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Abstract

This paper focuses on the size of natural gas transport capacity as a means

to fight regional market power. Starting from a model in which the network

operator has three instruments to control a local monopoly, namely, transfers

between consumers and the firm, price/output, and capacity, we compare the

policy prescriptions of this control scheme and two others in which the set of

control instruments is restrained (without transfers and without price con-

trol). The analysis allows us to identify conditions under which the objective

of mitigating regional market power results in either over- or down-sizing of

the transport network.
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1 Introduction

Natural gas markets are being liberalized all around the world and imports

through existing or newly built pipelines and Liquefied Natural Gas (LNG)

liners are playing a major role in the reshaping of the industry. An issue of

great interest is the extent to which regional imperfectly competitive mar-

kets are going to hinder this liberalization process.1 The question then is

what types of policies, including imports, are to be implemented by network

operators concerned by the exercise of market power by incumbent local mo-

nopolies.2 This paper considers a sample of such policies and analyzes their

impact on the natural gas transport network.

The focus of the analysis is the degree to which alternative policies are

substitutes or complements as remedies to alleviate the allocative inefficiency

stemming from the exercise of local market power by gas suppliers. More

specifically, we assume that the instruments available to the network operator

to accomplish this goal are price control, import capacity dimensioning, and

transfers between consumers and an incumbent local monopoly. We control

for any productive inefficiency by assuming that imported and local gas units

are produced at the same marginal cost. Then, we derive the optimal policy

starting with the case where the network operator has a set of three control

1This issue is particularly relevant for Europe.
2Indeed, imports play an increasing role in some important markets as the following

citation from the World Energy Investment Outlook (2003), published by the International
Energy Agency (IEA) suggests: ”The United States and Canada, which together imported
250 billion cubic feet of natural gas from other countries in 2001, will see gas imports
skyrocket in the coming decades as production from their mature basins continues to
decline.” Note that this role can be seen as going beyond that of merely meeting increasing
demand.
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instruments and progressively restraining this set up to the situation where

the network operator only controls the size of the natural gas import capacity.

As the set of instruments available to the network operator becomes

smaller, one might expect that the remaining tools are more intensively re-

lied upon to fight market power. A consequence would then be that a lack

of transfers or price control would have to be compensated by a larger avail-

ability of capacity possibly leading to an “excess” of it. This effect has been

explored by Cremer and Laffont (2002).3 Our model generalizes the Cremer

and Laffont framework by enlarging the set of available control instruments

and allows us to characterize situations of both over- and under-dimensioning

of the import capacity.

The plan of the paper is as follows. The next section presents the basic

ingredients of the model. In section 3 we derive the optimal policy of a

control scheme in which the network operator controls a local monopoly gas

supplier by means of transfers between consumers and the firm, price/output,

and import capacity. Then, we withdraw one control instrument at a time.

Section 4 rules out transfers and section 5 assumes that the network operator

can only control capacity. Section 6 reexamines the policy prescriptions of the

three control schemes and attempts to draw conclusions regarding the impact

of these policies that seek to fight market power on the import capacity.

3In the same spirit and for electricity, Borenstein et al. (2000) show how additional
transmission capacity, even if it is not actually used, is an effective policy for promoting
competition.
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2 Basic market configuration

Consider a regional natural gas market, market M , dominated by an incum-

bent single supplier, firm m, producing output qm at variable cost Cm(qm) =

cqm, where c is marginal cost, and fixed cost Fm.4 Gas is also supplied at this

same marginal cost c in a perfectly competitive market, market Cp, which is

geographically distinct from market M but could be linked to it by means

of a pipeline of capacity K built at variable cost C(K), where C(.) is an

increasing convex function such that C ′(0) = 0 and C ′′(0) > 0.5 In this sim-

ple two-market configuration (see Figure 1), gas flowing from market Cp into

market M would exert competitive pressure on the regional monopoly and

hence mitigate the exercise of market power by firm m in its local market.

s s
Cp M

K
-

Figure 1: Basic market configuration

The analysis conducted in this paper rests on the presumption that the

transport line linking these two markets would be built by the network

owner/operator for the purpose of allowing imports of gas from market Cp

into market M . Letting QM(.) represent the downward-sloping demand func-

tion in market M , if a quantity of gas corresponding to full capacity of

the pipeline, K, is shipped from the competitive market into market M ,

4Even though when solving for the optimal policies considered in this paper we allow
for the shutting down of this monopoly, we assume that this fixed cost is sunk.

5The assumption that the monopoly supplies gas at the same marginal cost as the
competitive market allows us to control for any productive inefficiency when analyzing the
policy effects of the allocative inefficiency due to regional market power.
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the supplier in this market would be a monopoly on the residual demand

QM(pM)−K where pM is price.

We now proceed to characterize the prescriptions of various policies that

are used to control market power in the regional market M .6 It is worthwhile

noting that, given the structure of the model, any pricing policy that is

implemented in the regional monopoly market wouldn’t affect welfare in the

competitive market since price in the latter is at the first-best (marginal-cost)

level. Hence, without loss of generality, we can ignore welfare of consumers

and firms in this competitive market.7

We start from a situation where the network operator has the ability

to control the gas supplier’s market power by means of three instruments,

namely, (possibly two-way) transfers between consumers and the firm, price

(or equivalently output), and transport capacity of the network. We then

restrict the set of control instruments available to the network operator. We

first consider the case where the operator may not use transfers when he sets

the price and capacity levels. Then, we examine the situation where besides

the fact that transfers are not allowed, the network operator looses the ability

to control price.

