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Abstract

We consider a kernel based approach to nonlinear canonical correlation
analysis and its implementation for time series. We deduce various diag-
nostics for reversible processes and gaussian processes. The method is first
applied to a simulated series satisfying a diffusion equation, allowing us to
estimate nonparametrically the drift and volatility functions. The second
application involves high frequency data on stock returns.

Keywords : Nonlinear Canonical Analysis, Gaussian Processes, Reversibi-
lity, Diffusion Equations, Kernel.

Classification JEL : C14, C15, C22.
Résumé

Nous considérons une analyse canonique non linéaire fondée sur un estima-
teur a noyau de la densité et sa mise en oeuvre sur séries temporelles. Nous
en déduisons divers diagnostics pour les hypothéses de processus réversibles
et gaussiens. Cette approche est ensuite appliquée a des données simulées
selon une équation de diffusion, ce qui permet d’estimer de facon non paramé-
trique les fonctions de translation et de volatilité, et sur des séries haute
fréquence de rendements.

Mots clés : Analyse Canonique non Linéaire, Processus Gaussiens, Réversi-
bilité, Equation de Diffusion, Noyau.

Classification JEL : C14, C15, C22.



1 Introduction

Canonical correlation analysis has been introduced by [29, Hotelling (1936)],
and is in general applied to linear transformations of either vectors (see [33,
Lawley-Maxwell (1971)], [50, Tuckey (1977)], [34, Muirhead (1982)]) or indi-
vidual histories (see [?, Dauxois-Pousse (1975)], [38, Rice-Silverman (1991)],
[46, Silverman (1996)]). In this paper, we consider nonlinear canonical analy-
sis which determines the most correlated nonlinear transformations of two
vectors of interest (see [49, Tsai-Sen (1990)], [13, Dauxois-Nkiet (1998)]).
In section 2, we first recall the principle of canonical analysis in Hilbertian
framework and discuss its implementation to time series. In particular, we
find a nonlinear factor representation for Markov processes and characterize
the gaussian processes in terms of their nonlinear canonical correlations and
canonical covariates. Statistical inference is studied in section 3. We propose
a new approach called kernel canonical analysis, where the unknown joint
density function is replaced by a kernel estimator. We derive the asymptotic
properties of the corresponding estimators of the canonical correlations and
covariates. We also examine the estimation under the reversibility constraint
and propose a test of the reversibility hypothesis. The method is applied in
the last section to a simulated series satisfying a diffusion equation allowing
us to estimate nonparametrically the drift and volatility functions, and to
high frequency data on stock returns.

2 Nonlinear Canonical Analysis

In this section, we first recall the principle of canonical analysis in Hilbertian
framework. This allows us to extend the classical idea of principal com-
ponent analysis to the nonlinear setting. Next, we detail the results for
stationary time series and gaussian processes.

2.1 The principle

Let us consider two square integrable random vectors X and Y defined
on a probability space (2,4, P). The space of square integrable random
variables (resp. functions of X,Y) is denoted by L? (resp. L? (X),L?(Y)),
and the associated inner product by (.,.). The problem of canonical analysis
is to reveal p—dimensional subspaces I; (X), I; (Y) of L?(X) and L% (Y)
respectively which maximize the minimal inner product between the vectors
of I; (X) and I; (Y):
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In particular, when p = 1, we simply maximize E [¢ (X) ¢ (Y)] / (E¢? (X))

1
(E¢2 (Y)) * with respect to the functions ¢ and 1, or alternatively, search
for the solution of the optimization problem:

max E [ (X) ¢ (Y], (2.2)
e

st. Bo? (X) = Ey*(Y) = 1.

In the general case, the solution to problem (2.1) is based on the spectral
decompositions of appropriate conditional expectation operators which are
defined below (see e.g. [18, Dunford-Schwartz (1963), chapter XI]). We
introduce:

1. the conditional expectation operator T' for the mapping from L? (X)
to L2 (Y) :
p(X)=Tep(Y)=Elp(X)|Y]; (2.3)

2. the conditional expectation operator T* for the mapping from L? (Y)
to L? (X) :
YY) =T (X)=E[p(Y) | X]. (2.4)

From the projection interpretation of conditional expectation operators,
these operators are bounded with a norm equal to one and we get:

Elp(X)v V)] =Elp(X)EWY)[X]]=EE[PX) Y]],

or equivalently:

(P (X), 0 (Y)) = (p(X), T" (X)) = (T (Y), ¢ (Y)). (2.5)

Therefore, T™ is the adjoint operator of T, which justifies ex-post the
notation *. The main result is easy to present under the assumption that
TT* and T*T have the same spectrum with isolated eigenvalues (see [10,
Darolles-Florens-Renault (1998)] for a discussion of this assumption).
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Assumption A.1: The operators TT* and T*T have a discrete spectrum:
1=X>A>..>\ > A\, >...>0.

In the sequel, Ay denotes the (positive) square root of )\%. The condi-
tion of strictly positive eigenvalues eliminates the standard case arising in
finite dimensional linear canonical analysis, where X and Y have different
dimensions. The condition of isolated eigenvalues is related to the general
decomposition of the spectrum into a continuous spectrum, a residual spec-
trum and a point spectrum (see [54, Yoshino (1993), chapter 2|, and to the
compactness of the operators. Finally note that Ag = 1 is an eigenvalue asso-
ciated with the constant eigenfunction and is the largest one since ||T|| = 1.
Hence, we have the two theorems below (see e.g. [35, Naylor-Snell (1982)],
[8, Buja (1990)]):

Theorem 2.1 : Under assumption A.1, there exist two joint hilbertian ba-
sis of eigenfunctions ¢; (X), i > 0, and ; (Y), j > 0 of T*T and TT",
respectively, satisfying:

i) T*T; (X) = N ¢; (X), i >0

it) TT*; (Y) = Xy (V) , i > 0;
i) 00 (X) = 1, 4y (¥) = 1
)

1 > 0;5, 1,5 > 0, where ;5 is the Kronecker symbol;
v) < > bij, 1,7 > 0;
vi) (¢ (X), 1 (Y)) = Nibyg 1,5 > 0;

vit) Ty (Y) =E [%’ (X) Y] =X (Y), i > 0;

viit) T, (X) = E[¢; (Y) | X] = Aig; (X), @ = 0.

In particular, the orthogonality conditions iv) and v) applied to ¢, and
Yo imply that the other eigenfunctions are zero-mean:

Eg; (X) = Bty (Y) =0, i > L. (2.6)

The two previous hilbertian basis can be used to decompose the vectors
of L? (X) and L? (Y) (see e.g. [54, Yoshino (1993)]). We get the Fourier

expansions:

P(X) = 3 (0 (X) 101 (X)) g (X)
2=0

= ) + Z (X)) #; (X)), (2.7)



and

YY) =B (Y)+) (), 0 (V) (V). (2.8)
i=1

We deduce the variance and the covariance formulas from the Parseval’s
identities:

o

Vo (X) = 3 [eov(p(X), 0 (X)),
i=1

Vo (Y) = Y feov (v (Y),4; (Y)],

i=1

cov[p(X), ¢ (V)] = iAiCOU (0 (X)), 03 (X)) cov (¢ (Y), 4 (Y)).

