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Abstract:

We propose a new estimator for the density of a random variable observed with an additive

measurement error. This estimator is based on the spectral decomposition of the convolution

operator, which is compact for an appropriate choice of reference spaces. The density is approx-

imated by a sequence of orthonormal eigenfunctions of the convolution operator. The resulting

estimator is shown to be consistent and asymptotically normal. While most estimation methods

assume that the characteristic function (CF) of the error does not vanish, we relax this assump-

tion and allow for isolated zeros. For instance, the CF of the uniform and the symmetrically

truncated normal distributions have isolated zeros. We show that, in the presence of zeros, the

problem is identi�ed even though the convolution operator is not one-to-one. We propose two

consistent estimators of the density. We apply our method to the estimation of the measurement

error density of hourly income collected from survey data.
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1. Introduction

Assume we observe n i.i.d. realizations, y1; :::; yn of the random variable Y with unknown density

h and Y satis�es

Y = X + ":

where X and " are mutually independent continuously distributed random variables with prob-

ability density functions (p.d.f.) f and g; respectively so that h = f � g: Moreover, X and "

are assumed to be unobserved scalar random variables. The aim of this paper is to give a new

estimator of f; assuming g is known.

This problem consists in solving for f from the equation

h (y) =

Z
g(y � x)f(x)dx: (1.1)

Equation (1.1) is an integral equation and solving (1.1) is typically an ill-posed problem (Tikhonov

and Arsenin, 1977). Indeed, the solution f is not continuous in h and hence a small perturbation

in h may result in a big error in f: Consequently, some smoothing (or regularization) is needed

and the resulting estimator has a slow rate of convergence. The method we propose here consists

in interpreting (1.1) as an integral equation

Tf = h (1.2)

where T is a compact operator with respect to well-chosen reference spaces and therefore admits

a countably in�nite number of singular values. We invert (1.2) using the singular value decom-

position of T coupled with a Tikhonov regularization: Hence, our estimator does not rely on

the choice of a kernel. Assuming that the characteristic function of g does not vanish, we show

that our estimator is consistent and asymptotically normal. If we impose joint assumptions on

f and g; more precisely if f is smoother than g; then our estimator achieves a much faster rate

of convergence than that obtained without the joint assumptions. In particular, we show that if

f and g are the pdf of two normal distributions and the variance of the error (g) is smaller than

that of the signal (f) then the rate of the Mean Integrated Square Error (MISE) is n�1=2, while

the rate would be (ln(n))�2 if the only information available were that g is twice di¤erentiable

(Fan 1993). It is interesting to note that strengthening slightly the assumptions may result in a

big improvement in the convergence rates. We also propose a data-driven method for selecting

the smoothing parameter. Moreover, we investigate the case where g depends on some unknown
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�nite dimensional parameters which are estimated using an auxiliary sample. We show that if

the size of the auxiliary model is large enough, the resulting estimator has the same properties

as in the case where g is entirely known.

Another contribution of our paper is that we study the identi�cation of f and show that f is

identi�ed when the characteristic function of g has isolated zeros, even though T is not injective

in this case. Although the main identi�cation result can be found in Devroye (1989), the analysis

in terms of injectivity of T is new. We propose two estimators which are robust to the presence

of isolated zeros. Most papers require that the characteristic function (CF) of g be di¤erent

from 0 on the real line. This assumption however may be too restrictive. The class of densities

for which the characteristic function has isolated real zeros is large and includes, among others,

the Uniform; the Epanechnikov; the Triangular; the symmetrically truncated Laplace; and the

symmetrically truncated Normal distributions; as well as the convolution of any of these with

another (arbitrary) density. Therefore having a method that applies to these cases is highly

desirable.

Now we brie�y review the literature. The fact that the deconvolution is an ill-posed inverse

problem is known for a long time. For a survey on ill-posed problems in the statistical literature

and examples on deconvolution, see Carroll, van Rooij, and Ruymgaart (1991) and van Rooij

and Ruymgaart (1999). Donoho (1995) discusses the comparative merits of singular value de-

composition (the method adopted here) and wavelet decomposition. All these papers show how

to treat the deconvolution problem by solving the ill-posed problem (1.1) however they do not

employ the transformation we use here to render T in (1.2) compact, therefore they invert an

operator that has a continuous spectrum. The most popular approach to deconvolution is the

use of a kernel estimator of f obtained by applying the Fourier inversion formula to the empirical

characteristic function of X: This method was initiated by the seminal papers of Carroll and

Hall (1988) and Stefanski and Carroll (1990), later followed by Fan (1991a,b, and 1992) among

others. This technique can not be applied when the CF of the error vanishes because of the

division by 0, which follows. Our method is more closely related to Walter (1981) who uses an

orthogonal basis, Van Rooij and Ruymgaart (1991) and Efromovitch (1997) who focus on circu-

lar random variables, to Pensky and Vidakovic (1999) who use a wavelet decomposition, and to

Carroll and Hall (2004) who propose an estimator based on an orthogonal series approximation.

The latter paper does not provide any guidance on how to choose the series in practice. In

Koo and Chung (1998), the logarithm of the density function is approximated by a basis of the
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singular functions of T , henceforth guaranteeing that the resulting density estimator is positive.

As mentioned earlier, only a few papers deal with zeros in the CF of g. Devroye�s (1989)

estimator requires three smoothing parameters. Hall, Ruymgaart, van Gaans, and van Rooij

(2001) and Groeneboom and Jongbloed (2003) discuss the convolution with a Uniform error on

[0; 1]. They exploit the fact that in this case, the operator T in (1.2) has a known inverse: For

the uniform error on [�a; a], Johnstone and Raimondo (2004) and Johnstone, Kerkyacharian,
Picard, and Raimondo (2004) use a Fourier series expansion

P
hf; eki ek to approximate f , where

ek (x) = e�ikx, x 2 Z. As pointed out by the authors, if a is rational, some of the coe¢ cients
hf; eki are not identi�ed after deconvolution. However, for a irrational, all the coe¢ cients are
identi�ed. This leads Johnstone and Raimondo (2004) and Johnstone et al. (2004) to focus on

the case where a is irrational only. The operator T is actually injective in this case. In a panel

data setting, Neumann (2007) proposes an estimator of the distribution function of X (but not

its density), which is robust to the presence of zeros. Finally, Hu and Ridder (2007) show the

identi�cation of a model with mismeasured regressors when the CF of the measurement error

has isolated zeros. One of the referees pointed out recent contributions by Hall and Meister

(2007) and Meister (2007, 2008) that propose a similar solution to the problem of zeros. A

detailed comparison between our estimator and theirs is given in Section 4.4 and shows that our

paper still contributes nicely to the literature.

The deconvolution problem is encountered in many �elds, including chemistry, physics, pub-

lic health, signal restoration, and economics, see e.g. Horowitz and Markatou (1996), Postel-

Vinay and Robin (2002), Hu and Ridder (2007). A similar problem is encountered in random

coe¢ cients binary choice models where the distribution of the coe¢ cient is nonparametrically

estimated, see Ichimura and Thompson (1998) and Gautier and Kitamura (2008). Gautier and

Kitamura (2008) show that this problem can be recast as a deconvolution with a uniform error

on [��=2; �=2] : The application, we investigate at the end of the paper, is relative to the mea-
surement error in hourly earnings in the Consumer Population Survey. Although these data are

widely used, they are known to be misreported. We estimate the density of the measurement

error and �nd that indeed people tend to underreport their earnings.

The article is organized in the following way. In Section 2, we present the estimator. In

Section 3, we establish its rate of convergence and asymptotic normality. Section 4 investigates

the case where the characteristic function of the error has isolated zeros. A Monte Carlo study is

commented in Section 5. Section 6 applies our method to the measurement error resulting from
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survey income data. Section 7 concludes. Appendix A explains how to compute the estimator

in practice, in particular how to estimate the eigenfunctions and eigenvalues via simulations.

The proofs are in Appendix B.

2. Method

2.1. Intuition and overview

We want to solve the integral equation (1.1) where g is known. Solving (1.1) is a linear inverse

problem, see Carrasco, Florens and Renault (2007) for a review on this topic. Here T is regarded

as an operator from a Hilbert space H into another Hilbert space E . As we have some �exibility
on the choice of H and E , we select them so that T is compact and hence has a discrete singular

value decomposition
�
'j ;  j ; �j

�
, j = 0; 1; 2; ::: Solving (1.1) is an ill-posed problem, because

the solution may not be unique and the solution is not stable. We address brie�y these two

issues. When 0 is an eigenvalue of T , i.e. there exists f0 such that Tf0 = 0, T is not injective.

Indeed, the solution to Tf = h is not unique because, for any solution f1; one can construct

another solution, f = f1+f0: Consider the least-squares solution1 of (1.1) of minimal norm. This

solution is called pseudo-solution and is denoted f y: According to Nashed and Wahba (1974),

this solution exists and is unique provided2 h 2 R (T ) +R (T )? : This pseudo-solution is given
by

f y (x) =
X

fj=j�j j6=0g

1

�j



h;  j

�
'j(x) =

X
fj=j�j j6=0g



f; 'j

�
'j(x): (2.1)

We see that f y coincides with f only if 0 is not an eigenvalue of T . A solution of the form

f y is not stable in the sense that a small perturbation in h may cause a large variation in f y:

As a result, some stabilization or regularization of the solution is needed. We apply here the

so-called Tikhonov regularization which consists in adding a small penalization term to T �T

before inverting it (T � denotes the adjoint of T ). The regularized solution is given by

f̂ = (T �T + �I)�1 T �h: (2.2)

The Tikhonov regularization has a penalized least-squares interpretation (see Nashed andWahba,

1974):

f̂ = argmin
f

n
kTf � hk2 + � kfk2

o
: (2.3)
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Other regularization methods such as the spectral cut-o¤ could have, but will not be considered.

Using the spectral decomposition of T �T , the solution (2.2) can be rewritten as

f̂ (x) =
1X
j=0

1

�2j + �



T �h; 'j

�
'j(x) (2.4)

=

1X
j=0

�j

�+ �2j



h;  j

�
'j(x): (2.5)

where  j is such that T'j = �j j : In practice,


h;  j

�
is replaced by its sample counterpart

as explained later. The regularization parameter � is a smoothing parameter that needs to

converge to zero at a certain rate, so that f̂ converges to f y as the sample size n goes to in�nity.