6In this paper we assume that control of the monopoly is exercised under complete
information. In a paper in progress (Gasmi et al., 2004), we introduce asymmetric infor-
mation on the technology of gas production.

7Another factor that is also neglected in the analysis without affecting its main quali-
tative results is the marginal cost of transport. Alternatively, if marginal cost of transport
is constant it can be included in the constant c, i.e., we may write c = cp + ct where cp

is now the marginal cost of production in the competitive market and ct is the marginal
cost of transport.
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3 Controlling the local monopoly with price,

capacity, and transfers

In this section we assume that the network operator, whose objectives coin-

cide with those of the government, may use public funds raised through taxes

to operate transfers between consumers and the firm. The economic distor-

tions (the deadweight loss) generated by taxation are captured through a

nonzero social cost of public funds λ. That is, if the network operator makes

a monetary transfer T to the firm, this transfer costs consumers (1 + λ)T .

Let S(.) represent the utility function of consumers in market M . Total

supply of gas QM(pM) in this market, composed of K units imported from

the competitive market and qm units produced locally by the firm, brings

consumers an aggregate net welfare, V ,

V = S(QM(pM))− pMQM(pM)

+(1 + λ) [(pM − c)K − C(K)]− (1 + λ)T (1)

This consumers’ net welfare is composed of three terms: the net surplus of

consumers, the social valuation of profits generated by the K units of gas

provided competitively, and the social cost of the transfer made to the firm.

As to the regional monopoly welfare, denoted U , it is given by the sum

of its profits and the transfer it receives from the network operator:

U = (pM − c) [QM(pM)−K]− Fm + T (2)

For the firm to be willing to supply gas at all, the network operator ought

to guarantee it a given level of utility. This participation constraint is nor-
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malized to

U ≥ 0 (3)

The utilitarian social welfare function, W , is defined as the unweighted

sum of aggregate consumers’ net welfare V and firm’s utility U :

W = V + U (4)

Substituting for V from (1) and for T from (2) yields social welfare

W = S(QM(pM)) + λpMQM(pM)

−(1 + λ) [cQM(pM) + Fm + C(K)]− λU (5)

as the social valuation of the total production, minus its social cost, minus

the social opportunity cost of the firm’s utility. From this expression of so-

cial welfare we see that reducing the monopoly’s utility is a socially desirable

objective, for this utility includes a transfer of funds collected through dis-

tortive taxation (see (2)). Relatedly, we see from (5) that the social valuation

of total production explicitly includes the fiscal value of the revenues that it

generates.8

The regulatory program consists in maximizing social welfare W given by

(5) with respect to pM and K, under the participation constraint (3).9 From

the expression of social welfare, we immediately see that the participation

constraint is binding. Hence, the availability of transfers allows the network

8Indeed, these revenues allow the government to lessen the need to rely on distortive
taxation.

9To be somewhat more realistic, one can assume a timing of decisions such that the
network operator sets up first the capacity level and then the price level. Solving this
problem by backward induction and using the envelope theorem yields the solution that
is characterized in Proposition 1.
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operator to extract the firm’s profit through taxation. Substituting for U = 0

in (5) and using the fact that ∂S(QM)/∂QM = pM , we obtain the following

first-order conditions:10

(1 + λ)Q′
M(pM − c) + λQM = 0 (6)

−(1 + λ)C ′(K) = 0 (7)

Letting η(QM) ≡ −Q′
MpM/QM , represent the price-elasticity of demand

in market M , the following proposition holds:

Proposition 1 When price (or equivalently output) and capacity are both

controlled by the network operator and the latter can use public funds to

make transfers between consumers and the firm, no transport capacity is built

(K=0) and pricing is such that:

pM − c

pM

=
λ

1 + λ

1

η(QM)
(8)

The welfare function given in (5) will be strictly concave if, for any price-

capacity couple (pM , K), the condition

(1 + λ)C ′′(K) [(1 + 2λ)Q′
M + (1 + λ)(pM − c)Q′′

M ] < 0 (9)

holds. As we have assumed C ′′(K) > 0 for any K ≥ 0, provided pM ≥ c

(which is true), condition (9) is satisfied for any decreasing concave demand

function such as the linear demand. Thus, in this case, the optimal price

and capacity levels characterized by Proposition 1 are not only local but also

global interior welfare maximizers.

10To minimize notation, the arguments of some of the demand and cost functions will
be dropped in the presentation.
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From equation (8) we see that pricing obeys a standard Ramsey principle

according to which the price markup is inversely proportional to the price-

elasticity of demand. It is indeed optimal to let the firm apply a markup since

public funds are costly and transfers are allowed in this scheme.11 Given that

the participation constraint is binding, we note from (2) that the optimal

transfer is equal to the difference between the (exogenous) fixed cost and

the firm’s variable profit. This transfer could be either positive of negative

depending on the relative size of the fixed cost.

