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Abstract 
 

A well known theorem by Herfindahl states that if nonrenewable resources differ by their 

cost of extraction, then their use must follow the “least cost first” principle. The low cost 

resource must be exploited first. In this paper we consider resources that are 

differentiated not by cost but by their pollution content. For instance, both coal and 

natural gas are used to produce electricity, yet coal is more polluting. Environmental 

regulation is imposed in the form of a cap on the stock of pollution. We show that if the 

cap is binding, the “clean” resource must be used first, exactly as Herfindahl had 

predicted. However, when the cap is non-binding, the “dirty” resource coal may be used 

first. We may also get a complete preference reversal, i.e., coal is used for some time, 

followed by natural gas and again by coal. Such outcomes do not arise in models of cost 

heterogeneity. A perverse policy implication is that regulating the stock of pollution may 

accelerate use of the polluting resource. 
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Ordering the Extraction of Polluting Nonrenewable Resources 
 

 

 

1. Introduction 

Energy markets are often characterized by the use of multiple nonrenewable resources, 

such as coal and natural gas, with different pollution characteristics. The same resource 

may have different qualities, as when high and low sulfur coal is used to generate 

electricity. Multiple resources are used in providing transportation services, such as cars 

running on gasoline or hybrids fueled by electricity produced from coal.  

 

When these nonrenewable resources contribute differentially to pollution, what is the 

sequence of extraction over time? Hotelling (1931) developed the classical theory of 

extraction of a nonrenewable resource. Herfindahl (1967) extended the Hotelling model 

by considering many resources with different unit costs of extraction and proposed the 

“least cost first” principle: extraction must be ordered by cost, with the cheapest resource 

used first. Others have examined whether Herfindahl’s model remains valid in a variety 

of situations: in a general equilibrium setting (Kemp and Long, 1980; Lewis, 1982), in 

the presence of setup costs (Gaudet, Moreaux and Salant, 2001), under heterogenous 

demands (Chakravorty and Krulce, 1994) and when the extraction rate is constrained 

(Amigues et al, 1998).  

 

In these studies following Hotelling and Herfindahl, resources were differentiated by cost 

alone. In this paper, we abstract from cost considerations and focus on how the sequence 

of extraction may be affected when resources are differentiated only by their pollution 

characteristics. We consider two resources, one more polluting than the other. Without 

loss of generality, consider coal to be the dirty resource and natural gas the clean one. 

Both may be used to generate electricity. Environmental regulation is imposed through a 

cap on the stock of pollution. This may be a stylized approximation of an international 

agreement such as the Kyoto Protocol which aims to stabilize the concentration of 

greenhouse gases in the atmosphere.  

 

With heterogeneity in pollution, the results are non-intuitive and differ sharply from 

Herfindahl. When the economy is already at its allowable stock of pollution, the clean 
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natural gas is used first and use of the dirty coal is postponed to the future. This is what 

one would expect, armed with insights from the Herfindahl model. However, when the 

economy starts from below the ceiling and accumulates pollution, coal may be used first 

and use of the clean natural gas is postponed. The optimal strategy is to benefit from 

natural dilution by building the stock of pollution as quickly as possible. This is done by 

burning coal rather than natural gas. This phenomenon is the reverse of Herfindahl – the 

inferior resource is used first. Only when natural gas is abundant is it used before coal.  

 

We also obtain a complete “preference reversal” over resources. That is, coal may be used 

for a period of time, then natural gas, and finally coal for another time period. Such 

phenomena with complete switching between resources does not occur in models with 

multiple nonrenewable resources. Several papers report the joint extraction of a low and a 

high cost resource under cost heterogeneity (e.g., Amigues (1998), Kemp and Long  

(1980) and Chakravorty and Krulce (1994) but not a complete reversal. We show that it 

may be efficient to extract the dirty resource first, then only the clean resource until 

exhaustion, and finally, the dirty resource. 

 

The pattern of extraction is dependent upon the initial endowments of the two resources. 

If the stock of coal is relatively low, then the Hotelling rents of the two resources are 

exactly equal and regulation is never binding. However, if coal is abundant, it has a lower 

Hotelling rent than natural gas. With abundant resources, extraction paths have a turnpike 

feature in which both resources are jointly extracted at the maximum allowed level. We 

show that all paths must pass through this turnpike.  

 

Stylized facts suggest that our planet has abundant supplies of coal but limited amounts 

of natural gas. Our results imply that if the economy is below the regulated stock of 

emissions, then it is optimal to use the more polluting resource first and get to the ceiling. 

Once the ceiling is achieved, we must use the cleaner fuel first. From a policy point of 

view, we thus obtain a perverse result: imposing a cap on the stock of pollution may 

trigger a race to the ceiling by burning coal. 2 

                                                 
2 In a parallel effort, Smulders and van der Werf (2005) develop a model to examine the extraction of 
heterogenous resources when the flow of emissions (not the stock as in our case) is constrained. In their 
model, resources are imperfect substitutes. Their findings suggest that the economy may use more of the 
clean resource before the constraint is binding in order to use more of the dirty resource during the period 
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Section 2 extends the textbook Hotelling model with two costless but polluting resources. 

Section 3 characterizes the sequence of extraction when the stock of pollution is already 

at the ceiling. Section 4 extends this analysis to stocks starting from below the ceiling. 

Section 5 concludes the paper. 

 

2. The Model 

Consider an economy in which energy consumption at any time is given by q and the 

corresponding gross surplus u is twice continuously differentiable, strictly increasing and 

strictly concave over the interval ),0[ q  with 0>q  and constant over the interval 

),[ ∞q with uqu =)( for .qq ≥ This implies that 0)('lim =↑ quqq . Let +∞=↓ )('lim 0 quq .3 

Denote the marginal suplus by )(')( quqp ≡ and by )p(d the corresponding inverse 

demand function. Welfare W is the sum of the gross surplus discounted at some constant 

rate � >0 given by 

 

�=
∞

−

0

tdte)q(uW ρ . 

 

Since ,u)q(u ≤ this integral is well defined. We consider two nonrenewable resources 

indexed by i=1,2 which are perfect substitutes in demand. Each resource is characterized 

by the vector { }0, ii Xθ  where iθ is the pollution generated by burning one unit of the 

resource and 0
iX is its given initial stock. Let iX be the residual stock at time t and ix the 

extraction rate. Then 

 

2,1i,xX ii =−=� .         (1) 

 

Let the cost of extraction of both resources be zero. Without loss of generality, let us 

assume that resource 1 (say, natural gas) is cleaner than resource 2 (coal), 210 θθ << . 

                                                                                                                                                 
when the constraint is binding. It may be useful at a later stage to develop a more general framework in 
which the effect of different types of regulation (stock vs flow constraints) on the extraction path is better 
understood.  
3 To keep the notation simple, we avoid writing the time argument t whenever the context is clear.  
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Let 0
2

0
1

0 XXX +=  be the total initial stock, 21 XXX +≡  the total residual stock at time t, 

and 21 xxx +≡ the aggregate extraction at t. 

