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Abstract

This paper provides a closed–form solution for the price–dividend ratio in a stan-
dard asset pricing model with habit formation when the growth rate of endowment
is a first–order Gaussian autoregression. It determines conditions that guarantee
the existence of a stationary bounded equilibrium and positivity of prices.
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Introduction

A large part of the literature studying the behavior of asset prices assumes iid growth rate

of endowment and/or separable utility over time to get closed–form solutions for the price

to dividend ratio. However, Burnside (1998) proposed an exact solution for a standard

asset pricing model under the assumption that the growth rate of endowment follows a

first order autoregressive process with Gaussian shocks.1 In this paper, we extend these

results to non time–separable utility functions, when the non–separability stems from

∗Corresponding author: GREMAQ–Université de Toulouse I, 21 allée de Brienne, 31000 Toulouse,
France. Tel: (33) 5–61–12–85–60, Fax: (33) 5–61–22–55–63. Email: imen.ghattassi@univ-tlse1.fr

1Tsionas (2003) extends these results to a wider class of distributions.
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habit formation. Following Abel (1990, 1999), we assume that the utility function of the

representative agent can be written as a power function of the ratio of current to previous

period consumption. We determine a closed–form solution for the price–dividend ratio

and conditions that guarantee the existence of a stationary bounded equilibrium. Beside,

we also provide some restrictions on the parameters that guarantee the positivity of prices.

The paper is organized as follows. The next section presents the model. Section 2 gives

the analytical form of the solution. In section 3 conditions for a bounded solution are

discussed. A last section offers some concluding remarks.

1 An Asset Pricing Model with Habit Persistence

We consider the problem of an infinitely–lived representative agent who derives utility

from consuming a single consumption good. The agent has preferences over both her

current and her own past consumption, therefore reflecting the existence of some habit

persistence phenomenon. She determines her consumption, asset holdings plans so as to

maximize the expected sum of discounted future utility

max Et

∞∑

s=0

βs C
1−θ
t+s − 1

1 − θ
where Ct ≡

Ct

Cϕ
t−1

(1)

where β > 0 is a subjective discount factor, θ > 0 denotes the curvature parameter.

ϕ ∈ [0, 1] is the habit persistence parameter. For the moment, no further restrictions

will be placed on these parameters.2 When determining her consumption/asset holdings

plans, the agent faces the budget constraint

PtSt+1 + Ct ≤ (Pt + Dt)St

where St denotes the share of the asset owned by the agent. Pt is the price of a share in

period t. Dt denotes dividends, which should be thought of as the stochastic endowments

paid to the owner of each unit of the asset held from period t − 1 to t. The first order

condition is given by

C−θ
t

C
ϕ(1−θ)
t−1

− βϕEt

[
C1−θ

t+1

C
ϕ(1−θ)+1
t

]
= βEt

[(
Pt+1 + Dt+1

Pt

)(
C−θ

t+1

C
ϕ(1−θ)
t

− βϕ
C1−θ

t+2

C
ϕ(1−θ)+1
t+1

)]
(2)

Since there is a single agent in this economy, market clearing imposes St = 1 for all t so

that Ct = Dt in equilibrium.

2However, we will discuss some restrictions in order to insure a bounded solution and positive price–
dividend ratio in section 3.
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2 A Closed–Form Solution

Up to now, no restrictions have been placed on the stochastic process of dividends. Most of

the literature assumes the growth rate of dividend is iid and normally distributed (see e.g.,

Abel (1990) and (1999) among others). We will partially depart from this assumption,

keeping with the normal distribution, but relaxing the iid assumption. The growth rate of

the endowment γt ≡ log(Dt/Dt−1) is indeed assumed to follow a Gaussian AR(1) process

γt = ργt−1 + (1 − ρ)γ + εt

where |ρ| < 1 and εt ; N (0, σ2). Letting vt ≡ Pt/Dt denote the price–dividend ratio

and defining zt ≡ exp((1 − θ)γt − ϕ(1 − θ)γt−1) and yt ≡ vt[1 − βϕEtzt+1], equation (2)

rewrites

yt = βEt (1 − βϕzt+2 + yt+1) zt+1 (3)

and has to be solved for yt. This forward looking stochastic difference equation admits

the closed form solution reported in the next proposition (see Appendix A).

