique solution for a 6= c0 for small enough |a − c0|.
Moreover, FRE(℘, c0) > F equil(℘, c0) if and only if ℘ < ℘∗. That is, the rational expectations

curve cuts the equilibrium curve from above. Fig. 1 illustrates these findings for a given

access charge a.

F
Equil

F
RE

℘ →
℘∗

↑ F

F ∗

Figure 1: Symmetric equilibrium.

Proposition 2 Under Assumption 1, for |a− c0| small enough, there exists a unique sym-

metric equilibrium (F, p, p̂). This solution is given by p = c, p̂ = ĉ and F = FRE(℘(a), a).

We will be particularly interested in how profits, consumer surplus and social welfare

vary with a. It turns out that analyzing these effects is not straightforward since there are

two opposing effects at work. First, firms may want to use the termination charge to soften

price competition to raise fixed fees and profits. This is the only force at work in Gans

and King (2001) where subscription demand is inelastic. However, in the Logit model with

elastic subscription demand there is a second force at work, namely network externalities.

Firms may have a common incentive to increase market penetration as this increases the

value of subscription to each customer. Note that the second force works against the first

15



one since softening competition would cause a reduction in the number of subscribers. It is

not obvious which of the two effects dominates. Moreover, in case the network externality

effect dominates, it is also not clear whether firms or the regulator would like to increase

or decrease the termination charge. Therefore, in what follows, we first analyze an extreme

case of two interconnected monopoly networks facing elastic subscription demand; this case

allows us to isolate the network externality effect. After that we turn to the case of competing

networks facing elastic subscription demand.

3.2 Benchmark: two interconnected monopolists

There are two islands and firm i (= 1, 2) operates only in island i. Each island has a

population normalized to 1/2. Inhabitants of an island cannot (or simply do not want to)

subscribe to the operator of the other island. Hence, the two firms do not compete for the

same customers. However, the inhabitants care indirectly about the pricing policy of the

monopolist on the other island since it affects subscription rates and thus affects how many

calls can be made to its subscribers.

As before, given retail tariffs, consumers form expectations over the number of subscribers

of network 1 (β1) and network 2 (β2), with βi ≥ 0 and β1 +β2 ≤ 1. Given such expectations,

utility from subscribing to network i (for inhabitants of island i) equals Vi where V1, V2, V0 are

defined as before. Define U1 = V1 +µε1, U2 = V2 +µε2, and U0 = V0 +µε0. Consumers from

island i = 1, 2 subscribe (to network i) when Ui > U0 and remain unsubscribed otherwise.

The number of subscribers on island i now equals

℘̃i =
1

2
× exp[Vi/µ]

exp[Vi/µ] + exp[V0/µ]
, (11)

since inhabitants of island i can only choose between subscribing (to network i) or remain-

ing unsubscribed.16 Rational expectations imply ℘̃i = βi. In the Appendix we show how

rational expectations are affected by a marginal change in firm 1’s fixed fee, at a symmetric

equilibrium candidate (F̃ , c, ĉ):

Lemma 4 In the Logit model with two interconnected monopolists, at a symmetric equilib-

rium candidate (F̃ , c, ĉ) with number of subscribers per firm equal to ℘̃, we have

∂℘̃1

∂F1

=
−1

d̃µ2
℘̃((1− 2℘̃)(µ− ℘̃(1− 2℘̃)v) < 0 (12)

16In this subsection on interconnected monopolists we use tildes to distinguish the symbols from the case
of interconnected duopoly, whenever they are different.

16



and
∂℘̃2

∂F1

=
−1

d̃µ2
℘̃2(1− 2℘̃)2v̂ < 0. (13)

where

d̃ = [µ− ℘̃(1− 2℘̃)(v + v̂)][µ− ℘̃(1− 2℘̃)(v − v̂)]/µ2.

Proof. See Appendix for the proof.

Hence an increase of the fixed fee of firm 1 definitively results in a decrease of the number

of subscribers of firm 2. This is the network externality effect.

Given p1 = p2 = c and p̂1 = p̂2 = ĉ := c + a− c0, profits can be rewritten as

Πi = ℘̃i[℘̃jR(ĉ) + F̃i − f ].

So the first order condition reads

0 =
∂℘̃i

∂F̃i

(F̃i − f) + ℘̃i + R(ĉ)

(
℘̃j

∂℘̃i

∂F̃i

+ ℘̃i
∂℘̃j

∂F̃i

)
.

Solving for a symmetric solution, using Lemma 4, yields

F̃ − f =
−℘̃−R(ĉ) −℘̃2(1−2℘̃)

µ−℘̃(1−2℘̃)(v+v̂)

∂℘̃i

∂F̃i

.