Let us illustrate the properties of this scheme in the case where demand

is linear and the technology of capacity building is quadratic, i.e., exhibits

decreasing returns to scale. More specifically, let

QM(pM) = γ − pM , C(K) =
ω

2
K2; γ, ω > 0, γ > c (10)

Solving (6) and (7), and using (2) to derive the transfer, yields

pM = c +

[
λ

1 + 2λ

]
(γ − c) (11)

K = 0 (12)

with the associated monopoly output and transfer

qm =

[
1 + λ

1 + 2λ

]
(γ − c) (13)

T = Fm −
[

λ(1 + λ)

(1 + 2λ)2

]
(γ − c)2 (14)

Condition (9) here takes the form −ω(1+λ)(1+2λ) < 0, and the solution

described by (11) and (12) is a global welfare maximizer. To illustrate the

11Below, we will show by means of an example that this Ramsey-type price structure
comes to dominate marginal-cost pricing from a social welfare viewpoint.
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optimality of this policy, let us compare its welfare level, Ŵ , to that of the

alternative solution in which price is set to marginal cost, no capacity is built

and a transfer is made to the local monopoly to cover its fixed cost, W . We

find that

Ŵ =

[
(1 + λ)2

2(1 + 2λ)

]
(γ − c)2 − (1 + λ)Fm (15)

W =
1

2
(γ − c)2 − (1 + λ)Fm (16)

and verify that Ŵ ≥ W for any λ ≥ 0. This example shows that, because

of the existence of a positive cost of public funds and the possibility of using

transfers, it is optimal to let the firm earn a markup even in the case where

there are no fixed costs (Fm = 0).

Observe from (14) that the network operator can use the transfer either

to tax the firm’s profits if those are positive (this is the case when the fixed

cost is smaller than variable profits), or to subsidize the firm otherwise (when

the fixed cost is larger than variable profits). The fact that ∂T/∂λ (= −[(γ−
c)2/(1 + 2λ)3]) ≤ 0 should be interpreted as, when the cost of public funds

λ increases, the size of the subsidy (tax) decreases (increases) conditionally

on the constraint of fixed cost recovery.

4 Controlling the local monopoly with price

and capacity only

We now assume that the network operator can still set the capacity and price

levels but doesn’t have the additional ability to make any transfer between
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consumers and the firm.12

Social welfare W is now expressed as

W = S(QM(pM))− pMQM(pM)

+(1 + λ) [(pM − c)K − C(K)]

+(pM − c) [QM(pM)−K]− Fm (17)

that is, as the sum of the net consumer surplus, the social value of the profits

generated by the K units imported under competitive conditions, and the

profits of the firm that now are not taxed. Gathering terms, we obtain

W = S(QM(pM)) + λpMK

−(1 + λ) [cK + C(K)]− c [QM(pM)−K]− Fm (18)

Cross-examining (5) and (18), we see that as he now cannot use transfers to

collect firm’s profits, the network operator assigns a fiscal value only to the

revenue (and the cost) of the K units that are provided competitively.

Maximizing social welfare given by (18) with respect to price and capacity,

under the participation constraint that now does not include transfers, yields

the following first-order conditions:

(pM − c)(1 + φ)Q′
M + φ(QM −K) + λK = 0 (19)

(pM − c)(λ− φ)− (1 + λ)C ′(K) = 0 (20)

φ[(pM − c)(QM −K)− Fm] = 0 (21)

where φ is the Lagrange multiplier associated with the firm’s participation

12In the next section, we consider the case where, in addition to not being able to use
transfers, the network operator looses the ability to control price.
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constraint. Note from (20) that pM ≥ c and C
′
(K) ≥ 0 imply λ ≥ φ.13

The next proposition rewrites these conditions in a form that is somewhat

comparable to the solution described in Proposition 1.

Proposition 2 When price (or equivalently output) and capacity are both

controlled by the network operator but the latter cannot use public funds to

make transfers between consumers and the firm, optimal price and capacity

satisfy the following conditions:

pM − c

pM

=

[
φ

1 + φ
+

(
λ− φ

1 + φ

)
K

QM

]
1

η(QM)
(22)

(pM − c)(λ− φ) = (1 + λ)C ′(K) (23)

The second-order conditions, namely that the bordered Hessian is nega-

tive definite at a point (K, pM), boil down to14

(1 + λ)C ′′(K) [(QM −K) + (pM − c)Q′
M ]2 − (pM − c) [2(QM −K)(λ− φ)

+ (pM − c) ((1 + 2λ)Q′
M + (1 + φ)(pM − c)Q′′

M)] > 0 (24)

Condition (22) shows that the price markup is proportional to the share

of imports in the total consumption of gas. The reason for this is, as the price

increases, the social marginal valuation of capacity increases (see (20)). We

further see from (22) that, as in the scheme with transfers analyzed in the

previous section, the price markup is inversely proportional to the elasticity

of demand, but here in a more sensitive way.15

13This reflects the fact that the benevolent network operator values the firm’s partici-
pation constraint no more than he values public funds.