Proposition 1 The equilibrium price–dividend ratio is given by

vt =

βϕ exp(a0 + b0(γt − γ)) + (1 − ϕ)
∞∑

i=1

βi exp(ai + bi(γt − γ))

1 − βϕ exp(a0 + b0(γt − γ))
(4)

where

a0 = (1 − θ)(1 − ϕ)γ + (1 − θ)2σ2

2
, b0 = (1 − θ)(ρ − ϕ)

and

ai = (1 − θ)(1 − ϕ)γi +

(
1 − θ

1 − ρ

)2
σ2

2

[
(1 − ϕ)2i − 2

(1 − ϕ)(ρ − ϕ)

1 − ρ
(1 − ρi) +

(ρ − ϕ)2

1 − ρ2
(1 − ρ2i)

]

bi =
(1 − θ)(ρ − ϕ)

1 − ρ
(1 − ρi) for i > 1

Equation (4) nests previous asset pricing formula. First, setting ϕ = 0 — i.e. imposing

time separability in preferences — we recover Burnside’s (1998) solution. Second, when

the rate of growth of endowments is iid over time (γt = γ + εt) and ϕ is set to 1, we

recover the solution used by Abel (1990) to compute unconditional expected returns (see

Table 1, panel C, p 41)

vt =
zt

1 − zt

with zt = β exp

(
(1 − θ)2σ2

2
+ (θ − 1)(γt − γ)

)
(5)
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In this latter case, as equation (5) makes it clear, the price–dividend ratio is an increasing

(resp. decreasing) and convex function of consumption growth if θ > 1 (resp. θ < 1). In

other words, only the position of the curvature parameter around unity matters.3 Things

are actually more complicated when we consider the more general model. Indeed, both the

position of the curvature parameter, θ, around 1 and the position of the habit persistence

parameter, ϕ, around ρ matter. This is illustrated in Figure 1 that reports the price–

dividend ratio as a function of dividend growth for different values for ϕ. For illustrative

purposes, in each case we consider, the level of the decision rule was normalized to 1

when dividend growth equals its mean. As can be seen from the figure, when θ > 1 (resp.

Figure 1: Price–Dividend Ratio vt
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Note : This figure is drawn for a calibration based on Chapman’s (2002) estimation of the AR(1) process of
consumption growth over the period 1949–1978. We therefore set ρ = 0.269, σ = 0.01169,and γ = 0.0196.
Following Abel (1990), we set β = 0.99. For illustrative purposes, the level of the decision rule was normalized
to 1 when dividend growth equals its mean.

θ < 1), the decision rule is increasing (resp. decreasing) with dividend growth when

ϕ > ρ (resp. ϕ < ρ). The economic intuition lying behind this result is clear. Let us, for

example, consider a high curvature parameter (θ >1) which is associated with stronger

wealth effects, and let us take ϕ as given. The behavior of an agent in face a positive shock

on dividends essentially depends on the persistence of the process of endowments. When

ρ < ϕ, dividend growth exhibits low persistence (relative to habit persistence). The rise

in current consumption that follows the shock on the endowment triggers an increase in

future consumption by force of habits. However, since the shock on the dividend is not

persistent, the agent has to rely on assets in order to sustain next period consumption.

This puts upward pressure on asset prices, which together with the fact that dividend are

not persistent, implies that the price–dividend ratio increases. Consider now that ρ > ϕ,

such that dividend growth is persistent with respect to habits. A positive shock on

3This can actually be seen straightforwardly in equation (5), where convexity holds if the growth rate
of dividends satisfies exp((1 − θ)2σ2/2 + (θ − 1)(γt − γ)) < 1/β for all t.

4



endowments leads the agent to raise current and, by force of habits, future consumption.

However, contrary to the previous case, the high persistence in dividend growth implies

that future consumption can be sustained by future increases in endowments. Therefore,

the upward pressure on asset prices — following the increase in the demand for securities

— is not high enough to more than offset the increase in dividend. The price–dividend

ratio decreases.

Note that the solution for the price–dividend ratio involves a series, which convergence

properties have not been yet discussed. This is the object of the next section.

