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Abstract

This Web Appendix presents complete version of some of the proofs of the paper

plus proofs to some of the claims made in the paper.

Section A of this Appendix analyses the problem of non-existence of equilibrium

with passive beliefs when contracts are interim observable.

Section B presents the complete proof of proposition 4 (Equilibrium with wary

beliefs in the price competition setting with interim unobservable contracts).

Finally, section C proposes the complete analysis of the interim observability case

and presents the proof of proposition 5 of the paper.
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A Interim Observability with Passive Beliefs

We show in this section that in the linear demand case there exists no passive beliefs equi-

librium when contracts are interim observable and the substitutability parameter is large³
β > bβ ' 0.806´ .
A.1 Quantity competition

At the last stage of the game, each retailer sets the quantity it buys and resells, having

observed the contract received (and accepted) by its competitor. Given the linear demand,

the retail equilibrium is unique and “symmetric”; quantities and retail profits are given by:

qi = qC (wi, wj) =
2− β − 2wi + βwj

4− β2 , (A1)

πRi = πC (wi, wj) =

µ
2− β − 2wi + βwj

4− β2
¶2
. (A2)

When receiving an offer (fi, wi) , Ri anticipates that Rj received the equilibrium offer and

therefore faces a marginal cost equal to w∗j . Ri thus accepts the offer if fi ≤ πC
¡
wi, w

∗
j

¢
. M

chooses w∗1 and w
∗
2 so as to maximize its profit given the acceptable franchise fees:

(w∗1, w
∗
2) = argmax

(w1,w2)

πP (w1, w2) ,

where

πP (w1, w2) = (w1 − c) qC (w1, w2) + (w2 − c) qC (w2, w1) + πC (w1, w∗2) + πC (w2, w∗1) .

The first-order conditions lead to a unique candidate equilibrium:

w∗1 = w
∗
2 =

−β2 + ¡4− β2¢ c
2
¡
2− β2¢ ,

while the second-order derivatives are given by:

∂211πP =
−4 ¡2− β2¢¡
4− β2¢2 and ∂212πP =

2β

4− β2 .

Second-order conditions (∂211πP ≤ 0 and |∂211πP | ≥ ∂212πP ) are therefore satisfied only if β ≤ bβ ,
where bβ ' 0.806 is the unique solution between 0 and 1 of the equation 4− 4β − 2β2 + β3 = 0 .
For β > bβ , the manufacturer’s profit function is not concave and there thus exists no equi-
librium with passive beliefs.
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A.2 Price competition

The proof is similar for the case of price competition. Equilibrium retail prices and profits

are given by:

pi = pB (wi, wj) =
(1− β) (2 + β) + 2wi + βwj

4− β2 , (A3)

πRi = πB (wi, wj) =

¡
(1− β) (2 + β)− ¡2− β2¢wi + βwj¢2¡

4− β2¢2 ¡1− β2¢ . (A4)

The manufacturer’s profit πP thus becomes, as a function of wholesale prices:

π (w1, w2) = (w1 − c)D
¡
pB (w1, w2) , p

B (w2, w1)
¢
+ πB (w1, w

∗
2)

+ (w2 − c)D
¡
pB (w2, w1) , p

B (w1, w2)
¢
+ πB (w2, w

∗
1) .

The candidate equilibrium is:

w∗1 = w
∗
2 =

β2 +
¡
4− β2¢ c
4

,

and second-order derivatives are:

∂211πP =
−4 ¡2− β2¢¡

4− β2¢2 ¡1− β2¢ and ∂212πP = 2β¡
4− β2¢ ¡1− β2¢ .

Second-order conditions are therefore again satisfied if and only if β ≤ bβ.
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B Price Competition and Interim Unobservability

We study here price competition with interim unobservability, and focus on beliefs Wj (wi)

that depend only on the wholesale price (not on the franchise fee). Ri’s best reply to the

Rj ’s anticipated retail price Pj(Wj(wi)), for i 6= j = 1, 2, is then given by:

Pi(wi) = argmax
pi

(pi − wi)D(pi, Pj(Wj(wi))).

The manufacturer chooses the equilibrium wholesale prices, w∗1 and w
∗
2, so as to maximise

its profit

πP (w1, w2) = (w1 − c)D (P1 (w1) , P2 (w2)) + (P1 (w1)− w1)D (P1 (w1) , P1 (W1 (w1)))

+ (w2 − c)D (P2 (w2) , P1 (w1)) + (P2 (w2)− w2)D (P2 (w2) , P2 (W2 (w2))) ;

where the wary beliefs satisfy ∂1πP (W1 (w) , w) = 0 and ∂2πP (w,W2 (w)) = 0 .