This can be manipulated to yield F̃ = F̃ equil(℘̃, a) where

F̃ equil(℘̃, a) = f +
µ− (1− 2℘̃)℘̃(v + v̂ + R(ĉ))

(1− 2℘̃)(µ− ℘̃(1− 2℘̃)v)
(µ− ℘̃(1− 2℘̃)(v − v̂)). (14)

It is readily verified that the right-hand side of this equation is decreasing in a at a = c0:

∂F̃ equil(℘̃, a)

∂a
|a=c0 = −℘̃q(c)

µ− 2℘̃(1− 2℘̃)v

µ− ℘̃(1− 2℘̃)v
.

To have rational expectations fulfilled in this two island model, we obtain from (11)

F̃RE = ℘̃(v + v̂)− V0 − µ ln

[
2℘̃

1− 2℘̃

]
. (15)

Note that, at a = c0, the right-hand side of this equation is decreasing in a:

∂F̃RE(℘̃, a)

∂a
|a=c0 = −℘̃q(c).
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Hence, a marginal increase of a above c0 makes the rational expectations curve drop by

more than the equilibrium condition curve. This means that the number of subscribers goes

down when a is increased above c0. This is illustrated in Fig. 2 below.

F
Equil

F
RE

℘ →
℘∗

↑ F

F̃ ∗

Figure 2: An increase in a above c0 leads to lower market penetration.

Lemma 5 In the Logit model with two interconnected monopolists, an increase in the ter-

mination charge above c0 lowers overall market penetration and equilibrium fixed fees.

So if firms want to increase market penetration, they want termination charge below cost.

The intuition is that firms realize that raising one’s fixed fee reduces the size of the other

network and thus hurts its own customers. However, they fail to internalize the fact that this

also hurts the other network, and therefore they set a too high fixed fee. By having a < c0,

the value of making off-net calls is higher. This means that subscribers of a given network

care more about the size of the other network. An increase in the fixed fee of network 1 will

now thus reduce the size of the other network more than when a = c0, which in turn hurts

1’s own consumers more than when a = c0. Hence, letting a < c0 exacerbates the negative

effect of raising one’s fee on its own subscribers and firms therefore lower the fixed fee and

this increases market penetration. In other words, a < c0 induces them to better internalize

network externalities.

The above Lemma suggests that firms would prefer an access charge below termination

as this increases market penetration and equilibrium fixed fees. The following proposition

makes this formal.
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Proposition 3 In the Logit model with two interconnected monopolists, firms prefer access

fee a < c0. This also improves consumer surplus.

Proof. See Appendix for the proof.

To provide the intuition for the result, it is useful to note that the two monopolists

would like to have the number of subscribers closer to the one that would be chosen by an

integrated monopolist operating in both islands. Given that the two monopolists do not

fully internalize positive network externalities, they end up having a number of subscribers

smaller than the one chosen by an integrated monopolist. Therefore, they want to increase

the subscribers by choosing an access charge below the termination cost.

3.3 Interconnected duopoly

We now return to the case of competing interconnected duopolists. As explained before, the

case of interconnected duopolists exhibits both network externalities and business stealing

effects. We here analyze the effect of a change in termination charge around c0 for profits,

consumer surplus and social welfare.

We first analyze how an increase in a effects market penetration. Let us define h(℘, a) =

F equil(℘, a)− FRE(℘, a).

h(℘, a) =
µ− (1− 2℘)℘(v + v̂ + R(ĉ))

(1− ℘)µ− ℘(1− 2℘)v
(µ− ℘(v − v̂))− ℘(v + v̂) + V0 + f + µ ln

[
℘

1− 2℘

]
.

We have already established that there is a unique solution ℘(a) of h(℘, a) = 0. Moreover,

at the solution h℘ > 0. Hence,

℘′(a) = −ha

h℘

;

℘′(a) and ha have opposite signs. We have

∂h(℘, a)

∂a
|a=c0(℘, c0) =

℘2q(c)

(1− ℘)µ− ℘(1− 2℘)v
((1− 2℘)v − µ).

We conclude that for ∇∗ = µ − (1 − 2℘∗)v > 0 an increase in a above c0 will increase

the equilibrium number of subscribers, while for ∇∗ < 0 such an increase in a results in a

decrease in the equilibrium number of subscribers.

Lemma 6 Let ∇∗ = µ− (1− 2℘∗)v.

d℘∗(a)

da
|a=c0 > 0 if and only if ∇∗ > 0
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and
d℘∗(a)

da
|a=c0 < 0 if and only if ∇∗ < 0.

If ∇∗ < 0, then ∂℘2/∂F1 < 0: the network externality effect dominates the business

stealing effect. Therefore, as in the case of two interconnected monopolists facing elastic

subscription demand, a decrease in a below c0 increases the equilibrium number of sub-

scribers by inducing the firms to internalize better the network externality. On the contrary,

if ∇∗ > 0, then ∂℘2/∂F1 > 0: the business stealing effect dominates the network externality

effect. Then, as in the case of competing duopoly facing inelastic subscription demand, a

decrease in a below c0 decreases the equilibrium number of subscribers by softening compe-

tition. Therefore, one would expect that firms would prefer termination charge below cost

for opposite reasons: in order to boost market penetration for ∇∗ < 0 and in order to reduce

market penetration for ∇∗ > 0. We now proceed to verify that indeed firms always prefer

below cost termination charges.