 

As in most Hotelling models, we assume an abundant renewable backstop resource (e.g., 

solar energy) that is non-polluting. Its unit cost is given by 0>rc . Let y be the rate of 

extraction of the backstop resource. Once coal and natural gas are exhausted, the price of 

the renewable resource is equal to rc  and its consumption is determined by y~ , the solution 

to the equation rcyu =′ )( . 

 

Burning of the fossil fuels increases the aggregate stock of pollution denoted by )t(Z . 

This may be the level of carbon in the atmosphere. We assume that there is a natural 

decay at the constant rate 0>α so that 

 

ZZ)0(Z,ZxZ 0

i
ii ≤=−�= αθ� given,     (2) 

 

where 0Z)0(Z = and Z is the regulated limit on the stock of pollution.4 This may be 

exogenously imposed by some regulatory authority or the outcome of a negotiated 

international agreement.5 It may also approximate a specific form of a damage function 

that equals zero at stock levels below Z but imposes prohibitive damages beyond that 

threshold value. The inequality in (2) suggests that the initial level of pollution is below 

the ceiling.  

 

Suppose only resource i is being used when the stock of pollution equals Z over a time 

period. Let ix be this maximum extraction rate. By (2), 
i

i

Z
x

θ
α=  and ip , the marginal 

gross surplus is given by )( ii xup ′= . Since natural gas is less polluting than coal, more 

gas would be used at the ceiling, so 21 xx > and 21 pp < . 

 

                                                 
4 This natural decay is an increasing function of the stock Z . The linear form Zα is chosen for analytical 
convenience. 
5 For example, a policy goal of 550 parts per million of carbon in the atmosphere may correspond to a 
specific value of Z .�
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The social planner maximizes the net surplus by choosing extraction rates of natural gas 

and coal and the backstop resource at each time t as follows: 

 

{ } �
� −+

∞
−

= 0 i

t
riy;2,1i,x

dte}yc)yx(u{Max
i

ρ       (3) 

 

subject to (1) and (2), 0
iX , ,0Z and Z given, with 0)t(ZZ ≥− . The corresponding 

current value Lagrangian can be written as 

 

yx]ZZ[]Zx[xyc)yx(uL r
i

ii
i

ii
i i

iiri γγναθµλ +�+−+� −+� �−−+=  

 

whereν is the multiplier attached to 0ZZ ≥− , iγ  and rγ are the multipliers for the non-

negativity constraints 0xi ≥  and 0y ≥ . The first order conditions are 

 

2,1i,)yx('u iii
i

i =−−=� + γµθλ        (4) 

rr
i

i c)yx('u γ−=� + .        (5) 

 

The dynamics of the costate variables are given by 

 

ii )t( ρλλ =�  which gives 2,1i,e t0
ii == ρλλ       (6) 

νµαρµ ++= )()t(� ,         (7) 

 

where we write 0
iλ for )0(iλ . The complimentary slackness conditions are 

 

2,1i,0x,0x,0 iiii ==≥≥ γγ         (8) 

0y,0y,0 rr =≥≥ γγ ,         (9) 

0)ZZ(,0ZZ,0 =−≥−≥ νν .        (10) 

 

Finally, the transversality conditions are  
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2,1i,0)t(Xlim)t(X)t(elim it
0
iii

t
t === ∞↑

−
∞↑ λλρ ,      (11)  

0)t(Z)t(elim t
t =−

∞↑ µρ         (12) 

 

Condition (6) implies that the scarcity rent of coal and gas must rise at the rate of 

discount. Define the price of resource i as its (full) marginal cost at time t, given 

by µθλ iiip −= . It has two components: the scarcity rent and the externality cost, the 

extraction cost being zero. Since µ is the shadow price of the pollution stock, it is 

negative or zero. If ZZ < over some time period, then by (10), 0=ν and 
t)(0e)t( αρµµ += where )0(µ is written as 0µ . During this period, the shadow price of 

pollution grows at an exponential rate given by the sum of the discount rate and the 

dilution rate of the pollution stock. If regulation is never binding, then the initial shadow 

price 0µ is zero hence 0≡µ .  

 

It is convenient to split the analysis into two parts. In section 3 we assume that the initial 

pollution stock is at the ceiling, ZZ =0 . In section 4, the initial stock is assumed to be 

strictly under the ceiling ZZ 0 < . 

 

3. The Initial Stock of Pollution is at the Ceiling 

Let ZZ =0 . We plan to show that when the aggregate stock of the two resources is small, 

both coal and natural gas must have the same scarcity rent and extraction is “pure” 

Hotelling, i.e., regulation becomes a non-issue. When the stock of coal is small but 

natural gas is abundant, both resources have the same scarcity rent but the price paths are 

non-Hotelling. When coal is abundant, neither are resource rents equal nor the price paths 

Hotelling. 

 

Extraction with Only One Resource 

To understand how environmental regulation affects extraction, assume that there is only 

a single resource i, which may be coal or natural gas. Since extraction is costless, the 

resource price )t(pi is equal to the scarcity rent and is completely determined by its initial 

value 0
iλ . The Hotelling price path is given by t0

ii e)t(p ρλ≡ . Define T as the time at which 
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this Hotelling price equals the cost of the backstop rc . Then ρλ /]lnc[lnT 0
ir −= .6 The 

initial scarcity rent can be written as a decreasing function of the initial stock, )X( 0
i

0
iλ . 

 

Since ZZ 0 = , let the lowest value of the scarcity rent such that regulation is non-binding 

be given by i
0
i p=λ . At resource prices lower than this level, initial resource extraction 

will lead to a pollution stock higher than the regulated level Z and the ceiling constraint 

will be binding over a non-zero time period. If regulation is non-binding, the resource 

price rises at the rate of discount starting from ip . Define the corresponding extraction 

period as
ρ

∆ ]plnc[ln irH
i

−= , where the superscript H stands for the Hotelling path. 

Cumulative extraction is then given by �=
H
i

0

t
i

H
i dt)ep(dX

∆
ρ . Thus H

iX is the highest stock 

of resource i that generates a pure Hotelling path unconstrained by environmental 

regulation. Since 21 pp < , the aggregate stock of coal that could be used up over this 

Hotelling path must be lower than the corresponding stock of natural gas, H
2

H
1 XX > . 

 

If the initial resource stock is higher than this maximal Hotelling stock, H
i

0
i XX > , then at 

the beginning, extraction must be limited to ix , otherwise the pollution stock will exceed 

the ceiling (see Fig. 1). When the resource stock declines to H
iX , the Hotelling path 

begins. The duration of the first phase is then given by
i

H
i

0
i

i x
XX −=∆ . Until time i∆ , the 

price is ip . Since regulation is binding, the shadow cost of pollution )t(µ is strictly 

negative and (4) yields i
t0

ii ep µθλ ρ −= .7 The gap between the resource price ip and the 

shadow price iλ in the figure is the externality cost per unit of the resource i, given by 

iµθ− . Beyond i∆ , the ceiling is no longer binding hence 0≡µ  and both resource price 

and scarcity rents are equal, as shown. 

                                                 
6 The optimal value of 0

iλ is determined uniquely by the relationship 0
T

0

t0
i Xdt)e(d =�

ρλ . 