We have now to understand how the canonical analysis is related to the
decomposition given in proposition 2.1.

Theorem 2.2 : Under assumption A.1, there exists a unique pair of sub-
spaces I (X) and I; (Y') solving the optimization problem (2.1).
L5 (X) is the subspace generated by ; (X),i=0,...,p—1
L5 (Y) is the subspace generated by ¢; (Y), 1 =0,...,p— 1.

7

Proof. See Appendix A.

The successive pairs of canonical variates (y;,1;), ¢ varying, are de-
fined up to a change of sign. The eigenfunctions ¢,, 1, are called canonical
variates, whereas the square roots of the eigenvalues \; are the canonical
correlations. In practice, the canonical analysis is usually performed on
zero-mean variables. The optimization problem (2.1) becomes:

5 (0.1 (v)]
= argmax min Covlp(X), ¢ (Y)] (2.9)
L(X)CI2(X) ¢(X) el (X) VVeX)VVe)

L(Y)CcL3(y) v¥)e(Y)

where L3 (X) (resp. LZ(Y)) is the subspace of L?(X) (resp. L?(Y)) of
zero-mean variables.

Corollary 2.1 : Under assumption A.1, there exists a unique pair of sub-
spaces Iy (X) and I; (Y) solving the optimization problem (2.9) .
I (X) is the subspace generated by ¢; (X),i=1,...,p,

L5 (Y) is the subspace generated by ¢; (Y), i =1,...,p.



For continuous variables, the previous results can also be written in terms
of the joint density function f (x,y) of (X,Y’). For instance, the operators
are defined by:

100) = [ol0)HE s,

7
@) = [l

T Ty (x) = / ¢ (y) c(z,y) dy,

with
_ [ [(y,2) f(=,2)
c(z,y) —/ @) F2) dz, (2.10)
whereas the Parseval identity becomes:
) 14 S N () 1 (9). (211)

f,) f(y) =

which is a decomposition of the functional measure of dependence between
X and Y (see [4, Barrett-Lampard (1955)], [32, Lancaster (1958)]). This
decomposition may be the basis of independence tests (see [13, Dauxois-
Nkiet (1998)]).

2.2 Application to time series

The interest in nonlinear canonical analysis of time series has recently in-
creased with the availability of large datasets in finance, especially the
high frequency datasets provided by the electronic trading systems. Meth-
ods related to the canonical analysis have already been introduced for ei-
ther continuous time diffusion models (see [27, Hansen-Scheinkman-Touzi
(1998)], [15, Demoura (1995)], [31, Kessler-Sorensen (1996)], [11, Darolles-
Gouriéroux (1997)], [10, Darolles-Florens-Renault (1998)], [19, Florens-Re-
nault-Touzi (1998)], [9, Chen-Hansen-Scheinkman (1998)]) or for discrete
time models (see [37, Ray-Tsay (1998)], [21, Gouriéroux-Jasiak (1998)], [12,
Darolles-Gouriéroux-Le Fol (1998)]). This technique has several advantages
for investigating the nonlinear dynamics, especially for examining in detail
the price-volume relationship (see [20, Ghysels-Gouriéroux-Jasiak (1998)])
or the dynamics of extreme returns. We first consider Markov processes
and next discuss the general case. The time series of interest, denoted by
(Xt, t=0,1,...), may be multidimensional of dimension d, and is assumed
to be stationary.



2.2.1 Markov process of order one

We can apply the canonical analysis to a current and a lagged values of the
time series: X = X;, Y = X;_1. In this framework, the canonical decom-
position characterizes the whole distribution of the process. Therefore, a
number of constraints imposed on this distribution can be easily analysed
in the framework of the canonical decomposition. For simplicity, we call
¢; (X¢), Vi > 1, the current canonical variates, and v, (X;—1), Vi > 1, the
lagged canonical variates. We discuss below the reversibility property and
introduce a factor decomposition for reversible and irrreversible processes.
Let us recall that a process is reversible if and only if its distributional
properties are identical in the initial and in reversed time. We deduce the
following characterization of the reversibility property.

Theorem 2.3 : Under assumption A.1, the stationary Markov process is
reversible if and only if:

Proof. The necessary part is obvious since the computation is the same in
the initial and reversed time, and the canonical variates are defined up to
a change of sign. Conversely, if ¢, = £ 9,, Vi > 1, we deduce from (2.11)
that:

f(xay> = f( ) <1+Z)‘Z(pz ¢z ))7

= f(@)f <1iz>\z% @; (y ))

This expression is symmetric in « and y, since the marginal distribution
of X = X3, Y = X;_1 are identical. B

i) Reversible process

A reversible Markov process admits a factor autoregressive representation.

Proposition 2.1 : Under assumption A.1, a reversible Markov process can
be written as:

oo}
Xy =ag+ Zaij,u
Jj=1

where the Z;’s processes satisfy:
Zjt = NjZj-1 + U,

with B [uj,t | h} =0, and cov [uj,up ] = (1 — X\ ) b1



Proof. We have to select Z;; = ¢; (X;). The various conditions are the
consequences of the Fourier decomposition of X; and also follow from theo-
rem 2.1.

The existence of a factor decomposition with AR(1) components has
already been noted in the case of transformed gaussian processes by [23,
Granger-Newbold (1976)].

Remark 2.1 : Let us consider the limiting case corresponding to: A1 > 0,
Aj =0, V5 > 1. The previous factor decomposition becomes:

Xi=ap+a1Zi + v,

where the error term viy is a martingale difference sequence and the Zi
process satisfies the autoregressive relation:

Z1p = MZ14—1 +uig.

Remark 2.2 : In general, the error terms u;y are conditionally heteroscedas-
tic. More precisely, let us introduce the Fourier decomposition of the squared
eigenfunctions:

x0
90? (Xye) = Zgz,t =1+ ch,izi,t-
i=1
We get:
E [uQ | thd =V [Zj,t | Xt—l}
2
= B2} Xen| - B |20 | Xo]
o0
= 14+ NcjiZip— — N 23,
i=1
oo
= 1- )\? + ch7i ()\Z — )\?) Zi,tfl-
i=1
Hence, the error terms u;; are conditionally homoscedastic if and only
if ¢jq ()\Z- — )\3) =0, Vi > 1, which is satisfied if there exists ig, ig > 1, with
Cj7i = 0, Vi 75 io and )‘io = )\220.