B.1 Any symmetric equilibrium retail price is strictly lower than

the monopoly price

Focusing on symmetric equilibria, the manufacturer’s program can be rewritten as follows:

(w∗, w∗) = argmax
(w1,w2)

πP (w1, w2) ,

where

πP (w1, w2) = πM (P (w1) , P (w2)) + (P (w1)− w1) (D (P (w1) , P (W (w1)))−D (P (w1) , P (w2)))
+ (P (w2)− w2) (D (P (w2) , P (W (w2)))−D (P (w2) , P (w1)))

and

• πM (p1, p2) = (p1 − c)D (p1, p2) + (p2 − c)D (p1, p2) ;

• the retailers’ pricing strategy is

P (w) = argmax
p

(p− w)D (p, P (W (w))) ; (P )

• and the wary beliefs W (w) are such that

∂1πP (W (w) , w) = 0. (W )
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B.1.1 The equilibrium retail price is lower than the monopoly price
¡
p∗ ≤ pM¢

Let us first show that any symmetric equilibrium retail price must be lower than the

monopoly price, characterized by ∂1π
M
¡
pM , pM

¢
= 0.

• First-order condition of the manufacturer’s maximization program:

The first-order condition of the manufacturer’s program is ∂1πP (w
∗, w∗) = 0 , that is,

with p∗ = P (w∗) ,

£
∂1π

M (p∗, p∗) + (p∗ − w∗) ∂2D (p∗, p∗) (W 0 (w∗)− 1)¤P 0 (w∗) = 0.
• Step 1: P 0 (w∗) 6= 0

The first-order condition of the retailers’ program writes as:

(P (w)− w) ∂1D (P (w) , P (W (w))) +D (P (w) , P (W (w))) = 0. (B1)

Differentiating (B1) at w = w∗ yields:1

(P 0 (w∗)− 1) ∂1D + (p∗ − w∗) (∂211D + ∂212D.W 0 (w∗))P 0 (w∗)

(∂1D + ∂2D.W
0 (w∗))P 0 (w∗) = 0,

or

£
2∂1D + ∂2D.W

0 (w∗) + (p∗ − w∗) ¡∂211D + ∂212D.W 0 (w∗)
¢¤
P 0 (w∗) = ∂1D. (B2)

∂1D < 0 then implies P
0 (w∗) 6= 0.

• Step 2: p∗ ≤ pM

Since P 0 (w∗) 6= 0, the first-order condition of the manufacturer’s program simplifies to

∂1π
M (p∗, p∗) = − (p∗ − w∗) ∂2D (p∗, p∗) (W 0 (w∗)− 1) . (B3)

Differentiating (W ) with respect to w yields:

∂211πP (W (w) , w)W 0 (w) + ∂212πP (W (w) , w) = 0, (B4)

which, evaluated at w = w∗, leads to:

∂211πP (w
∗, w∗) .W 0 (w∗) + ∂212πP (w

∗, w∗) = 0⇔W 0 (w∗) = −∂
2
12πP (w

∗, w∗)
∂211πP (w

∗, w∗)
.

1The derivatives of the demand function D are all evaluated at (p∗, p∗) .
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The second-order conditions of the manufacturer’s program thus requires |W 0 (w∗) ≤ 1| .
Evaluating (B1) at w = w∗ yields

− (p∗ − w∗) ∂1D (p∗, p∗) = D (p∗, p∗) ,

and thus p∗ > w∗. Finally, since ∂2D (p∗, p∗) > 0:

• either W 0 (w∗) < 1, in which case (B3) implies ∂1πM (p∗, p∗) < 0; the concavity of the

function πM then ensures that p∗ < pM ;

• or W 0 (w∗) = 1, in which case p∗ = pM .

B.1.2 The monopoly price is not an equilibrium price (⇔W 0 (w∗) 6= 1) .

In order to sustain the monopoly price as an equilibrium price, the equilibrium wholesale

price
¡
w∗ = wM

¢
must satisfy:

D
¡
pM , pM

¢
+
¡
pM − wM¢ ∂1D ¡pM , pM¢ = 0 and W 0 ¡wM¢ = 1.

The second condition implies that ∂211πP
¡
wM , wM

¢
+ ∂212πP (w

∗, w∗) = 0, and we thus need

to look at third-order effects. We now show that the gain from a symmetric deviation¡
wM + ε, wM + ε

¢
is strictly positive for ε > 0 (small enough), thereby ruling out wM as a

possible equilibrium wholesale price. The gain from such a deviation is:

δ (ε) = πP (w
M + ε, wM + ε)− πP (wM , wM).