Let H(a, ℘) denote the profit a firm makes when it has ℘ subscribers, access charge is a

and its fixed fee is FRE(℘, c0). That is

H(a, ℘) = ℘(℘R(ĉ) + F − f) = ℘(℘(R(ĉ) + v(c) + v(ĉ))− V0 − µ log[℘/(1− 2℘)]− f).

We will be interested in knowing what happens with this profit at a = c0 when ℘ is moved

away from the corresponding equilibrium value ℘∗. Note that we know that per consumer

profit at the equilibrium equals F − f , which by (9) equals (at a = c0)

µ
µ− 2℘∗(1− 2℘∗)v

(1− ℘∗)µ− ℘∗(1− 2℘∗)v
.

Hence,

∂H

∂℘
(c0, ℘

∗) = H(c0, ℘
∗)/℘∗ + ℘∗

[
2v(c)− µ

℘∗(1− 2℘∗)

]

= µ
µ− 2℘∗(1− 2℘∗)v

(1− ℘∗)µ− ℘∗(1− 2℘∗)v
+ 2℘∗v − µ

1− 2℘∗

=
−℘∗(µ− (1− 2℘∗)v)(µ− 2℘∗(1− 2℘∗)v)

(1− 2℘∗)((1− ℘∗)µ− ℘∗(1− 2℘∗)v)
.

Therefore, if Assumption 1 is satisfied, the sign of this derivative is opposite to the sign

of ∇∗ = µ − (1 − 2℘∗)v. Thus, if an increase of a above c0 increases (decreases) market

penetration, profits decrease (increase) with the number of subscribers along the rational
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expectations curve, in a neighborhood around c0.

Next, we have to account for the fact that when a is varied, the rational expectations

curve, and thus the equilibrium, will change. The partial effect on profits (keeping ℘∗ fixed)

equals
∂H

∂a
= (℘∗)2(a− c0)q

′(ĉ),

so that at a = c0 a marginal change in a does not affect profits directly. The extra profit

made through access revenues is just offset by the decrease in fixed fee. However, profits are

affected indirectly by a change in market penetration.

dH

da
= Ha + H℘ × ℘′(a).

Since the sign of H℘ is the opposite of the sign of ℘′(a) at a = c0, one observes that profits are

always decreasing in a in a neighborhood around c0. Firms thus always prefer a termination

charge below cost.

Proposition 4 Firms prefer a termination charge below cost a < c0.

How does social welfare change when the access charge is changed? Social welfare is the

sum of consumer surplus and industry profit. The expression for consumer surplus in the

Logit model has been derived by Small and Rosen (1981) as (up to a constant)

CS(a, ℘(a)) = µ ln

(
2∑

j=0

exp(Vj/µ)

)
= V0 − µ ln(1− 2℘(a)).

Hence, consumer surplus is not directly affected by the access charge, but only through the

equilibrium number of subscribers. Clearly, consumer surplus is increasing in the number of

subscribers:
∂ CS

∂℘
=

2µ

1− 2℘
> 0.

SW (a, ℘(a)) = CS(a, ℘(a)) + 2H(a, ℘(a)).

We thus obtain, at a = c0,

d SW

d a
= ℘′(a)CS℘ + 2Ha + 2H℘℘′(a)

= ℘′(c0)

(
2µ

1− 2℘
+ 2

−℘(µ− (1− 2℘)v)(µ− 2℘(1− 2℘)v)

(1− 2℘)((1− ℘)µ− ℘(1− 2℘)v)

)
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It can be established that the term in brackets is strictly positive when µ > v/4. This

means that social welfare increases as market penetration increases.

Proposition 5 Let ℘∗ denote the number of subscribers per firm in the equilibrium when

a = c0. If µ > (1− 2℘∗)v, the number of subscribers, and thus social welfare, increases as a

is increased above c0. If µ < (1− 2℘∗)v, the number of subscribers, and thus social welfare,

increases as a is decreased below c0: in this case, the socially desirable access charge is lower

than the one that maximizes industry profit.

Both the firms and the regulator want to divert from the termination charge equal to

termination cost in order to affect the number of subscribers. The firms want to make the

number of subscribers closer to the number chosen by a monopolist owning both networks

while the regulator always wants to increase the number. When there is a net business-

stealing effect (i.e. ∇∗ > 0), there is a conflict of interest between the firms and the regulator

since the firms want to decrease the number of subscribers, which requires them to choose

a below c0 in order to soften competition. When there is a net network externality effect

(i.e. ∇∗ < 0), there is a congruence of interests between the firms and the regulator in the

sense that firms want to increase the number of subscribers, which again requires them to

choose a below c0 in order to internalize network externalities. However, the firms do not

internalize the positive effect that an increase in their network size has on consumer surplus

and therefore the socially preferred access charge is lower than the one preferred by the firms.

Of course, in order to choose between a > c0 and a < c0, the regulator must possess

some information about the demand side such that she is able to determine whether or not

µ > (1− 2℘∗)v holds.