14Note that this condition will only be satisfied for particular cases.
15Indeed, note that

λ

1 + λ
≤ λ

1 + φ
≤ φ

1 + φ
+

(
λ− φ

1 + φ

)
K

QM
.
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Adding (1 + λ)c to both sides of condition (23), we see that at the opti-

mum, the social cost of the marginal unit of gas shipped from the competitive

market just equals the social cost of having this unit produced by the local

monopoly plus the social opportunity cost of the profitability for the firm of

this unit net of the value the network operator assigns to the contribution of

this unit to the relaxation of the firm’s participation constraint.

Compared to the case with transfers in which the capacity equation (7)

can be rewritten as (1+λ)c = (1+λ)(c+C ′(K)), there is an additional term,

(λ− φ)(pM − c), which is the ”net” social valuation of the monopoly profits

generated by an additional unit produced locally. Indeed, these profits can no

longer be collected by the network operator as he now lacks the instrument

that would allow him to do so.

As to the specific nature of the solutions associated with this no-transfer

scheme, note up front that condition (20), by itself, since its left-hand side

member is equal to the difference between two nonnegative terms, suggests

that the system given by the first-order conditions (19)-(21) has alternative

candidate solutions depending on the (demand and cost) parameters of the

model. Let us refine our analysis of those solutions by considering the case

with no fixed cost (Fm = 0) and with fixed costs (Fm > 0) in turn. The next

theorem deals with the no-fixed cost case.

Theorem 1 When price (or equivalently output) and capacity are both con-

trolled by the network operator but the latter cannot use public funds to make

transfers between consumers and the firm, and the firm has no fixed costs

(Fm = 0), there are two exclusive candidate optimal policies (K, pM , φ):
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(i) The policy (0, c, 0) which consists in building no capacity, setting price

in the local market at marginal cost, and thus making the local monopoly

just break even.

(ii) The policy (0 < K ≤ QM , pM > c, φ ≥ 0) which prescribes building

capacity and setting price above marginal cost. This policy takes one of

the two following forms:

(a) The policy (0 < K < QM , pM > c, 0) in which the local monopoly

meets part of the market demand and makes positive profits, re-

sulting in a non-binding participation constraint.

(b) The policy (QM , pM > c, φ > 0) in which the local monopoly is

shut down and the whole market demand is met by imports.

When (1 + λ)Q′
MC ′′(0) + λ2 < 0, policy (i) is the optimal policy. When

this condition does not hold, two situations might arise according to whether

or not Q′
M

[
C ′′(K)− C ′(K)

K

]
− λK

Q′
M

Q′′
MC ′′(K) < 0. If this condition holds,

then policy (ii-a) is the optimal policy. Otherwise, (ii-b) is.

Proof 1 Let us first check that policies (i), (ii-a) and (ii-b) are indeed can-

didate solutions for this control scheme, i.e., that they are local constrained

social welfare maximizers. Given that C ′(0) = 0 and Fm = 0, and since

(1 + λ)C ′′(0)Q2
M > 0, it is straightforward to show that policy (i) satisfies

both the first- and second-order conditions (19)-(21) and (24).

Policy (ii-a) will meet the first-order conditions when (1 + λ)Q′
MC ′(K)

+ λ2K = 0. As this policy corresponds to an interior solution (the partici-
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pation constraint is not binding), the second-order condition reduces to16

(1 + λ) [Q′
M + (pM − c)Q′′

M ] C ′′(K) + λ2 < 0

Below, we will see that when a policy of this type gets chosen, it indeed

satisfies this second-order condition.

Policy (ii-b) will satisfy the first-order conditions when

λ(λ− φ)QM + (1 + λ)(1 + φ)C ′(QM)Q′
M = 0

As to the second-order condition (24), policy (ii-b) satisfies it since

(λQM)2

(1 + φ)2Q′
M

3

[
Q′

M
2
[(1 + λ)Q′

MC ′′(QM)− (1 + 2λ)] + λQMQ′′
M

]
> 0

provided demand is concave and capacity building cost is convex.17

Let us now examine the process by which the optimal policy is chosen. In

order to do so, we first study the unconstrained maximization program of the

social welfare function (18) and then the firm’s participation constraint.

The first and second-order conditions of the unconstrained social welfare

maximization problem are, respectively,

λK + (pM − c)Q′
M = 0 (25)

λ(pM − c)− (1 + λ)C ′(K) = 0 (26)

(1 + λ)

[
Q′

M − λK

Q′
M

Q′′
M

]
C ′′(K) + λ2 < 0 (27)

16In fact, this condition is the one guaranteeing that the Hessian of the social welfare
function (18) be negative definite at this solution point.

17The latter condition is obtained by, substituting (pM − c) from either (19) or (20) in
(24).
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The level curves associated with the social welfare function (18), when rep-

resented in the {K, pM} space, have a slope

mW = − ∂W/∂K

∂W/∂pM

= −λ(pM − c)− (1 + λ)C ′(K)

λK + (pM − c)Q′
M

(28)

Observe that the first-order condition (25) represents, in an implicit form, the

set of capacity-price pairs for which the welfare level curves have an infinite

slope. This set can be characterized by as a price function p̃M(K) = c −
λK/Q′

M . Similarly, (26) represents the set of capacity-price pairs for which

the welfare level curves have a zero slope and this set can be represented by

p̂M(K) = c + (1 + λ)C ′(K)/λ. Note that these two price functions cross at

the point (K, pM) = (0, c) which need not, however, be the unique crossing

point.18 Let us characterize, if there are any, alternative crossing points.