This method for estimating f has been mentioned in earlier work, see Walter (1981) and Donoho

(1995), but has not been applied systematically because T is in general not a compact operator

with respect to L2 (R). Inverting (1.1) using this continuous spectrum results in the well-known

deconvolving kernel estimator (see Carroll et al. 1991, Carrasco, Florens and Renault, 2007,

Section 5.4), which has been extensively studied. Our �rst contribution consists in de�ning

appropriate spaces of reference with respect to which T is compact and in showing that f̂ is

a consistent estimator of f provided T is injective. Our second contribution is to investigate

the identi�cation and estimation of f when the assumption T injective is not satis�ed. T non

injective corresponds to the case where the characteristic function of the error " is equal to zero

for some values. We show that f is identi�ed provided the zeros are isolated. The estimator

(2.4) can still be computed but is no longer consistent. In Section 4, we propose two alternative

estimators that are consistent. The �rst estimator consists in completing f̂ by adding the

projection of f on the space spanned by the eigenfunctions of T associated with zero. The

second method consists in solving (2.3) under the constraint that f is a density.

2.2. Estimator

The method described above relies on a discrete spectrum of T . However, T considered as an

operator from L2 (R) into L2 (R) provided with Lebesgue measure is in general not compact and
hence has a continuous spectrum. We want to construct spaces of reference for which T is

compact. Let �X and �Y be two nonnegative weighting functions; we impose further restrictions

on those below. Denote L2�Y the space of square integrable real-valued functions with respect
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to �Y :

L2�Y =

�
 (y) such that

Z
 (y)2 �Y (y) dy <1

�
:

The inner product in L2�Y is de�ned as

h 1;  2i =
Z
 1 (y) 2 (y)�Y (y) dy:

Similarly, we will de�ne L2�X and L
2
�mX
associated with the functions �X and �mX to be introduced

below. The inner product in L2�X is also denoted h:; :i and both norms in L2�Y and in L
2
�X

are

denoted k:k without confusion:We de�ne �mX as the solution of

�mX(x) =

Z
g (y � x)�Y (y) dy: (2.6)

Note that if �Y is a density, then �mX can be interpreted as the marginal density of the joint

distribution with density g (y � x)�Y (y) : Now, we impose the following restrictions.

Assumption 1. (a) L2�X � L2�mX
(b) �X (x) = 0) f (x) = 0:

(c)
R
f2 (x)�X(x)dx <1:

Remark that if X and " are continuous random variables on R and f is square integrable
with respect to Lebesgue measure (which is usually assumed in the deconvolution literature),

then one can simply select �X = 1 and �Y an arbitrary pdf. The case �X = 1 is important

because the rate of convergence of our estimator is expressed in terms of a MISE de�ned with

respect to �X and it is customary to de�ne the MISE with respect to Lebesgue measure. On the

other hand, in some applications (see Example 1 below), choosing �X di¤erent from 1 simpli�es

the explicit derivation of the eigenvalues and eigenfunctions.

We formally de�ne T as the operator from L2�X into L2�Y which associates to any function

� (x) of L2�X a function of L2�Y as:

(T�) (y) =

Z
g(y � x)� (x) dx: (2.7)

We de�ne the adjoint, T �; of T as the solution of hT';  i = h'; T � i for all ' 2 L2�X and

 2 L2�Y . It associates to any function  (y) of L
2
�Y

a function of L2�X :

(T � ) (x) =

Z
g (y � x)�Y (y)

�X(x)
 (y) dy:
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For convenience, we denote its kernel

�Y jX (yjx) =
g (y � x)�Y (y)

�X(x)

In the case where �X = �mX and �Y is a density, T and T
� are conditional expectation operators.

Indeed, (T�) (y) = E [� (X) jY = y] and (T � ) (x) = E [ (Y ) jX = x] where X and Y are

supposed to be drawn from �X and �Y respectively. Note that Assumption 1 (a) guarantees

that � 2 L2�X ) � 2 L2�mX ; which itself implies T� 2 L
2
�Y
by the law of iterated expectations.

In Assumption 2 below, we give a su¢ cient condition for T (and T �) to be a Hilbert-Schmidt

operator and therefore to be compact (see Dunford and Schwartz, 1963, p. 1130).

Assumption 2. We have Z Z
(g(y � x))2 �Y (y)

�X(x)
dxdy <1:

Assumption 2 imposes some mild restrictions on �Y (y). Consider for illustration the case

where " follows a standard normal and �X(x) = 1. We haveZ
(g(y � x))2 dx = 1

2
p
�
:

Hence, Assumption 2 is not satis�ed for �Y = 1. However, it is satis�ed as soon as �Y is an

arbitrary density, including �Y = I[�1;1]=2.

To show the consistency, we impose the standard identi�cation condition (T injective) which

will be relaxed in Section 3. Note that su¢ cient primitive conditions for injectivity are derived

in Section 3.

Assumption 3. T is injective.

Assumption 4. There is a constant C such that var
�
�Y (Y1) j(Y1)

�
< C for all j � 0:

Note that a su¢ cient condition for Assumption 4 is that the p.d.f. h and �Y belong to L1

that is sup jhj <1 and sup j�Y j <1. Indeed the variance equals

var
�
�Y (Y ) j(Y )

�
=

Z
�2Y (y) 

2
j (y)h (y) dy �

�Z
�Y (y) j(y)h (y) dy

�2
:
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It is enough to show that the �rst term is boundedZ
�2Y (y) 

2
j (y)h (y) dy � (suph)



 j(:);  j(:)�Y (:)

�
� (suph)



 j



 j�Y 


� (suph)(sup�Y )

< 1:

As a result of compactness, T has a discrete spectrum. Let �0 = 1 � �1 � �2::: be the

nonnegative eigenvalues of TT � associated with the orthonormal eigenfunctions 'j , j = 0; 1; :::.

The f�0; �1; :::g are also the eigenvalues of T �T associated with the orthonormal eigenfunctions
 j , j = 0; 1; 2; :::. Let �j =

p
�j ; j = 0; 1; 2; :::The �j are called the singular values and 'j ;

j � 0;  j ; j � 0; the singular functions of T and T � respectively. They satisfy:
i) T

�
'j (x)

�
= �j j (y) ; j � 0;

ii) T �
�
 j (y)

�
= �j'j (x) ; j � 0;

iii) T �T
�
'j (x)

�
= �2j'j (y) ; j � 0;

iv) TT �
�
 j (y)

�
= �2j j (y) ; j � 0:

Since g and �Y are given, the eigenfunctions are either known explicitly (see Examples 1 and

2 below) or can be estimated via simulations as precisely as wanted (see Appendix A) so that

we can consider them as known.

Equation (1.2) is approximated by a well-posed problem using the Tikhonov regularization

method

(�nI + T
�T ) f�n = T �h

where the penalization term �n plays the role of the smoothing parameter in the kernel estima-

tion. f�n becomes

f�n(x) =
1X
j=0

1

�n + �
2
j



T �h; 'j

�
'j(x): (2.8)

The only unknown is T �h:Note that

(T �h) (x) =

Z
h (y)�Y jX (yjx) dy = E

�
�Y jX (Y jx)

�
A natural estimator of T �h is given by�dT �h� (x) = 1

n

nX
i=1

�Y jX (yijx) : (2.9)
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So that the estimator of f takes the following form

f̂(x) =
1X
j=0

1

�n + �
2
j

*
1

n

nX
i=1

�Y jX (yij:) ; 'j (:)
+
'j(x): (2.10)

Remark that f�n can be rewritten in the alternative fashion:

f�n(x) =
1X
j=0

1

�n + �
2
j



h; T'j

�
'j(x)

=
1X
j=0

�j

�n + �
2
j



h;  j

�
'j(x)

=

1X
j=0

�j

�n + �
2
j

E
h
 j (yi)�Y (yi)

i
'j(x):

Hence another expression of f̂ is given by

f̂(x) =

1X
j=0

�j

�n + �
2
j

"
1

n

nX
i=1

 j (yi)�Y (yi)

#
'j(x): (2.11)

This expression requires the estimation of  j as well as that of 'j ; however the estimation of

 j can be obtained as a by-product of that of 'j without much extra calculation as will be

explained in Appendix A. Note that, f̂ is not always positive and does not integrate to one. In

Section 4.3, we propose an alternative estimator which is a density.

Example 1 (normal error). Assume " � N (0,�2): We set

g (y � x) = 1

�
�

�
y � x
�

�
where � denotes the p.d.f. of a standard normal. A simple choice for �Y is the density of a

normal N (0,�2Y ) :

�Y (y) =
1

�Y
�

�
y

�Y

�
:

The fact that the true distribution may be totally di¤erent does not matter. We need to

determine �X ; �Y jX and the singular value decomposition of T and T �

a)

�X(x) = �mX(x) =

Z
g (y � x)�Y (y) dy =

1q
�2Y + �

2
�

0@ xq
�2Y + �

2

1A :
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so that �X is the density of a normal N (0,�2Y + �2):
b) The kernel of the operator T � is given by:

�Y jX (yjx) =
g (y � x)�Y (y)

�X(x)
=

1

�
p
�
�

�
y � �x
�
p
�

�
where � = �2Y =(�

2 + �2Y ):

To calculate the eigenvalues and eigenfunctions, we need to compute T �T: It is the integral

operator from L2�X into L
2
�X
de�ned by

(T �T') (x) =

Z
k (x; s)' (s) ds

with kernel

k (x; s) =

Z
�Y jX (yjs) g (y � x) dy

=
1

�
p
1 + �

�

�
x� �s
�
p
1 + �

�
:

The eigenfunctions of T �T; 'j ; are the (generalized) Hermite polynomials
3 orthonormal with

respect to �X and are associated with the eigenvalues �2j = �j :

'j (x) =
1p
j!

[j=2]X
l=0

(�1)l (2l)!
2ll!