7 Hence i
i

i
t0

i t,
pe

)t( ∆
θ

λµ
ρ

<−= , with iepi
0
i

∆ρλ −= .�
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[Fig. 1 here] 

 

Extraction with Both Resources 

Consider that both resources are available, 2,1i,0X 0
i => . If HXX 2

0 ≤ , i.e., the aggregate 

stock is lower than the minimum of the two critical stocks, the solution must still be the 

Hotelling path with initial extraction lower than the maximum allowed at the ceiling, 2x . 

The scarcity rents of the two resources are equal, and their extraction rates a matter of 

indifference.8 Regulation is never active except possibly at the initial instant. 

 

This is shown in ],[ 0
2

0
1 XX  space in Fig.2 where each point represents an initial 

endowment of the two resources. Points A and B denote the stock HX 2 on each axis. In 

zone I, which is the triangle bounded by the axes and the straight line AB with slope -1, 

the aggregate stock is always lower than HX 2 and endowments in this zone yield a 

Hotelling solution in which only the aggregate extraction is determinate but not its 

composition. 

 

[Fig. 2 here] 

 

Now let HH XXX 1
0

2 << . The aggregate stock is higher than the maximum Hotelling-

induced stock of coal, but lower than that of natural gas. As 0X approaches H
1X , given a 

stock of natural gas, we search for the maximum endowment of coal that generates a 

Hotelling price path, i.e., one unconstrained by regulation. In the limit, the pollution 

constraint can only bind at discrete points in time but not over an interval of non-zero 

duration. Consider the extraction sequence in which gas is consumed initially followed 

by coal. In the first interval, as price increases because of scarcity, extraction of gas falls 

below the critical 1x so that the pollution stock declines from the initial level of Z . When 

                                                 

8 The extraction rates must satisfy )e(d)t(x t0 ρλ= and � ==
)X(

0

0
ii

0

2,1i,Xdtx
∆

, where 0λ is the 

common value of the initial scarcity rent of the two resources and )X( 0∆ the duration of this extraction 

period, i.e., 
ρ

λ∆
0

r0 lncln
)X(

−= . 
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we switch from gas to coal, the stock is strictly lower than Z . Therefore we could extract 

an aggregate stock of coal strictly larger than H
2X and still not violate the ceiling. As 

shown in Fig.3, natural gas is consumed first to bring down the stock of pollution, then 

coal is extracted at rates higher than 2x to restore the stock of pollution to Z . Exactly at 

that instant, the residual coal stock must equal H
2X and the Hotelling path follows as 

before. Aggregate coal use in this case is strictly larger than H
2X .  

 

[Fig. 3 here] 

 

There may be other such Hotelling paths along which both resources are consumed 

simultaneously while maintaining the stock of pollution at less than or equal to Z and 

again letting it rise to the ceiling Z , followed by a phase during which only coal is 

consumed. A polar case of such a path is one in which both resources are used while the 

stock of pollution is maintained exactly at its maximal level Z in the first phase, followed 

by exclusive use of coal.9 The locus of maximal resource stocks that lead to a Hotelling 

path is shown as curve AA ′ in Fig.2. 

 

Point A represents )X,0( H
2 and A′ the endowment pair ),( 0

2
0
1 XX such that 

H
1

0
2

0
1 XXX =+ . As we travel on AA� towards A� we increase the stock of natural gas and 

the corresponding maximal stock of coal that can be used to remain in the Hotelling path. 

The path AA� can not cross the 45˚line through H
1X because the aggregate stock would 

exceed the maximum stock of natural gas compatible with the Hotelling path. Because 

the stock increases along AA�, the common initial scarcity rent declines from 2p at A to 

1p  at A�.10 

 

The shaded region zone II in Fig.2 denotes the set of initial stocks that generate a 

Hotelling solution when the aggregate stock is higher than H
2X . Each point on AA� 

                                                 
9 In Appendix A we show that this property is satisfied by the path that maximizes the consumption of coal 

for any given stock of natural gas such that ]X,X(X H
1

H
2

0 ∈ . 
10 Let 12∆ denote the interval when the two resources are consumed jointly. From A to A�, 12∆ increases from 

zero to 
ρ

12 plnpln −
.   
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corresponds to a unique extraction path, as shown in Appendix A. Extraction proceeds 

along the locus AA′  towards A. Once A is reached, all natural gas is exhausted and the 

stock of coal equals HX 2 . In the next phase only coal is extracted. 

 

If the set of initial stocks is in zone II but strictly below the curve AA�, the amount of coal 

available is less than the maximal amount required and there may be some flexibility in 

sequencing the use of the two resources, since they are perfect substitutes on any 

Hotelling path not constrained by regulation. For instance, optimal extraction beginning 

at point C may involve use of both resources at a maximal rate while staying at the 

ceiling followed by the exclusive use of coal, and finally the residual stock of natural gas. 

This is shown by the path OCCC ′′′ where the segment CC� is the translation of AA� 

through point C. However, since we are in the strict interior of zone II, regulation does 

not bind, hence some natural gas extraction at the beginning may be substituted by a 

compensating amount of coal later in time.11  

 

The union of zones I and II is the area OAA'B', the set of all solutions that are pure 

Hotelling, i.e., unaffected by environmental regulation. 

 

Only Natural Gas is Abundant 

This case is depicted by zone III in Fig. 2, where H
1

0 XX > and 0
2

0
2 XX < .12 The pattern of 

resource use is a variation of the one described in Fig.1. Consider an initial vector of 

stocks at point D. Since natural gas is abundant, it is used first at the maximal level 

1x until D′ is reached. The resource price is constant at 1p . The aggregate stock 

at D′equals H
1X . From here the extraction sequence is similar to the pure Hotelling paths 

originating in zone II. The scarcity rents of the two resources are equal and their common 

initial value is given by )(
r1

0 H
111 ecep ∆∆ρ∆ρλ +−− ==  where 1∆ and H

1∆ )
]plnc[ln

( 1r

ρ
−= are 

the durations of the first and second phases respectively. The shadow cost of 

pollution µ is non-zero until D′  and zero beyond. As we see below, this is the only non-

Hotelling path with equal scarcity rents for the two resources. 

                                                 
���See Appendix B for further characterization of paths starting from zone II.�
12 Detailed characterization of the paths originating from zone III and from zones IV and V defined below, 
are given in Appendix C. 
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When Coal is Abundant 

If coal, the more polluting resource is abundant, extraction may be constrained because of 

environmental regulation. The scarcity rents of the two resources may no longer be equal. 

It is easier to first discuss the case when both resources are abundant (see zone IV in Fig. 

2), before considering abundant coal with limited stocks of natural gas, the clean resource 

(zone V). 

 

Endowments in zone IV are defined by 0
1

0
1 XX > and 0

2
0
2 XX > , such as point E in Fig.2. As 

in zone III, natural gas is used at the maximal rate 1x  until its stock is reduced to 0
1X  at 

point F ′ . The duration of this phase equals
1

0
1

0
1

1 x
XX −

=∆ . The corresponding price paths 

are shown in Fig. 4. During this first phase the price of energy 1p is lower than that of 

coal given by 2
t0

22 ep µθλ ρ −= . It is constant until F ′ (Fig. 2) when both resource prices 

are equal and a period of joint use begins. Extraction proceeds along a path FF ′ that is a 

vertical translation of AA′ until the price of energy reaches 2p at F. Denote this period of 

joint use by 12∆ . 