The slopes of these two price functions are given, respectively, by 19

dp̃M

dK
= − λQ′

M

Q′
M

2 − λKQ′′
M

dp̂M

dK
=

(1 + λ)C ′′(K)

λ

Given concavity of demand and convexity of the capacity building cost func-

tion C(.), both of these functions have a nonnegative slope. Furthermore,

provided that the regularity conditions Q′′′
M ≤ 0 and C ′′′(K) ≥ 0 are satisfied,

the function characterizing the points at which the welfare level curves have

an infinite (a zero) slope is increasing concave (increasing convex). Hence,

there exists at most one additional point at which the two price functions

cross.20

18Note that the first-order conditions (25) and (26) are satisfied at the points where
these two price functions p̃M (.) and p̂M (.) intersect.

19These slopes are obtained by totally differentiating the respective price functions.
20Such an additional crossing point does not exist when the two price functions are

linear (see below for an illustration).
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When demand is strictly concave and/or cost is strictly convex, the two

price functions cross twice, and clearly the concave function, p̃M(K), is

steeper (flatter) than the convex function, p̂M(K), at the first (second) cross-

ing point.21 Hence, setting p̃M(K) = p̂M(K) and dp̃M/dK < dp̂M/dK, shows

that the second crossing point satisfies

λ2K + (1 + λ)Q′
MC ′(K) = 0 (29)

(1 + λ)

[
Q′

M − λK

Q′
M

Q′′
M

]
C ′′(K) + λ2 < 0 (30)

Noting that (29) is a combination of (25) and (26) and that (30) is the same

as (27), we see that such a second crossing point is an unconstrained welfare

maximizer.

So far, we have established that in the case where the two price func-

tions cross twice, the second intersection point is an unconstrained welfare

maximizer. The next step is to find the conditions under which this second

crossing point is (0, c). This will also allow us to derive the conditions un-

der which it is not (0, c) that is the second crossing point but another point

(K > 0, pM > c), in which case the latter is an unconstrained welfare maxi-

mizer.

When (0, c) is the second crossing point, we see from (29) and (30) that

it has to satisfy

(1 + λ)Q′
MC ′′(0) + λ2 < 0 (31)

Consequently, if (31) does not hold, (0, c) is the first crossing point and the

21The terms ”first” and ”second” are used here to merely indicate that one point (the
first) is at the left of the other (the second).
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second crossing point with K > 0 satisfies

Q′
M

[
C ′′(K)− C ′(K)

K

]
− λK

Q′
M

Q′′
MC ′′(K) < 0 (32)

found by substituting λ2 from (29) into (30).22

When both concavity of demand and convexity of cost are not strict, i.e.,

demand is linear and cost is quadratic, the two price functions cross once,

at the point (0, c), and either of these two functions can be steeper than

the other. However, the crossing point (0, c) is an unconstrained welfare

maximizer when (31) holds, i.e., when p̂M(K) is steeper than p̃M(K).

Now that we have analyzed the behavior of the social welfare function and

characterized its unconstrained maximum, let us incorporate into the analysis

the participation constraint given by

U = (pM − c) [QM(pM)−K] ≥ 0 (33)

The boundary of the set of points satisfying this participation constraint (the

participation set), U (defined by U = 0), has a slope in the {K, pM} space

given by

mU = − ∂U/∂K

∂U/∂pM

=
(pM − c)

(QM −K) + (pM − c)Q′
M

(34)

and this boundary will be flat whenever pM = c and will be decreasing concave,

with a negative slope equal to 1/Q′
M when pM > c and K = QM on this

negatively-slopped portion of the boundary.23

22Examples of demand and cost that satisfy this condition are the linear demand
combined with a capacity building cost function of the form C(K) = (ω/3)K3 or
C(K) = ωK2 log[K].

23The concavity of the boundary of the participation set when it is decreasing is obtained
by totally differentiating mU and replacing K = QM .
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Our discussion can now be summarized as follows. When (0, c) is a second

crossing point of the price functions p̃M(.) and p̂M(.), i.e., when (31) holds,

it is an unconstrained welfare maximizer. Moreover, since it belongs to the

participation set (more specifically, to the flat portion of its boundary), this

point is also a constrained social welfare maximizer which says that policy

(i) is optimal. If (0, c) is a first crossing point, i.e., if (31) does not hold,

then a second crossing point may or may not exist. If a second crossing point

exists, (32) holds and the policy (0 < K < QM , pM > c, 0), namely policy

(ii-a) is optimal.24 Finally, if such a second crossing point does not exist,

(32) does not hold and policy (ii-b), i.e., (QM , pM > c, φ > 0) which lies

on the negatively-slopped portion of the boundary of the participation set is

optimal.

This completes the proof of Theorem 1.

To illustrate Theorem 1, let us consider two examples of functional forms:

one that yields the couple of candidate optimal policies {(K = 0, pM =

c), (K = QM , pM > c)} and another that yields the couple {(K = 0, pM =

c), (K < QM , pM > c)}. The first example goes back to the linear demand

and quadratic capacity building cost function specification described in (10).