�
j
2l

��
x

�X

�j�2l
; j = 0; 1; 2; :::

'j (x) ; j = 2; 3; ::: satisfy the following recursion:

'j (x) =
1p
j

��
x

�X

�
'j�1 (x)�

p
j � 1'j�2 (x)

�
(2.12)

with '0 (x) = 1; '1 (x) = x=�X .

c) The operator TT � is the integral operator from L2�Y to L
2
�Y
de�ned by

(TT � ) (y) =

Z
k (y; s) (s) ds

with kernel

k (y; s) =

Z
g (s� x)�Y jX (yjx) dx

=
1

�
p
�
p
1 + �

�

�
y � �s

�
p
�
p
1 + �

�
:
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The eigenfunctions of TT �;  j ; are the (generalized) Hermite polynomials orthonormal with

respect to �Y and are associated with the eigenvalues �2j = �j :  j are the same as 'j with �X

replaced by �Y and x replaced by y:

Example 2 (error with bounded support). Here the support of the variable Y does not

need to be known, however it is supposed to lie in a compact interval
�
A;A

�
where A and A are

assumed to be known but they could be estimated by the minimum and maximum observations

of Y . Note that the supports of g and f are necessarily included in
�
A;A

�
: We also assume

that g is symmetric around zero (g (�x) = g (x)): Let �X = �Y be Lebesgue measure on
�
A;A

�
:

Any function with bounded support
�
A;A

�
can be extended to a periodic function of period

L = A�A. Hence g admits a Fourier decomposition:

g (x) =
X
j2Z


j'j (x)

where 
j =


g; 'j

�
and

'j (x) =
1p
L
eij2�x=L:

Moreover,
�
'j (x)

	
form an orthonormal basis of L2 (�X) where L2 (�X) denotes the space of

square integrable complex-valued functions endowed with the inner product h'; �i =
R A
A ' (x)� (x)dx:

By the symmetry of g, the operator T is self-adjoint and its eigenfunctions are
�
'j (x)

	
: Indeed,

we have

�
T'j

�
(y) =

Z A

A
g (y � x)'j (x) dx

=

Z A

A

X
z2Z


z'z (y � x)'j (x) dx

=
X
z2Z


ze
iz2�y=L

Z A

A

1p
L
e�iz2�x=L'j (x) dx

=
X
z2Z


ze
iz2�y=L



'j ; 'z

�
= 
je

ij2�y=L

=
p
L
j'j (y)

� �j'j (y) :
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The �j can be calculated explicitly as

�j =
p
L


g; 'j

�
=

Z A

A
g (x) eij2�x=Ldx

=

Z 1

�1
g (x) eij2�x=Ldx

= 	"

�
j2�

L

�
where 	" is the characteristic function of g. Note that the �j are real because g is even. Our

approach di¤ers slightly from that of Section 2.2. because we allow for complex-valued eigen-

functions. The advantage of the present approach is that the �j and associated eigenfunctions

are known in closed-form and do not need to be estimated. We have  j = 'j : The operator

T �T has eigenfunctions
�
'j (x)

	
associated with the eigenvalues �2j ; j 2 Z: Hence the form of

the estimator is

f̂(x) =
X
j2Z

�j

�n + �
2
j

"
1

n

nX
i=1

'j (yi)

#
'j(x):

f̂ can be seen as a regularized version of Fourier inversion formula. Indeed, f satis�es

f (x) =
1

L

X
j2Z

e
�ij2�x=L
X 	X

�
j2�

L

�
:

And an estimator of f without regularization is given by

f̂ (x) =
1

L

X
j2Z

e�ij2�x=L
d	Y � j2�L �
	"

�
j2�
L

�
=

X
j2Z

1p
L
e�ij2�x=L

1
n

Pn
i=1 'j (yi)

�j

=
X
j2Z

1

�j

"
1

n

nX
i=1

'j (yi)

#
'j(x):

See Efromovich (1997) for a similar approach with a di¤erent regularization. Using the fact that

��j = �j and '�j = 'j , f̂ can be further simpli�ed into

f̂(x) =
1

L (�n + 1)
+ 2Re

8<: X
j=1;2:::

�j

�n + �
2
j

"
1

n

nX
i=1

'j (yi)

#
'j(x)

9=; : (2.13)
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In general, the eigenvalues and eigenfunctions can not be derived in closed-form. In such

circumstances, we rely on simulations to compute the spectral decomposition of the operator T .

This is explained in Appendix A. In Section 3.4, we investigate the e¤ect of these simulations

on the rate of convergence of our estimator.

3. Asymptotic properties and selection of the smoothing parameter

In this section, we study the asymptotic properties of our estimator assuming that �j and �j
are known to the researcher, that is, we do not take into account any simulation error.

3.1. Rate of the MISE

The criterion we use is the MISE with respect to �X : That is

MISE = E

�


f̂ � f


2� = E

�Z �
f̂(x)� f(x)

�2
�X(x)dx

�
:

The criterion usually employed in the kernel literature (e.g. Stefanski and Carroll, 1990) is the

MISE with respect to Lebesgue measure on R. Here f(x) is not assumed to be square-integrable
on R, therefore we replace the integration with respect to Lebesgue by an integration with
respect to �X(:). Remark that if f(x) is square-integrable on R, then we can take �X = 1 and
our MISE becomes the standard MISE.

The MISE can be rewritten as

MISE =

Z
E
�
f̂(x)� f�n(x) + f�n(x)� f(x)

�2
�X(x)dx

=

Z
E
�
f̂(x)� f�n(x)

�2
�X(x)dy +

Z
(f�n(x)� f(x))2 �X(x)dx

� V ar +Bias2

because E
�
f̂
�
= f�n : As in the kernel estimation, the MISE displays a trade-o¤ between the

variance (decreasing in �n) and the bias (increasing in �n):

Proposition 3.1. Under Assumptions 1 to 4, we have

MISE =
1

n

1X
j=0

 
�j

�n + �
2
j

!2
var

�
�Y (Yi) j(Yi)

�
+ �2n

1X
j=0



f; 'j

�2�
�n + �

2
j

�2 : (3.1)
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The rate of convergence of the MISE depends on the rate at which the inner products


f; 'j

�
;

the eigenvalues �j ; and the terms var
�
�Y (Yi) j(Yi)

�
converge to zero with j: Under Assumption

4, the term of variance is O
�
1=
�
�2n

��
: To obtain the rate of the bias, we need extra assumptions

on the inner product


f; 'j

�
: Here, we investigate the case where f satis�es

1X
j=1



f; 'j

�2
�2�j

<1 (3.2)

for some � > 0. Condition (3.2) is equivalent to f belongs to the range of (T �T )�=2, in other

words, there exists a function � 2 L2�X such that f = (T
�T )�=2 �: Moreover, for � = 1, (3.2) is

equivalent to f belongs to the range of T �, see Proposition 3.6 of Carrasco, Florens, and Renault

(2007). This assumption is standard in the inverse problem literature and is starting to be used in

econometrics (see Carrasco, Florens and Renault, 2007, Blundell, Chen, and Kristensen, 2007).

Van Rooij and Ruymgaart (1999, Theorem 4.1) and Hall and Horowitz (2005, Assumption A3)

use assumptions of the type: �j � j�a,


f; 'j

�
� j�b as j ! 1, for some b > 1=2. We could

use this assumption instead of (3.2), however it rules out the important case of exponentially

declining eigenvalues which arise when the errors are normal. Under Condition (3.2), the squared

bias is O
�
��^2

�
, where � ^ 2 denotes the minimum between � and 2, hence the following result.

Proposition 3.2. Under Assumptions 1 to 4 and Condition (3.2), by selecting a regularization

parameter �n = dn�1=(�^2+2) for some d > 0; we have

MISE = O
�
n��^2=(�^2+2)

�
:

The convergence rate given in Proposition 3.2 is valid under very general hypotheses. It may

be improved under a stronger assumption.

Assumption 4�. There exists 
 such that


 = max

8<:~
 2 [0; 2] such that
1X
j=0

�
2(1�~
)
j V ar

�
�Y (Yi) j (Yi)

�
<1

9=; :

This assumption is satis�ed for 
 � 0 under Assumption 4. Given g is known, 
 itself can
be considered to be known. Consider the case where 
 may be positive. By an elementary

extension of the proof of Proposition 3.2, we easily establish that the rate now becomes

MISE = O
�
n��^2=(�^2+2�
)

�
16



with � = dn�1=(�^2+2�
) for some d > 0:

Note that when � > 2, the MISE in Proposition 3.2 is O
�
n�1=2

�
. This rate could be improved

to O
�
n��=(�+2)

�
if an alternative regularization method were used, like the iterated Tikhonov,

Spectral Cut-o¤, or Landweber-Fridman (see Kress, 1999). For a regularization by Spectral

Cut-o¤, see Hall and Meister (2007). We do not investigate these alternative methods here. For

normal errors, the rate in Proposition 3.2 is clearly much faster than the optimal rate derived

by Fan (1993). The reason for this di¤erence is that Fan assumes very little on the function

f , while Condition (3.2) restricts the class of admissible functions by imposing a relationship

between the density of the signal X and that of the error ". Further insights are provided by

the next lemma.

Lemma 3.3. If g is even (or equivalently the error has a symmetric distribution around zero)

and for �Y (y) = I [�1; 1] (y) =2 and �X (x) = 1 for all x 2 R: A su¢ cient condition for Condition
(3.2) to hold with � = 1 is Z �����X (t)	" (t)

���� dt <1 (3.3)

where �X and 	" are the characteristic functions of f and g respectively.

Condition (3.3) requires that �X has thinner tails than 	": Since the tail behavior of a CF

is related to the smoothness of the pdf, this is equivalent to require that f be smoother than g

(see Ushakov, 1999, Theorem 2.5.4). In the case of f Laplacian, this is a very weak requirement.

In the case of f normal, it is less likely to be ful�lled. If both X and " are normally distributed,

(3.3) is satis�ed if and only if the variance of the signal (X) is larger than the variance of the

error ("). Another interpretation of this condition is that f can be written as the convolution

of g and another distribution. As Van Rooij and Ruymgaart (1991) point out, if g is smooth

then h is also smooth, therefore if f is not a priori known to be smooth itself, the problem of

recovering a potentially nonsmooth f from a sample of smooth h is particularly hard. To get

further insights, we replace Condition (3.2) by:

For all large j; we have ��
f; 'j��� = O (j�j j) : (3.4)
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Proposition 3.4. Under Assumptions 1 to 4 and Condition (3.4), by choosing a regularization

parameter �n = dn�1=2 for some d > 0; we have

MISE = O

0@ 1
n

1X
j=0

 
�j

�n + �
2
j

!21A :

Proposition 3.4 permits to give more precise rates of convergence in the case where the decay

rate of �j is known.

Example 1 continued (normal case).

Consider X normally distributed. The following is a corollary of Proposition 3.4.

Corollary 3.5. Assume Condition (3.4) holds. By choosing a regularization parameter �n �
dn�1=2 for some d > 0; we have

MISE = O
�
n�1=2

�
:

Example 2 continued (bounded support case).

When X has bounded support and �X = �Y = 1, Condition (3.4) is equivalent to require

that j�X (t)j � C j	" (t)j for large t.

Proposition 3.6. Assume that Condition (3.4) holds and that

j�j j =
����	"�j2�L

����� � j�a; a > 1=2:

By choosing a regularization parameter �n = dn�1 for some d > 0; we have

MISE = O
�
n�(2a�1)=2a

�
:

For a Uniform error4, a = 1 and the rate is n�1=2, whereas, for a Triangular error, a = 2 and

the rate is n�3=4:

3.2. Asymptotic normality

In Carrasco, Florens, and Renault (2007, Section 4), we proved the asymptotic normality of

inner products
D
f̂ � f; '

E
for some functions ': To obtain this result, some restrictions on '

are needed. We could adopt this approach here but we chose to study the pointwise asymptotic
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normality instead. The condition on ' will be replaced by a condition on x. Assumptions 5 to

7 below impose some restrictions on the eigenfunctions and the admissible range of values for

x: As a result, our asymptotic normality will not hold for all x in general.