 

[Fig. 4 here] 

 

Natural gas is exhausted at location F. The cleaner resource has a higher scarcity rent, 

which is to be expected given that they have the same (zero) extraction cost. 13 Coal is 

                                                 
13 When both resources are consumed, 0xi >  and 2,1i,0i ==γ . From (4), 2211 µθλµθλ −=−  

which implies that )( 1221 θθµλλ −−=− hence
12

t0
2

0
1 e)(

θθ
λλµ

ρ

−
−−= . Thus 0

2
0
1 λλ > . Aggregate 

supply must equal demand, )e(dxx t0
21

ρλ=+  and the pollution stock stays at the ceiling. From (2), 

22112211 xxxx θθθθ ==+  so that  

12

2
t0

2
1

]x)e(d[
x

θθ
λθ ρ

−
−= , 

12

t0
11

2

)]e(dx[
x

θθ
λθ ρ

−
−= .      (13) 
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used at the maximum level (see Fig.4). Its price 2p is constant until time 2121 ∆∆∆ ++ . 

This is followed by the terminal phase when regulation is non-binding and the price of 

coal follows a Hotelling path t0
22 e)t(p ρλλ == until it is exhausted and the backstop is 

used. The stock of coal at the starting location E (in Fig.2) determines the precise 

path FF ′ each of which is a vertical translation of AA′ .  

 

Now consider zone V with smaller endowments of natural gas, specifically 0
1

0
1 XX ≤ . If it 

is a strict equality, the first period of exclusive natural gas use in zone IV disappears 

completely. If the inequality is strict, as in point G in Fig.2, extraction begins with both 

resources and a common price in the interval ]p,p[ 21 that depends upon the location of G 

on the curve FF ′ . The higher the endowment of natural gas, the closer is G to F ′and the 

closer is the initial price to 1p  (Fig.4). Extraction proceeds along the curveGF until all 

gas is exhausted at F. The remaining phases are as in zone IV. 

 

The demarcation of the different zones depends on Z . If Z is higher, point A moves up in 

Fig.2 and B′moves to the right, enlarging the set of endowments that result in a Hotelling 

path (zones I and II).  On the other hand, if Z approaches zero, the Hotelling set shrinks 

towards the origin until in the limit, none of the resources may be used. The pollution 

content of the resources also determines the set of Hotelling paths. If coal was more 

polluting and gas cleaner, point A will move down and B′will shift to the right, leading to 

a flat and elongated Hotelling set. 

 

The main insight when regulation is binding at the beginning is that excess natural gas 

must be used first. When both resources are used, natural gas extraction declines and that 

of coal increases. This “turnpike” feature with joint use allows for a smooth transition 

from the clean to the polluting resource until only coal is used. Loosely speaking, the 

order of extraction is according to pollution content. The more polluting resource is used 

latter. This trend is driven by time preference. Using the cleaner resource allows for 

higher current extraction rates and higher profits earlier in time. However, as we see 

                                                                                                                                                 

Differentiating gives 0)()( 0

12

2
1 <

−
= tedtx ρλ

θθ
θ

��  and 0)e(d)t(x t0

12

1
2 >

−
−= ρλ

θθ
θ �� . The 

extraction rates move in opposite directions. 
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below, this tendency does not always hold when the initial pollution stock is below the 

regulated level.     

 

4. The Initial Stock of Pollution is Below the Ceiling 

For the stock to build up to the ceiling, there must be a period when emissions are strictly 

greater than the maximum allowed at the ceiling. We adopt the same approach as before, 

differentiating between resource endowments that lead to an unconstrained Hotelling path 

and those that do not. However, the analysis in this section has an added dimension, the 

initial stock of pollution 0Z . This pollution stock together with the endowment of 

resources determines the approach to the ceiling. Now all variables are also a function 

of 0Z . 

 

Hotelling Paths with a Single Resource 

Let 0
iλ be the initial scarcity rent. Since it increases over time, emissions decline. If 

emissions at scarcity rent 0
iλ are lower than the natural dilution rate, than future emissions 

will also be lower, hence the stock of pollution will permanently decline. However, if 

initial emissions are higher than the dilution rate, then the stock of pollution )t(Z will 

increase, reach a peak value than decline steadily. The lower the value of 0
iλ , the higher 

the peak value of )t(Z . Thus there exists some value of the initial scarcity rent 

)Z( 00
iλ such that the peak )t(Z equals the ceiling Z , i.e., when i

t0
i pe =ρλ .14 In a 

Hotelling path, the pollution stock must be off the ceiling both before and after this 

instant. Thus )Z( 00
iλ  is the lowest possible scarcity rent that depends upon the initial 

stock 0Z . A lower initial rent will mean higher emissions, so the path will be constrained 

by regulation and will no longer be Hotelling. A higher rent will imply that the pollution 

stock will be strictly below the ceiling. This scarcity rent )Z( 00
iλ must increase with the 

initial stock of pollution 0Z . The cumulative extraction until the ceiling is reached is 

given by �=
0
i

0

t00
i

0H
i dt)e)Z((d)Z(X

∆
ρλ where 0

i∆ is the time it takes to get to the ceiling 

                                                 
14 At this instant, ix  units of resource are extracted. 
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given by
ρ

λ∆
0
ir0

i

lncln −= .15 Then for a given 0Z , we have H
2

H
1 XX > and 0

2
0
1 λλ < since 

more of the clean fuel can be used on the way to the ceiling.16 Let H
i∆ be the time duration 

during which resource i is extracted along a Hotelling path. We have H
2

H
1 ∆∆ > . For an 

initial stock of resource i lower than the critical level H
iX , the stock does not reach the 

ceiling at all.  

 

When the stock exceeds H
iX , the scarcity rent is lower and regulation binds over a non-

zero time period. The pollution stock rises from 0Z to Z . The resource is then extracted at 

the maximum ix until the Hotelling stock H
iX remains and extraction declines gradually to 

zero. The price at the ceiling is a constant ip . Suppose it takes time 0
i∆ to go to the ceiling  

and the phase at the ceiling is of duration i∆ . In the first phase the price of the resource 

rises from a lower level to ip and the shadow price of pollution µ is non-zero. Beyond 

time i
0
i ∆∆ + , regulation does not matter so the value of µ is zero and extraction is pure 

Hotelling. 

 

Extraction with Both Resources 

As in section 3, if Hotelling paths were to hold, for initial aggregate stocks lower than 
H
2X , regulation will not bind, so which resource is extracted is a matter of indifference. 

This solution is shown by stocks in zone I in Fig.5, which is a generalization of Fig.2 for 

a given 0Z . This new zone I is strictly larger than the one in section 3, since it must 

include additional resource stocks that take the initial stock of pollution to the ceiling.  