In this case, the functions p̃M(K) and p̂M(K) are straight lines and hence will

cross only once at (0, c). However, two cases need to be considered according

to the relative magnitude of their slopes.

If ω(1 + λ) − λ2 > 0 (corresponding to (31)), the slope of the line rep-

24The reader should note that the nature of condition (32) is that when it holds, it
guarantees simultaneously the existence of this policy and the fact that it satisfies second-
order conditions of the unconstrained social welfare maximization program.
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resenting the pairs where the level curves have infinite slope (λ), is smaller

than that at which they are flat (ω(1 + λ)/λ). In this case, the welfare level

curves are ellipses with social welfare increasing inwards, i.e., the closer we

get to (0, c). In this latter case, the point at which no capacity is built and

price is set to marginal cost is the unconstrained welfare maximizer and will

also solve (19)-(21). See Figure 2. Hence, the solution obtained is

pM = c (35)

K = 0 (36)

φ = 0 (37)

namely, policy (i), with the associated monopoly output and social welfare

qm = γ − c (38)

W =
1

2
(γ − c)2 (39)

If ω(1 + λ) − λ2 < 0 (corresponding to (31) not holding), we have that

dp̃M/dK > dp̂M/dK and then welfare level curves will be of a hyperbolic

shape with social welfare increasing outwards, i.e., the farther we get from

the point (0, c). See Figure 3. Given that (32) does not hold, from Theorem

1, policy (ii-b) is optimal. Indeed, solving (19)-(21) we find

pM = c +

[
λ + ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (40)

K =

[
1 + λ

(1 + 2λ) + ω(1 + λ)

]
(γ − c) (41)

φ =

[
λ(1 + λ)

λ + ω(1 + λ)

]
− 1 (42)
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yielding monopoly output and social welfare given by25

qm = 0 (43)

W =

[
(1 + λ)2

2(1 + 2λ + ω(1 + λ))

]
(γ − c)2 (44)

K

pm-c

Figure 2: Solution with Fm = 0 and ω(1 + λ)− λ2 > 0

25The reader may check that if ω(1 + λ) − λ2 < 0, the level of social welfare given by
(44) is indeed greater than that given by (39).
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K

pm-c

Figure 3: Solution with Fm = 0 and ω(1 + λ)− λ2 < 0

The second example we consider is with a concave demand and a quadratic

capacity building cost function, namely,

QM(pM) = γ − 1

2
p2

M , C(K) =
ω

2
K2; γ, ω > 0 (45)

Applying Theorem 1, yields that if λ2 − cω(1 + λ) < 0, policy (i) in which

pM = c, K = 0, and qm = γ − c is the optimal policy. Otherwise, since in

this case (32) holds, the following policy (ii-a) turns out to be optimal26

pM =
λ2

ω(1 + λ)
(46)

K =
λ (λ2 − cω(1 + λ))

ω2(1 + λ)2
(47)

qm = γ − 2λ [λ2 − cω(1 + λ)] + λ4

2ω2(1 + λ)2
(48)

26Condition (32) here takes the form λωK/pM > 0.
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Let us now turn to the case with Fm > 0. In this case, a casual look at

(21), shows that the capacity-price pair (0, c) does not belong to the partici-

pation set, and any candidate solution to the first-order conditions (19)-(21)

will always yield a positive import capacity and a price above marginal cost.

The participation constraint now takes the form

U = (pM − c) [QM(pM)−K]− Fm ≥ 0 (49)

and the slope of its boundary

mU =
(pM − c)2

Fm + (pM − c)2Q′
M

(50)

which shows that this boundary has a positively sloped (convex) portion

when the condition Fm + (pM − c)2Q′
M > 0 holds, and a negatively sloped

(concave) portion when this condition does not hold. Figure 4 shows the

form of this boundary and how it varies with increasing Fm (starting from

Fm = 0) for the case of linear demand.

K

pm-c

Figure 4: Participation set as Fm increases
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Because of this relationship between the participation set and the mag-

nitude of the fixed cost, we found the approach followed in the proof of

Theorem 1 not conclusive, and hence we relied on an alternative approach.27

Our attempt to obtain, in the case of Fm > 0, a closed-form solution under

the demand and cost specification described by (10) was also not successful.

Consequently, we relied on simulations under this specification to study the

behavior of the endogenous variables of this scheme, namely, pM , K, and φ.

Using the values γ = 10 and c = 2, Figures 5a-6c show the outcome of these

simulations the control parameter of which is the size of the fixed cost.

27In fact, the approach leads to an ”indeterminacy.” To be somewhat more specific, one
of the problems come from the fact that capacity levels corresponding to tangency points
(between social welfare level curves and the boundary of the participation set) in the
negatively and positively sloped portions of the boundary of the participation set cannot
be unambiguously ranked.
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Figure 5a: Simulation of pM with Fm > 0 and ω(1 + λ)− λ2 > 0
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Figure 5b: Simulation of K with Fm > 0 and ω(1 + λ)− λ2 > 0
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Figure 5c: Simulation of φ with Fm > 0 and ω(1 + λ)−λ2 > 0 (λ = 1/3)
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Figure 6a: Simulation of pM with Fm > 0 and ω(1 + λ)− λ2 < 0
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Figure 6b: Simulation of K with Fm > 0 and ω(1 + λ)− λ2 < 0
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Figure 6c: Simulation of φ with Fm > 0 and ω(1 + λ)−λ2 < 0 (λ = 1/3)
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The behavior of the optimum as Fm increases depends on the shape of the

social welfare level curves, which itself depends on the sign of the polynomial

ω(1 + λ)− λ2. When this polynomial is positive (elliptical level curves), the

tangency condition occurs in the region where both the welfare level curves

and the boundary of the participation set (U) are positively sloped. As Fm

increases, these tangency points (see Figure 7) correspond to a monotonically

increasing price (see Figure 5a) and an inverse U-shaped capacity (see Figure

5b).