Because we have iid data, a su¢ cient condition for asymptotic normality

f̂ (x)� Ef̂ (x)r
var

�
f̂ (x)

� L! N (0; 1)

is that the Lyapounov�s condition holds (Billingsley, 1995, Theorem 27.3), i.e. for some � > 0;

E jZn1 (x)� E (Zn1 (x))j2+�

n�=2 [var (Zn1 (x))]
1+�=2

! 0; (3.5)

where

Zni (x) =
1X
j=0

1

�n + �
2
j



�Y jX (Yij:) ; 'j (:)

�
'j(x): (3.6)

Note that from (2.10), f̂ =
Pn
i=1 Zni=n: The condition (3.5) is satis�ed under the following

assumptions.

Assumption 5. We have

1

n1=2

X
j

 
�j

�n + �
2
j

!3
E
n�
�Y (Y1) j (Y1)� E

�
�Y  j

��3o ��'j (x)��3 ! 0:

This condition requires that �n go to zero not too fast. It may not be satis�ed for all x in

the normal case because 'j (x) is not bounded. However, it will be satis�ed for jxj < 1 when

�n = dn�1=2, see Equation (B.8) in Appendix.

Proposition 3.7. Under Assumptions 1-5, if �n ! 0 and n!1, we have

f̂ (x)� f� (x)r
var

�
f̂ (x)

� L! N (0; 1) :

Note that var
�
f̂ (x)

�
is the �rst term in the RHS of Equation (3.1). The following assump-

tion insures that var
�
f̂ (x)

�
can be replaced by the sample variance.

Assumption 6.

1

n

X
j

 
�j

�n + �
2
j

!4
E
n�
�Y (Y1) j (Y1)� E

�
�Y (Y1) j (Y1)

��4o ��'j (x)��4 ! 0:
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Lemma 3.8. Under Assumptions 1-6, we have

1

n

nX
i=1

Zni (x)� E (Zni (x))
P! 0;

1

n

nX
i=1

Z2ni (x)� E
�
Z2ni (x)

� P! 0:

The following assumption guarantees that the bias goes to zero su¢ ciently fast so that f�

can be replaced by f .

Assumption 7.

�2n
P
j

�
1

�n+�
2
j

�2 

f; 'j

�2 ��'j (x)��2
1
n

P
j

�
�j

�n+�
2
j

�2
E
n�
�Y  j � E

�
�Y  j

��2o ��'j (x)��2 ! 0 (3.7)

If 'j (x) is uniformly bounded (as in the normal case around 0 or in the bounded support case),

the numerator of (3.7) is also bounded because

�2n
X
j

 
1

�n + �
2
j

!2 

f; 'j

�2 �X
j



f; 'j

�2
= kfk2 <1:

Hence Assumption 7 holds as soon as the denominator diverges, which is satis�ed for �n =

o
�
n
� 2�
2�+1

�
under the assumptions of Proposition 3.6 and for �n = o

�
n�1

�
for the normal case.

Proposition 3.9. Under Assumptions 1-7, if �n ! 0 and n!1, we have

p
n

�
f̂ (x)� f (x)

�
sn (x)

L! N (0; 1)

where s2n (x) =
1
n

Pn
i=1

�
Zni (x)� 1

n

Pn
i=1 Zni (x)

�2
where Zni (x) is given by (3.6).

Note that Proposition 3.9 does not claim that f̂ (x) converges at a
p
n-rate of convergence

because sn typically diverges.
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3.3. Automatic selection of the smoothing parameter

From Proposition 3.2, we see that the rate of convergence of �n depends on �, the regularity of

the unknown function f . As � is unknown, the theoretical result of Proposition 3.2 is not very

useful in practice. In this section, we propose a data-driven method for selecting �n that does

not require the knowledge of �. Ideally, the penalization term �n should be selected to minimize

the MISE given in (3.1). As the MISE is unknown, it is replaced by an estimator. Denote f̂1

an estimator of f obtained using a nonoptimal �n (quite small to avoid bias) denoted �1n: An

estimator of


f; 'j

�
is given by

D
f̂1; 'j

E
=
1

n

nX
i=1

�j

�1n + �
2
j

�Y (yi) j(yi):

Let �̂j ; '̂j ; and  ̂j ; j = 0; 1; :::; B be the estimators of �j ; 'j ; and  j obtained by the method

described in Section A. Denote dvar ��Y (Yi) j(Yi)� the sample variance of �Y (yi) ̂j(yi): An
estimator of the MISE is given by

Mn =
1

n

BX
j=0

0@ �̂j

�n + �̂
2

j

1A2dvar ��Y (Yi) j(Yi)�+ �2n BX
j=0

0@ �̂j

�1n + �̂
2

j

1A2
n
1
n

Pn
i=1 �Y (yi) ̂j (yi)

o2
�
�n + �̂

2

j

�2 :

This expression can be minimized numerically with respect to �n to obtain the optimal smooth-

ing parameter.

3.4. Estimation of T

In this section, we consider the e¤ect of approximating T . There are two leading cases where

T is approximated. The �rst one is the case where although g is known, the spectral decompo-

sition of T can not be derived analytically and one has to rely on simulations to compute the

eigenvalues and eigenfunctions as described in Appendix A. Then using results on simulation-

based estimators, see e.g. Gourieroux and Monfort (1996), Carrasco and Florens (2002), the

approximate operator ~T will satisfy


 ~T � T


2 = O

�
1

B

�
and




 ~T � � T �


2 = O

�
1

B

�
where B is the number of simulations. The second case of interest is the case where the density

of ", g, is unknown and estimated. Although it is standard in the statistic literature to assume
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that g is known, it may not very realistic in practice. In some circumstances, there exists an

auxiliary data set that can be used to estimate parametrically or nonparametrically the function

g. In for instance Efromovich (1997), Johannes (in press), and Neumann (2007), g is estimated

nonparametrically. In our application in Section 6, we postulate a parametric form for g and

estimate the unknown parameters using an auxiliary sample.

Here, we investigate the e¤ect of estimating the operator T by ~T and T � by ~T � such that


 ~T � T


2 = O

�
1

N

�
and




 ~T � � T �


2 = O

�
1

N

�
where N = B in the simulation case and N is the size of the auxiliary sample in the case where g

is estimated parametrically. We compare the performance of our estimator f̂ with the estimator
~f obtained by using ~T instead of T and ~T � instead of T �:

f̂ = (�nI + T
�T )�1 dT �h;

~f =
�
�nI + ~T � ~T

��1 dT �h:
We have the following result.

Proposition 3.10. Under Assumptions 1 to 3 and 4�, we have


 ~f � f̂


2 � 1

�2n




 ~T � T


2 = 1

�2nN
:

Let N = n� for some � > 0. For �n = dn�1=(�^2+2�
); we have that



 ~f � f̂


2 converges faster

than the MISE of f̂ , i.e. n��^2=(�^2+2�
); provided

� >
� ^ 2 + 2

� ^ 2 + 2� 
 :

In this case, ~f has the same asymptotic properties as f̂ (same rate of convergence and same

asymptotic distribution).

It is interesting to note that 
 large is bene�cial for the rate of convergence of f̂ but is

somewhat detrimental when f is estimated by ~f . Note that if N = n, ~f is still consistent for an

appropriate choice of �n, namely �n = dn�1=(�^2+2) for some d > 0 but the distribution of ~f is

di¤erent from that of f̂ .
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4. Case with isolated zeros

4.1. Identi�cation

In the deconvolution literature, it is usually assumed that the characteristic function (CF) of ",

	", does not have real zeros. This rules out many well-known densities as mentioned earlier.

In this section, we relax this assumption by supposing that 	" may have (possibly an in�nity

of) isolated real zeros: t1; t2; :::. For instance, the CF of a distribution with bounded support is

analytic and therefore its zeros are necessarily isolated, although they need not be real (Lukacs

1960, Theorem 7.2.3). At the point t1, we have

	Y (t1) = 	X (t1)	" (t1) = 0: (4.1)

Therefore the value of 	X (t1) can not be inferred from (4.1). But by the continuity of the

CF (Lukacs 1960, Theorem 2.1.2.), 	X (t1) can be recovered from the knowledge of 	X (t) in a

neighborhood of t1. Therefore there is no identi�cation problem here. However, the presence of

zeros has consequences on the way f can be estimated. The estimation of f will be discussed in

the next subsections. Here we give results on identi�cation.

Let T be as before the operator from L2 (�X) into L2 (�Y ) de�ned by (2.7). We de�ne the

null space of T as N (T ) =
�
' 2 L2 (�X) : T' = 0

	
. Recall that T is injective if and only if

N (T ) = f0g.

Proposition 4.1. Assume that Assumptions 1 and 2 hold. If 	" (t) 6= 0 for all t, then T is

injective.

Proposition 4.1 does not give a "if and only if" statement because, as illustrated below, 	" (t)

may be equal to 0 for some t while T is injective.

Example 2 (continued). Consider " � U [�a; a]. The CF of " is sin (at) =at and is equal to
zero for t = j�=a with j = :::;�2;�1; 1; 2; ::: The eigenvalues of T are

�j =
sin (aj2�=L)

aj2�=L

for all j 2 Z. Assume L = 4. If a is equal to one for instance, then �j = 0 for all even j. On
the other hand, if a is irrational, then �j 6= 0 for all j in Z and hence T is injective. This result
is exploited in Johnstone and Raimondo (2004).
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Note that even if T is not injective on L2 (�X), it may be injective on a smaller space. De�ne

D the space of the densities,

D =
�
' 2 L2 (�X) : ' � 0 and

Z
' (x) dx = 1

�
:

Now we consider ~T the operator from D into L2 (�Y ) de�ned by (2.7). It is the restriction of T
on D.

Assumption 3�. 	" does not vanish on an interval but may have (possibly an in�nity of)

isolated zeros.

Proposition 4.2. Under Assumption 3�, ~T is injective.

Corollary 4.3. Assume Assumptions 1, 2, and 3� hold. Then, there is only one density of

L2 (�X) that is solution of Tf = h. In other words, f is identi�ed.

4.2. Estimation by completion

Now we reexamine the estimation procedure of Section 2 to see what is the limit of (2.10) when

Assumption 3 is replaced by 3�. When Assumption 3�holds, the null space of T may not be

empty, i.e. 0 may be an eigenvalue of T . If this happens, the solution to Tf = h is not unique

but as mentioned in Section 2.1., the least-squares solution of minimal norm f y exists and is

unique. According to Nashed and Wahba (1974), f y is the only solution of N (T )? that satis�es

Tf = h. Hence, the set of all least-squares solutions may be represented by f y + N (T ). The

estimators given by (2.10) or (2.11) are not consistent estimators of f but of f y: The results of

Sections 2 and 3 (consistency, asymptotic normality) remain valid by replacing at the limit f

by f y: f y is not necessarily a density because its Fourier transform is not necessarily continuous

(its Fourier transform is equal to zero at the points t1; t2; :::): However, the estimation of f y may

give valuable informations on the shape of the density f: Moreover, f can be recovered from f y

by using the relationship

f = f y +
X

fj=j�j j=0g



f; 'j

�
'j :

This suggests a way to construct an estimator of f by completing f y: This is illustrated in the

example of random variables with bounded support.
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Consider Example 2 of Section 2 where the support of Y is known to lie in an interval [A; �A].