Remark 2.3 : Note that the factor decomposition is valid for any transfor-
mation of the process:

0 (X¢) =bo + ZbiZz',t (say).
i=1

We directly deduce the predictions of the transformed variable at various
horizons using the decomposition:

E o (Xeyn) | Xi] = bo + ZA?biZi7t.
i—1



Remark 2.4 : In particular, the previous result is valid when the process
(Xt, t=0,1,...) consists of discrete time observations on a diffusion process:

where (Wy, t > 0) is a multidimensional standard brownian motion. In this
framework, we can introduce the infinitesimal generator defined by:

Elo (Xeyn) | Xo] — 0 (X0)

p (2.13)

Ap (Xi) :}{ii%

It is related to the conditional expectation operator at horizon one by:

T — 1d
=lim ———— 2.14
A hli% h ’ ( )

and takes the form of a differential operator:

T » 02 T
A (@) = () 228 Lo @y T o

From the nonlinear canonical analysis of the discrete time series (Xy,
t=0,1,...), we can deduce the conditional expectation T, the infinitesimal
generator A by (2.14), and the drift and volatility functions by (2.15). This
technique is especially simple in the unidimensional case, since the contin-
uous time process is reversible (see [26, Hansen-Scheinkman (1995)]). Let
us take a closer look at this case. If N;, ¢; = £ 1;, © > 0 denote the
canonical decomposition corresponding to the discrete time process, the in-
finitesimal generator admits eigenvalues In \; = p; (say) with corresponding
eigenfunctions @;. Then, the drift and volatility functions can be identi-
fied by considering the two first canonical variates since we get the bivariate
system:

(2.15)

X 2 X

gy @) = p() 2 202 () TALD o)
X 2 X

App(@) = p@) 2Dy 202y TOD oy, g (),

which may be solved with respect to pu and o2 (see [15, Demoura (1993)]).

1) Irreversible process

In the irreversible case, a Markov process also admits a factor decomposition,
but the factor dynamics is more complicated.

Proposition 2.2 : Under assumption A.1, a Markov process can be written
as:

%]
Xt =ag + ZCL]’Zjﬂg,
Jj=1

8



where the Z;’s processes satisfy:

xXo
Zit = Aj Z bjxZi -1 + ujt,
k=1

with E |:Uj7t | h} =0, and cov [ujt,up ] = (1 - )\3) b1

Proof. We have to select Z;; = ¢, (X;) and Zit = ¥, (X¢). The various
conditions are consequences of the Fourier decomposition of X; and ZN =
¥; (X¢). From theorem 2.1, we obtain the following dynamics:

Zjp = NjZjr—1 + uj,

for the Z;’s processes appearing in the decomposition of X;. Using the de-
composition formula for Z;; = v, (X3), we get:

oo}
Zit = Z bk 2t
k=1

since the Zjﬂf have zero mean. Finally, we obtain the factor dynamics
equation. H
Note that, in this case, the factor dynamics is an infinite autoregressive

process of order one.

Remark 2.5 : Let us now consider the limiting case corresponding to: A1 >
0, A\j =0, Vj > 1. Therefore, the factor decomposition becomes:

Xy =ag+ a1z + vy,

Z1p = MZ1-1 + uiy,

and
Z1p = b2y +wiy,

where the error terms v1; and wiyy are martingale difference sequences ob-
tained by aggregating the effects of the Z;; variables for j > 2. Therefore,
the dynamics of the Zy process satisfies the ARMA (1,1)-type relation:

Zig = Mbi1Zi -1 +ur s + Mwr 1.

2.2.2 Nonlinear autocorrelogram

In the general case, we can apply nonlinear canonical analysis to construct
nonlinear autocorrelograms as suggested in [21, Gouriéroux-Jasiak (1998)].
By choosing X = X,;, Y = X,_; with h varying, we construct a bivariate
sequence of spectral decompositions: A p, ©; p, ¥; s 4, h > 1, and examine

9



how the eigenvalues and eigenfunctions depend on the lag. The comparison
of the canonical variates at different lags is an extension of the comparison
of nonlinear expectations F[Y; | Yi—p], h varying, variances V' [Y; | Yi_s],
h varying, or bivariate histograms f (Yz,Y:—p), h varying, proposed in [48,
Tong (1993), p. 364-374].

The factor decompositions introduced above can be used to compare
the linear and nonlinear predictions of a reversible markov process (see [17,
Donelson-Matz (1972)], [23, Granger-Newbold (1976)] for nonlinear trans-
formations of gaussian processes). Indeed, let us consider the factor decom-
position of the process:

00
Xt = Zajgoj (Xt) .
3=0

The nonlinear prediction is: £ [ Xy | Xy—1] = 3720 Aja;p; (Xi—1) , whereas
the quadratic prediction error is: vy = 372 (1 — )\?) a?. The linear pre-
diction is:

t—1X¢ = ag + 0 (1) (Xi—1 — ao),
where o (1) = 37724 )\ja? /3524 a?, and the quadratic linear prediction error
is:
0 (Zo'o ) )\-a2)2
J=170"
=4 |[1-
co 2
= (Z52ia5)

We directly note that: v, — vy, = 252 a? Va (A) > 0, where V, ()) is
the variance of the canonical correlations A; computed with the weights a;.

Finally, it is interesting to note that the nonlinear canonical analysis is
also suitable for density forecasting (see [24, Granger-Pesaran (1996)], [16,
Diebold-Gunther-Tay (1997)]), since in the reversible case, the canonical
distribution of X, given X; is:

fXepn [ Xe) = f(Xein, ) (1 + i)\?% (Xen) @ (Xt)) :

=1

2.2.3 Gaussian process

The canonical variates have been fully described for gaussian vectors (see
[4, Barrett-Lampard (1955)], [51, Wiener (1958), lecture 5|, [53, Wong-
Thomas (1962)], [1, Abramowitz-Stegun (1965), formula 26.3.29], [36, Neveu
(1968)]). We summarize below the main results.

oy 7. .. . . .
Proposition 2.3 : If (X,Y)" is a bidimensional gaussian vector with zero
mean, and variance-covariance matriz:

ot po?
p(J'2 0_2 ’



with p > 0, its canonical correlations are \; = p*, i > 1, and the correspond-
ing canonical variates are:

1 T
oila) = by (@) = = (5.
up to a joint change of sign, where the Hermite polynomials H;’s are defined
by:

H@= Y i (—1)™ g~ 2m.,

) — I'm! 2m
o<mali] (i —2m)!'m! 2

The first Hermite polynomials are: Hj (v) = —z, Hy(x) = 2% — 1,
Hj () = —a3 + 3z. For a negative autocorrelation, we have only to replace
Y by —Y to deduce that the canonical correlations are \; = |p|*, whereas
the canonical variates are: ¢; () = ﬁHZ (%), ¢, (z) = ﬁHZ (—%),up toa
joint change of sign.

The property above can be used to check if a given unidimensional
process is gaussian. Indeed, if the process is gaussian with zero mean and

autocorrelation function p (h) :

i) the canonical correlations are geometrically decreasing for any lag:
Yh, Ain =) [= (W]

ii) the current and lagged canonical variates ¢, , 9, are equal and
independent of the lag, up to a change of sign of the argument if p (h)
is negative. Up to the changes of sign, they coincide with the Hermite
polynomials.

The first condition has been proposed under an equivalent form as a
test for gaussianity by [23, Granger-Newbold (1976)]. Indeed, we have the
corollary below.

