
Labor Adjustment Costs and Complex Eigenvalues

Xavier Fairise
University of Angers, GEAPE and EUREQua

Patrick Fève∗
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Introduction

Aggregate output fluctuations and related measures of economic activity display both per-

sistence and damped oscillations in response to transitory shocks. For Azariadis, Bullard

and Ohanian [2001], this pattern appears to be a robust empirical finding through both

the roots of simple autoregressive and vector autoregressive representations of aggregate

variables. The standard Real Business Cycle (RBC) model, in the sense of the one sector

optimal growth model governed by a technological shock, cannot explain these stylized facts.

This failure of the standard RBC model partly results in its inability to produce complex

eigenvalues. As pointed out by Azariadis et al. [2001], building models in accordance with

these business cycle facts is actually sensible.

This paper demonstrates that the standard RBC model with a slight modification is qualita-

tively able to produce complex eigenvalues. The extension concerns the labor input, which

is now considered as a quasi–fixed factor. The standard model abstracts from employment

lags. But, as suggested by Oi [1962], labor displays smooth adjustments along the business

cycle, usually modeled by labor adjustment costs. Capital and labor are interrelated through

the equilibrium factor prices, that depend on the households’preferences. Complex eigenval-

ues occur if capital and labor display both similar persistence and sufficiently antisymmetric

behavior. For small costs, the model behaves as the standard model. Conversely, large costs

imply a labor almost constant over time and thus the interrelations with the capital vanish.

There exists an intermediate situation where the labor adjustment costs imply similar persis-

tence for the two factors. It is worth noting that the assumptions on the utility function are

central. If the intertemporal substitution of leisure is sufficiently large, complex eigenvalues

occur. The paper shows that sufficiently conditions for complex eigenvalues are satisfied for

most preferences specifications typically used in the RBC literature. Some quantitative ex-

periments illustrate this property but suggest that the imaginary part remains insufficiently

large compared to the real one.

The paper is organized as follows. A first section presents the model economy. Section 2

characterizes the local dynamic properties of the model and discusses the conditions under

which complex eigenvalues occur. Section 3 presents some numerical experiments. A last

section offers some concluding remarks. Proofs are given in appendix.
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1 The model

There exists a single good both consumed and invested. The economy is populated by an

infinite number of identical agents with infinite lifetime. Their preferences are described by

a time separable utility function in consumption and leisure u(Ct, Lt). Time endowment is

normalized to one and hours worked are given by Nt = 1−Lt. The utility function satisfies
the following conditions:

Assumption: (i) The utility function u(.): R∗
+×]0, 1[→ R∗

+ is strictly increasing and con-

cave in C and L ≡ 1 − N , (ii) verifies the additional restrictions uCLuL − uLLuC ≥ 0 and
uCLuC−uCCuL ≥ 0 with at least one strict inequality and (iii) satisfies the Inada conditions.

Condition (i) is rather standard, whereas condition (ii) imposes that consumption and leisure

are normal goods. We will see later that this restriction is central for the saddle path

property. Because the approximate solution is obtained through a log–linearization about

the steady state, it is useful to express previous conditions in terms of elasticities of the

marginal utilities:

ξCC = CuCC/uC ξCL = LuCL/uC ξLC = CuCL/uL ξLL = LuLL/uL

Using these elasticities, the condition (i) becomes ξCCξLL−ξCLξLC ≥ 0 and (ii) ξCL−ξLL ≥ 0
and ξLC − ξCC ≥ 0 with at least one strict inequality. The condition (iii) also insures the
existence and uniqueness of the steady state.

The technology is described by a Cobb–Douglas production function with constant returns

to scale

Y t = ZK1−α
t Nα

t (1)

with 0 < α < 1. Kt, Nt, Y t and Z > 0 denote the capital stock, the labor input, the raw

product and the level of the technology, respectively. Capital accumulation is described by

the following law of motion

Kt+1 = (1− δ)Kt + It (2)

where δ ∈]0, 1[ denotes the depreciation rate and It is the flow of investments. The employ-
ment evolves according to

Nt+1 = (1− ν)Nt +Ht (3)
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where ν ∈]0, 1[ is the quit rate and Ht represents the flow of hirings. Productive employment

at time t + 1 is hired at time t, implying some labor hoarding phenomenon (see Burnside,

Eichenbaum and Rebelo [1993] and Fairise and Langot [1994]). Labor is a quasi-fixed factor.