Assume 	" is real and is equal to zero at some isolated values t. The operator T has singular

value zero associated with the singular functions eit1x; e�it1x; eit2x, e�it2x; ... where the tl are

the zeros of 	" such that j = Ltl=(2�) 2 Z. Indeed, by a change of variable, it is easy to verify
that Z

g(y � x)eit1xdx = eit1y
Z
g (u) e�t1udu = eit1y	" (t1) = 0:

Hence the null space of T; N (T ), is the closure of the space spanned by eit1x; e�it1x; eit2x, e�it2x;

... The eigenfunctions associated with zero are of the form 'j(x) = eitlx=
p
L = eij2�x=L=

p
L

where j = Ltl=(2�) 2 Z: The density f can be written as the sum of the pseudo-solution f y and

an element of N (T ) :

f = f y +
X

fj=j�j j=0g

1p
L
	X

�
2�j

L

�
'j(x):

The unknown 	X (tl) can be estimated using the continuity of the characteristic function by

	̂X (tl) =
	̂X (tl � �) + 	̂X (tl + �)

2
(4.2)

where

	̂X (t) =
	̂Y (t)

	" (t)
=

1
n

Pn
i=1 e

ityi

	" (t)
; t =2 ft1; t2; ::g (4.3)

is a
p
n-consistent estimator of 	X (t) : Hence when � goes to zero at an appropriate rate as n

goes to in�nity, b̂f de�ned by
b̂
f (x) = f̂(x) +

X
fj=j�j j=0g

1p
L
	̂X

�
2�j

L

�
'j(x)

should be a consistent estimator of f . We do not provide a proof of this result but simulations

show that this method works well in practice.

4.3. Estimation under constraint

In theory, since g is known, the location of the zeros is given. In practice, there may be some

densities for which locating the zeros may be problematic, we do not address this issue here. In

this section, we propose an alternative method that does not require the knowledge of the zeros.

Since we know a priori that f is a density, we are going to exploit this information. We consider

solving

Tf = h (4.4)
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for f 2 D the subspace of L2 (�X) of density functions. Note that in spite of the linearity of T;
problem (4.4) is now nonlinear because of the constraint. As D is a closed and convex set, the

results of Engl, Hanke, and Neubauer (1996, Section 5.4) apply. In particular, the solution to

(4.4) exists and is unique under Assumption 3�.

We brie�y discuss the case where T : L2 (�X)! L2 (�Y ) is injective. A fast way to estimate

the constrained solution is to take a two-step approach. First, one determines the regularized

solution f̂ (x) of the unconstrained problem using (2.11). Second, one computes the metric

projection of f̂ (x) onto the set D. Since D is closed and convex, the results on convergence and
convergence rates of Section 2 remain valid for the constrained case.

Now, we turn to the important case where T is not injective. The two-step approach does

not work any longer. Following Engl, Hanke, and Neubauer (1996), we propose to solve the

following constrained optimization problem:

min
f2D

�


Tf � ĥ


2
�Y
+ � kfk2�X

�
(4.5)

where ĥ is a nonparametric estimator of h, obtained for instance by kernel. This is the con-

strained counterpart to (2.3). Let us denote f̂D this solution.

Proposition 4.4. Assume that the estimator ĥ satis�es



ĥ� h


 = O (�) and Assumptions 1,2,

3�, 4 and Condition 4.2 hold. Let � = �2=(�^2+1), then


f̂D � f


2
�X
= O

�
�
2 �^2
�^2+1

�
:

If ĥ is the kernel estimator of a twice continuously di¤erentiable density f , then � = n�2=5

and 


f̂D � f


2
�X
= O

�
n
� 4
5

�^2
�^2+1

�
:

This can be compared with the MISE in the unconstrained case

MISE = O
�
n
� �^2
�^2+2

�
:

It turns out that the rate of convergence in the constrained case is faster than in the uncon-

strained case for all �. Note that the solution to Problem (4.5) does not have a closed-form

expression but can be computed numerically. In practice, the space D is replaced by a �nite

dimensional space Dn which can be a grid or a large dimensional sieve space. Some theoretical
results on the e¤ect of such an approximation can be found in Neubauer (1987). Some practical

issues are discussed in Chernozhukov, Gagliardini, and Scaillet (2008, Section 6.1).
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4.4. Comparison with alternative estimators

In this section, we discuss some alternative estimators. First, we give the intuition. Let us

denote 	Y ; 	X ; and 	" the characteristic functions of Y , X, and ". We have the relation

	Y = 	X	": Using the Fourier inversion formula, the density f of X satis�es

f (x) =
1

2�

Z
e�itx

	Y (t)

	" (t)
dt: (4.6)

This suggests a way to estimate f . The unknown 	Y (t) can be estimated by the empirical

characteristic function 	̂Y (t). However, replacing 	Y (t) by its estimator will not deliver a

consistent estimator because of the ill-posed nature of the problem. The traditional approach (see

Carroll and Hall, 1988) uses a kernel to stabilize the integral. This is the so-called deconvolution

kernel.

Recently, Hall and Meister (2007) propose a di¤erent approach. First, they multiply the

numerator and denominator in (4.6) by 	" (�t) to obtain a real valued, nonnegative function in
the denominator. Then, they de�ne the following estimator

f̂ (x) = Re

(
1

2�

Z
e�itx

	" (�t) j	" (t)jr 	̂Y (t)
fmax (j	" (t)j ; � (t))gr+2

dt

)
(4.7)

where � (t) is a smoothing parameter that depends on n and t. For the integral to be well

de�ned, j	" (t)jr+1 needs to be integrable. If g is square integrable, it su¢ ces to take r � 1. (4.7)
involves a regularization of the convolution operator without making it compact �rst. The space

of references are L2 with respect to Lebesgue measure. In this case, the convolution operator

has a continuous spectrum and as discussed in Carrasco, Florens, and Renault (2007, Section

5.4.2), 	" (t) can be interpreted as the singular values of the convolution operator. Although

Hall and Meister refer to their method as ridge, it is not exactly a ridge regularization. In the

case of ridge (or Tikhonov), the denominator of (4.7) would be j	" (t)jr+2 + � (t) instead of

fmax (j	" (t)j ; � (t))gr+2. Their approach is closer to Spectral Cut-o¤. Their estimator has the
same advantages as ours: It does not involve a kernel and it applies even when 	" (t) has isolated

zeros. Moreover, it is shown to be consistent in the latter case while ours needs to be modi�ed.

Why is their estimator consistent? It is because the spectrum of their convolution operator is

continuous and since 	" (t) has only countably many zeros, the set of zeros has Lebesgue measure

zero and their operator is still injective. Note that in presence of zeros, the optimal smoothing

parameter � (t) is a function of n and t which rate of convergence depends on the properties of
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	" (t) and the smoothness properties of f: Hall and Meister (2007) restrict their attention to a

class of characteristic functions for which there exist � � 1, � > 0, 0 < C1 < C2 < 1, � > 0

and T > 0 such that

C1 jsin (�t)j� jtj�� � j	" (t)j � C2 jsin (�t)j� jtj�� for all jtj > T (4.8)

and 	" (t) does not vanish for jtj � T: This class includes all self-convolved uniform densities and

their convolution with any ordinary-smooth density. They also consider a class corresponding

to the convolution of uniform densities with any supersmooth density. Condition (4.8) and the

other condition not reported here imply that the zeros occur at the points: t = j�=�, j = 1; 2; :::

It rules out all characteristic functions for which the zeros do not follow this pattern. For

instance, the Epanechnikov distribution, which has density g (") = 3
4

�
1� "2

�
I fj"j < 1g and

characteristic function 	" (t) = 3
t3
(sin (t)� t cos (t)) ; is not part of this class. Let us compare

Hall and Meister�s estimator with ours. Both estimators use a regularization to deal with

the possible zeros of the CF. Hall and Meister work on the convolution operator which has a

continuous spectrum, while we modify the spaces of reference to make T compact. As a result,

the smoothing parameter in Hall and Meister (2007) depends on t, while ours does not depend

on j (which is the equivalent of t in our setting). Consequently, we need not impose a restriction

of the type (4.8) and can cover a larger class of functions.

Let us mention two other recent papers. Meister (2007) is concerned with deconvolution

when the density to be estimated has compact support. By exploiting this feature, he can relax

some of the standard assumptions, namely non vanishing characteristic function of the error

and even known error density. Finally, Meister (2008) focuses on the deconvolution with errors

satisfying (4.8), he proposes to approximate the characteristic function 	X (t) by an expansion

using Legendre polynomials for the t corresponding to zeros of 	". This is an alternative

approach to that proposed in Section 4.2.

5. Simulation Study

We conducted a Monte Carlo study to determine the performance of f̂ in two cases corresponding

to Examples 1 and 2:

Normal error

Let " � N
�
0; 15
� �
�2 = 1=5

�
; X is a mixture of Normal: N

�q
2
3 ;
1
3

�
with probability 1/2
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and N
�
�
q

2
3 ;
1
3

�
with probability 1/2.

We choose �2Y so that � = �2Y =
�
�2 + �2Y

�
is large. We set �2Y = 9 so that �

2
X = 46=5 and

� = 45=46: Using (2.12), we compute recursively the 'j and  j :

Bounded support

Let " � U [�1; 1] : Using the notation of Example 2, we set
�
A;A

�
= [�2; 2] so that L = 4.

The eigenfunctions and eigenvalues are

'j (x) =
1

2
eij�x=2;

�j =
sin (�j=2)

�j=2
, j 2 Z:

We see that �j equals zero for all even valued j. From (2.13), the estimator of ~f is given by

f̂(x) =
1

4 (�n + 1)
+ 2Re

8<: X
j=1;3;5;:::

�j

�n + j�j j2

"
1

n

nX
i=1

'j (yi)

#
'j(x)

9=; :

The estimator of f is b̂
f (x) = f̂(x) +

X
j=2;4;:::

1p
L
�̂X

�
2�j

L

�
'j(x)

where �̂X is estimated using (4.2) and (4.3) and � = 0:1: We investigate the case where

X �Truncated Normal(0,1/3) on [�1; 1] :
Simulation design

The sample size is set at n = 10; 000: To give an idea of the variance of our estimator, we run

25 replications and report them on a graph. To give an idea of the bias, we report the average

of these 25 estimates and the true density on a second graph. The estimations are performed

both with a �xed alpha and with the automatic bandwidth selection. We use the constrained

optimization package in GAUSS �co�to get the optimal bandwidth.