Corollary 2.2 : If (X, t =0,1,...) is an unidimensional gaussian process
with autocorrelation function p(h), then the autocorrelation function of the

process (Hp (X;), t=0,1,...), p € N*, is:

PP (h) = [p ()]

11



3 Statistical Inference

In practice, the distribution of the pair (X,Y’) is not known and the theo-
ritical canonical analysis described in section 2 cannot be performed. How-
ever, we can approximate the canonical decomposition if some observations

(Xn,Yn), n=1,...,N of (X,Y) are available. We assume:

Assumption A.2: The sequence (X,,Y,), n > 1, is a stationary process,
whose marginal distribution coincides with the distribution of (X,Y).

The results will be in particular applied to a stationary time series (X,
t=0,1,...) observed until date T, with X,, = Xy, Y,, = X; ;. Each vector
is assumed to be of dimension d.

3.1 The estimators

A natural idea is to replace the initial optimization problem (2.1) by its
empirical counterpart, i.e. to replace the inner product (¢ (X),¢ (Y)) =
E[p(X) 1 (Y)] by the empirical cross moment + S0 ¢ (X,,) ¥ (Y;,). How-
ever, the empirical operators T*T and TT* do not converge to their theo-
ritical counterpart. This convergence problem may be solved by replacing
the operators by their restrictions to some finite dimensional subspaces of
L?(X) and L?(Y) whose dimension increases with the number of obser-
vations (see [27, Hansen-Scheinkman-Touzi (1998)], [10, Darolles-Florens-
Renault (1998)], [9, Chen-Hansen-Scheinkman (1998)]). In our approach, we
consider instead a kernel based approximation of the density in the optimiza-
tion problem yielding to operators with a finite spectrum whose dimension
is equal to the number of observations. If the distribution of (X,Y") is con-
tinuous with a probability distribution function f (z,y), the inner product
becomes:

(X)) = [ [o@v )/ @y)duy. (3.

Let us introduce two kernels K7, K5 defined on R%; the unknown density
function can be approximated by (see [39, Rosenblatt (1956)]):

o,y) = — K K . (32
I (@) N; hdyhdy ( hin ) ? ( han @32

where hip, hony are the bandwidths associated with the two components.
Then, we consider the canonical decomposition A; n, @; n, ¥; n, @ > 0, after
replacing in the optimization problem (2.1) the initial inner product by:

W)y = [ [e@ @) iy @y dedy.  (33)

12



In this approximated expression, fN has to satisfy the properties of a
density function, for any IV, to ensure the validity of the canonical analysis.
This justify the next assumption.

Assumption A.3 : The kernels Ky, Ko are non negative, with unit mass.

Finally, note that the initial and approximated optimization problems
are not defined on the same spaces of functions. Indeed, the approximated
optimizations involve the spaces L% (X), L% (Y) of square integrable func-
tions with respect to fN. We can easily see that a function ¢ is square
integrable in the approximated optimization problem of order N if and only
if:

1 X, —x
2 n
T Kl( >dw<+oo, n=1,..,N.
/ o (@) hdy hin

Since the observations can take any value from the support of the mar-
ginal distribution of f and the bandwidth may vary, it is useful to introduce
the following space:

1 7
L%ﬁ (X) = ((p: /@2 () FKl (xhlx) dx < 400,Vhy > 0,VZ € supp f) i
1

The space L%{Q (Y) is defined accordingly. The links between the spaces
L%ﬁ (X) and L?(X) (L%(2 (Y) and L? (Y) respectively) will involve the re-
spective tails of the kernels K7, K5 and the p.d.f. f. Intuitively, we have
to select kernels with rather thin tails to be sure that L%Q (X) includes the
theoretical canonical variates of interest (see Assumption A.15).

Using the definition of fN, we may also introduce the associated esti-
mated conditional expectation operators:

: z) [n (w,y) do

Tne(y) = [o(z)in () : (3-4)

J ¥ (y) fn (,y) dy
[ fn (@) dy

which are the Nadarahya-Watson estimators of the corresponding regression

functions.

T (x) (3.5)

3.2 Numerical implementation

There exist various numerical methods for deriving accurate approximations
of the p first elements of the estimated canonical decomposition. We can for
instance consider the restriction limiting the domain of the operator Ty to
finite dimensional subspaces of L? (X) and L? (Y'), with respective dimen-
sions M and M. This restricted operator may be written in a matrix form
of size M7 x Mo, and the spectral decomposition of this matrix is obtained

13



by a standard algorithm, such as the power method (see [52, Wilkinson-
Reinsch (1971)], [22, Gourlay-Watson (1973)]), or the bi-iteration method
due to Bauer and adapted to symmetric positive definite matrices by [43,
Rutishauser (1969)]. It is important to note that the dimensions M7 and My
can be chosen arbitrarily and are not related to the number of observations.
This is the advantage of projecting on finite subspaces after the kernel esti-
mation of the operators, compared to defining the estimators directly from
projections ([27, Hansen-Scheinkman-Touzi (1998)], [10, Darolles-Florens-
Renault (1998)], [9, Chen-Hansen-Scheinkman (1998)]).

Some of the numerical approaches can be directly applied to the esti-
mated infinite dimensional operator itself. For instance, let us consider the
determination of 5\@1\7, ®i.N» once 5\]-7]\/, 1%-7]\,, 7 < 7 —1 have been derived.
We have to solve the problem:

max (T (X), T (X)) (3.6)

N

where (¢ (X),¢ (X))y =1, ¢ belongs to the orthogonal subspace of (goQN,

e Pi, N) . We can choose an initial function ¢! (say) in this subspace, and
then compute recursively:

oF =T Tve" "
The desired eigenvalue is the limit of the Rayleigh quotients:

fov =i <TN(pk (X), T¢* (X)>N
PV T R (X, (X

whereas
N T k
;v = lim "
k—oo

3.3 Asymptotic properties

The asymptotic properties of the estimated canonical decomposition have
been studied in the linear case for vectors ([3, Anderson (1963)]) and curves
([14, Dauxois-Pousse-Romain (1982)], [38, Rice-Silverman (1991)], [46, Sil-
verman (1996)]). In our nonlinear framework, they have to be deduced from
the asymptotic properties of the kernel density estimator.

3.3.1 Properties of the kernel density estimator

These properties are standard. We first describe the uniform strong consis-
tency properties and then discuss a functional central limit theorem. The
proof of the two theorems below are deduced from results by [41, Roussas
(1988)], [6, Bosq (1996)] and adapted to the case of a compact set of values.
We consider the following assumptions.
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Assumption A.4: The variables X and Y take values in the same compact
set X CRY, X =[0,1)* say.

The compactness assumption is not restrictive. Indeed, it is always pos-
sible to transform the initial data by a one to one transform onto a compact
set, since the canonical analysis prior to transformation is easily deduced
from the canonical analysis of the transformed data.

Assumption A.5 : The probability density function f is continuous on
X% =0,1]*.

Assumption A.6 : The strictly stationary sequence (X,,Yy) is geometri-
cally strong mixing, i.e. with a-mizing coefficients' such that:

k
ag < cop,

for some fized cg >0 and 0 < p < 1.
Assumption A.7 : The kernels K; 7= 1,2, are:

1

bounded,

i) symmetric,

w) Lipschitzian,

v

)
)
iii) of order® 2,
)
)

and satisfy limy,| oo ul|? K; (u) =0,i=1,2.