To conclude this section, we illustrate the results obtained by means of numerical exam-

ples. We assume the same demand functions and cost parameters (in cents) as de Bijl and

Peitz (2004) and López and Rey (2009): q(p) = (20− p)2/0.015, c0 = 0.5, c = 2, f = 1000,

µ = 3000. Note that v(c) = 10800 so that v(c)/2 > µ > v(c)/4.

In the first case (left panel) we assume V0 = 5000. This means the outside option

is relatively attractive and network effects will be important. In this case, for a = c0,

the (symmetric) equilibrium has F ≈ 2372 and total market penetration 2℘∗ ≈ 0.58. So

∇∗ = µ− (1− 2℘∗)v(c) ≈ −1517 < 0 and the network effect dominates.

The graphs illustrate that (i) market penetration decreases with access charge, (ii) in-

dustry profits are maximized at a = 0, (iii) social welfare is maximized at a = 0 (Bill and

Keep).
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In the second case (right panel) we assume V0 = 0. In this case, for a = c0, the

(symmetric) equilibrium has F ≈ 5859 and total market penetration 2℘∗ ≈ 0.86. So

∇∗ = µ− (1− 2℘∗)v(c) ≈ 1535 > 0 and the business stealing effect dominates.

The graphs illustrate that (i) market penetration increases with access charge, (ii) indus-

try profits are maximized at a = 0 < c0 (Bill and keep), (iii) social welfare is maximized at

about a = 5.4.
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Figure 3: Illustration of the effect of access charges when network effects (left panel) or
business stealing effect (right panel) are important.

4 Retail Benchmarking Approach

In this section, we generalize the retail benchmarking approach introduced in Jeon and

Hurkens (2008). Jeon and Hurkens (2008) consider the case without termination-based

price discrimination and with inelastic subscription of all consumers and find a class of
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access pricing rules parameterized by κ that achieves the marginal cost pricing (i.e. the call

charge equal to c). We generalize the previous result in three dimensions. First, we allow

for termination-based price discrimination. Second, we consider a (Logit) model with elastic

subscription demand. Third, in this setting, for a given fixed access charge a, we find a class

of access pricing rules parameterized by κ that induces each network to choose the on-net

price equal to the on-net marginal cost and the off-net price equal to the off-net marginal

cost.

Before generalizing the retail benchmarking approach, we remind the regulator’s infor-

mation constraint and the result from Jeon and Hurkens (2008).

4.1 Assumption and Result from Jeon and Hurkens (2008)

We maintain the same constraint on the regulator’s information as in our previous paper:

• The regulator’s informational constraint : On the one hand, we assume that the regulator

has limited information about the market such that she is not informed about the individual

demand function q(p), each firm’s subscription demand function and the value of the fixed

cost f . On the other hand, she knows the marginal cost c and the termination cost c0.

Furthermore, she and consumers observe retail prices [(p1, p̂1, F1), (p2, p̂2, F2)]. Moreover, we

need to assume that the regulator can observe average retail prices,17 which means that she

is able to observe realized demand.

The firms are assumed to know all the relevant information regarding both the demand

and the cost sides as in Jeon and Hurkens (2008).

In a model without termination-based price discrimination and inelastic subscription of

all consumers, we find that the following family of access pricing rules parameterized by

κ(< 1) induces each firm to adopt the marginal cost pricing (i.e. pi = c):

ai = c0 + κ

(
Fi + piq(pi)

q(pi)
− c

)
, (16)

where ai represents the access charge that firm i pays to each rival firm. κ = 0 corresponds

to the fixed access charge equal to the termination cost. According to the rule, the mark-

up of the access charge that firm i pays to each rival firm is equal to the firm i’s average

price mark-up multiplied by κ. We find that the retail benchmarking rule intensifies retail

competition such that higher values of κ translate into lower equilibrium fixed fee. However,

17For instance, the Spanish telecommunication agency (Comisión del Mercado de las Telecomunicaciones)
publishes data on each network’s average price.
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when all consumers subscribe to one of the two networks, the level of fixed fee does not

affect social welfare and choosing termination charge equal to termination cost is enough to

achieve the Ramsey outcome.

4.2 Generalization

Consider a given fixed and reciprocal access charge a that can be different from c0. Let πi(a)

denote network i’s retail profit per customer gross of the fixed cost;

πi(a) ≡ ℘i(pi − c)q(pi) + ℘j(p̂i − (c + a− c0))q(p̂i) + Fi

Therefore, given the fixed access charge a, network i’s profit is given by

Πi = ℘i [πi(a) + ℘j(a− c0)q(p̂j)− f ]

We remind from the previous sections that in this case, network i finds it optimal to choose

pi = c and p̂i = c + a− c0.