1. Normal error

In Equation (2.11), we truncate the sum in j to J = 199. For the �xed bandwidth, we take

�n = 0:001: The automatic bandwidth selection gives �n = 0:1139 on average.

2. Bounded support
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For calculating f̂(x); we take j = 0; 1; 3; :::; 201: For calculating the second part of b̂f (x) ;
we take j = 2; 4; :::; 10: The mean of the bandwidths selected using the automatic selection is

�n = 0:0260.

Simulation results

From Figures C.1 and C.2, we see that the automatic bandwidth tends to oversmooth, but

overall our estimator is very good with normal error. From Figures C.3 and C.4, we see that as

expected, bf is not a consistent estimator of f but b̂f is (on average) very close to the true density
even with an ad-hoc truncation of the series (here 10).

6. Application to measurement error in wage

The Current Population Survey (CPS) is a monthly survey of about 50,000 households by the

Bureau of the Census. The CPS is publicly available5 and provides detailed information on the

labor force characteristics of the US population. For these reasons, the CPS is widely used by

economists. However, as the data are collected by interview from households, they are bound

to be misreported. Our aim is to quantify the measurement error in the hourly earnings. Let Y

be the reported hourly earnings, then Y is the sum of the true earnings, Y �, and an error Z:

Y = Y � + Z: (6.1)

The density gY � of Y � is unknown but we use data from the National Compensation Survey6

(NCS) collected by the Bureau of Labor Statistics to select a parametric speci�cation for gY � .

Earnings data of NCS are based on payroll data collected directly from the establishments and

therefore can be considered as accurate data. The NCS does not provide individual data but

reports the mean and the 10th, 25th, 50th, 75th, and 90th percentiles of the hourly earnings by

occupations and regions. We focus on all occupations that enter in the category �Blue Collar�,

as we believe that it is a large but relatively homogeneous population. We use the information

relative to the data collected between December 2001 and January 2003 on all the United States.

As we need a parametric speci�cation of the true distribution, we assume that the earnings have

a Gamma G (�; �; l) distribution. The density is given by

gY � (x) =
(x� l)��1 exp (� (x� l) =�)

��� (�)
, x > l:

The lower bound, l = 5; has been selected to be just below the federal minimum wage in

2002 ($5.15). We estimate (�; �) by the generalized method of moments, which consists in
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minimizing the euclidean norm between the distribution function and its theoretical values. We

obtain � = 2:052; � = 4:699: To verify that the Gamma matches the true distribution, we report

in Table 1 the percentiles found in the NCS publication and those of the Gamma. The Gamma

is not a perfect match but is close enough for illustration purposes.

Table 1: Comparisons between hourly earnings distributions

Mean Percentiles
10 25 50 75 90

True earnings (source: NCS) 14.51 7.65 9.75 13.03 18 23.86
Gamma distribution 14.64 7.63 9.70 13.13 17.96 23.64

Reported earnings (source: CPS) 11.91 6.4 7.9 10.03 14.51 20.03

From the CPS, we extracted a sample of 9,335 individuals corresponding to the same occu-

pations as for the NCS. The data are for January and September 2002 (this guarantees that the

same household is not represented twice because the CPS uses a eight-month rotating survey).

The hourly earnings range from $5 to $54. The percentiles of the CPS data are reported in the

last row of Table 1. We see that people tend to underestimate their wages by 15% to 23%.

In (6.1), Y � and Z are likely to be correlated as people tend to underreport their income by

more dollars when their hourly rate is higher in absolute term. This is clear from a comparison

of the percentiles in Table 1. On the other hand, the ratio Y=Y � is likely to be independent of

Y �. We estimate the density of V � ln (Y=Y �) ; which is the solution of

ln (Y ) = ln (Y �) + V:

It is reasonable to assume that V is independent of ln (Y �). As Y=Y � is expected to be close

to one, V is a good approximate for Y=Y � � 1 = (Y � Y �) =Y �, which is the ratio of the
measurement error over the true hourly rate. So here, ln (Y �) plays the role of " and V plays the

role of X in the rest of the paper. We apply our method as if the distribution of ln (Y �) were

known while in reality, its parameters � and � have been estimated using an auxiliary sample.

In Proposition 3.10, we established that provided that the size of the auxiliary sample is large

enough, this approximation does not a¤ect the asymptotic properties of our estimator.

The characteristic function of ln (Y �) is not known in closed form. To determine whether it

has zeros, we calculate it via simulations using a sample of 10,000 simulated data and �nd that
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it does not have zeros. To estimate the density, we apply the method described in Section 3 by

setting �Y and ! equal to the densities of a standard Normal distribution and �X equal to the

marginal �mX de�ned in (2.6); the integral in (2.6) is computed by numerical integration. The

eigenvalues and eigenfunctions are computed using 3000 simulations i.e. B = B0 = 3000: As the

eigenvalues decline rapidly, we truncate the sum in j to J = 23: Figure C.5 gives the plot of the

estimated density of V for �n = 0:05: We see that the density is skewed to the left, suggesting

that, as expected, people are more likely to underreport their wages.

7. Conclusion

In this paper, we approximate the function to be estimated by a sequence of orthonormal

functions obtained from the singular value decomposition of the convolution operator. When

the CF of the error does not vanish, we show that this estimator is consistent and asymptotically

normal. We study its rate of convergence under conditions relating the smoothness of g with the

smoothness of f: We show that under these assumptions, the MISE achieves a fast (arithmetic)

rate of convergence.

Then, we proceed in studying the identi�cation of f when the CF of the error has isolated

zeros. We show that f is still identi�ed even though the operator T is not one-to-one. We

�nd that the estimator f̂ does not converge to the true density f; but to a pseudo-solution f y,

which is the projection of f on the orthogonal complement to the null space of the convolution

operator. It is however possible to recover the density by adding terms to f̂ : This completion

requires the knowledge of the locations of the zeros. A Monte Carlo study shows that the method

performs well in large samples.

Finally, we propose another method for estimating f that consists in minimizing a penalized

least-squares criterion under the constraint that f is a density. This estimator is consistent and

achieves a faster rate of convergence than the unconstrained estimator.

We restricted our analysis to the case where X and " are univariate. However, some inter-

esting applications involve multivariate variables, see e.g. Gautier and Kitamura (2008). Our

technique can be generalized to the multivariate setting in a straightforward manner. Indeed,

the only di¤erence is that the spaces L2�X and L
2
�Y
will be de�ned for functions in Rp instead of

R. The computation of the eigenvalues and eigenfunctions described in Appendix A remains the
same where xc and yb are drawn from a multivariate distribution. The dimension of the matrix
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M remains B �B regardless of the dimension of X and ", so that the computational burden is

not increased.

APPENDIX

A. Implementation

In this section, we discuss the practical aspects of the estimation of f when no explicit expres-

sion of the eigenvalues and eigenfunctions is available. First, we explain how to estimate the

eigenvalues and eigenfunctions. Second, we give the estimate of f .

Calculation of eigenvalues and eigenfunctions. We are looking for the solutions of

T �T' = �2': (A.1)

If T and T � are conditional expectation operators, they can be estimated by kernel estimators

but there is a simpler way that applies in all cases.

a) To estimate the operator T , we will use importance sampling (Geweke, 1988). Denote

! a pdf, such that it is easy to draw data from the distribution corresponding to ! either by

inversion of the c.d.f. or by a rejection method (see Devroye, 1986). The operator T

(T') (y) =

Z
'(x)g(y � x)dx

=

Z
'(x)g(y � x)

!(x)
!(x)dx

can be estimated by

1

B0

B0X
c=1

'(xc)g(y � xc)
!(xc)

:

where (xc); c = 1; :::; B0 is a i.i.d. sample drawn from !:

b) The operator T �

(T � ) (x) =

Z
 (y)�Y jX (yjx) dy

=

R
 (y)�Y (y) g(y � x)dy

�X(x)

can be estimated by

1

�X(x)

1

B

BX
b=1

 (yb) g(yb � x):
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where (yb); b = 1; :::; B is a i.i.d. sample drawn from �Y : This way we obtain estimators of T and

T � that are
p
B0 and

p
B consistent and do not require a choice of a kernel and a bandwidth.

Therefore, (T �T') (x) can be approximated by

1

�X(x)

1

B

BX
b=1

"
1

B0

B0X
c=1

'(xc)g(yb � xc)
!(xc)

#
g(yb � x):

This operator has a �nite rank and has at most B eigenvalues. Note that the eigenfunctions are

necessarily of the form

'j(x) =

BX
b=1

�jb
g(yb � x)
�X(x)

: (A.2)

Replacing 'j by its expression, we see that solving (A.1) is equivalent to �nding the eigenvalues

and eigenvectors of the B �B�matrix M with principal element:

Mb;l =
1

BB0

B0X
c=1

g(yl � xc)g(yb � xc)
�X(xc)!(xc)

:

Let �j =
h
�j1; � � � ; �

j
B

i0
be the jth eigenvector of M associated with �2j , then the 'j solution

of (A.2) is the jth eigenfunction of T �T associated with the same eigenvalue �2j : The function

'j can be evaluated at all points. Note that the 'j associated with distinct eigenvalues are

necessarily orthogonal, nevertheless, they need to be normalized. To normalize them, one can

approximate the norm in the following way:

k'k2 =

Z
'2 (x)�X (x) dx

=

Z
'2 (x)

�X (x)

! (x)
! (x) dx

' 1

B0

B0X
c=1

'2 (xc)
�X (xc)

! (xc)
:

Denote '̂j and �̂
2

j the estimators of the normalized 'j and �
2
j .

The operator TT � (x) can be approximated by

1

B2

BX
b=1

"
BX
c=1

 (xc)g(yc � xb)g(y � xb)
!(xb)�X(xb)

#

� 1

B2

BX
c=1

$ (y; yc) (xc):

34



It is easy to verify that the eigenfunctions  j are of the form
PB
c=1 �

j
c$ (y; yc) where �

j =h
�j1; � � � ; �

j
B

i0
; j = 1; :::; n; are again the eigenvectors of M de�ned above. Hence the estimators

of  j are given by

 ̂j (y) =
BX
b=1

�jb

"
BX
l=1

g(yb � xl)g(y � xl)
!(xl)�X(xl)

#
:

Calculation of f̂ : In formula (2.10), we need to compute the term

�Y jX (yij:) ; 'j (:)

�
=

Z
�Y jX(yijx)'j(x)�X(x)dx:

It can be approximated by

\

�Y jX (yij:) ; 'j (:)

�
=
1

B

BX
b=1

�Y (yi) g(yi � xb)
!(xb)

'̂j(xb):

where (xb); b = 1; :::; B is a i.i.d. sample drawn from !: Hence we obtain f̂ :

f̂(x) =
BX
j=1

1

�n + �̂
2

j

1

n

nX
i=1

\

�Y jX (yij:) ; 'j (:)

�
'̂j(x):

B. Proofs

Proof of Proposition 3.1. We examine successively the terms of variance and bias.