The following assumption concerns the choice of the bandwidths h;n,
i=1,2.

d
Assumption A.8 : As N — oo, h;y — 0, (IJ:;;VN)Q — 400,71 =1,2.

Hence, from [41, Roussas (1988), theorem 3.1], [6, Bosq (1996), theorem
2.2], we get the following property.

'The a-mixing coefficients aj, are defined as:

ax=  sup  |[P(BNC)—P(B)P(C), k>1.
Bgo(Xs,s<t)
Ceco(Xs,s>t+k)

2The kernel K is of order r if:

VaeN% a1+ ..+aq€ {1,...,7 =1}, /~a:?1 gl K (z)dz = 0;

Jdo € Nd7 air+...+ag=r, //az?l...azjdf((a:)da: #0.

Note that, if K3 and Ky are of order r, then K; K> is also of order r.
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Theorem 3.4 : Under assumptions A.2-A.8, the kernel estimator of the
p.d.f. is uniformly strongly consistent:

fn (z,y) — f(x,y)) — 0 a.s..

sup
(zy )e X2

We can deduce a uniform consistency property of integrals with respect
to fn. Let us introduce the additional assumption.

Assumption A.9 : The probability density function f is bounded from below
by € > 0.

Such assumption in now standard in the nonparametric literature. If the
density function were known, it would be sufficient to transform the data by
the cumulative density function, since the transformed data would follow the
uniform distribution on the compact set X =[0, l]d. Of course, in practice,
we do not know the probability density function generating the data and an
appropriate one to one transformation is more difficult to find.

Theorem 3.5 : Under assumptions A.2-A.9,

| [ 9 (@) i (@.y) dody,

converges a.s. uniformly to

| 9@ 1 @) dudy,

for any function g in G={g: [ [|g(x,y)| f (z,y) dedy < 1}.

Proof. See Appendix B. R

Let us now consider the asymptotic distribution and the assumptions
below (see [6, Bosq (1996)]).
Assumption A.10 : The p.d.f. fipotat4 of {(Xe,Ye), (Xto, Yio) o (X1, Y2s) s
(Xi1y,Y2,)} emists for any ty < to <tz <ta, and supy, 4, sty | frrt ot st 4l <
00.

Assumption A.11 : The p.d.f. fi¢, of {(X4,Ys), (Xe,Ys,)} satisfies
supy, <4, | frir o — f ® fllo < 00, where f® f denotes the product of marginal
pdf Of (Xtm}/tl) ) 1= 172

Assumption A.12 : The p.d.f. f is twice continuously differentiable on
}O,l[Qd, and there exists b such that || f||., <b and Hf(z)H < b.

Assumption A.13 : As N — oo, hjy — O, Nh?N — 00, Nh?fi\# — 0,
i=1,2.

Hence, from [6, Bosq (1996), theorem 2.3|, we get the following central
limit theorem.

16



Theorem 3.6 : Under assumptions A.2-A.7, A.10-A.13, for any (x,y) €
}O, 1[2d ’

VNS Ry [F () = £ (,9)] dy 5 N (0,0 (2,9)),

where W (z,y) = f (z,y) /Kl2 (u) du/KQ2 (u) du.

In the sections below, we need central limit theorems for specific trans-
formations of the kernel density estimator.

Theorem 3.7 : Under assumptions A.2-A.7, A.10-A.13,

i) If g(x,y) is a given function, we have:

YN [ [ 9@y [fn @) — 1 @) dady S N 0, 1),

where V = ZZOZ_OO Cov (g9 (Xn,Yn),9 (Xniky Ynik)) -

i) If g (z,y) is a given function, we have:
NIy [ 9@y (I @) = £ @] dy SN 00 @),
where W (z) = /KIQ (u) du /92 (z,y) f(x,y) dy.

3.3.2 Consistency of the estimated canonical analysis

We are concerned by the consistency of the p first estimated canonical cor-
relations and canonical variates, i.e. their convergence to their theoretical
counterparts. We need first to introduce some identifiability conditions. As-
sumption A.l is an identifiability condition for the canonical correlations.
Another identifiability assumption has to be introduced for the canonical
variates, which are defined up to a change of sign.

Assumption A.14 : There exists a value xq such that ¢;(x9) # O,
j=1,..,p.

Hence, we select the pair of canonical variates with ¢, (w0) > 0, ¢, (7o) >
0,4 =1,...,p. Moreover, the functional parameters of interest have to belong
to the admissible values of the associated estimators.

Assumption A.15 : The canonical variates ¢; and 1); are such that:
i) g€ L3 (X),i=1,...p.

i) Yy e Ly, (Y),j=1,..,p.
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Theorem 3.8 : Under the identification conditions A.1, A.14, the estima-
bzlzty condition A.15 and the assumptions of Theorem 3.5, )‘ZN Qin 5 %N ,
t=1,...,p converge to their theoretical counterparts in the sense:

/
/

Proof. See Appendix C.1 N

)\ZN — \; a.S.

N—oxo

oin () ’f Jdxr — 0 a.s.,

N—o0

dav )~ 0. )] FCw)dy — Oas,

Remark 3.6 : The convergence result of the canonical correlations is eas-
ily understood. Indeed, under assumptions A2-A9, the operators Ty con-
verge a.s. uniformaly to the conditional expectation operator T. From [18,
Dunford-Schwartz (1963), chapter XI], we deduce that the canonical correla-
tions 5\2-1\7, 1 =1,2,... converge a.s. uniformaly to \;, 1 = 1,2,.... However,
this uniformity with respect to the order of the canonical analysis is not valid
when we consider the canonical variates (see [13, Dauzois-Nkiet (1998), re-
mark 5.1]).

3.3.3 Asymptotic distributions

The convergence properties of the estimated canonical correlations and canon-
ical variates under the identification conditions A.1, A.14 allow us to expand
the first order conditions. These conditions are of the same type for the es-

timators (5\21\7 s QiN ,{ﬂiN), 1 varying. We present the case ¢ = 1. We
can directly consider the pair p; = )\%, ¢y and its estimated counterpart

fuy = j\i,v, @1 - The pair (py, ;) satisfies:
/901 (@,y) dy = o1 (2), (3.7)
/¢ﬂ@f&»ﬂx=L

where ¢ (2 / F(y2) f(@,2) ) (f (2,.) F (., 2)) dz (see (2.10)). Similarly,
the pair (#11\7 s P1IN ) satisfies:

[ Wen @yydy = ny o1y @), (3.8)
[ &y @@ )de=1,
where éy (z,y) = /fN (y,2) fN (v,2)/ (fN (,.) fN (_,z)) dz.
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Theorem 3.9 : Under the assumptions of theorem 3.8, [, ¢1 have
the asymptotic expansions:

\/N(ﬂlzv —Ml) = \/N<A1N7<P1>+0(1)7
< <A1N %)

\/ Nhdy (@11\] () — ¢ (x)) = Nhiy |Biy @1 (2 Z
j=2 .7
Mil\/ NhiiNAIN ()