We now propose the following generalization of our access pricing rule: in addition to

paying the fixed (per-minute) access charge a, network i pays an access charge ai determined

by

aiq(p̂i) = κπi(a).

so that total termination charge that network i pays equals

λ(a, κ) := a + κ
πi(a)

q(p̂i)
. (17)

Under our generalized access pricing rule, network i’s profit is given by:

Πi = ℘i [πi(a) + ℘j(a− c0)q(p̂j)− f ] + ℘i℘j [−aiq(p̂i) + ajq(p̂j)] .

which is equal to

Πi = ℘i [πi(a) + ℘j(a− c0)q(p̂j)− f ]− κ℘i℘j [πi(a)− πj(a)] . (18)

The second term of the R.H.S. of equation (18) shows well that our access pricing rules

adds a sort of competition between the two firms in terms of the profit per customer πi(a)

such that the firm which extracts more (less) surplus from consumers is punished (rewarded)
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with the additional net access payment (revenue). The intensity of this competition increases

with κ. Rearranging (18) gives

Πi = ℘i [(1− κ℘j)πi(a)− f ] + κ℘i℘j [πj(a) + (a− c0)q(p̂j)] . (19)

As in the previous sections, we can apply a change of variables and let network i maximize

profits by choosing pi, p̂i and ℘i, holding pj, p̂j and Fj fixed. Note that if pi is changed

while keeping ℘i, p̂i, pj, p̂j and Fj fixed, then also ℘j will remain fixed. Note also that in a

Logit model, we always have ℘i < 1 and ℘j < 1. Therefore, for κ ≤ 1, maximizing Πi with

respect to on-net price pi (keeping ℘i fixed) is equivalent to maximizing πi. In other words,

as long as κ ≤ 1, κ does not affect the optimal choice of pi. Since we know from the previous

sections that network i chooses pi = c when κ = 0, network i chooses pi = c for κ ≤ 1. For

the same reason, network i chooses p̂i = c + a− c0 for κ ≤ 1. Therefore, the class of access

pricing rules induces networks to charge on-net price (off-net price) equal to on-net marginal

cost (off-net marginal cost).

We now study the equilibrium fixed fee. From pi = c and p̂i = c + a − c0, we have

πi(a) = Fi. Then, (18) becomes

Πi = ℘i [Fi + ℘jA(a)− f ]− κ℘i℘j [Fi − Fj] (20)

where A(a) ≡ (a− c0)q(c + a− c0). The second term of the R.H.S. of equation (20) clearly

shows that our access pricing rule creates extra competition in terms of fixed fee: the firm

charging a higher (lower) fixed fee is punished (rewarded) with the additional net access

payment (revenue). Rewriting equation (20) yields

Πi = ℘i [Fi − ℘j [κ (Fi − Fj)− A(a)]− f ] .

The first order derivative with respect to Fi is given by:

∂℘i

∂Fi

[Fi − ℘j [κ (Fi − Fj)− A(a)]− f ] + ℘i

[
(1− κ℘j)− [κ (Fi − Fj)− A(a)]

∂℘j

∂Fi

]
.

Solving for a symmetric solution yields:

F = f − ℘A(a)− ℘
∂℘i

∂Fi

[
(1− κ℘) + A(a)

∂℘j

∂Fi

]
. (21)
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From ∂℘i

∂Fi
< 0, F decreases with κ when a is close to c0. This is very intuitive since from (20),

the extra competition in terms of fixed fee, generated by our access pricing rule, becomes

more intensive as κ increases.

The equilibrium number of subscribers per firm is thus found by solving the system of

equations (21) and (10).

Proposition 6 Consider the retail benchmarking rules λ(a, κ) defined by (17). Then, for

|a− c0| small and any κ ≤ 1,

1. Each firm chooses on-net price equal to on-net marginal cost (c) and off-net price

equal to off-net marginal cost (c + a− c0).

2. The symmetric equilibrium is characterized by (21) and (10). In the equilibrium, the

fixed fee strictly decreases with κ.

Corollary 1 From a social welfare point of view, the retail benchmarking approach domi-

nates the approach using a fixed reciprocal access charge for two reasons.

1. For a given fixed access charge, it is possible to increase the number of subscribers by

increasing κ from zero.

2. While in the case of fixed access charge, a distortion in off-net price is necessary

to increase the number of subscribers, in the case of retail benchmarking, it is possible to

increase the number of subscribers (by increasing κ from zero) while maintaining both on-net

and off-net call prices equal to the marginal cost c.

Basically, our retail benchmarking rule creates an extra policy instrument that is absent

in the fixed access charge approach. Namely, the regulator can increase the intensity of

retail competition by increasing κ the intensity of the feedback from retail prices to access

payment.

When a = c0, (21) becomes

F = f − ℘(1− κ℘)
∂℘i

∂Fi

.

At symmetric equilibrium, we have

∂℘i

∂Fi

= −℘

µ

(1− ℘)µ− ℘(1− 2℘)v

µ− 2℘(1− 2℘)v
.