If wM is a symmetric equilibrium wholesale price, since ∂211πP
¡
wM , wM

¢
+∂212πP

¡
wM , wM

¢
=

0 and δ0 (0) = 0, we also have δ00 (0) = 0. Using the symmetry of the profit function πP , the

third-order derivative is given by:

δ000 (0) = 2∂3111πP (w
M , wM) + 6∂3112πP (w

M , wM). (B5)

Differentiating (B4) with respect to w at w = wM yields, using W 0 ¡wM¢ = 1 and the

symmetry of the profit function πP :

∂3111πP
¡
wM , wM

¢
+ 3∂3112πP

¡
wM , wM

¢
+ ∂211πP

¡
wM , wM

¢
W 00 ¡wM¢ = 0. (B6)

Using (B6) , we can rewrite (B5) as:

δ000 (0) = −2∂211πP
¡
wM , wM

¢
W 00 ¡wM¢ .
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We thus need to show that W 00 ¡wM¢ > 0.
The beliefs W (w) are such that ∂1πP (W1 (w) , w) = 0, that is:

P 0 (W (w))
£
∂1π

M (P (W (w)) , P (w)) + (P (w)− w) ∂1D (P (w) , P (W (w)))

+ (P (W (w))−W (w)) (∂1D (P (W (w)) , P (W (W (w)))− ∂1D (P (W (w)) , P (w)))]

+ (P 0 (W (w))− 1) [D (P (W (w)) , P (w))−D (P (W (w)) , P (W (W (w)))]

+P 0 (W (W (w)))W 0 (W (w)) (P (W (w))− w) ∂2D (P (W (w)) , P (W (W (w))) = 0.

Differentiating this equation with respect to w at w = wM (using ∂1π
M
¡
pM , pM

¢
= 0 and

W 0 ¡wM¢ = 1) leads to:
W 00 ¡wM¢ ¡pM − wM¢ ∂2D ¡pM , pM¢ = −P 0 ¡wM¢ ¡∂211πM ¡wM , wM¢+ ∂212πM ¡wM , wM¢¢ .
Thus W 00 ¡wM¢ has the same sign as P 0 ¡wM¢. Evaluating (B2) at w = wM leads to:2

P 0
¡
wM

¢ ¡
2∂1D + ∂2D +

¡
pM − wM¢ ¡∂211D + ∂212D¢¢ = ∂1D.

The strict concavity of the profit function
¡
p1 − wM

¢
D (p1, p2) +

¡
p2 − wM

¢
D (p2, p1) en-

sures that

∂1D + ∂2D +
¡
pM − wM¢ ¡∂211D + ∂212D¢ < 0,

which in turns establishes P 0
¡
wM

¢
> 0 and concludes the proof.

B.2 Existence (and uniqueness) with polynomial beliefs

We now restrict attention to the linear demand case:

D (pi, pj) =
1− β − pi + βpj

1− β2 .

For each retailer’s maximization program, the first-order condition is then necessary and

sufficient and writes as:

2Pi(wi)− βPj(Wj(wi)) = 1− β + wi. (Pi)

Using (Pi) we thus have:

D(Pi(wi), Pj(Wj(wi))) =
Pi(wi)− wi
1− β2 .

2The derivatives of the demand function being evaluated at
¡
pM , pM

¢
.

7



Ri’s beliefs are such that ∂2πP (wi,Wj (wi)) = 0, that is:

((1− β)c+ βwi −Wj (wi))P
0
j (Wj (wi)) + 1− β − Pj (Wj (wi)) + βPi (wi)

+2
¡
P 0j (Wj (wi))− 1

¢
(Pj (Wj (wi))−Wj (wi)) = 0.

(Wj)

Let us now consider the polynomial solutions to the system consisting of equations

((Wi), (Pi))i=1,2 .We denote by ni and mi the degrees of the polynomialsWi (wj) and Pi (wi),

and by ωi,k and pi,k the coefficients of their terms of degree k:

Wi(w) =

niX
k=0

ωi,kw
k and Pi(w) =

miX
k=0

πi,kw
k.

• Step 1: any polynomial solution is affine (0 ≤ m1,m2, n1, n2 ≤ 1)

Consider (Pi):

2Pi(wi)| {z }
deg=mi

− βPj(Wj(wi))| {z }
deg=mjnj

= 1− β + wi| {z }
deg=1

.

Three cases can arise:

1. mi < mjnj. This implies mi = 0 and mj = nj = 1. Then (Wi) reduces to

1− β − πi,0 + βPj (wj)− 2(πi,0 −Wi(wj)) = 0,

and thus ni = 1.

2. mi > mjnj. This implies mi = 1 and mjnj = 0. Thus, either mj = 0 or mj > 0 and

nj = 0.

(a) The case mj = 0 is similar to case 1 (reverting the roles of i and j).

(b) If mj > 0 then nj = 0 and (Pj) reduces to:

2Pj(w) = βPi(Wi(w)) + 1− β + w
= β (πi,0 + πi,1Wi(w)) + 1− β + w.

and therefore mj = max (ni, 1) . If ni ≤ 1, then no degree exceeds 1. The only

remaining case is mj = nj ≥ 2. Since mi = 1 and nj = 0, equation (Pi) leads to

Pi(w) =
1

2
(1− β + βPj(ωj,0) + w)⇒ P 0i (w) =

1

2
.