 

For aggregate stocks ]X,X[X H
1

H
2

0 ∈  we may obtain pure Hotelling paths as in section 

3, provided the stock of coal is not too large. The Hotelling set corresponding to zone II 

                                                 
15 All variables are a function of the initial stock of pollution 0Z so we sometimes avoid writing it 

explicitly. Variables such as H
iX in this section are defined for a initial stock 0Z and therefore are different 

from those in section 3, where the initial stock of pollution is the constant Z (see Fig.5).  
16 When 0

i∆ equals zero, the initial stock is at the ceiling as in section 3.  
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in section 3 is given by figure MNLKL ′ .17 These vectors are all functions of the initial 

stock of pollution 0Z . As 0Z approaches Z  the curve LL ′ approaches AA ′ and 

ML′ collapses to the vertex A′ . The new zone II reduces to the one from section 3.  

 

[Fig. 5 here] 

 

Consider an initial endowment )F,F(F 21=  located on the AA ′ curve. From section 3, we 

already know the resource use profile beginning from F where the pollution stock is at 

the ceiling. With some abuse of notation, let the current resource price at F be given 

by )F(p which lies in the interval )p,p( 12  as in Fig.4. Suppose only coal is used to go to 

the ceiling. As before, let 0∆ denote the time taken from an initial endowment F ′ to reach 

the ceiling at F. Then the price path beginning from F ′ is shown in Fig. 6.18 

 

[Fig. 6 here] 

 

The curve LL ′ is the locus of all such points F ′  that map to points F lying on the curve 

AA ′ . However LL ′ is not a vertical translation of AA ′ . Since )L(ppp)L(p 21 <<<′ , 

resource prices are lower starting from L′ relative to L. This will lead to higher coal use 

and higher emissions starting from L′given the same initial pollution stock 0Z . The 

distance FF ′ is smaller, the closer F is to A′ . From the ceiling at F, extraction follows the 

sequence described in section 3.19 

 

Points on the segment ML′  (in Fig.5) can be explained in the same fashion. At 

vertex M with aggregate endowment H
1X only natural gas is used during the transition to 

                                                 
17 where )0,X(K H

2= , )X,0(L H
2= , L′ is located vertically above A′ , )X,XX(M 0

2
0
2

H
1 −=  and 

)0,X(N H
1= . 

18 This path solves Z)(Z 0 =∆ where �+= −−−−−
t

0

)t()(
2

t0 de)e)F(p(deZ)t(Z
0

τθ τατ∆ρα  

and �+=′ −−
0

0

0

)t(
22 )dte)F(p(dFF

∆
∆ρ  where )F,F(F 21 ′′=′ . 

19 This is a Hotelling path with
0

e)F(p0
2

0
1

0 ∆ρλλλ −=== and 0,0 == υµ for ],0[t 0∆∈ . To show 

that the extraction path FAOF ′ is optimal, it is easy to check that all the necessary conditions are satisfied. 

For 0t ∆≥ , the analysis from section 3 applies. 
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the ceiling at point A′ . Since this is again a Hotelling path, both resource rents are equal. 

Consider an intermediate point J on the path MA′ , where by construction, the stock of 

pollution is below the ceiling. Starting from M only gas is extracted to arrive at J. But 

starting from J ′ only coal is extracted. Since both of these paths must start from pollution 

stock 0Z , follow a Hotelling path and arrive at the same stock of resources and pollution, 

more natural gas needs to be used than coal. Thus traveling to J will take longer 

from M than from J ′ . This explains why point J ′ is located to the left of the extension of 

the line NM which is the locus of points H
1

0
2

0
1 XXX =+ . 

 

In the area of zone II above the line MAA ′ , coal is used first. For example, from F ′  only 

coal is used until the ceiling is reached at F followed by simultaneous extraction. For 

points located on the line JJ ′ , coal is used first to point J, followed by natural gas until 

the ceiling is attained at A′ . 

 

Why will coal, the more polluting resource be used before natural gas on the way to the 

ceiling? Consider two instants of time 1t and 2t with 21 tt < . Since the two resources are 

perfect substitutes and their scarcity rents are equal in zone II, suppose one unit of coal is 

used at 1t and an unit of gas later at 2t . Then at some time 2tt >  the increment to the 

pollution stock will be )tt(
1

)tt(
2

212 e]e[ −−−− + αα θθ . Now consider the alternative – using an 

unit of gas at 1t and coal later at 2t . The addition to pollution is )tt(
2

)tt(
1

212 e]e[ −−−− + αα θθ . 

Subtracting the latter from the former gives 0e)1e)(( )tt()tt(
12

22 <−− −−−− ααθθ . Using 

coal rather than natural gas will imply a lower pollution stock in the future because a 

higher Z implies increased dilution which is costless.  

 

Only Gas is Abundant 

Here the initial coal stock is less than 0
2X while the aggregate stock is larger than H

1X , 

shown as zone III in Fig. 5. Consider a starting point G. Natural gas is used until the 

pollution stock reaches the ceiling. The ceiling is achieved before arriving at the 

frontier BA ′′ , at point G′ .20 Next gas is extracted at the maximum level 1x until the stocks 

                                                 
20 If the stock of gas is sufficiently large, the point G′ may lie to the right of the line segment MN . 
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reach the boundary BA ′′ of zone II from section 3. The remaining path is Hotelling. 

Shadow prices of the two resources are still equal. 

 

When Coal is Abundant 

There are three alternative paths to the ceiling with abundant coal, given by a stock 

located higher than the line MQLL ′  shown in Fig.7. These are demarcated by zones IV, V 

and VI. It is easier to discuss them in reverse order starting with zone VI. Coal is 

abundant with only a small stock of natural gas lower than 0
1X . We know from section 3 

that once the ceiling is attained both resources are used until natural gas is exhausted. 

Consider a point R where the stock of pollution is exactly at the ceiling. Then R must be 

on some path HH ′ that is parallel to AA ′  and the sequence of extraction from R is well-

defined.  

 

[Fig.7 here] 

 

Let )R(p be the price of energy at R and 0∆ be the time at which the ceiling is achieved 

exactly at R. Since both resources are used beginning from this location, (4) implies 

that 2,1i,)()()(p)R(p i
00

i
0 =−== θ∆µ∆λ∆  with )p,p()R(p 21∈ . Since 12 θθ > , we 

have )()( 0
2

0
1 ∆λ∆λ > . Before 0∆ the ceiling is non-binding, so )t)((0 0

e)()t( −+−= ∆αρ∆µµ . 

Then for 0t ∆< , =−−− ))t()t(())t()t(( 2211 θµλθµλ  )t(0
2

0
1

0

e))()(( −−− ∆ρ∆λ∆λ  

0e))(( )t)((
21

0 0

>−− −+− ∆αρθθ∆µ . That is, before location R, the marginal cost of coal is 

lower than that of gas. Thus only coal is used until regulation binds.  