Variance:

Using the expression of f̂ given in (2.10), we have

E

��
f̂(x)� f�n(x)

�2�
=
1

n
var

24 1X
j=0

1

�n + �
2
j



�Y jX (Yij:) ; 'j (:)

�
'j(x)

35 :
Because the eigenfunctions 'j are orthonormal with respect to �X , we haveZ

E
�
f̂(x)� f�n(x)

�2
�X(x)dx =

1

n

1X
j=0

 
1

�n + �
2
j

!2
�2j
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with

�2j = var
�

�Y jX (Yij:) ; 'j (:)

��
= var

�Z
�Y jX (Yijx)'j(x)�X(x)dx

�
= var

�
�Y (Yi)

Z
�XjY (xjYi)'j(x)dx

�
= var

�
�Y (Yi)�j j(Yi)

�
= �2jvar

�
�Y (Yi) j(Yi)

�
: (B.1)

So that the variance term is

V ar =
1

n

1X
j=0

 
�j

�n + �
2
j

!2
var

�
�Y (Yi) j(Yi)

�
:

Bias:

Using (2.8), f�n can be rewritten as

f�n =
1X
j=0

1

�n + �
2
j



h; T'j

�
'j

=

1X
j=0

�j

�n + �
2
j



h;  j

�
'j

=

1X
j=0

�2j

�n + �
2
j



f; 'j

�
'j

because h = Tf: We have

f � f�n =
�
I � (�nI + T �T )�1 T �T

�
f

= �n (�nI + T
�T )�1 f

= �n

1X
j=0

1

�n + �
2
j



f; 'j

�
'j

It follows that

kf � f�nk2 = �2n

1X
j=0



f; 'j

�2�
�n + �

2
j

�2 :
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Proof of Proposition 3.2. Using �n + �2j � �n, the term of variance can be majored by

V ar =
1

n

1X
j=0

 
�j

�n + �
2
j

!2
var

�
�Y (Yi) j(Yi)

�
(B.2)

� 1

n�2n

1X
j=0

�2jvar
�
�Y (Yi) j(Yi)

�
: (B.3)

Then by Assumption 4 and the fact that T is a Hilbert-Schmidt operator, we have

V ar � C

n�2n

1X
j=0

�2j = O

�
1

n�2n

�
:

Assuming Condition (3.2), it follows from Carrasco, Florens, and Renault (2007, Proposition

3.12) that

kf � f�nk2 = O
�
��^2n

�
(B.4)

Hence, we obtain a majoration of the MISE

MISE � A

n�2n
+B��^2n :

For �n of order 1=n(�^2+2), we have

MISE � Cn
� �^2
�^2+2 :

Proof of Lemma 3.3. Condition (3.2) for � = 1 is satis�ed if f belongs to the range of

T �:

T �k = f ,Z
g (y � x)�Y (y) k (y) dy = �X (x) f (x),Z

g (y � x) k� (y) dy = f� (x) : (B.5)

where k� � �Y k, f� � �Xf: Denote F (g) ; F (k�) ; F (f�) the Fourier transforms of g, k�, and
f�; that is F (g) (t) =

R
e�it"g (") d": (B.5) is equivalent to

F (g)F (k�) = F (f�),

k� (y) =
1

2�

Z
eity

F (f�) (t)
F (g) (t) dt,

k (y) =
1

2�

1

�Y (y)

Z
eity

F (f�X) (t)
F (g) (t) dt for any y in the support of �Y ;
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by the inversion formula. The condition
R
jk (y)j2 �Y (y) dy <1 is equivalent toZ

1

�Y (y)

����Z eity
F (f�X) (t)
F (g) (t) dt

����2 dy <1: (B.6)

Take �Y = 0:5I [�1; 1] and �X = 1: (B.6) is satis�ed as soon asZ ����F (f) (t)F (g) (t)

���� dt <1:
Using a change of variables t! �t, this is equivalent toZ ����	X (t)	" (t)

���� dt <1:
Proof of Proposition 3.4. Under Condition (3.2) and Assumption 4, we have

V ar � C
1

n

1X
j=0

 
�j

�n + �
2
j

!2

Bias2 = �2n

1X
j=0



f; 'j

�2�
�n + �

2
j

�2
� �2nD

1X
j=0

 
�j

�n + �
2
j

!2
where C and D are some positive constant. So that for �n � dn�1=2; the rate of convergence of

the MISE is given by

MISE � ~C
1

n

1X
j=0

 
�j

�n + �
2
j

!2
(B.7)

where ~C is some positive constant.

Proof of Corollary 3.5. We look for an equivalent of the series in (B.7). For this, we

use the following result. Let f(j) be the element of a series and assume f(j) is a positive and

continuous decreasing function of j: Then it is easy to see thatZ J

0
f (s) ds+ f (J) �

JX
j=0

f(j) �
Z J

0
f (s) ds+ f (0) for all J � 1:

When �n goes to zero, an equivalent of the series is given by
1X
j=0

f(j) �
Z 1

0
f (s) ds:
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In the normal case, the eigenvalues satisfy �j = �j=2 with j�j < 1 so that as �n goes to zero:
1X
j=0

�2j�
�n + �

2
j

�2 �
Z 1

0

�s

(�n + �s)
2ds

= � 1

ln (�)

�
1

�n + �s

�1
0

� � 1

ln (�)�n
: (B.8)

The rate for the MISE follows.

Proof of Proposition 3.6. Below, C and D denote arbitrary positive constants.

Variance:

var
�
�Y (Y ) j (Y )

�
= E

h
 j (Y )

2
i
� E

�
 j (Y )

�2
=

1

L
E
�
eij4�Y=L

�
� 1

L

h
E
�
eij2�Y=L

�i2
=

1

L
	Y

�
j4�

L

�
� 1

L
	Y

�
j2�

L

�2
:

The second term on the right-hand side is negligible with respect to the �rst. Moreover we have

	Y

�
j4�

L

�
= 	"

�
j4�

L

�
	X

�
j4�

L

�
= 	"

�
j4�

L

�

f; '2j

�
� j�j j2

by Condition (3.4). Hence, the variance is dominated by

V ar =
1

n

1X
j=0

 
j�j j

�n + j�j j2

!2
var

�
�Y (Yi) j(Yi)

�
� 1

n

1X
j=0

 
j�j j2

�n + j�j j2

!2
:

Using the same approach as in the proof of Corollary 3.5, we have

1X
j=0

 
j�j j2

�n + j�j j2

!2
�

Z 1

0

�
s�2a

�n + s�2a

�2
ds

=

Z 1

0

1

(�ns2a + 1)
2ds

� C��1=(2a)n
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where the last inequality follows from a change of variables y = �
1=(2a)
n s: Hence

V ar � Cn�1��1=(2a)n

Bias:

Bias2 � �2n

1X
j=0

 
j�j j

�n + j�j j2

!2
:

We have

1X
j=0

 
j�j j

�n + j�j j2

!2
�

Z 1

0

s�2a

(�n + s�2a)
2ds

=

Z 1

0

s2a

(�ns2a + 1)
2ds:

Using an integration by parts with u = s; v0 = s2a�1=
�
�ns

2a + 1
�2, we obtainZ 1

0

s2a

(�ns2a + 1)
2ds � 1

�n
o (1) +

1

�n2a

Z 1

0

1

(�ns2a + 1)
ds

� D
1

�n

1

�
1=(2a)
n

:

Hence

Bias2 � D�1�1=(2a)n

and

MISE � Cn�1��1=(2a)n +D�1�1=(2a)n :

For a choice �n = dn�1, we get the result.

Proof of Proposition 3.7. The argument (x) in Zn1 (x) is omitted in the proof to simplify

notations. First we check that var (Zn1) is bounded from below.

var (Zn1) =
X
j

1�
�n + �

2
j

�2�2j ��'j (x)��2 + 2X
j<k

1�
�n + �

2
j

� �
�n + �

2
k

��ij'j (x)'k (x);
where

�ij = cov
�

�Y jX (Yij:) ; 'j (:)

�
;


�Y jX (Yij:) ; 'k (:)

��
= �j�kcov

�
�Y  j ; �Y  k

�
:
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using the same rewriting as in (B.1). As var (Zn1) is a sum of positive terms, it is bounded from

below.

To establish (3.5) for � = 1, we need to show that

E jZn1 � E (Zn1)j3

n1=2
! 0:

Using


�Y jX (y1j:)� T �h; 'j (:)

�
= �j

�
�Y (y1) j (y1)� E

�
�Y  j

��
; xn1 can be rewritten as

Zn1 � E (Zn1) =
1X
j=0

�j

�n + �
2
j

�
�Y  j � E

�
�Y  j

��
'j(x):

We have

E jZn1 � E (Zn1)j3 �
1X
j=0

 
�j

�n + �
2
j

!3
E
n�
�Y  j � E

�
�Y  j

��3o ��'j(x)��3 + cross� products:
The cross-products are dominated by the �rst term. The result follows from Assumption 5.