Differentiating (Wi) and (Pj) twice then yields respectively

βP 00j (w) =
1

2
W 00
i (w) and βW

00
i (w) = 4P

00
j (w),

implying 2β2P 00j (w) = W
00
i (w) = 4P

00
j (w) (6= 0 since ni = mj ≥ 2), a contradiction.

8



3. mi = mjnj ≥ 1. In this case, either mj = mini ≥ 1 or all degrees are equal or lower
than 1 (simply inverting the roles played by i and j in cases 1 and 2).

But mi = mjnj ≥ 1 and mj = mini ≥ 1 imply ni = nj = 1 and mj = mi = m ≥ 1. The
only interesting case is when m ≥ 2. Then (Wj) yields:

((1− β)c+ βwi −Wj (wi))P
0
j (Wj (wi)) + 1− β − Pj (Wj (wi)) + βPi (wi)| {z }

deg≤m

+2
¡
P 0j (Wj (wi))− 1

¢
(Pj (Wj (wi))−Wj (wi))| {z }

deg=2m−1≥3

= 0,

which contradicts m > 1.

This concludes the proof and shows that polynomial solutions must be affine.

• Step 2: any equilibrium with affine wary beliefs satisfies π1,1 = π2,1 and

ω1,1 = ω2,1 .

With affine beliefs, (Pi) reduces to

2 (πi,0 + πi,1w)− β (πj,0 + πj,1 (ωj,0 + ωj,1w)) = 1− β + w,

and since it holds for any w, it implies

2πi,0 − βπj,0 = 1− β + βπj,1ωj,0, (B7)

2πi,1 − βπj,1ωj,1 = 1. (B8)

(B8i) and (B8j) yield

πi,1 =
2 + βωj,1

4− β2ω1,1ω2,1
,

and thus:

¡
4− β2ω1,1ω2,1

¢
(πi,1 − πj,1) = β (ωj,1 − ωi,1) . (B9)

Similarly, (Wj) implies:

2
¡
π2j,1 − 3πj,1 + 1

¢
ωj,0 = −1 + β − (1− β)cπj,1 + (3− 2πj,1)πj,0 − βπi,0, (B10)

2
¡
π2j,1 − 3πj,1 + 1

¢
ωj,1 = −β (πi,1 + πj,1) . (B11)

Using (B8) to replace πj,1ωj,1 in (B11) yields:
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6 + β2 (πi,1 + πj,1) + 4πi,1πj,1 + 2βωj,1 = 12πi,1 − 2πj,1. (B12)

Substracting (B12j) to (B12i), we have:

5(πi,1 − πj,1) = β (ωj,1 − ωi,1) , (B13)

which, combined with (B9), imposes:¡
1 + β2ω1,1ω2,1

¢
(πi,1 − πj,1) = 0. (B14)

But the second-order conditions of the manufacturer’s program impose 0 ≤ ω1,1ω2,1 ≤ 1.3

Therefore, (B14) imposes π1,1 = π2,1 = π1 and thus ω1,1 = ω2,1 = ω1.

Given the symmetry, (B8) and (B11) simplify to

βω1π1 = 2π1 − 1, (B15)¡
π21 − 3π1 + 1

¢
ω1 = −βπ1. (B16)

• Step 3: there exists a unique pair (π∗1,ω∗1) satisfying (B15) and (B16) as well
as second-order conditions.

Let us use (B15) to eliminate ω1 in (B16):¡
π21 − 3π1 + 1

¢
(2π1 − 1) = −β2π21 (B17)

⇔ 2π31 −
¡
7− β2¢ π21 + 5π1 − 1 = 0. (B18)

The left-hand side is a polynomial ϕ of degree 3 such that:

ϕ(0) = −1 < 0 < ϕ
µ
1

2

¶
=
β2

4
and ϕ(1) = −(1− β2) < 0 < ϕ (+∞) .

Therefore, ϕ has three roots: one in
¤
0, 1

2

£
, one in

¤
1
2
, 1
£
and one in ]1,+∞[.

Using the retailers’s responses, the manufacturer’s profit can be expressed as

πP (w1, w2) =

·
(w1 − c)D(P1(w1), P2(w2)) + (P1(w1)− w1)

2

1− β2
+(w2 − c)D(P2(w2), P1(w1)) + (P2(w2)− w2)

2

1− β2
¸
.

(B19)

3Beliefs satisfy ∂1π
P (W1(w), w) = 0 and ∂2π

P (w,W2(w)) = 0. Therefore, ωi,1 = −∂212πP /∂2iiπP and the
second-order conditions of the manufacturer’s program impose ω1,1ω2,1 =

¡
∂212π

P
¢2
/∂211π

P∂222π
P > 0.
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Therefore:

∂1πP (w1, w2) =
π1

1− β2 (−(w1 − c) + β(w2 − c)) +D(P1(w1), P2(w2))

+
2

1− β2 (π1 − 1)(P1(w1)− w1),

and

∂211πP =
2

1− β2
¡
π21 − 3π1 + 1

¢
,

∂212πP =
2

1− β2βπ1.