 

There exists a vector of stocks R′ (see Fig.7) with an initial stock of pollution 0Z  such 

that coal is used until R. Once at R, both resources are used jointly along the curve HH ′ as 

in section 3. Conversely any starting vector R′ in zone VI will imply an exclusive use of 

coal until the ceiling is reached. Because natural gas is not abundant, it is relatively 

expensive, hence coal is used on the “fast track” to the ceiling. As there is a small stock 

of natural gas, it is efficient to use it to relax the consumption constraint at the ceiling 

than for slowing down the growth of the pollution stock before the ceiling is achieved. 
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Now consider a higher stock of natural gas so that 0
1

0
1 XX ≥ , as shown by endowments in 

zone V (see Fig.7). Then as in zone VI, we use coal at the beginning, but because there is 

a higher endowment of natural gas, some of it is used to get to the ceiling. From an initial 

vector S, coal is used until location S ′ , then natural gas is used until S ′′ when the ceiling is 

reached. Beyond this location, gas continues to be used at its maximum level 1x and 

extraction proceeds as in zone IV in section 3. 

 

Why not only coal to the ceiling as in zone VI? With increased gas resources, there is 

competition between coal and gas. The benefit of coal use on the access to the ceiling is 

that it allows for increased pollution and therefore, increased dilution which is costless. 

However, with higher reserves of gas, its scarcity rent is lower and it is less polluting, so 

it makes sense to use some gas exclusively at the beginning of the ceiling period and 

additional gas resources to ensure continuity of the price path as the pollution stock 

approaches the ceiling. These prices are shown in Fig.8. Coal is cheaper at first followed 

by natural gas, until the ceiling is reached at time 0∆ .21  

 

[Fig.8 here] 

 

Finally consider zone IV where both resources are abundant (Fig.7). As the endowment 

of natural gas increases, its scarcity rent decreases. Even though the scarcity rent of gas is 

higher than coal, large stocks of gas will imply that its marginal cost may be lower than 

for coal, 2
00

21
00

1 θµλθµλ −<− . During the initial phase, gas is used exclusively all the 

                                                 
21 To prove that this is the only possible sequence, we can show that the price of coal is strictly higher than 

that of natural gas and the differential increases as we move recursively from 1
0 ∆∆ + to 0∆ (see Fig.8). 

Then coal can not be used in the preceeding interval and gas must be used. Consider the price differential 

)t(p)t(p 12 − at time ],0[ 1∆τ ∈ so that ],[ 1
00

1
0 ∆∆∆τ∆∆ +∈−+ , i.e.,τ  is measured from 

1
0 ∆∆ + . In this interval by (4), 111p µθλ −= which gives 

1

11 p
)t(

θ
λµ −=  We have 

1
1

211
0

1
1

0
211

0
2 p

)p)((
)(p)(p −−−+−−+=−−+

θ
θτ∆∆λτ∆∆λτ∆∆

1
1

)(0
112)(0

2 p
]ep[

e
1

0

1
0

−−+=
−+

−+

θ
λθλ

τ∆∆ρ
τ∆∆ρ which after some manipulation yields 

]e1[
p)(

pp
1

112
12

ρτ

θ
θθ −−−=− so that .0]e[

p)(
)pp(

d
d

1

112
12 >−=− −ρτρ

θ
θθ

τ
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way to the ceiling.22 This is followed by maximal use of gas until the boundary of zone 

IV. The extraction path is shown starting from an initial endowment V in Fig. 7. 

 

5. Concluding Remarks 

We extend Hotelling theory to resources when they are differentiated by their pollution 

characteristics. Herfindahl showed that when there is cost heterogeneity among resources, 

extraction follows the “least cost first” principle. We show that when resources are 

differentiated by pollution there is no such ordering of extraction. With a “clean” and a 

“dirty” resource, the order of extraction suggested by Herfindahl breaks down. When the 

economy starts with the regulated level of pollution, the clean resource is used first, 

analogous to the Herfindahl principle. However, when the economy starts from a lower 

level of pollution, it may use the dirty resource first and build the pollution stock as 

quickly as possible. In this manner, it benefits from natural dilution of the pollution stock, 

which is “free.” However, if the stock of the clean resource is large, it may be used from 

the beginning.    

 

We show that in a model with pollution heterogeneity, a resource may be used over two 

disjoint intervals. Coal may be used exclusively at the beginning, followed by exclusive 

use of gas, then again later in time, the exclusive use of coal, as in zone V. This sort of 

complete “preference reversal” over resources does not emerge in models with cost 

differentiation among resources. 

 

Unlike in the literature following Hotelling, the sequence of extraction in this pollution 

model depends strongly upon the initial endowment of the resources. A common feature 

of extraction when both resources are abundant is a turnpike property, in which the two 

resources are used jointly at their maximal levels until the clean resource is completely 

depleted. Which resource will be used to get to the ceiling depends on their relative 

abundance.  

 

These results have implications for the order of extraction when an economy has to meet 

environmental goals. For instance, a stated aim of the Kyoto Treaty is to stabilize the 

                                                 
22 The case of natural gas use followed by coal to the ceiling can be eliminated by arguments made earlier 
for endowments in zone V.  
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atmospheric concentration of carbon at approximately 550 parts per million. Currently it 

is about 370 parts per million. Since reserves of cleaner fuels (such as crude oil and 

natural gas) are limited while polluting fuels such as coal are abundant, our results 

suggest that coal should be used exclusively to get to the ceiling. This seems counter-

intuitive, but by getting to the ceiling as quickly as possible, we also get costless dilution 

of a larger part of the pollution stock. Once the target ceiling is achieved, we may use 

both resources jointly for a period until all gas reserves are exhausted. Finally only coal 

will be used until exhaustion and transition to the backstop.  

 

An important assumption in the model is that both resources are homogenous with 

respect to cost. In future work, it may be useful to generalize Herfindahl’s framework to 

examine how cost heterogeneity interacts with pollution heterogeneity. To keep the 

analysis tractable, we also use a very specific form of environmental regulation which is 

perfectly inelastic at some exogenously fixed level of pollution. However, more realistic 

damage functions may be used in later work to explore how the sequence of extraction 

may be sensitive to the specification of damages. For instance if damages were strictly 

positive at all levels of the pollution stock, we may not get these sharp transitions 

between resources. The present paper may thus be thought of as a first step towards 

increased understanding of how environmental regulation affects the use of nonrenewable 

resources. 
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Appendix A 

 

Maximizing Cumulative Extraction of Coal along a Hotelling Path implies that the Stock 

of Pollution is Always at the Ceiling 

 

For ),( 12
0 HH XXX ∈ , we have a common scarcity rent )p,p()X( 21

0 ∈λ .Consider the 

Hotelling path )e)X((d t00 ρλ , written in reduced form as )t(d , over the time interval 

),0[ 12∆ during which t00 e)X()t(p ρλ=  increases from )X( 00λ  to 2p . Then 

ρ
λ∆ )X(lnpln 00

2
12

−= . Let the extraction sequence be given by{ }21 x,x such 

that )t(dxx 21 =+ . We show that among paths starting from ZZ 0 =  and satisfying the 

constraint Z)t(Z ≤ , Z)(Z 12 =∆ , maximizing the extraction of coal given a stock of gas 

implies that the ceiling constraint is always binding. That is, we must have Z)t(Z = over 

the entire interval ),0[ 12∆ . Define )t(x̂1 and )t(x̂2 to be the extraction rates of gas and 

coal when the pollution stock is at the ceiling as defined in equation (13). The 

maximization problem can be written as:  

 

�
12

2 0
2x

dt)t(xMaximize
∆

 

 

subject to 

 

)t(Z)t(x))t(x)t(d()t(Z 2221 αθθ −+−=� , 

Z)(Z),,0[t,0)t(ZZ,ZZ 1212
0 =∈≥−= ∆∆ ,  

0)t(x,0)t(x)t(d 22 ≥≥− . 