3 Conditions for a bounded and positive solution

The following proposition determines conditions for the existence of a stationary bounded

equilibrium.4

Proposition 2 The series in (4) converges if and only if

r ≡ β exp

[
(1 − θ)(1 − ϕ)γ +

σ2

2

(
(1 − θ)(1 − ϕ)

1 − ρ

)2
]

< 1 (6)

Figure 2 illustrates Proposition 2 and reports the zone of convergence and divergence of

the series in (4) with respect to (ϕ, θ) when ϕ ∈ (0, 1). The left hand side panel of the

figure considers the case where θ > 1 and the right hand side panel depicts the zone for

θ < 1. Note that although we chose to focus (for our purpose) on zones determined by ϕ

and θ, other representations could have been considered. In particular, as may be noticed

from (6), β < 1 is neither necessary nor sufficient to insure finite asset prices, such that

we might have, following Burnside (1998), considered a (β, θ) representation. In order

to grasp some economic intuition for these results, let us focus on the case θ > 1 and

consider the time separable case (ϕ=0). If the future path of endowment is uncertain,

risk adverse consumers (θ very large) are willing to purchase today a huge amount of

the asset and insure themselves against future bad outcomes — i.e. the series would

explode. Note that this effect would disappear in a deterministic setting5 and any value

for θ > 1 would guarantee convergence. Conversely, when habit persistence is strong

enough (large ϕ), the solution is bounded as the effect of uncertainty may be lowered

by the smoother consumption path, even for large value of θ. In the limiting case where

ϕ = 1, the price–dividend ratio is given by (5) and therefore the series drops out as the

forecasting horizon reduces to 1 period ahead. Otherwise stated, discounted future risk

would be inconsequential.

4The reader is left to refer to appendix B for a proof.
5In the deterministic case, the condition becomes: r ≡ β exp[(1 − θ)(1 − ϕ)γ] < 1.
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Figure 2: Convergence of the infinite series representation of vt
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Note : The region of divergence corresponds to the shaded area. This figure is drawn
for the same calibration of β and the dividend growth process as Figure 1

As previously noted by Abel (1990), the asset pricing model with habit persistence does

not preclude the existence of negative asset prices. The possibility of negative prices comes

from (i) the log–normal assumption and (ii) the marginal utility of consumption which

can be negative when the habit persistence and/or relative risk aversion are too large.

Nevertheless, from a practical point of view, the law of motion of γt can be arbitrarily well

represented by a Markov chain without loss of generality. In such a case it is possible to

determine the upper and lower bounds on the process that guarantee positive prices. This

can be achieved analyzing equation (4), from which we easily see that the price–dividend

ratio is positive if and only if the denominator in the decision rule satisfies

1 − βϕ exp(a0 + b0(γt − γ)) > 0 ⇐⇒ |a0 + b0(γt − γ)| > − log(βϕ)

Using the triangular inequality, a sufficient condition for the positivity of asset prices is

γ̂t < Γ ≡ −
log βϕ + |(1 − θ)(1 − ϕ)γ + (1/2)σ2(1 − θ)2|

|(1 − θ)(ρ − ϕ)|

where γ̂t is the absolute deviation of γt from its mean, |γt − γ|. This condition then

provides upper and lower bounds for the support of γ in a Markov chain representation

of the dividend growth process.

Note that lim
θ↑1

Γ = +∞ and lim
θ↓1

Γ = −∞, such that the bounds tends to infinity. A direct

implication of that result is that price remains positive when γ, ρ and σ are set to match

the observed consumption growth provided the curvature parameter does not depart too

much from unity. When ϕ = 0, the price is always positive since the model just reduces

to a time separable model and the denominator is equal to 1. When habit persistence is

brought back, ϕ ∈ [0, 1], the condition is more stringent as ϕ increases.

6



4 Concluding remarks

This paper offers a closed–form solution for the price–dividend ratio in a standard asset

pricing model with (i) a Gaussian autoregressive process for the endowments and (ii)

habit formation — therefore extending Burnside’s (1998) results. We establish conditions

under which the solution is bounded and give some restrictions on the parameters to

guarantee positive asset prices. These findings are useful because they allow to evaluate

the accuracy of various approximation methods to non–linear rational expectation models.

Furthermore, they can be used to perform simulation experiments to study the finite

sample properties of various estimation methods.
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A Proof of Proposition 1

Iterating forward, and imposing the transversality condition, a solution to this forward
looking stochastic difference equation (3) is given by

yt = βϕEtzt+1 + (1 − ϕ)Et

∞∑

i=1

βi

i∏

j=1

zt+j

Note that, from the definition of zt, we have

i∏

j=1

zt+j = exp

(
(1 − θ)

i∑

j=1

γt+j − ϕ(1 − θ)
i−1∑

j=0

γt+j

)
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Since γt follows an AR(1) process, we have