A first necessary condition is ∂211πP ≤ 0, that is π21 − 3π1 + 1 ≤ 0. Together with (B17), it
implies

2π1 − 1 > 0⇔ π1 >
1

2
. (B20)

A second necessary condition is (∂211πP )
2 ≥ (∂212πP )2, which is equivalent to¡

π21 − 3π1 + 1
¢2 − β2π21 ≥ 0

⇔ − ¡π21 − 3π1 + 1¢ (2π1 − 1)− β2π21| {z }
=0 from (B17)

− π1 (1− π1)
¡
π21 − 3π1 + 1

¢ ≥ 0
⇔ π1 (1− π1) ≥ 0⇔ 0 ≤ π1 ≤ 1. (B21)

Together, (B20) and (B21) impose that the solution of (B18) is the unique root of ϕ in¤
1
2
, 1
£
. (B15) then uniquely defines ω∗1:

ω∗1 =
2π∗1 − 1
βπ∗1

> 0.

• Step 4: the solution of the overall program, if it exists, is symmetric.

Substracting (B7j) from (B7i) and (B10j) from (B10i) yields respectively:

(2 + β) (π1,0 − π2,0) = βπ1 (ω1,0 − ω2,0) ,
2
¡
π21 − 3π1 + 1

¢
(ω1,0 − ω2,0) = (3 + β − 2π1) (π1,0 − π2,0) ,

thus implying

2 (2 + β)
¡
π21 − 3π1 + 1

¢
(π1,0 − π2,0) = βπ1(3− β − 2π1) (π1,0 − π2,0) .

But then π21 − 3π1 + 1 < 0 and 1
2
< π1 < 1 imply π1,0 = π2,0 and thus ω1,0 = ω2,0.
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• Step 5: there exists a unique solution.

Given the symmetry, (B7)and (B10) reduce to:

(2− β)π0 − βπ1ω0 = 1− β, (B22)

(3− β − 2π1)π0 − 2
¡
π21 − 3π1 + 1

¢
ω0 = 1− β + (1− β)cπ1. (B23)

The determinant is

−2(2− β) ¡π21 − 3π1 + 1¢+ βπ1(3− β − 2π1) > 0.
It is positive since (π21 − 3π1 + 1) < 0 and 1

2
< π1 < 1. Therefore, (B22) and (B23) uniquely

define π∗0 and ω
∗
0 as functions of π1. The equilibrium retail price is then

p∗ =
1− β + w∗
2− β ,

where

w∗ = W (w∗) = ω∗0 (π
∗
1) + ω

∗
1 (π

∗
1)w

∗ =
ω∗0 (π

∗
1)

1− ω∗1 (π∗1)
.
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C Interim Observability with Wary Beliefs4

We assume in this section that contracts are interim observable: contract offers are ini-

tially secret (acceptance decisions are therefore based on beliefs) but retailers observe the

accepted contracts before competing (in prices or in quantities) on the final market. The

equilibrium of the retail competition subgame is therefore the solution of a standard Cournot¡
qi = q

C (wi, wj)
¢
or Bertrand-fashion

¡
pi = p

B (wi, wj)
¢
competition game for which the

firms face costs equal to wi and wj. In what follows, we denote by q
R (wi, wj) , p

R(wi, wj)

and πR(wi, wj), the retail quantity, price and profit emerging from the retail competition

subgame.

• In the case of quantity competition:

qR (wi, wj) = q
C (wi, wj) and p

R (wi, wj) = P
¡
qR (wi, wj) , q

R (wj, wi)
¢
.

• In the case of price competition:

pR (wi, wj) = p
B (wi, wj) and q

R (wi, wj) = D
¡
pB (wi, wj) , p

B (wj , wi)
¢
.

• In both cases the retail profit is given by:

πR(wi, wj) =
¡
pR (wi, wj)− wi

¢
qR (wi, wj) .

Let us denote by πI (w1, w2) , the industry profit in any of these two cases, that is:

πI (w1, w2) =
¡
pR (w1, w2)− c

¢
qR (w1, w2) +

¡
pR (w2, w1)− w2

¢
qR (w1, w2) .

In what follows, we make the following assumptions:

(H1) The demand function is such that, both in the Bertrand-like and the Cournot-like

frameworks, qR (wi, wj) and π
R(wi, wj) are strictly decreasing in wi and strictly in-

creasing in wj. Moreover, the direct effect dominates, that is, q
R (w,w) and πR(w,w)

are strictly decreasing in w.

(H2) The industry profit function πI (w1, w2) is strictly concave in (w1, w2) and reaches its

maximum at a unique symmetric point
¡
wM , wM

¢
.