 

The Lagrangian can be written as 

 

222222212 ][][])([ xxdZZZxxdxL γγναθθπ +−+−+−+−+= .  

 

The first order conditions are 
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2212
2

)(10
x
L γγθθπ −=−+⇔=

∂
∂

,        (A1)  

ναπππ +=⇔
∂
∂−= ��
Z
L

,        (A2) 

0]ZZ[,0 =−≥ νν ,        (A3) 

,0)xd(,0 222 =−≥ γγ and        (A4) 

0x,0 222
=≥ γγ .         (A5) 

The shadow price of pollutionπ must be non-positive. First we show that )t(x̂1 and 

),0(t),t(x̂ 122 ∆∈ satisfy the above first order conditions (A1-A5). Since 

))t(d,0()t(x̂2 ∈ , both )t(),t(
22 γγ equal zero. Then (A1) implies 0

1

12

<
−

−=
θθ

π . 

Substituting in (A2) and using the fact thatπ is a constant yields 

).,0(t,0 12
12

∆
θθ

αν ∈>
−

=  

We show below that if ZZ < over any interval ),0()t,t( 1221 ∆⊆ it leads to a 

contradiction. On this interval, let )t(ZZ)t(Z 21 == . From (A2) and (A3), we have  

 

)t,t(t,e)t()t( 21
)tt(

1
1 ∈= −αππ        (A6) 

 

There are five possible cases:  

(i). 0t∃ and 103 tt0:t <≤ and 1232 tt ∆≤<  such that ZtZ <)( for ]t,t[]t,t[t 3210 ∪∈ . 

Then by definition, )t(x̂)t(x 22 = hence
12

1
)t(

θθ
π

−
−=  for ]t,t[]t,t[t 3210 ∪∈ . By 

(A6), we have
12

)tt(

12
tt

1
e

1
)t(lim 12

2 θθθθ
π α

−
−<

−
−= −

↑ , which implies a discontinuity in 

the path of π at 122tt ∆<= , a contradiction. 
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(ii). 0t1 = and 12323 tt:t ∆≤<∃ with ]t,t[t,Z)t(Z 32∈= . We then have 

2t0

12
2 e

1
)t( απ

θθ
π =

−
−= where )0(π is written as 0π . Thus for )t,0(t 2∈ , 

0e1)(e)t(1))(t(1 )tt(
12

)tt(
212

22 >−=−+=−+ −−−− αα θθπθθπ . From (A1), (A4) and 

(A5), 0)t(2 >γ hence 22 x)t(d)t(x >= since ZZ 0 = . This implies )t,0(t,Z)t(Z 2∈> a 

contradiction. 

(iii). 100 tt0:t <≤∃ with 12210 t],t,t[t,Z)t(Z ∆=∈= . By (A6), 
12

)tt( 1e
)t(

θθ
π

α

−
−=

−

so 

0))(t(1 12 <−+ θθπ hence 0)t(
2

>γ so that by (A5), 0)t(
2

>γ . Since Z)t(Z 1 = and 

11 x)t(d)t(x <= because ZZ < on )t,t( 21 , we have Z)t(Zlim
12t <↑∆ which violates the 

terminal condition Z)(Z 12 =∆ . 

(iv). .t,0t 1221 ∆== This yields ),0(t,e)t( 12
t0 ∆ππ α ∈= . Suppose 

12

0 1
θθ

π
−

−> . Then 

0)(1 12
0 <−+ θθπ . Since π is non-positive, by (A6), there exists 0>ε such that 

0))((1 12 >−+ θθεπ . By (A1), 0)t(2 >γ and we get the same contradiction as in part 

(ii). Now consider
12

0 1
θθ

π
−

−≤ . Then 0))(t(1 12 <−+ θθπ so that 0)t(
2

>γ and 

),0(t,0)t(x 122 ∆∈= . But )t(x2 must be positive over some subinterval of ),0( 12∆ since 

we maximize its integral over ],0[ 12∆ . 

(v). Suppose Z)t(Z <  except at a finite number of discrete points 12n21 t..tt0 ∆<≤≤≤≤  

such that n,..,2,1i,Z)t(Z i == . At time nt the problem becomes the same initial problem 

but restricted to the interval ],t[ 12n ∆ The argument from case (iv) applies. 

 



 25 

Appendix B 

 

Characterization of Optimal Hotelling Paths Starting from the Ceiling in zone II 

 

Consider point C in Fig. B1. It is chosen so that the stock of coal at C is higher than at A. 

Let CC AA ′ be the translation of the AA� curve through C. One possible path from C is to 

extract both resources while keeping the stock of pollution at the ceiling, Z)t(Z = . This 

is a Hotelling path in which the common scarcity rent 0λ corresponds to the initial 

aggregate stock at C. This rent must equal the one starting from point D on the AA� curve, 

since the global aggregate stock is equal for both and resources are perfect substitutes and 

the paths are Hotelling. From C, extraction proceeds along the CC AA′  curve. At any point 

on this curve, extraction rates are exactly equal to the corresponding points on the AA� 

curve obtained by drawing a 45˚ line as shown for C. This program ends at CA which has 

the same aggregate stock HX 2 as in point A. The price of energy at CA is 2p , although the 

residual coal stock is lower than HX 2 . In general, any path from CA to the origin may now 

be followed provided the ceiling constraint is not violated and )e(dxx t0
21

ρλ=+ .  

 

[Fig. B1 here] 

 

Since the vector of endowments at C is under the AA� curve, there exist alternative 

extraction sequences that will not violate the ceiling. For example, we may use only 

natural gas at first. Since the aggregate endowment at C is strictly lower than H
1X (C lies 

left of the 45˚ line through B′), scarcity rent will be higher at C and the extraction rate of 

natural gas ))X((d)t(x 00
1 λ= lower than 1x . This path may cross the AA� curve and 

reach a point such as E. As the price of the resource increases, extraction of gas 

decreases, and the stock of pollution also decreases. At E the stock of pollution is lower 

than the ceiling and thus smaller than on the path CC AA′ . Since the aggregate resource 

stock is higher at E relative to A, the common shadow price is lower. Coal can be used at 

rates higher than 2x beginning from E to go back to the AA�curve at point F. The stock of 

pollution will rise from E towards point F. The lengths of these two periods can be so 
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chosen that the stock at F is exactly Z . The remaining path may follow the curve AA� 

until A followed by coal use until exhaustion. 

 

Yet another alternative may be to use gas until point G on the AA�curve where Z)t(Z < , 

then use coal until some location H where Z)t(Z = . From there extraction can follow 

the translation of the AA�curve through H. Alternative sequences are possible including 

single or joint use of the two resources such that Z is not exceeded. Once the vector of 

stocks achieves the boundary AB of zone I, the proportion of each resource that can be 

used in response to the common scarcity rent is no longer restrained. For instance, from 

location CA , only coal can be used until exhaustion, and the ceiling will not be violated. 