K

pm-c

Figure 7: Tangency points as Fm increases when ω(1 + λ)− λ2 > 0

When ω(1 + λ) − λ2 < 0 (hyperbolic social welfare level curves), as Fm

increases, the tangency condition occurs first in a region where both the level

curves and (U) are negatively sloped, and then in a region where they have a

positive slope (see Figure 8). This leads to a U-shaped price (see Figure 6a)

and a monotonically decreasing capacity (see Figure 6b). Figures 5c and 6c
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show that the shadow cost of the participation constraint, φ, gets increasingly

closer to the cost of public funds λ as Fm gets larger.

K

pm-c

Figure 8: Tangency points as Fm increases when ω(1 + λ)− λ2 < 0

5 Controlling the local monopoly with capac-

ity only

In this section we assume that the network operator lacks an additional in-

strument of control of the regional monopoly activity, namely, pricing and

can only use the level of capacity of the pipeline to counter its market power.

In practice though, we model this case as if the network operator still contin-

ues to set the price level, but now this price has to fall within a constrained

set of values. Let us be more specific.

For a given volume of gas K imported from the competitive market,

the firm remains a monopoly in its local market on the residual demand
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QM(pM) −K where pM is price. Given this demand, the firm sets price so

as to maximize its profit πm given by

πm = (pM − c) [QM(pM)−K]− Fm (51)

The first-order condition of this profit-maximization problem is

(pM − c)Q′
M + QM −K = 0 (52)

while the second-order condition that ensures that we are indeed at a maxi-

mum is 2Q′
M + (pM − c)Q′′

M < 0.

Given that transfers are not allowed, it is clear enough that the form of

the social welfare function for this case is analogous to the one described in

the previous section which we recall here:

W = S(QM(pM)) + λpMK

−(1 + λ)[cK + C(K)]− c[QM(pM)−K]− Fm (53)

The optimization program that corresponds to this no-price control case

requires then maximizing (53) with respect to pM and K, under the constraint

(52).28

Letting µ designate the Lagrange multiplier associated with the firm’s

profit-maximization constraint, we obtain the following first-order conditions:

(pM − c)Q′
M + λK − µ {2Q′

M + (pM − c)Q′′
M} = 0 (54)

λ(pM − c)− (1 + λ)C ′(K) + µ = 0 (55)

(pM − c)Q′
M + QM −K = 0 (56)

28Strictly speaking, the second-order condition of the firm’s profit-maximization pro-
gram should also be taken as a constraint. The standard way to deal with this issue,
however, is to check ex post that this second-order condition is satisfied by the solution to
the optimization problem.

29



Rearranging terms allows us to state the following proposition:

Proposition 3 When capacity only is controlled by the network operator,

the following conditions are satisfied at the optimum:

pM − c

pM

= λ
K

QM

1

η(QM)
− µ

η(QM)

{
2Q′

M + (pM − c)Q′′
M

QM

}
(57)

(1 + λ)c + λ(pM − c) = (1 + λ)[c + C ′(K)]− µ (58)

(pM − c)Q′
M + QM −K = 0 (59)

The second-order conditions amount to29

(1 + λ)C
′′
(K)

[
2Q

′
M + (pM − c)Q

′′
M

]2
+ µ

[
3Q

′′
M + (pM − c)Q

′′′
M

]

− [
(1 + 4λ)Q

′
M + (1 + 2λ)(pM − c)Q

′′
M

]
> 0 (60)

A few comments on the price and capacity conditions stated in this propo-

sition are in order.

First, note that in this no-transfer scheme the price markup is again

proportional to the cost of public funds in a more sensitive way than in the

case analyzed above where the network operator could use transfers. Second,

observe that, with respect to the case with price control, the price equation

has an extra term the sign of which, assuming that the second-order condition

of the firm’s profit-maximization program holds, is the same as that of µ, the

shadow cost of the profit-maximization constraint.

Finally, we see from (58) that, at the optimum, the social cost of having

an extra unit produced locally by the monopoly, plus the social opportunity

29Note that for a downward-sloping linear demand, condition (60) holds for any value
of µ, whereas for a strictly concave demand, it only holds for µ ≤ 0.
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cost of the profit this unit generates for the firm, should be balanced against

the social cost of importing this unit from the competitive region plus the

cost of the violation of the profit-maximization constraint this imported unit

induces. Note that K = 0 violates the first-order conditions (54)-(56) and

hence is never optimal under scheme C.