The adjustment costs function follows a standard quadratic specification:

G(Ht, Nt) =
b

2

(Ht − νNt)
2

Nt

with b > 0. This function satisfies convexity and is homogeneous of degree one. The decision

rule on hirings is thus independent of the size of the economy and the hiring rate only depends

on the marginal value of labor. At the steady state, this function satisfies G(.) = GH(.) =
GN(.) = 0 and GHH(.) = b/N ∗, where N ∗ denotes the steady state employment. This implies

that the steady state of the model does not differ from the one of the standard model.

Adjustment costs only affect the convergence path toward the steady state. This allows us

to concentrate on the dynamic implications of labor adjustment costs.

The aggregate resources constraint is given by :

ZF (Kt, Nt)− G(Ht, Nt) = Ct + It (4)

The central planer solves the following intertemporal problem :

max
It,Ht

∞∑

i=0

βiu(Ct+i, 1−Nt+i)

subject to the period–by–period aggregate resources constraint (4), the laws of motion on

capital (2) and employment (3) and for K0, N0 given and strictly positive. The parameter

β ∈]0, 1[ denotes the constant discount factor. The first order conditions are:

pt = uC(t) (5)

λt = uC(t)GH(t) (6)

pt = β {uC(t+ 1)ZFK(t+ 1) + (1− δ)pt+1} (7)

λt = β {uC(t+ 1)(ZFN(t+ 1)− GN(t+ 1))− uL(t+ 1) + (1− ν)λt+1} (8)

where pt and λt are the implicit prices of capital and labor, respectively. These two implicit

prices satisfy usual terminal conditions. The first order conditions (5)–(8), the aggregate

resources constraint (4) and the laws of motion (2) and (3) define the optimal path of the

economy.
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2 Dynamic properties

This section establishes the dynamic properties of the model. We report in appendix A the

linearized model, its transformation and some general results.1 With our specification of

the labor adjustment costs, the steady state corresponds exactly to the one of the standard

RBC model. There exists an unique steady state (I?, K?, H?, N?, p?, λ?, C?) that satisfies:

I?−δK? = 0, H?−νN ? = 0, β[ZFK(K
?, N?)+1−δ]−1 = 0, uC(C?, 1−N ?)ZFN(K

?, N?)−
uL(C

?, 1 − N ?) = 0, p? = uC(C
?, 1 − N ?), λ? = 0 and ZF (K?, N?) − C? − I? = 0. Given

these steady state values, we thus study the dynamic properties of the log–linearized system

(2)–(8). We first establish the following property:

Proposition 1 If the assumptions (i) and (ii) on the utility function hold, then there exists

a unique convergence path toward the steady state.

Proposition 1 shows that the introduction of labor adjustment costs does not alter the

dynamic properties of the standard RBC model. Note that our assumptions on the utility

function, i.e. consumption and leisure are normal goods, are sufficient to establish this result.

Compared to the standard RBC model, we only add an additional restriction that insures

the saddle path property, that is the convexity of the adjustment costs function. Given this

result, we study in details other dynamic properties of the model. The following proposition

raises the possibility for complex eigenvalues.

Proposition 2 If the preferences satisfy the conditions :

ξCC ≥ −1 (9)

ξCC − ξLC ≤ −1 (10)

then, there exists an interval [b, b], with 0 < b < b <∞, such that eigenvalues are (i) complex

if b ∈]b, b[ and (ii) real if b ∈]0, b] ∪ [b,+∞[.

The existence of a complex eigenvalues imposes restrictions on preferences. The elasticity

ξCC appears in both conditions. This shows that the specification of the utility function

matters for the dynamic properties of the model economy. Conversely, none of the struc-

tural parameters that characterize the technology and the accumulation process enters in the

1More details are avialable from the authors upon request.
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sufficient conditions Few parameters enter in the sufficient conditions (9) and (10). Com-

plex eigenvalues can therefore be easily checked. The following examples illustrates the

proposition.

Example 1 Consider the isoelastic utility function:

u(Ct, 1−Nt) =
1

1− σ
[Cθ

t (1−Nt)
1−θ]1−σ

with θ ∈]0, 1[ and σ ∈]0, 1[∪]1,∞[. It is for instance the one used by Kydland and Prescott
[1982]. We have ξCC = θ(1− σ)− 1 and ξCC − ξLC = −1. Condition (10) is always satisfied
and condition (9) hold if σ ≤ 1. The standard case of logarithmic and separable utility

function satisfies these conditions. In this case, σ = 1, ξCC = −1 and ξLC = 0.