This is not possible for initial coal stocks larger than HX 2 such as from point C. 

 

An important feature of extraction from any location C in zone II is that the residual 

vector of stocks must stay either on or above the CC AA′ curve for some initial period. Paths 

such as CJK are not allowed since they imply extraction of the polluting resource at rates 

higher than 2x and violation of the ceiling constraint. 

 

Appendix C 

 

Determining Optimal Paths for Initial Endowments in Zones III, IV and V 

 

C1. Initial Endowments in zone III  

On the line BA ′′ (see Fig.C1) aggregate stocks of the two resources must sum to H
1X . The 

common value of the initial scarcity rent 0λ equals 1p . Consider point D in zone III, with 

stocks )D,D(D 21= and point )D,D(D 21′=′ on line BA ′′ with 11 DD ′> . Then starting 

from D gas is consumed first at the maximal rate 1x over a time interval
1

11
1 x

DD ′−=∆  

until D′ is reached. The price of energy at D′ is 1p . The initial value of the common 

scarcity rent is 1ep1
0 ∆ρλ −= . In this first period, )t(

1
1ep)t( −−= ∆ρλ . Since 

11 )t()t(p)t(p θµλ −== , we have 
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∆

∆
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∆ρ
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All points on any line parallel to BA ′′ must have the same scarcity rent as well as the same 

length of the first period when only gas is extracted. The further right the location of this 

line, the lower the scarcity rent, the longer is the period of gas extraction and higher in 

absolute terms the starting value of )t(µ . 

 

[Fig. C1 here] 

 

C2. Initial Endowments in zone V 

Consider an initial endowment F (Fig.2) detailed in Fig.C2, with endowments )F,0( 2  

such that H
22 XF > . Coal is used at the maximum rate 2x until the stock decreases to H

2X . 

The energy price is constant at 2p . The length of this phase is given by
2

H
22

2 x
XF −=∆ . 

The initial scarcity rent of coal is 2ep2
0
2

∆ρλ −= . The larger the value of 2F , the longer is the 

duration of this phase and smaller the scarcity rent of coal. The next phase is pure 

Hotelling of duration
ρ

∆ 2rH
2

plncln −= . For a phase with joint use to occur at the 

beginning, initial resource endowments must be higher than at F.  

 

[Fig. C2 here] 

 

Suppose 12∆ is the duration of this first phase starting from G. Then the additional stocks 

required for the segment G to F are given by 2,1i,dt)t(x
12

0
i =�

∆
where )t(xi are given by 

(13). The maximum length of this phase is 
ρ

12 plnpln −
 because the initial price of 

energy is 1p  and the final price 2p . Consider point H with a higher stock of coal. Then 

starting from H, the duration of the intermediate phase 2∆ will be longer. Moreover, 

consider point K with the same stock of gas as in G. The duration of the phase from K to 



 28 

H is exactly the same as from G to F. The consumption of the two resources is exactly 

equal and the stock of pollution is at the ceiling. However, the resource prices and 

scarcity rents are not equal. The maximum length of this phase is 
ρ

12 plnpln −
 which 

corresponds to starting stocks at F ′and G′ . Thus the curve HH ′ is a vertical translation of 

FF ′  and of AA ′ which of course has no intermediate phase 2∆ .  

 

During the period when resources are jointly extracted, their marginal cost must be equal, 

i.e., 2211 )t()t()t()t( θµλθµλ −=− . Define the terminal time for this phase as 12∆ . Then 

)t(
2

12ep)t(p −−= ∆ρ  . As in (13), we can write 
12

2
)t(

22
1

]x)ep(d[
x

12

θθ
θ ∆ρ

−
−=

−−

 and 

12

)t(
211

2

)]ep(dx[
x

12

θθ
θ ∆ρ

−
−=

−−

. Thus 0)t(xlim,0
dt
dx

1t
1

12
=< ↑∆ and 

22t
2 x)t(xlim,0

dt
dx

12
=> ↑∆ . Note that extraction depends upon the time variable 

t12 −∆ and not on calendar time. Equating the marginal costs of gas and coal at time 12∆  

gives 212122112121 )()()()( θ∆µ∆λθ∆µ∆λ −=− . Since the shadow prices and µ− all grow 

at the rate of discount, we have )( 12
00

2
0
1 θθµλλ −−=− . Substituting the initial value of 

the scarcity rent of coal given by )(
2

0
2

212ep ∆∆ρλ +−= , we get 

2

2
12

0 )e1(ep
e)(

212
12

θ
∆µµ

∆ρ∆ρ
∆ρ

−−
− −−== . For points located on the AA ′ curve where 

02 =∆ , we have 00 =µ so that 0
2

0
1 λλ = . Both resources are perfect substitutes and 

regulation is non-binding. 

 

Finally we show that coal is used exclusively beyond 12∆ , i.e., the marginal cost of gas is 

higher than 2p in the interval ),( 21212 ∆∆∆ + . In this period, we have 

=−−=−− −
21

)t(
121211 p)t(e)(p)t()t( 12 θµ∆λθµλ ∆ρ  

=−−−− −−
21

)t(
12

)t(
1212122 pe)(e)])(()([ 1212 θ∆µθθ∆µ∆λ ∆ρ∆ρ  

=−− −
2

)t(
212122 pe])()([ 12∆ρθ∆µ∆λ 0)1e(ppep )t(

22
)t(

2
1212 >−=− −− ∆ρ∆ρ . In the final  

interval ),( H
2212212 ∆∆∆∆∆ +++ regulation is no longer active hence 0)t( =µ . The 
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marginal cost of the resource is its scarcity rent. Since )t()t( 21 λλ > , coal is cheaper than 

natural gas. 

 

C3. Initial Endowments in zone IV 

Consider the vertical line through 0
1X (points such as H,F,A ′′′ in Fig.C2) where the 

resource price is 1p and the phase of joint use at the ceiling is of maximum duration. And 

points with a higher stock of gas, such as )F,E(E 21 ′= . The path must be dynamically 

consistent and we already know the extraction sequence from location F ′ . We show that 

only gas is consumed at its maximum rate 1x from E to F ′ . The duration of this phase is 

given by
1

11
1 x

FE ′−=∆ . We only need to show that the marginal cost of coal is higher than 

that of gas which equals 1p  in this period. The proof mimics the one above but on the 

interval ),0[ 1∆ . We have =−−=−− −
12

)t(
12122 p)t(e)(p)t()t( 1 θµ∆λθµλ ∆ρ  

=−−−+ −−
12

)t(
1

)t(
12111 pe)(e)])(()([ 11 θ∆µθθ∆µ∆λ ∆ρ∆ρ  

=−− −
1

)t(
1111 pe])()([ 1∆ρθ∆µ∆λ 0)1e(ppep )t(

11
)t(

1
121 >−=− −− ∆ρ∆ρ . 
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Fig.4. Prices when both resources are abundant 
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