Let us here too derive the solution of this scheme using the specification

described in (10). Solving the first-order conditions (54), (55) and (52), we

obtain30

pM = c +

[
λ + 2ω(1 + λ)

(1 + 2λ)(1 + 2ω) + 2(λ + ω)

]
(γ − c) (61)

K =

[
1 + 2λ

(1 + 2λ)(1 + 2ω) + 2(λ + ω)

]
(γ − c) (62)

µ =

[
ω(1 + λ)− λ2

(1 + 2λ)(1 + 2ω) + 2(λ + ω)

]
(γ − c) (63)

with the corresponding monopoly output

qm =

[
λ + 2ω(1 + λ)

(1 + 2λ)(1 + 2ω) + 2(λ + ω)

]
(γ − c) (64)

Note that the sign of the shadow cost of the firm’s profit-maximization con-

straint, µ, will be that of the polynomial ω(1 + λ)− λ2, a feature which will

be further discussed in the next section.

6 The role of transport capacity: discussion

This section compares the three schemes analyzed in the previous section in

terms of the levels of network transport capacity they prescribe. We first

30One can easily verify that the second-order condition (60) holds.
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discuss the general case and then give results obtained for the specification

described in (10).

For clarity of exposition we refer to the schemes described in section 3

(control of price and capacity with transfers), section 4 (control of price

and capacity without transfers), and section 5 (control of capacity only) as

schemes A, B, and C respectively. Let KA, KB, and KC designate the

associated optimal levels of network capacity.

For the purpose of comparing the capacity levels obtained under schemes

A and B, let us recall here that from Proposition 1 the optimal policy to

be followed under scheme A is to build no import capacity. As to scheme

B, Theorem 1 tells us that when Fm = 0, optimal capacity may or may

not be equal to zero. However, when Fm > 0 our discussion in section 4

suggested that building no capacity is never optimal. Hence, non-availability

of transfers in scheme B leads to no less capacity than in the case where

transfers are allowed (in scheme A). Hence, KA ≤ KB.

Given that the social welfare function is the same under B and C, in or-

der to compare the optimal capacity levels achieved under these alternative

schemes, we analyze the relationship between the participation set and the

set defined by the firm’s profit-maximization constraint. By total differenti-

ating the participation constraint, we see that the set of points at which its

boundary is infinitely sloped coincides with the profit maximization set.31

If the point (0, c) is an unconstrained welfare maximizer, the solution to

the constrained welfare maximization program under scheme B will lie on

31Indeed, both of these sets can be seen to be defined by pM = c− (QM −K)/Q′M .
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a tangency point where both the boundary of the participation set and the

welfare level curves are positively sloped.32 It is easy to see that such a point

is strictly at the left of any tangency point on the profit-maximization set

(under scheme C), and hence, KB < KC . If an unconstrained welfare max-

imizer does not exist, the solution to the constrained welfare maximization

program under scheme B will correspond to a tangency point where both the

boundary of the participation set and the welfare level curves are negatively

sloped.33 This point is strictly at the right of any tangency point on the

profit-maximization set (under scheme C), and thus, KB > KC . Finally, if

the point (K > 0, pm > c) is an unconstrained welfare maximizer, we cannot

rank capacity outcomes.

A comparison of the capacity levels attained under schemes A and C is

straightforward. In fact, a direct substitution into the first-order conditions

associated with scheme C, (54)-(56), shows that K = 0 cannot be optimal.

Hence, KC > 0 and we conclude that the optimal import capacity obtained

under scheme C is strictly greater than that under scheme A (KA < KC).

As an illustration, let us compare the capacity outcomes obtained under

control schemes A, B, and C with the functional forms stated in (10) and

Fm = 0. From the capacity levels obtained in (12), (36), (41), and (62), we

can check that if ω(1 + λ)− λ2 > 0, then 0 = KA = KB < KC . Otherwise,

i.e., if ω(1 + λ) − λ2 < 0, then KA < KC < KB. This example shows that

32From the proof of Theorem 1, (0, c) is an unconstrained welfare maximizer when (31)
holds.

33From the proof of Theorem 1, an unconstrained welfare maximizer won’t exist if
conditions (31) and (32) do not hold, the latter being equivalent to demand being linear
and capacity-building cost being quadratic.
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the capacity ranking is not unambiguous.

Cremer and Laffont (2002) have directed attention to this ambiguity is-

sue, although they have mainly focused on the ”excess” capacity case by

providing examples where the lack of price control leads to an over-sizing of

the pipeline network. In this paper, we have further investigated this issue of

network sizing by uncovering cases where network capacity and alternative

instruments of market power control are both complements and substitutes.

In contrast to Cremer and Laffont’s study, our analysis allows us to identify

situations of both over- and under-sizing of the network.

It is easy to see that Cremer and Laffont’s comparison exercise is a spe-

cial case of the comparisons we have performed in this paper. Indeed, setting

λ = 0 in our modeling framework, we obtain scheme A as the first-best, and

B and C reduce to the schemes considered by the authors in their compar-

ison, namely, with and without price control. However, with λ = 0, in our

framework, the case of under sizing is ruled out. For example, in the linear

demand and quadratic capacity cost function specification (10), with λ = 0,

the condition ω(1 + λ)− λ2 > 0 holds, and hence we obtain KB < KC , i.e.,

”excess” capacity under scheme C where price is not controlled.
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