(@) +o(1),

12

where:
Ay (@) = / o1 (v) [e (2,y) — e (,y)] dy

e (%/% ) (2,2) dz = oy (2) 8y (a..))
By = —5 [G@ [~ ()] d

12

Proof. See Appendix C.2 H

Theorem 3.10 : Under assumptions A.1-A.15,
i) the asymptotic distributions of ji;py , i =1,...,p are:

\/N(ﬂuv _:ui) gN(O,VQ),

where

Vi = > Couligs (Xa) s (Ya) + s (X) 0 (Va)

k=—o0
302 (Xn) — 120 (V) . 03 (Xnik) ¥, ()
+; (Xn—i-k) 2 (Yn—i-k) — M

S ol

9022 (Xntk) — 1 ¢z (Yorr)| -

it) The asymptotic distributions of Qin s t=1,..,p are:

VR (2in (@) = 01 (2)) 5 N (0, W5 (),

where

vmx)=;if(x,')/f<%<u>duvwi<y>|X=:c}.
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i) The asymptotic distributions of %N ,i1=1,...,p are:

VNI (i ) =i @) SN (0,0 (),
where

1

Ui(y):;

1
[ K3 (w)du V], (X) | Y =1].
gy | KV (0| Y =y
Proof. See Appendix C.3 H

Remark 3.7 The asymptotic variance W; (z) of ¢;5 coincide with the as-
ymptotic variance of the Nadarayha-Watson estimator of )\%E [, (Y) | W],
which corresponds to the interpretation of the canonical variate as condi-
tional expectation.

Remark 3.8 Theorem 3.9 can also be used to get the joint distributions
of either two canonical correlations, or two canonical variates of different
orders. For instance, we get the asymptotic normality for:

VNI (Pin (@) = 05 (@), o (2) — 05 (2)), i # 4,
with asymptotic variance:

11 1
Wy @)= 75 [ K (W) ducov [, (v) v (V) | X = a].
2,2 f(x,.)
Ky 1
It has to be noted that the estimated canonical variates are generally
correlated.

3.4 Reversibility property

Under the reversibility hypothesis, we can perform the constrained canonical
analysis. From the comparison of the constrained and unconstrained estima-
tors, we get some insights for testing the reversibility hypothesis. Under the
hypothesis of reversibility, the distribution of (X,Y) and (Y, X) coincide,
i.e. the p.d.f. f(x,y) is symmetric in  and y. Hence, we can introduce a
kernel estimator of the density taking into account this symmetry constraint.
For this purpose, we select identical kernels K1 = K9 = K and bandwidths
hin = hoany = hy, whereas we artificially double the size of the sample by
considering (X;,Y;), (Y, X;),i=1,...,N. The constrained kernel estimator
of the density is:

Fay) %ihi%&@(&;f)f{(y’;&y) (3.9

n=1

Xn—y Y, —=x
K K .
- ( hy > < hy ))
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Hence, we replace in the initial canonical analysis (2.1) the inner product
by:

0w = [ [e@v @y dedy.  310)

The constrained estimators of the canonical correlations and canonical
. R . ~R . . ..
covariates are denoted: A\, , ¢;ny = ¥y, ¢ = 0. We give below the joint
asymptotic properties of the constrained canonical analysis under the null
hypothesis of reversibility.

Theorem 3.11 : Under the assumptions of theorem 3.8, and if the re-
versibility hypothesis is satisfied:

R
i) Ain > @ =1,...,p converge a.s. to their theoretical counterparts, whereas

J

i) They admit the asymptotic expansions:
R
\/N()%N _)\i> = \/_<A1N 902> o(1),
. 1 2
VNI (2l ) —eiv) = LYNIRAR () +o (1),

where:

SOZN( ’f xN—>OOOas i=1,..,p.

i )= [e@ @y -raly]d

Proof. The proof of consistency is similar to the proof given for theorem
3.8, whereas the asymptotic expansions are developped in appendix C.4. R

Hence, we deduce the corresponding following asymptotic distributions.

Theorem 3.12 : Under assumptions A.1-A.15, and if the reversibility hy-
pothesis is satisfied,

i) the asymptotic distributions of 5\5\[ ,i=1,....p are:
~R d R
where
VA = 2 3 Cov e (Xa) ¢; (Ya) = Mg (Ya),

@i (Xniw) 0 Yoiw) — A?‘Pi (YnJrk)} .
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it) The asymptotic distributions of {05\, ,t=1,...,p are:

VNI (91 () =i (@) 5 N (0, (2)

where

1
[ K@ duVie(v)| X =al.
Proof. See Appendix C.5 B

3.5 Comparison of the constrained and unconstrained esti-
mators

Under the null hypothesis of reversibility, we can compare the asymptotic
properties of the constrained and unconstrained estimators of the canonical
correlations and canonical variates. The difference between these two types
of estimators can be used to construct testing procedures of the reversibility
hypothesis.

3.5.1 Canonical correlations

Under the null hypothesis, the unconstrained estimator of y; has an asymp-
totic variance given by:

VaR (\/N (ﬂuv - Mz)) = 4Mi‘/iR7

using the formula of theorem 3.10 with ; = ¢,. By applying the §-method,
we deduce that:

VE(VE by = A)) = W= VR (\/_ <A1§V —Ai)>. (3.11)

The two estimators have the same asymptotic precision, and their dif-
{ R . .
ference A\jy — A;y will tend to zero at a rate of convergence strictly larger
than N 3.

3.5.2 Canonical variates

Under the reversibility hypothesis, we have:

Wwd@W(%wAD
(/ 2) NRLOFE (2, ) de —Nig; (y) /NI 6 FR (., )

1
Af(
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from theorem 3.12 and appendix C.4 (formula (C.15)). Moreover, under
the reversibility hypothesis, we deduce from theorem 3.12 and appendix C'.2
(formula (C.7)):

VB (i ) =0 (0)
Alﬁ (/ o; (2) \/NhS i (2,y) do —Nip; (y) \/ N W6 fv (-,y)) -

We note that:
VNI (2in () — 0k ()
S (o @ VN [sy ) = 07 @] da

~pi ) N8y () ) [8 (o) = 0 ().

~

is a simple linear transformation of the difference between the constrained
and unconstrained estimators of the p.d.f. We can note (see theorems 3.10
and 3.12) that under the null hypothesis, the asymptotic variance of gbf}v (y)
is half the asymptotic variance of ¢,y (y). A simple computation shows that,
under the null hypothesis, we have:

VR (e ) = 28 )
~ VNh(]iV (A / )gj\/'<0 WR(y)).

5 PiN (y) —%‘N (y) » Wy

4 Applications

In this section, we provide two illustrations of the previous approach. The
first one is based on an artificial dataset consisting of simulated realizations
of an Ornstein-Uhlenbeck process. This is a Markov reversible process pro-
viding a basis for a comparison of different estimation techniques. The sec-
ond example involves high frequency data on returns on the Alcatel stock
traded on the Paris-Bourse. The nonlinear canonical analysis of this se-
ries shows that its dynamics is not compatible with an underlying diffusion
model.