γt+j = γ + ρj(γt − γ) +

j−1∑

k=0

ρkεt+j−k

which implies that

i∑

j=1

γt+j =
ρ

1 − ρ
(1 − ρi)(γt − γ) + iγ +

i−1∑

k=0

1 − ρi−k

1 − ρ
εt+k+1 (A.1)

and

i−1∑

j=0

γt+j =
1 − ρi

1 − ρ
(γt − γ) + iγ +

i−2∑

k=0

1 − ρi−k−1

1 − ρ
εt+k+1 (A.2)

Furthermore, since we assumed that dividend growth is normally distributed, we can
make use of standard results on log–normal distributions, to compute Et(

∏i

j=1 zt+j) =
exp(E + V /2), where

E = Et

(
(1 − θ)

i∑

j=1

γt+j − ϕ(1 − θ)
i−1∑

j=0

γt+j

)

and

V = Vart

(
(1 − θ)

i∑

j=1

γt+j − ϕ(1 − θ)
i−1∑

j=0

γt+j

)

Using (A.1) and (A.2), the first term is simply given by

E =
(1 − θ)(ρ − ϕ)

1 − ρ
(1 − ρi)(γt − γ) + (1 − θ)(1 − ϕ)γi

The calculation of V requires more algebra

V = Vart

[
(1 − θ)

i−1∑

k=0

1 − ρi−k

1 − ρ
εt+k+1 − ϕ(1 − θ)

i−2∑

k=0

1 − ρi−k−1

1 − ρ
εt+k+1

]

= Vart

[
1 − θ

1 − ρ

i∑

j=1

(
1 − ϕ − (ρ − ϕ)ρi−j

)
εt+j

]

=

(
1 − θ

1 − ρ

)2

σ2

[
(1 − ϕ)2i − 2

(1 − ϕ)(ρ − ϕ)

1 − ρ
(1 − ρi) +

(ρ − ϕ)2

1 − ρ2
(1 − ρ2i)

]

Likewise,

Etzt+1 = exp

(
(1 − θ)(ρ − ϕ)(γt − γ) + (1 − θ)(1 − ϕ)γ + (1 − θ)2σ2

2

)

8



Therefore, the solution to (3) is given by

yt = βϕ exp(a0 + b0(γt − γ)) + (1 − ϕ)
∞∑

i=1

βi exp(ai + bi(γt − γ))

where

a0 = (1 − θ)(1 − ϕ)γ + (1 − θ)2σ2

2
and b0 = (1 − θ)(ρ − ϕ)

ai = (1 − θ)(1 − ϕ)γi +

(
1 − θ

1 − ρ

)2
σ2

2

[
(1 − ϕ)2i − 2

(1 − ϕ)(ρ − ϕ)

1 − ρ
(1 − ρi) +

(ρ − ϕ)2

1 − ρ2
(1 − ρ2i)

]

bi =
(1 − θ)(ρ − ϕ)

1 − ρ
(1 − ρi)

Recalling that yt = vt[1−βϕEtzt+1] and making use of the calculation of Etzt+1, we finally
get the price to dividend ratio. This completes the proof. 2

B Proof of Proposition 2

Let us define
wi = βi exp(ai + bi(γt − γ))

where ai and bi are defined in the main text. Then the series in vt may be written as

yt =
∞∑

i=1

wi

It follows that ∣∣∣∣
wi+1

wi

∣∣∣∣ = β exp(∆ai+1 + ∆bi+1(γt − γ))

where

∆ai+1 = (1 − θ)(1 − ϕ)γ +

(
1 − θ

1 − ρ

)2
σ2

2

{
(1 − ϕ)2 − 2(1 − ϕ)(ρ − ϕ)ρi + (ρ − ϕ)ρ2i

}

∆bi+1 = (1 − θ)(1 − ϕ)ρi

Then, provided |ρ| < 1, we have

lim
i→∞

∆ai+1 = (1 − θ)(1 − ϕ)γ +

(
1 − θ

1 − ρ

)2
σ2

2
(1 − ϕ)2

lim
i→∞

∆bi+1(γt − γ) = 0

Therefore

lim
i→∞

∣∣∣∣
wi+1

wi

∣∣∣∣ = β exp

(
(1 − θ)(1 − ϕ)γ +

(
1 − θ

1 − ρ

)2
σ2

2
(1 − ϕ)2

)
≡ r

Then, the ratio test for convergence of a series implies that
∑∞

i=1 wi converges iff r < 1.
2
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