Therefore, we have

F = f +
µ(1− κ℘)(µ− 2℘(1− 2℘)v)

(1− ℘)µ− ℘(1− 2℘)v
. (22)
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Hence, F > f for κ ≤ 1 as long as F > f for κ = 0, which suggests that each firm realizes a

positive profit for κ ≤ 1. On the other hand, (10) is given by

F = 2℘v − V0 − µ ln

[
℘

1− 2℘

]
. (23)

Note that (23) does not depend on κ. The equilibrium (F, ℘) is determined by the two

equations (22) and (23). Clearly, as κ increases, the equilibrium (F, ℘) moves down following

the curve of (23) and therefore, the fixed fee decreases while the number of subscribers

increases.

We also note that even though the regulator does not know whether µ < (1−2℘∗)v holds

or not, she can choose some k ∈ (0, 1] to expand the number of subscribers. By contrast, in

the case of the standard approach based on a fixed access charge, the regulator must know

whether µ < (1− 2℘∗)v holds or not in order to choose between a > c0 and a < c0.

Furthermore, when there is a net network externality effect, it is also in the interest of

firms to have the retail benchmarking approach with a = c0 and with κ > 0. More precisely,

when a = c0, as the equilibrium fixed fee decreases with κ, there is κm > 0 such that the

equilibrium fixed fee for κ = κm is exactly equal to the fixed fee that would be chosen by

a monopolist owning both networks. On the other hand, if there is a net business stealing

effect, firms would like to have an access charge ã < c0 in order to soften competition.

However, there exists a retail benchmarking rule that allows the firms to make even higher

profits but leave consumer surplus unaffected. Namely, there exists a retail benchmarking

rule λ(a′, κ) with ã < a′ < c0 and κ < 0 such that the rule leads to exactly the same market

penetration and consumer surplus as the fixed access charge ã. Since the retail benchmarking

rule leads to less distorted call volumes than the fixed access charge ã , it is more efficient,

leads to higher social welfare and thus also to higher profits. Therefore,

Corollary 2 (i) When µ < (1−2℘∗)v, firms prefer the retail benchmarking approach (17)

with a = c0 and κ = min {κm, 1} to any fixed access charge.

(ii) When µ > (1− 2℘∗)v, firms prefer some fixed access charge ã < c0 to a = c0 in order

to soften competition. However, there exists a retail benchmarking rule λ(a′, κ) with

ã < a′ < c0 and κ < 0 such that it leads to exactly the same market penetration and

consumer surplus as the fixed access charge ã. The retail benchmarking rule leads to

less distorted call volumes and thus to higher profits (and higher social welfare).
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4.3 Interpretation of the retail benchmarking rule

We now provide an economic interpretation of our access pricing rule. For this purpose, we

consider a = c0. Then, (17) is equivalent to

ai − c0 = κ(℘i + ℘j)

[
si

qon
i

qoff
i

(AP on
i − c) + sj(AP off

i − c)

]
+ κ(1− ℘i − ℘j)

Fi

qoff
i

(24)

where

si =
℘i

℘i + ℘j

, AP on
i =

piq
on
i + Fi

qon
i

, AP off
i =

p̂iq
off
i + Fi

qoff
i

.

In other words, si is firm i’s market share and AP on
i (respectively, AP off

i ) is firm i’s average

on net price (off-net price).

To explain the rule (24), we consider some specific cases. First, without termination-

based price discrimination and with full subscription of all consumers (i.e. ℘i + ℘j = 1),

we are back to the rule (16) that we considered in Jeon and Hurkens (2008). Therefore,

(24) generalizes (16) in two directions: termination-based price discrimination and partial

participation.

Second, under full subscription but with termination-based price discrimination, (24)

becomes

ai − c0 = κ

[
si

qon
i

qoff
i

(AP on
i − c) + sj(AP off

i − c)

]

In other words, our rule linearly links the access charge mark up to a weighted average retail

price mark up in which the average price is a weighted sum of on-net average price and

off-net average price and the weights depend on market shares (and are equal to market

shares if qon
i = qoff

i ).

Third, under partial participation but without termination-based price discrimination,

(24) becomes

ai − c0 = κ

[
(℘i + ℘j)

piqi + Fi − cqi

qi

+ (1− ℘i − ℘j)
Fi

qi

]

Still our rule linearly links the access charge mark up to a weighted average retail price

mark up in which the weights used are the fraction of subscribers and the fraction of non-

subscribers. For the subscribers, the average retail price markup is computed as usual

(piqi + Fi − cqi) /qi; for the non-subscribers, the average retail price markup is given by

putting the volume equal to zero in the numerator of the previous formula.
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5 Retail Benchmarking Approach and the Ramsey Out-

come

In this section, we assume that both the regulator and the firms have the same information

(i.e. all of them know demand and cost structures) and show that there is a simple modifica-

tion of our access pricing rule (17) that achieves the Ramsey outcome as a Nash equilibrium.

Our aim is not so much to promote this modified access pricing rule but to illustrate the

power of the retail benchmarking approach with respect to the approach based on a fixed

access charge. Note that the Ramsey outcome is achieved when the firms charge the prices

equal to the costs (i.e. pi = p̂i = c, Fi = f for i = 1, 2) and this outcome can never be

achieved under the approach based on a fixed access charge.