4.1 Ornstein-Uhlenbeck process

We consider a continuous time process (Xy, t > 0) satisfying the stochastic
differential equation:

dXt = B(Oé—Xt) dt—l—(Tth (41)
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It is well known that this equation has a stationary gaussian solution. More-
over, the associated discrete time process has a linear autoregressive repre-
sentation of order one, with a positive autoregressive coefficient. Therefore,
the canonical variates ¢, = 1, are the Hermite polynomials, up to a change
of sign, and the canonical correlations are A\; = exp(—if3), i > 0.

L L L L L L
o 400 800 1200 16800 2000 2400 2800

Figure 4.1: Simulated Trajectory

We simulate a path (X;, t=1,2,....,T) of length T = 2500, of the
model with parameter values: o = 0, 8 = 0.8, ¢ = 0.5. This path is
plotted in Figure (4.1). Next, we use these artificial observations to find a
nonlinear canonical decomposition and deduce the associated nonparametric
estimators of the drift function: p(x) = —0.8 z, and the volatility function:
o (z) = 0.5. Three estimation methods are successively considered:

i) an unconstrained sieve method based on a finite basis of polynomials
with degree smaller then six;

i1) an unconstrained kernel method, with gaussian kernels K7 (z) = K» (x)

= - exp —22 and bandwidths hy = hy = 0.1025;

ii1) the same kernel method constrained by the reversibility hypothesis.

They are applied to the data X, X;_1, without any preliminary trans-
formation of the data to get a compact set values.
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4.1.1 Sieve method and kernel based method

Figures (4.2)-(4.3) present the estimator ¢, of the first canonical variate
computed by a polynomial based sieve method and by the kernel method,
respectively. Each Figure presents the true function (dotted line) and its
estimator (continuous line).

—-1.0 -0.8 -0.6 —-0.4 —-0.2 —0.0 0.2 0.4 0.6 Q.8 1.0

Figure 4.2: Sieve estimator of the first current canonical variate

Even though the sieve approach is consistent when the number of el-
ements in the basis increases, it may be difficult to select an appropriate
ordering of functions of the basis in practice. To give an idea of this prob-
lem, we artificially impose a null coefficient for the term in x. Since the true
first canonical variate corresponds to the Hermite polynomial of order one,
the expected result is outside the finite dimensional subspace in which we
compute the estimator. It explains the poor fit obtained in Figure (4.2).
Moreover, the estimated canonical correlation is equal to M N = 0.30, which
is much lower than the true value equal to 0.449.
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—-1.0 —-0.8 —-0.6 —0.4 —0.2 —0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.3: Kernel estimator of the first current canonical variate

However, this sieve estimator can be used as the initial canonical variate
in the iterated estimation scheme introduced in subsection 3.2. By applying
this procedure, we obtain a consistent estimator of the first canonical variate.
After three iterations, we get the estimator plotted in Figure (4.3). The
estimated first canonical correlation is now equal to 0.445, which is close to
the true value.

To study the asymptotic variance of the estimators, we perform the fol-
lowing Monte-Carlo study. We replicate 250 simulated paths using the same
parameters values and we compute at each point of the support the mean
and the standard deviation of the estimator of the first canonical variate, for
the kernel method and the sieve method. Each Figure presents the averaged
estimators and the pointwise confidence bands. In sieve method, without
a priori knowledge on the pattern of the canonical variate, we can make a
bad selection of the functions of the finite basis. As noted in Figure (4.4),
this may imply a confidence band which only unfrequently includes the true
canonical variate.
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Figure 4.4: Confidence band for the first current canonical variate (sieve
method)
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Figure 4.5: Confidence band for the first current canonical variate (kernel
method)

The bias and variance of the estimated first canonical correlations are
summarized in table 4.1. With the previous choice of the basis of polyno-
mials, the sieve method underestimates the first canonical correlation but,
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when this biased estimator is used as initial input for the iterative kernel
method, the kernel iteration procedure will reduce the bias (and also the
variance).

‘ bias variance ‘

sieve estimator  0.085 0.028
kernel estimator 0.003 0.011

Table 4.1: Properties of the estimated first canonical correlation

4.1.2 Comparison of constrained and unconstrained kernel based
methods

The Ornstein-Uhlenbeck process is reversible. In this section, we compare
the results of the constrained and unconstrained kernel based methods. We
provide in Table 4.2 the estimated canonical correlations.

| Canonical correlations \; |

|0rder True  Unconstrained Constrained|

1 0.4493 0.4506 0.4503
2 0.2018 0.2155 0.2133
3 0.0907 0.1074 0.1019
4 0.0407 0.0531 0.0472
5 0.0183 0.0271 0.0264
6 0.0082 0.0082 0.0108

Table 4.2: Estimated canonical correlations

The estimates are close to each other, and close to the true values. The
current estimated canonical variates are plotted in Figure (4.6) for the un-
constrained case, and in figure (4.7) for the constrained one. The first variate
is represented by a continuous line, the second one by a dashed line, and the
third one by a dotted line.
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Figure 4.6: Unconstrained estimated canonical variates

~+ L L L L L L L L L

|
—-1.0 —-0.8 —-0.6 —0.4 —0.2 —0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.7: Constrained estimated canonical variates

The constrained estimated canonical variates closely imitate the func-
tional forms of the Hermite polynomials, whereas we observe some asymme-
try in the second canonical variate estimated without constraint. By com-
paring the constrained and unconstrained estimators, we obtain diagnostics
for the reversibility hypothesis (see subsection 3.5).

29



Finally, we can propose some diagnostic procedures for the normality
hypothesis referred to in section 2.2.3. Let us consider the canonical corre-
lations and corollary 2.2, for instance. Under the normality hypothesis, we
get: \; = A}, or In\; = iln \;. We give below the result of linear regressions
of the log estimated canonical correlations on 1 and ¢, ¢ = 1,...,6, both for
the constrained and unconstrained cases.

‘ constant coefficient i coefficient estimated A\; R? |
unconstrained 0.0228 -0.7650 0.4652 0.9967
constrained -0.038 -0.7416 0.4763 0.9993

Table 4.3: Pattern of the log canonical correlations

We observe large values of the multiple correlation coefficient R? indi-
cating the high adequacy of the fits. The two following figures provide the
patterns of the log estimated canonical correlations for the unconstrained
and constrained cases. FEach dot represents the log estimated canonical
correlation. The dotted lines correspond to the linear adjustment and the
confidence intervals, respectively.
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Figure 4.8: Pattern of the log canonical correlations (unconstrained
method)
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Figure 4.9: Pattern of the log canonical correlations (constrained method)

4.1.3 Estimation of the drift and volatility functions

In the case of univariate diffusion equation, the nonlinear canonical analysis
allows to identify both the drift and the volatility functions, from the two
first canonical correlations and variates (see the approach by [15, Demoura
(1993)] described in subsection 2.2.1). The two following figures provide the
true functions with a continuous line, their estimators and their confidence
bands with dotted lines.
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Figure 4.10: Estimated drift function
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Figure 4.11: Estimated volatility function

4.2 High Frequency Data

We apply the previous approach to a series of returns corresponding to the
Alcatel stock traded on the Paris-Bourse.