Example 2 Consider the utility function with indivisible labor supply proposed by Hansen

[1985] and Rogerson [1988]:

u(Ct, 1−Nt) = log(Ct) + θ(1−Nt)

We directly deduce that ξCC = −1 and ξCC − ξLC = −1 and conditions (9) and (10) are
satisfied.

Example 3 Consider the class of utility functions that produces static labor supply:

log

(
Ct − ψ0

N1+ψ
t

1 + ψ

)

with ψ, ψ0 > 0. This function, used by Hercowitz and Sampson [1991] among others, implies

that the income effect on leisure is zero. It follows that ξCL − ξLL = ψL∗/(1− L∗) > 0 and

ξCC − ξLC = 0. The condition (10) is thus not verified.

In example 1, the condition (9) is not verified if σ > 1. Nevertheless, a less restrictive

condition can be obtained from the very plausible assumption that the labor share exceeds

the depreciation rate of the capital.

Proposition 3 If the preferences satisfy the conditions :

ξCC ≥ −(1 + α) (11)

ξCC − ξLC ≤ −1 (12)
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and if α > δ, then, there exists an interval [b, b], with 0 < b < b < ∞, such that the

eigenvalues are (i) complex if b ∈]b, b[ and (ii) real if b ∈]0, b] ∪ [b,+∞[.

We immediately see that the condition (11) is less restrictive than the condition (9). For

instance, in example 1, for σ = 1.5, θ = 1/3, α = 0.64 and δ = 0.025 as in Kydland

and Prescott [1982], complex eigenvalues can occur. The condition (12) in proposition 3 is

exactly the same than condition (10) in proposition 2. It follows that example 3 does not

verify condition (12).

3 Numerical experiments

Following example 2, we choose a utility function with indivisible labor supply.2 From our

assumptions on the structure of the labor adjustment costs, the steady state of the model

is the same than the one of the standard RBC model. This allows to set the values of

the structural parameters in accordance to previous calibrations and thus to use freely the

parameter b of labor adjustment costs. The parameter α corresponds to a labor share of

Table 1: Values of the structural parameters

Technology Preferences
α 0.640 β 0.99
δ 0.025 N ? 0.40
ν 0.015

64% at steady state. The parameter β is set in order to imply a 4% annual subjective

discount rate. The depreciation rate δ is equal to 2.5% per quarter. The quit rate ν is

fixed in order to roughly match the average destruction rate in the US manufacturing sector

over the period 1972–1993.3 The time spent to productive activity is equal to 40%. The

value of θ is thus deduced from the steady state conditions. Finally, the parameter of the

production function Z is set to scale the adjustment costs parameter. So, in what follows,

the value of b must be interpreted with respect to the scale parameter Z. All these values

are reported in table 1. Figure 1 presents the modulus, the real part and the imaginary

2A similar exercice have been performed with isoelastic utility function. The results are quite similar,
despite a lower imaginary part of the eigenvalues.

3If Nt should be interpreted as hours rather than employment, the calibration of ν should be adjusted
accordingly. Nevertheless, our numerical results has appeared unsensitive to various values of this parameter.
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Figure 1: Roots with labor adjustment costs
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part of the two eigenvalues with respect to the adjustment costs parameter b. For b small,

the two eigenvalues are real. As b increases, the modulus of these two eigenvalues becomes

closer and then complex conjugate. However, for b large (not reported in figure 1), the

imaginary part is zero. The imaginary part remains insufficiently large – it does not exceed

0.025 – compared to the real part – it is close to 0.95–. This result suggests the model may

face some difficulties to generate aggregate damped oscillations in response to transitory

shocks. We further explore the quantitative effects of other structural parameters changes

on aggregate dynamics. We compute the imaginary part of the eigenvalue with respect to

the adjustment costs parameter b and a selected structural parameter. We keep a utility

function linear in leisure, but we consider that the elasticity ξCC can differ from minus unity.