4This section presents the complete analysis of the interim observability case briefly presented in the

paper (including the proof of proposition 5).
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When being offered a contract ti = (fi, wi), Ri again expectsM to offer and Rj to accept

a tariff Tj (ti) given by:

Tj (ti) = argmax
(wj ,fj)

(wi − c)qR (wi, wj) + fi + (wj − c)qR (wj , wi) + fj

s.t. : fj ≤ πR (wj ,Wi (tj)) .

Clearly, the solution of this program does not depend on fi and, since the objective function

is strictly increasing in fj, the constraint must be binding. The rival’s anticipated contract

is thus given by:

Wj (wi) = argmax
wj

(wi − c)qR (wi, wj) + (wj − c)qR (wj , wi) + πR (wj ,Wi (wj)) (C1)

and

Fj (wi) = π
R (Wj (wi) ,Wi (Wj (wi))) .

In contrast with the Cournot-like case with interim unobservability, the objective function

in (C1) is no longer separable in wi and wj . This implies that the beliefs will now depend

on wi. Wary beliefs thus differ from passive beliefs.

M chooses wholesale prices w∗1 and w
∗
2 that maximize its profit πP (w1, w2) given the

acceptable franchise fees, with:

πP (w1, w2) = (w1 − c)qR (w1, w2) + πR (w1,W2 (w1))

+(w2 − c)qR (w2, w1) + πR (w2,W1 (w2)) .

Note that beliefs satisfy:

∂1πP [W1(w), w] = 0 and ∂2πP [w,W2(w)] = 0 (C2)

and that equilibrium wholesale prices (w∗1, w
∗
2) satisfy w

∗
1 =W1 (w

∗
2) and w

∗
2 =W2 (w

∗
1).

The following proposition provides some characterization of wary beliefs equilibria.

Proposition 5 When contracts are interim observable, wary beliefs no longer coincide with

passive beliefs. If retailers have wary beliefs, then:

(i) in any symmetric equilibrium, the equilibrium retail price is strictly lower than the

monopoly price and the manufacturer therefore does not obtain the monopoly profit;

and

(ii) if demand is linear, there exists a unique equilibrium with polynomial beliefs and this

equilibrium is symmetric.
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C.1 The equilibrium price is strictly lower than the monopoly

price

In the symmetric case, the manufacturer’s profit function rewrites as:

πP (w1, w2) = πI (w1, w2) + πR (w1,W (w1))− πR (w1, w2)
+ πR (w2,W (w2))− πR (w2, w1) ;

with the wary beliefs W (w) being given by:

∂1πP (W (w), w) = 0. (C3)

• Step 1: any symmetric equilibrium price is lower than the monopoly price

Focusing on symmetric equilibria, the first-order condition of the manufacturer’s maxi-

mization program is:

∂1πI (w
∗, w∗) + ∂1πR (w∗, w∗) + ∂2πR (w∗, w∗)W 0 (w∗)

−∂1πR (w∗, w∗)− ∂2πR (w∗, w∗) = 0,

which simplifies into:

∂1πI (w
∗, w∗) = −∂2πR (w∗, w∗) (W 0 (w∗)− 1) . (C4)

Differentiating (C3) yields:

∂211πP [W (w), w]W
0(w) + ∂212πP [W (w), w] = 0. (C5)

Evaluating (C5) at w = w∗ leads to

W 0 (w∗) = −∂
2
12πP (w

∗, w∗)
∂211πP (w

∗, w∗)
.

The second-order conditions of the manufacturer’s maximisation program thus imply |W 0 (w∗)| ≤ 1 .
Since ∂2π

R (w∗, w∗) > 0, we have ∂1πI (w∗, w∗) ≤ 0 . Assumption (H2) then implies that
w∗ ≤ wM and, under assumption (H1) , this leads to:

qR (w∗, w∗) ≥ qM ¡wM , wM¢⇔ pR (w∗, w∗) ≤ pM .

15



• Step 2: any symmetric equilibrium price is strictly lower than the monopoly

price

The monopoly outcome can be sustained at an equilibrium with wary beliefs if and only

if w∗ = wM , that is, for W 0 ¡wM¢ = 1 . To show that this cannot be an equilibrium, consider
the symmetric deviations

¡
wM + ε, wM + ε

¢
, and check that the gain from such deviations

is strictly positive for ε > 0 small enough This gain is:

δ (ε) = πP (w
M + ε, wM + ε)− πP (wM , wM).