Let ℘R be each network’s number of subscribers in the Ramsey outcome. In a Logit

model with duopoly, we have

0 < ℘R < 1/2.

Since the regulator knows demand and cost structure, the regulator knows ℘R. Define

κ∗ by 1− κ∗℘R = 0; hence κ∗ > 2. Let πi denote network i’s retail profit per customer gross

of the fixed cost when a = c0;

πi ≡ ℘i(pi − c)q(pi) + ℘j(p̂i − c)q(p̂i) + Fi.

Then, for a = c0, the access pricing rule (17) is given by

(ai − c0) q(p̂i) = κπi (25)

We modify it as follows:

(ai − c0) q(p̂i) = κ∗ max {πi, f} (26)

In (26), we choose κ = κ∗ and add the max operator such that firm i cannot realize any

further reduction of its access payment by pricing below costs. If i’s access payment does

not depend on its retail prices, firm i has no incentive to choose retail prices that give him

a retail profit per customer below the fixed cost per customer. However, under our retail

benchmarking approach, firm i may have an incentive to choose very low retail prices only

to reduce its access payment such that its net access revenue more than covers its net retail

loss. By adding the max operator, (26) makes such a deviation not profitable.
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We now introduce one additional assumption:

Assumption 2 An increase in Fi increases the number of subscribers to firm j.

Assumption 2 is satisfied if µ is large enough. For instance, in a symmetric equilibrium

with pi = p̂i = c, it holds if µ > (1 − 2℘)v where ℘ is the number of subscribers to a

firm in the symmetric equilibrium. In other words, the assumption holds if there is a net

business-stealing effect.

Then, we have:

Proposition 7 Suppose that the regulator proposes the access pricing rule (26). Then,

under assumption 2, the Ramsey outcome can be implemented as a Nash Equilibrium: in the

equilibrium, firm i chooses pi = p̂i = c, Fi = f for i = 1, 2.

Proof. See Appendix for the proof.

6 Conclusion

We studied how access pricing affects network competition when consumers’ subscription

demand is elastic and firms compete with non-linear tariffs and can apply termination-based

price discrimination. We first considered the standard approach based on a fixed and recip-

rocal (per-minute) termination charge and found that both the firms and the regulator want

to depart from cost-based termination charge (and hence want to distort call volumes) in

order to affect market penetration. In particular, two opposing effects (softening competi-

tion and internalizing network externalities) are associated with a reduction in termination

charge. The former decreases market penetration while the latter increases it. We find that

firms always prefer having termination charge below cost for either motif while the regulator

prefers termination charge below cost only if this boosts penetration.

After studying the standard approach, we investigated the retail benchmarking approach.

We find that for a given fixed reciprocal termination charge, we can find a family of access

pricing rules parameterized such that all the access pricing rules in the family induce firms

to charge on-net price equal to on-net cost and off-net price equal to off-net cost but the

equilibrium fixed fee decreases with the strength of the feedback from retail prices to access

payments. The result implies that the regulator can boost market penetration without

distorting call volumes. Our access pricing rules intensify retail competition since a firm can
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reduce its access payment to rival firm(s) by reducing its retail prices. In addition, we show

that for any given fixed reciprocal termination charge, we can find a retail benchmarking

rule that gives both higher social welfare and higher profits.

Appendix

Proof of Lemma 1

We prove that the fixed point of the mapping ℘ : ∆2 → ∆2 where ℘(β1, β2) = (℘1, ℘2) is

unique for µ large enough. This can be done by looking at the index of zeros of the mapping

g(β) = ℘(β)− β. The Jacobian of g is

Dβg =




1
µ
[β1(1− β1)v(p1)− β1β2v(p̂2)]− 1 1

µ
[β1(1− β1)v(p̂1)− β1β2v(p2)]

1
µ
[β2(1− β2)v(p̂2)− β1β2v(p1)]

1
µ
[β2(1− β2)v(p2)− β1β2v(p̂1)]− 1


 .

Let d = det Dβg. In the case at hand, the index of a fixed point β is equal to +1 if d > 0

and equal to −1 if d < 0. The Poincaré-Hopf Theorem implies that the sum of indexes of all

fixed points equals +1 (the Euler index of the simplex). It is clear that for large enough µ,

d > 0 so that then every fixed point has index +1. This then implies that there is a unique

fixed point. Thus for large enough µ rational expectations are uniquely defined for all tariff

schedules.

Proof of Lemma 2

The proof uses elements from the proof of the previous Lemma in the special case of

firms using perceived marginal cost pricing. Suppose first that a = c0 and that firms set

both on-net and off-net price equal to cost, but possibly F1 6= F2 (and thus ℘1 6= ℘2). Let d

denote the determinant of the Jacobian used in the previous Lemma. In this case

d =
µ− (1− ℘1 − ℘2)(℘1 + ℘2)v(c)

µ
=

µ− ℘0(1− ℘0)v(c)

µ
> 0

where the inequality follows from Assumption 1. By continuity the determinant will be

strictly positive also when a is close to c0 and firms price at perceived marginal cost. This

means that expectations are uniquely defined.