The four structural parameters are the steady state labor share α, the depreciation rate δ,

the discount factor β and the curvature of the utility function with respect to consumption

σ = −ξCC . The range for α ∈ [0.58; 0.75] reflects on how proprietors’ income is treated,
i.e. the share of total output paid to capital varies between 0.25 and 0.42. The range for

δ ∈ [0.005; 0.040] is selected because it is commonly set to 0.025 and previous estimates lie
within the selected range. The range for β ∈ [0.970; 0.999] implies the annual subjective
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Figure 2: Imaginary part
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discount rate lies within [0.4%;10.3%]. Finally, the range for the curvature of the utility

function [0.5; 3] roughly corresponds to previous estimates. In each case, one of the structural

parameter varies within the range, whereas the others are fixed to their reference values (see

table 1). We report in figure 2 the contours of the 3-D function that express the imaginary

part of the eigenvalue as a function of b and {α, δ, β, σ}. Figure 2 shows that the imaginary
part remains too small compared to the real part. Indeed, the real part in these experiments

(not reported here) always exceeds 0.95, whereas the imaginary part never exceeds 0.035.

4 Concluding remarks

This paper studies the ability of a standard RBC model with labor adjustment costs to

produce complex eigenvalues. The paper establishes sufficient conditions for complex eigen-

values and illustrates these properties using numerical experiments. However, the paper

shows that labor adjustment costs can potentially improve the dynamic properties of a stan-

dard RBC model. Further research must therefore explore the dynamic and quantitative

properties of equilibrium models when labor adjustment costs are combined with suitable

assumptions on good and labor market arrangements.
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Appendix

A Notations and the linearized model

This appendix derives the main dynamic properties of our model economy. We first introduce
some notations: (1) elasticities of the adjustment cost functions: ωHH = H∗GHH/ZFN , ωHN =
N∗GHN/ZFN , ωNH = H∗GNH/ZFN and ωNN = N∗GNN/ZFN with NGHN + HGHH = 0; (2)
elasticities of the marginal utilities :ξCC = C∗uCC/uC , ξCL = L∗uCL/uC , ξLC = C∗uCL/uL and
ξLL = L∗uLL/uL; (3) elasticity of the marginal product of capital ηK = −α(1 − β(1 − δ)); (4)
consumption share sC = C∗/Y ∗ = (1 − β(1 − αδ))(1 − β(1 − δ))−1; (5) investment share sI ≡
1 − sc = ((1 − α)δβ)(1 − β(1 − δ))−1; (6) others: φ = 1/δ, ψ = 1/ν. Let x, y and u the state
variables (K,N). After some algebra, the linearized dynamical system formed by (2)–(8) takes the
following form :

∆x̂t+2 + Γx̂t+1 + β
−1∆′x̂t = 0 (A.1)

where the elements of the matrices ∆ and Γ are:

δ11 =
K∗

β

[
−φsI
sC

ξCC

]
δ12 = 0 δ21 =

K∗

β

[
−β α

sC
(ξCC − ξLC)

]
δ22 =

K∗

β

αβ

φsI
[ψωHH ]

γ11 =
K∗

β

[
ηK +

(
1 +

1

β

)
φsI
sC

ξCC

]
γ12 =

K∗

β

[
−ηK +

α

sC
(ξCC − ξLC)

]

γ22 =
K∗

β

[
αβ

φsI

(
−ψωHH −

1

β
ψωHH

)
+ ηK +

αβ

φsI

(
α

sC
(ξCC − ξLC) +

N∗

1−N∗
(ξLL − ξCL)

)]

For practical reasons, we transform equation (A.1) in a canonical form by the mean of a diago-
nalization. We follow an idea of Magill [1979] adapted by Cassing and Kollintzas [1991] to the
case of a discrete time model. Such a method allows to highlight the symmetric and asymmetric

characteristics of the dynamic system. We define the variable ŵt such that x̂t =
(
β−1/2

)t
ŵt and

(A.1) becomes :

∆ŵt+2 + Γβ
1/2ŵt+1 +∆

′ŵt = 0 (A.2)

Let us define the matrices A = (1/2)(∆ + ∆′) and B = (1/2)(∆ −∆′). A is a symmetric matrix
whereas B is a skew matrix. We have the following useful lemma:

Lemma 1 Let α1 and α2 the real eigenvalues of the matrix (β
1/2Γ)−1(−A) and t1 and t2 the asso-

ciated eigenvectors. The matrix T =
[
t1 t2

]
can be choosen such that T ′(−β1/2Γ)T = I2 and

T ′AT = diag(α1, α2)