If wM is a symmetric equilibrium wholesale price, since:

δ0 (0) = 0 and ∂211πP
¡
wM , wM

¢
+ ∂212πP

¡
wM , wM

¢
= 0,

we also have δ00 (0) = 0. We thus need to compute the third-order derivative, which using

the symmetry of the profit function πP is given by:

δ000 (0) = 2∂3111πP (w
M , wM) + 6∂3112πP (w

M , wM). (C6)

Differentiating (C5) with respect to w at w = wM , usingW 0 ¡wM¢ = 1 and the symmetry
of the profit function πP leads to:

∂3111πP (w
M , wM) + 3∂3112πP (w

M , wM) + 2∂211πP
¡
wM , wM

¢
W 00 ¡wM¢ = 0 (C7)

Using (C7) , (C6) rewrites as:

δ000 (0) = −2∂211πP
¡
wM , wM

¢
W 00 ¡wM¢ .

We thus need to show that W 00 ¡wM¢ > 0.
The wary beliefs W (w) are given by ∂1πP [W (w), w] = 0, or:

∂1πI (W (w) , w) + ∂1π
R (W (w) ,W (W (w))) + ∂2π

R (W (w) ,W (W (w)))W 0 (W (w))

−∂1πR (w,W (w))− ∂1πR (w,W (w)) = 0.

(C8)

Differentiating (C8) with respect to w at w∗ = wM , and using W 0 ¡wM¢ = 1 leads to:5
∂211πI + ∂

2
12πI + ∂

2
11π

R + ∂212π
R + ∂221π

R + ∂222π
R

+∂2π
R.W 00 ¡wM¢− ∂211πR − ∂212πR − ∂211πR − ∂212πR = 0,

5All the derivatives of the profit functions πI and πR are evaluated at
¡
wM , wM

¢
.
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which, using the symmetry of the profit function πR, simplifies into:

∂2π
R
¡
wM , wM

¢
W 00 ¡wM¢ = − ¡∂211πI ¡wM , wM¢+ ∂212πI ¡wM , wM¢¢ .

Assumptions (H1) and (H2) then ensure that W
00 ¡wM¢ > 0, which concludes the proof of

section (i) of proposition 5.

C.2 Existence under Quantity Competition

We now prove the existence and the uniqueness of an equilibrium with polynomial wary

beliefs in the Cournot-like framework. When being offered a wholesale price wi, Ri expects

M to offer and Rj to accept a wholesale price Wj (wi) and a franchise fee Fj (wi). Ri thus

accept the contract (fi, wi) if fi ≤ πR (wi,Wj (wi)) . Wary beliefs must satisfy:

Fj(wi) = πR (wj,Wi (wj))
¯̄
wj=Wj(wi)

(C9)

and

Wj(wi) = argmax
wj

£
(wi − c)qR (wi, wj) + (wj − c)qR (wj, wi) + πR (wj,Wi (wj))

¤
,

where:

qR (wi, wj) = qC (wi, wj) =
2− β − 2wi + βwj

4− β2 ,

and πR (wi, wj) = πC (wi, wj) =

µ
2− β − 2wi + βwj

4− β2
¶2
.

The first-order condition characterizing the beliefs is thus:

− (2− β) ¡β2 − ¡4− β2¢ c¢+ 2β ¡4− β2¢wi − 4βWi (Wj (wi))

−4 ¡2− β2¢Wj (wi) + 2β (2− β − 2Wj (wi) + βWi (Wj (wi)))W
0
i (Wj (wi)) = 0.

(Wj)

We focus here on polynomial wary beliefs, of the form:

W1(w) =
n1X
k=0

ω1,kw
k and W2(w) =

n2X
k=0

ω2,kw
k,

and characterize the unique perfect Bayesian equilibrium with such beliefs. We first show

below that beliefs are affine and symmetric. We then check that there exists a unique

equilibrium.
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• Step 1: any polynomial wary belief is affine (n1 = n2 = 1) .

Condition (Wj) rewrites as:

− (2− β) ¡β2 − ¡4− β2¢ c¢+ 2β ¡4− β2¢wi| {z }
deg=1

− 4 ¡2− β2¢Wj (wi)| {z }
deg=nj

−4βWi (Wj (wi))| {z }
deg=ninj

+ 2β (2− β)W 0
i (Wj (wi))| {z }

deg=(ni−1)nj

−4βWj (wi)W
0
i (Wj (wi))| {z }

deg=ninj

+ 2β2Wi (Wj (wi))W
0
i (Wj (wi))| {z }

deg=(2ni−1)nj

= 0.

This implies nj ≥ 1. And ni > 1 would imply 2ni − 1 ≥ max (ni, 3), in which case the last
term would dominate, a contradiction. (W1) and (W2) thus impose n1 = n2 = 1, that is, the

beliefs are of the form Wi (w) = ωi,0 + ωi,1w.