Proof of lemma 3

We continue to use the notation of the proof of Lemma 1. In particular, g(β) = ℘(β)−β.
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Note that

DF1g =


 −β1(1− β1)/µ

β1β2/µ


 .

This implies that an increase in the fixed fee of network 1, everything else equal, will decrease

the number of subscribers to network 1 and will increase the subscribers to network 2.

However, a change in F1 also affects rational expectations and the total effect on the number

of subscribers by a change in fixed fee F1 is given by the implicit function theorem as

DF1β = −[Dβg]−1DF1g.

The results follows immediately.

Proof of Lemma 4

Rational expectations are zeros of the mapping g̃(β) = (℘̃1− β1, ℘̃2− β2). The Jacobian

of g̃ is

Dβ g̃ =




1
µ
[β1(1− 2β1)v(p1)]− 1 1

µ
[β1(1− 2β1)v(p̂1)]

1
µ
[β2(1− 2β2)v(p̂2)]

1
µ
[β2(1− 2β2)v(p2)]− 1


 .

Let d̃ denote the determinant of this Jacobian. For large enough µ, we have d̃ > 0 and

therefore rational self-fulfilling expectations are then unique. Relying again on continuous

rational expectations one obtains again that firms will always set variable price equal to

perceived marginal cost: pi = c and p̂i = ĉ. Note that

DF1 g̃ =


 −β1(1− 2β1)/µ

0


 .

This implies that an increase in the fixed fee of network 1, everything else equal, will decrease

the number of subscribers to network 1 and will keep the number of subscribers to network

2 constant. The latter illustrates the fact that there is no business stealing effect in this

model. However, a change in F1 does affect expectations and the total effect on the number

of subscribers by a change in fixed fee F1 is given by the implicit function theorem as

DF1β(F1) = −[Dβ g̃]−1DF1 g̃.

One thus verifies that

∂β1

∂F1

=
−1

d̃µ2
β1((1− 2β1)(µ− β2(1− 2β2)v)
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and
∂β2

∂F1

=
−1

d̃µ2
β1β2(1− 2β1)(1− 2β2)v̂.

Thus, at a symmetric solution with rational expectations ℘̃1 = ℘̃2 = ℘̃

∂℘̃1

∂F1

=
−1

d̃µ2
℘̃((1− 2℘̃)(µ− ℘̃(1− 2℘̃)v) < 0 (27)

and
∂℘̃2

∂F1

=
−1

d̃µ2
℘̃2(1− 2℘̃)2v̂ < 0. (28)

Proof of Proposition 3

At the equilibrium (at a = c0) per consumer profit equals

F − f =
µ(µ− 2℘∗(1− 2℘∗)v

(1− 2℘∗)(µ− ℘∗(1− 2℘∗)v)
.

The effect on total profit H(c0, ℘) = ℘ (F − f) with respect to a change in ℘ is thus

∂H

∂℘
(c0, ℘

∗) = H(c0, ℘
∗)/℘∗ + ℘∗

[
2v(c)− µ

℘∗(1− 2℘∗)

]

=
℘∗v(µ− 2℘∗(1− 2℘∗)v)

µ− ℘∗(1− 2℘∗)v
> 0

Hence, profits increase along the rational expectations curve, in a neighborhood around ℘∗.

Next, we have to account for the fact that when a is varied, the rational expectations

curve, and thus the equilibrium, will change. The partial effect on profits (keeping ℘∗ fixed)

equals
∂H

∂a
= (℘∗)2(a− c0)q

′(ĉ),

so that at a = c0 a marginal change in a does not affect profits directly. The extra profit

made through access revenues is just offset by the decrease in the fixed fee. However, profits

are affected indirectly by a change in market penetration.

Therefore, we have:

dH

da
= Ha + H℘ × ℘′(a) < 0;

profits are decreasing in a in a neighborhood around c0. Firms thus indeed prefer an access

fee below cost. This leads to higher market penetration, which means it is also good for
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consumer and social welfare.

Proof of Proposition 7

Suppose that firm j uses Fj = f, pj = p̂j = c. Then, we distinguish two cases depending

on whether ℘i > ℘R or ℘i < ℘R.

Case 1: when ℘i > ℘R. ℘i > ℘R implies that πi < f . Then, firm i’s profit is

Πi = ℘i [πi − f ]− ℘i℘jκ
∗ [f − f ]

= ℘i [πi − f ] < 0.

Case 2: when ℘i < ℘R. ℘i < ℘R implies, from assumption 2, 1 < ℘jκ
∗. Consider first

πi ≥ f . Then, firm i’s profit becomes

Πi = ℘i (1− ℘jκ
∗) [πi − f ] ≤ 0.

Consider now πi < f . Then, firm i’s profit is

Πi = ℘i [πi − f ]− ℘i℘jκ
∗ [f − f ]

= ℘i [πi − f ] ≤ 0.
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