The skew matrix B implies:

T ′BT =

[
0 d
−d 0

]

We define ŵt = T ẑt and (A.2) becomes :

(T ′∆T )ẑt+2 + T
′(β1/2Γ)T ẑt+1 + T

′∆′T ẑt = 0

From Lemma 1, we have:

[
α1 d
−d α2

]
ẑt+2 −

[
1 0
0 1

]
ẑt+1 +

[
α1 −d
d α2

]
ẑt = 0 (A.3)
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The parameters α1, α2 and d are function of the structural parameters. The characteristic roots of
equation (A.3) are solution of :

(α1α2 + d
2)λ4 − (α1 + α2)λ

3 + (2α1α2 + 1− 2d2)λ2 − (α1 + α2)λ+ α1α2 + d
2 = 0

This equation can be solved using µ = λ+ 1
λ and (α1α2+ d

2)µ2− (α1+α2)µ+(1− 4d2) = 0. Now
consider the discriminant

κ = (α1 + α2)
2 − 4(1− 4d2)(α1α2 + d

2)

In order to determine the roots of (A.3), one must consider two cases:

λj +
1

λj
=
α1 + α2 ±

√
κ

2(α1α2 + d2)
if κ > 0 and λj +

1

λj
=
α1 + α2 ± i

√
−κ

2(α1α2 + d2)
if κ < 0

for j = 1, 2. Note that the previous expressions define second order equations, whose coefficients
are not necessarily real, i.e. the discriminant κ can be negative. The eigenvalues of equation (A.1)
are deduced using ρ = λ/

√
β.

Lemma 2 Let denote ϕ1 = (1 − 4d2), ϕ2 = (α1α2 + d2), ϕ3 = (α1 + α2), β =
√
β + (1/

√
β) and

β =
√
β − (1/

√
β). Consider the dynamic system described by equation (A.1). The stationary

equilibrium is a saddle path and its convergence path is (i) cyclical iff 4ϕ1ϕ2 > ϕ2
3 and (ϕ1/ϕ2)β >

(ϕ3/ϕ2)
2+β

2
β2 and (ii) monotone iff 4ϕ1ϕ2 < ϕ2

3, (ϕ3/ϕ2) > 2β and β
2−(ϕ3/ϕ2)β+(ϕ1/ϕ2) > 0.

Lemma 2 presents two types of convergence path toward the steady state. The first one is cyclical
because the eigenvalues have no zero imaginary part. In the second case, the eigenvalues are real
and the convergence is monotone. Lemma 2 presents only two cases. There exists also two other
cases which are not discussed here: a case where the eigenvalues are both negative and a case
where there exists both positive and negative eigenvalues. We will not discuss these two last cases,
because negative eigenvalues cannot occur in our model.

B Proof of proposition 1

For α1, α2 and d, we have the following expressions :

α1 + α2 =
β1/2

β(γ11γ22 − γ2
12)
[γ12(δ12 + δ21)− δ11γ22 − δ22γ11]

α1α2 = =

[
δ11δ22 − 1/4(δ12 + δ21)2

]

β(γ11γ22 − γ2
12)

d2 = =
1/4(δ12 − δ21)2
β(γ11γ22 − γ2

12)

From Lemma 2, we have a saddle path if the following inequalities are satisfied :

α1 + α2

α1α2 + d2
> 2(

√
β + 1/

√
β)

(
√
β + 1/

√
β)2 − α1 + α2

α1α2 + d2
(
√
β + 1/

√
β) +

1− 4d2

α1α2 + d2
> 0

These two inequalities can be expressed with respect to the structural parameters:

K∗2

β2

[
−ηK

(
−φsI
sC

ξCC − β
α

sC
(ξCC − ξLC) +

αβ

φsI
φωHH

)
+
αβ

sC

N

1−N (ξCCξLL − ξCLξLC)
]
> 0
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and

K∗2

β2
ηK

[
(1− β)αβ

sC
(ξCC − ξLC) +

αβ

φsI

(
α

sC
(ξCC − ξLC) +

N

1−N (ξLL − ξCL)
)]