• Step 2: any equilibrium with affine wary beliefs is such that ω1,1 = ω2,1

Focusing on the linear terms, (W1) and (W2) impose:

−β ¡4− β2¢+ ¡2 ¡2− β2¢+ 4βω2,1 − β2ω22,1¢ω1,1 = 0, (C10)

−β ¡4− β2¢+ ¡2 ¡2− β2¢+ 4βω1,1 − β2ω21,1¢ω2,1 = 0. (C11)

Substracting these two conditions yields:

(ω1,1 − ω2,1)
¡
2
¡
2− β2¢+ β2ω1,1ω2,1¢ = 0. (C12)

Differentiating (C2) with respect to w implies:

∂211πPω1,1 + ∂
2
12πP = 0, (C13)

∂212πP + ∂
2
22πPω2,1 = 0. (C14)

The second-order conditions of the manufacturer’s program impose ∂211πP , ∂
2
22πP ≤ 0. There-

fore,

ω1,1ω2,1 =
(∂212πP )

2

∂211πP∂
2
22πP

≥ 0

and (C12) thus imposes ω1,1 = ω2,1 = ω1. Condition (C10) thus simplifies to:

β
¡
4− β2¢+ ¡−2 ¡2− β2¢− 4βω1 + β2ω21¢ω1 = 0. (C15)
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• Step 3: there exists a unique ω∗1 satisfying (C15) and the second-order con-
ditions

The second-order cross derivative of the manufacturer’s profit πP is positive:

∂212πP =
2β

4− β2 > 0.

Given that ω1,1 = ω2,1 = ω1 , the second-order conditions of the manufacturer’s program

are ∂211πP ≤ 0 and ∂211πP + ∂212πP ≤ 0 . Together with ∂212πP > 0 and (C13), they imply
0 ≤ ω1 ≤ 1. Since the left-hand side of (C15) is a third-degree polynomial function φ (ω1)
satisfying:

φ (−∞) < 0,φ(0) > 0 > φ(1) = − (1 + β) (2− β)2 and φ (+∞) > 0,

(C15) has a unique solution ω∗1 in [0, 1] .

• Step 4: there exists a unique equilibrium, which is symmetric

Focusing on the constant terms and using ω1,1 = ω2,1 = ω1, conditions (W1) and (W2)

impose:

(2− βω∗1)ω∗1ω1,0 −
¡
4− β2¢ω2,0 = −(2− β)

¡
β2 − ¡4− β2¢ c− 2βω∗1¢ω∗1

2β
,

(2− βω∗1)ω∗1ω2,0 −
¡
4− β2¢ω1,0 = −(2− β)

¡
β2 − ¡4− β2¢ c− 2βω∗1¢ω∗1

2β
.

Substracting these two conditions leads to:

¡
4− β2 − 2ω∗1 + βω∗21

¢
(ω1,0 − ω2,0) = 0.

ω∗1 ∈ [0, 1] thus implies ω1,0 = ω2,0 = ω∗0 and the above two conditions reduce to:

ω∗0 =
(2− β) ¡β2 − ¡4− β2¢ c− 2βω∗1¢ω∗1

2β
¡
4− β2 − 2ω∗1 + βω∗21

¢ .

This shows that there exists a unique solution to the overall program, and that this solution

is symmetric. The equilibrium wholesale price is defined by

w∗ =W (w∗) = ω∗0 + ω
∗
1w

∗ ⇔ w∗ =
ω∗0

1− ω∗1
.
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C.3 Existence under Price Competition

The analysis of the Bertrand-like framework is very similar to that of the Cournot-like

framework, replacing the quantity qR and the retailer’s profit πR by:

pR (wi, wj) = pB (wi, wj) =
(1− β) (2 + β) + 2wi + βwj

4− β2 ,

and πR (wi, wj) = πB (wi, wj) =

¡
(1− β) (2 + β)− ¡2− β2¢wi + βwj¢2¡

4− β2¢2 ¡1− β2¢ .

The first-order conditions (Wi) characterizing the beliefs become:

(2 + β) (1− β) ¡β2 + ¡4− β2¢ c¢
2β
£¡
4− β2¢wi − ¡2− β2¢Wi (Wj (wi))

¤− 4 ¡2− β2¢Wj (wi)

+2β
£
(2 + β) (1− β)− ¡2− β2¢Wj (wi) + βWi (Wj (wi))

¤
W 0
i (Wj (wi)) = 0.

(Wi)

Retracing the same steps as above, it can be checked again that the only wary beliefs

equilibrium is symmetric and involves affine beliefs, of the form W (w) = ω∗0 + ω
∗
1w, where

ω∗1 is the unique solution in [0, 1] to:

β
¡
4− β2¢+ ¡2 ¡2 + β2¢+ 2β ¡2− β2¢ω1 + β2ω21¢ω1 = 0, (C16)

and ω∗0 is given by:

ω∗0 =
(2 + β) (1− β) ¡β2 + ¡4− β2¢ c+ 2βω∗1¢ω∗1

2β
¡
4− β2 − ¡2− β2 − βω∗1¢ω∗1¢ . (C17)

The equilibrium wholesale price is again defined by

w∗ =W (w∗) = ω∗0 + ω
∗
1w

∗.
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