Proof of Lemma 3.8

var (Zn1) = O

0@X
j

 
�j

�n + �
2
j

!2
E
n�
�Y  j � E

�
�Y  j

��2o ��'j (x)��2
1A :

Under Assumption 6, 1nvar (Zn1)! 0; which implies the weak law of large numbers by Theorem

C of Ser�ing (1980, p. 27). For the WLLN of Z2ni, we use

var
�
Z2n1

�
= O

0@X
j

 
�j

�n + �
2
j

!4
E
n�
�Y  j � E

�
�Y  j

��4o ��'j (x)��4
1A :

Proof of Proposition 3.9. Under Assumption 7, we have

jf � f�j2

var
�
f̂
� =

�2n

����P1
j=0

1
�n+�

2
j



f; 'j

�
'j

����2
1
nvar (Zn1)

converges to zero. By Assumption 6 and Lemma 3.8, var (Zn1) can be replaced by the sample

variance.
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Proof of Proposition 4.1. Assume T is not injective that is there exists a nonzero function

' in L2 (�X) such that T' = 0. We want to show that necessarily 	" (t) = 0 for some t. Let

F' denote the Fourier transform of ' i.e. F' =
R
eitx' (x) dx for an arbitrary function '. By

the convolution theorem, it follows that

(T') (y) =

Z
g (y � x)' (x) dx = 0 for all y

, Fg (t)F' (t) = 0 for all t

, 	" (t)F' (t) = 0 for all t:

Since F' (t) can not be equal to zero for all t, 	" has necessarily some zeros.
Proof of Proposition 4.2. Let f1 and f2 be two densities so that eTf1 = h and eTf2 = h:

It follows that eT (f1 � f2) = 0 and by the convolution theorem: 	" (t) (Ff1 (t)�Ff2 (t)) = 0 for
all t: Hence the CF of f1 and f2 may di¤er only on the isolated points t1; t2; ::: where 	" (t) = 0:

By the continuity of the CF, Ff1 (t) and Ff2 (t) have to agree and therefore f1 = f2:

Proof of Proposition 4.4. We have


f̂D � f


2 � 


f̂D � f�D


2 + kf�D � fk2
where f�D is the solution to (4.5) where ĥ has been replaced by h. The rate of the �rst term on

the RHS is given by 


f̂D � f�D


 = O

�
�p
�

�
:

Indeed, according to Theorem 5.16 of Engl, Hanke, and Neubauer (1996), we have




f̂D � f�D


 �



Q�ĥ� h�




p
�

�
kQk




ĥ� h



p
�

= O

�
�p
�

�
where Q is the orthogonal projector of L2 (�Y ) onto R (T ). The rate of the regularization bias
in the constrained case can not be slower than in the unconstrained case because the true f is

known to be a density. Hence, we have

kf�D � fk
2 = O

�
��^2

�
:

It follows that 


f̂D � f


2 = O

�
�2

�
+ ��^2

�
: (B.9)
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Setting the two terms in the RHS of (B.9) equal to each other yields the result.

Footnotes:

1. An element f 2 H is said to be a least-squares solution to (1.2) if inf fkT'� hk : ' 2 Hg =
kTf � hk :

2. R (T ) denotes the range of T . The assumption h 2 R (T )+R (T )? is necessarily satis�ed
because the model is assumed to be correctly speci�ed throughout the paper.

3. The 'j are the standard Hermite polynomials (see the de�nition given in Wand and Jones,

1995, Appendix C) where x has been replaced by x=�X : To see this, we need to use the relation

�2X = �2= (1� �) and do a change of variable z = x=�X :

4. In the case of a uniform error, the operator T is in general not injective. Hence, as

explained in Section 4, the estimator does not converge to the true density but to its projection

on the orthogonal of the null space of T . The rate of convergence given in Proposition 3.6 is

then the rate toward this projection.

5. http://www.bls.census.gov/cps/cpsmain.htm

6. Data sets and descriptions are available on http://www.bls.gov/ncs/

43



C. References

Billingsley, P. (1995) Probability and Measure. Wiley & Sons.

Blundell, R., X. Chen, and D. Kristensen (2007) Semi-Nonparametric IV Estimation of Shape-

Invariant Engel Curves. Econometrica, 75, 1613-1669.

Carrasco, M. and J. P. Florens (2002) Simulation Based Method of Moments and E¢ ciency.

Journal of Business & Economic Statistics, Vol. 20, No. 4, 482-492.

Carrasco, M., J. P. Florens, and E. Renault (2007) Linear Inverse Problems in Structural Econo-

metrics: Estimation based on spectral decomposition and regularization. In J.J. Heckman and

E.E. Leamer (eds.), the Handbook of Econometrics, Vol. 6, pp. 5633-5751. Elsevier.

Carroll, R. and P. Hall (1988) Optimal Rates of Convergence for Deconvolving a Density. Jour-

nal of American Statistical Association, 83, No.404, 1184-1186.

Carroll, R. and P. Hall (2004) Low order approximations in deconvolution and regression with

errors in variables. Journal of the Royal Statistical Society B, 66, 31-46.

Carroll, R., A. Van Rooij, and F. Ruymgaart (1991) Theoretical Aspects of Ill-posed Problems

in Statistics. Acta Applicandae Mathematicae, 24, 113-140.

Chernozhukov V., P. Gagliardini, and O. Scaillet (2008) Nonparametric Instrumental Variable,

Estimation of Quantile Structural E¤ects. Working paper, Swiss Finance Institute.

Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer Verlag.

Devroye, L. (1989) Consistent Deconvolution in Density Estimation. Canadian Journal of Sta-

tistics, 17, 235-239.

Donoho, D. (1995) Nonlinear Solution of Linear Inverse Problems by Wavelet-Vaguelette De-

composition. Applied and Computational Harmonic Analysis, 2, 101-126.

Dunford, N. and J. Schwartz (1963) Linear Operators, Part II, Spectral Theory. Wiley & Sons.

Efromovich (1997) Density Estimation for the Case of Supersmooth Measurement Error. Journal

of the American Statistical Association, 92, No. 438, 526-535.

Engl. H. W., M. Hanke, and A. Neubauer (1996) Regularization of Inverse Problems. Kluwer

Academic Publishers.

Fan, J. (1991a) On the optimal rates of convergence for nonparametric deconvolution problems.

The Annals of Statistics, 19, No.3, 1257-1272.

Fan, J. (1991b) Asymptotic normality for deconvolution kernel density estimators. Sankhya, 53,

97-110.

44



Fan, J. (1992) Deconvolution with supersmooth distributions. The Canadian Journal of Statis-

tics, 20, 155-169.

Fan, J. (1993) Adaptively local one-dimentional subproblems with application to a deconvolution

problem. The Annals of Statistics, 21, 600-610.

Gautier, E. and Y. Kitamura (2008) Nonparametric Estimation in Random Coe¢ cients Binary

Choice Models. Manuscript, Department of Economics, Yale University.

Geweke, J. (1988) Antithetic Acceleration of Monte Carlo Integration in Bayesian Inference.

Journal of Econometrics, 38, 73-90.

Gourieroux, C. and A. Monfort (1996) Simulation-Based Econometric Methods. Oxford Univer-

sity Press.

Groeneboom, P. and G. Jongbloed (2003) Density estimation in the uniform deconvolution

model. Statistica Neerlandica, 57, 136-157.

Hall, P. and A. Meister (2007) A Ridge-Parameter Approach to Deconvolution. The Annals of

Statistics, 35, 1535-1558.

Hall, P., F. Ruymgaart, O. van Gaans, and A. van Rooij (2001) Inverting noisy integral equations

using wavelet expansions: A class of irregular convolutions. In M.C.M. de Gunst, C.A.J. Klassen

and A.W. van der Vaart (eds.) Festschrift in honor of Willem van Zwet. IMS Lectures Notes

Monograph Series, Vol 36, pp. 533-546.

Horowitz, J. and P. Hall (2005) Nonparametric Methods for Inference in the Presence of Instru-

mental Variables. The Annals of Statistics, 33, 2904-2929.

Horowitz, J. and M. Markatou (1996) Semiparametric Estimation of Regression Models for Panel

Data. Review of Economic Studies, 63, 145-168.

Hu, Y. and G. Ridder (2007) Estimation of Nonlinear Models with Mismeasured Regressors

Using Marginal Information, mimeo, University of Southern California.

Ichimura, H. and T.S. Thompson (1998) Maximum Likelihood Estimation of a Binary Choice

Model with Random Coe¢ cients of Unknown Distribution. Journal of Econometrics, 86, 269-

295.

Johannes, J. (in press) Deconvolution with unknown error distribution. The Annals of Statistics.

Johnson, N., S. Kotz, and N. Balakrishnan (1994) Continuous Univariate Distributions. Vol. 1,

Wiley & Sons.

Johnstone, I., G. Kerkyacharian, D. Picard, and M. Raimondo (2004) Wavelet decomposition

in a periodic setting. Journal of the Royal Statistical Society, B, 66, 547-573.

45



Johnstone, I. and M. Raimondo (2004) Periodic Boxcar Deconvolution and Diophantine Ap-

proximation. The Annals of Statistics, 32, 1781-1804.

Koo, J-Y and H-Y Chung (1998) Log-density estimation in linear inverse problems. Annals of

Statistics, 26, No. 1, 335-362.

Kress, R. (1999), Linear Integral Equations. Springer.

Lukacs, E. (1970) Characteristic Functions. Gri¢ n�s statistical monographs and courses. Lon-

don.

Meister, A. (2007) Deconvolving Compactly Supported Densities. Mathematical Methods of Sta-

tistics, 16, 63-76.

Meister, A. (2008) Deconvolving from Fourier-oscillating Error Densities under Decay and

Smoothness Restrictions. Inverse Problems, 24, 1-14.

Nashed, M.Z. and G. Wahba (1974) Generalized Inverses in Reproducing Kernel Spaces: An

Approach to Regularization of Linear Operator Equations. SIAM Journal on Mathematical

Analysis, 5, 974-987.

Neubauer, A. (1987) Finite-Dimensional Approaximation of Constrained Tikhonov-Regularized

Solutions of Ill-Posed Linear Operator Equations. Mathematics of Computation, 48, 565-583.

Neumann, M. (2007) Deconvolution from panel data with unknown error distribution. Journal

of Multivariate Analysis, 98, 1955-1968.

Pensky, M. and B. Vidakovic (1999) Adaptive wavelet estimator for nonparametric dendity

deconvolution. The Annals of Statistics, 27, 2033-2053.

Postel-Vinay, F. and J.-M. Robin (2002) Equilibrium wage dispersion with worker and employer

heterogeneity. Econometrica, 70, 2295-2350.

Rooij, A. C. M. Van and F. H. Ruymgaart (1991) Regularized Deconvolution on the Circle and

the Sphere, 679-690. In G. Roussas (ed.), Nonparametric Functional Estimation and Related

Topics. Kluwer Academic Publisher.

Rooij, A. C. M. Van and F. H. Ruymgaart (1999) On Inverse Estimation. In S. Ghosh (ed.)

Asymptotics, Nonparametrics and Time Series, pp. 579-613. Dekker.

Ser�ing, R. (1980) Approximation Theorems of Mathematical Statistics. Wiley & Sons.

Stefanski, L. and R. Carroll (1990) Deconvoluting Kernel Density Estimators. Statistics, 2, 169-

184.

Tikhonov, A. and V. Arsenin (1977) Solutions of Ill-posed Problems. Winston & Sons.

Ushakov, N. (1999) Selected Topics in Characteristic Functions. VSP.

46



Walter, G. (1981) Orthogonal series estimators of the prior distribution. Sankhia: The Indian

Journal of Statistics, 43, Series A, 228-245.

Wand, M.P. and M.C. Jones (1995) Kernel Smoothing. Chapman and Hall.

47



Figure C.1: Normal error, automatic bandwidth
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Figure C.2: Normal error, �n = 0:001
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Figure C.3: f̂(x); Triangular, automatic bandwidth
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Figure C.4: b̂f(x); Triangular, automatic bandwidth
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Figure C.5: Density of measurement error in hourly rate

52