> 0

From the assumptions that consumption and leisure are normal goods and that u(.) is concave, we
have ξCC − ξLC ≤ 0, ξLL − ξCL ≤ 0 and ξCCξLL − ξCLξLC > 0. Moreover, ηK < 0 and ωHH > 0.
It follows that the two inequalities are satisfied. This completes the proof. ¤

C Proof of proposition 2

From proposition 1, the stationary equilibrium is a saddle path. To determine the nature of the
adjustment path, we have to determine the sign of (α1 + α2)

2 − 4(1 − 4d2)(α1α2 + d2). From
ψωHH =

b
ZFN

≡ b
W , the previous expression can be expressed as a second order polynomial in b

f(b) =
1

W 2
ζ1b

2 +
1

W
ζ2b+ ζ3 (C.1)

where

ζ1 = β

(
αβ

φsI

)2

η2
K

ζ2 = β

[
4β(1− β) α

sC
ξCC

α

sC
(ξCC − ξLC)ηK − 2

αβ

φsI

αβ

sC

N

1−N (ξCCξLL − ξCLξLC)ηK

+ 4
α

sC
ξCC

αβ2

φsI

(
α

sC
(ξCC − ξLC) +

N

1−N (ξLL − ξCL)
)
ηK

− 2
αβ

sIφ

(
β
α

sC
(ξCC − ξLC) +

φsI
sC

ξCC

)
η2
K

]

ζ3 = β

[(
β
α

sC
(ξCC − ξLC) +

φsI
sC

ξCC

)
ηK +

αβ

sC

N

1−N (ξCCξLL − ξCLξLC)
]2

We now study the sign of this polynomial with respect to b. Without ambiguity, ζ1 > 0 and ζ3 > 0.
If ζ2 < 0 and disc = ζ2

2 − 4ζ1ζ3 > 0, the polynomial has two positive roots and it is negative if it
is evaluated at values which lie between the two roots. The discriminant is given by disc = T1T2

with :

T1 = β

[
4β(1− β) α

sC
ξCC

α

sC
(ξCC − ξLC)ηK

+ 4
α

sC
ξCC

αβ2

φsI

(
α

sC
(ξCC − ξLC) +

N

1−N (ξLL − ξCL)
)
ηK

]

T2 =

[
ζ2 − β

(
2
αβ

φsI

αβ

sC

N

1−N (ξCCξLL − ξCLξLC)ηK

+ 2
αβ

sIφ

(
αβ

sC
(ξCC − ξLC) +

φsI
sC

ξCC

)
η2
K

)]

T1 is without ambiguity negative. We thus have to determine the sign of T2. We introduce the
following useful notations ξCC − ξLC = −X and ξLL − ξCL = −Y . Therefore, T2 becomes:

T2 = 4β
αβ

sC

αβ

φsI
ηK

[
α

sC
X2 +

(
ηK − (1− β)

α

sC

φsI
αβ

ξCC

)
X + (1− α)ξCC

]
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Consider now the term in brackets :

g(X) =
α

sC
X2 +

(
ηK − (1− β)

α

sC

φsI
αβ

ξCC

)
X + (1− α)ξCC

As (1 − α)ξCC < 0 and α
sC

> 0, the above polynomial has a positive discriminant. The two roots
have opposite sign. For values of X greater than the positive root, the above expression is also
positive. Consider now :

g(1) = αβ(1− δ) + (1− α)βαδ
1− β(1− αδ) (1 + ξCC) (C.2)

A sufficient condition for g(1) be positive is ξCC ≥ −1. Moreover, if X = −(ξCC − ξLC) ≥ 1, then
T2 is negative and ζ2 is also necessarily negative. To sum up, we have disc = ζ2

2 − 4ζ1ζ2 > 0 and
ζ2 < 0 and equation (C.1) has two positive real roots. We conclude that there exists two positive
real numbers 0 < b < b < +∞ such that for all b ∈]b, b[, equation (C.1) is negative and complex
eigenvalues occur. This completes the proof. ¤

D Proof of proposition 3

The proof follows the one of C. Consider equation (C.2) and suppose that α > δ. We have :

g(1) =
αβ

1− β(1− αδ) [(1− β(1− δ))(1− αδ) + (1− α)δξCC ]

It is then easy to verify that if α > δ, then (1−β(1−δ))(1−αδ)((1−α)δ))−1 > (1−αδ)(1−α)−1 >

1 + α. The end of the proof is then similar to the one of proposition 2. This completes the proof.

¤
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