32



1.6 20

1.2

-00 04 08

-0.4

-0.8

-20 -16 -12

L L L L L L L L
o 200 400 600 800 1000 1200 1400 16800 1800

Figure 4.12: Returns for Alcatel stock

The prices are resampled from real time records at a constant interval
of 20mn and the returns are computed by differencing the log-prices. The
sampling period is May 2, 1997 to August 30, 1997 and contains 1705 ob-
servations. For this application, we can assume that returns take values in
a compact set. Indeed, the tradings would automatically stop if the price
modification with respect to the opening price was too large.

We implemented the unconstrained and constrained kernel based meth-
ods, with a gaussian kernel and bandwiths Ay = hoy = 0.062, and horizon
h = 1. The estimated canonical variates are provided in Figures (4.13) and
(4.14) for the unconstrained case, and in Figure (4.15) for the constrained
one. The first variate is represented by a continuous line, the second one by
a dashed line, and the third one by a dotted line.
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Figure 4.13: Estimated current canonical variates
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Figure 4.14: Estimated lagged canonical variates
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Figure 4.15: Estimated canonical variates under reversibility

It is commonly assumed in financial theory that the stock returns (r, ¢t > 0)
satisfy a stochastic differential equation:

dry = p(ry) dt + o (ry) dWy (say).

In such case, the process is necessarily reversible and the first canonical
variate corresponds to a monotone function, the second one to a function
with one breakpoint, and so on. The comparison of the three figures shows
clearly that the reversibility property has to be rejected, as the expected
patterns of the canonical variates are. In particular, the observed returns
are not compatible with an underlying stochastic differential equation.

How to interpret the pattern of the first canonical variate 7 It is well
known that the (linear) autocorrelations of stock returns are generally un-
significant, which is consistent with the the theory of market efficiency.
In our case, the first order linear correlation is 0.065. Therefore, the lin-
ear transformation will not belong to the subspaces generated by the first
canonical variates. Moreover, the literature on ARCH models insists on
the so-called volatility persistence, implying the large autocorrelation of
squared returns. Therefore, it is not surprising to find a first canonical
variate with a parabolic form, even if the pattern also includes some lever-
age effect to distinguish bull and bear markets. The reversibility hypothesis
is also clearly rejected when we compare the constrained and unconstrained
estimated canonical correlations. The introduction of the reversibility con-
straint induces an underestimation of the first canonical correlation by about
30%.
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| Canonical correlations \; |

|0rder Unconstrained Constrained|

1 0.3595 0.2569
2 0.1829 0.1459
3 0.1467 0.1260
4 0.030 0.1255
5 0.003 0.0054
6 0.001 0.0016

Table 4.3: Estimated canonical correlations

5 Concluding Remarks

In this paper, we developped a nonlinear canonical correlation analysis
based on kernel estimators of the density function. This approach has been
applied to a high frequency series of returns. There exist in the litera-
ture other nonparametric estimation methods involving the sieves (see [9,
Chen-Hansen-Scheinkman (1998)]) or the generalized kernels (see [7, Bosg-
Lecoutre (1987)]). The analysis of the asymptotic properties of the esti-
mated canonical correlations and variates are similar. We have shown that
our method outperforms the sieve method which artificially restraint the
domain of estimation.

Due to the nonlinearities, these nonparametric techniques require a large
set of observations, which explains the interest for financial data, including
high frequency data. But, even if we restrict to this field, nonlinear canonical
analysis is certainly a useful tool for understanding the risk of liquidity in
an analysis of intratrade durations (see [21, Gouriéroux-Jasiak (1998)]), or
to implement technical analysis based models for directions of price changes
(see [12, Darolles-Gouriéroux-Le Fol (1998)]).
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A Proof of Theorem 2.2

We consider the class of optimization problems:

max E [ (X) ¢ (Y], (A1)
p1p

s.t. BEp? (X) = Ey?(Y) =1,
where ¢ (X) € I(X), v (Y)eI(Y), I(X), I(Y) are subspaces of L? (X),
L? (Y) respectively, such that:
TI(X)CI(Y), T*I(Y)CI(X).

If @, ¢ is a pair solution of this problem, { is also a solution of:

max B [ (X) 9 (Y)]

st. Bp? (X)=1,0(X) e I(X),

or equivalently of the problem:

max B | (X) T (X)]

st. Bo*(X)=1,0(X) € I(X).

It is a direct consequence of the Cauchy-Schwarz inequality that @ and
T*1) are proportional (and also are T and ). Therefore:

3 T = i,
I : Tp=p.

T = Y,
T*Tp = [2o.

The solutions (@, ¢ of the problem (2.1) can be deduced from the simul-
taneous spectral decomposition of the non-negative auto-adjoint operators
TT* and T*T. Of course, the pair (@,QL) is defined up to a change of sign.

Hence, the solution of the initial problem (2.1) is derived by considering
a sequence of problems of type (A.1), with first I (X) = L?(X), I(Y) =
L2 (Y), then I(X), I(Y) the subspaces orthogonal to the solutions of the
first problem, and so on.
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B Proof of Theorem 3.5

For any function g in G={g: [ [|g(x,y)| f (z,y) dedy < 1}, we get:

// :Enyxydxdy // g (x,y) f (z,y) dxdy

sup
9€g
fr (@y) = f (@,p)|
< sup .
(zy )eX? (:L', y)

Using assumption A.9, this uniform convergence is equivalent to the
uniform convergence of fx (z,y) to f (x,y) on X2 i.e.:

sup
(zy )eXx?

I (@) = f(2,y)] = 0 as,

given by Theorem 3.4.
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C Asymptotic Properties

C.1 Proof of Theorem 3.8

We write the proof in the case ¢ = 1. The case ¢ # 1 can be easily deduced
using the same type of arguments. Let us introduce the three following
maximization problems:

Problem 1 (‘fpuv ,1]}11\]) solution of:

max / / y) fn (w,y) dedy,

s.t./ (@) fu (2 dx—/z/J2 ) v (o) dy = 1.

Problem 2 (97711\] ’¢1N) solution of:

max// fN (z,y) dzdy,

st [ ¢ @) f (@) da = / G (y) f (y)dy = 1.

Problem 3 (¢;,1,) solution of:

max / / ¢ ()Y (y) f (x,y) dedy,
st [ @) (@) de= [v2(0) f (y)dy =1

Let us denote H the compact set:

:<(<,0,¢) 3/QQ(x)f(a:,.)dm:/¢2(y)f(.’y)dy:1).

i) Consistency of ¢ , {blN

Using Cauchy-Schwarz inequality, we have g (x,y) = ¢ (z) ¥ (y) € G,V (¢, ¢) €
‘H, and by Lemma 3.5, we deduce the a.s. uniform convergence:

// fN(a:y dxdy —> // f(z,y) dzdy,

where (p,1)) € H. Moreover, the application:

(o) = [ [ 0@ v @) f(@.y) dady,
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is continuous from L? (X) x L? (Y) to R. Now, we can use the Jennrich’s
theorem (see [30, Jennrich (1969)]) to deduce that the solutions of the finite
sample problem converge a.s. to the solution of the limit problem:

HS~01,N - 901H2 — Oas,

WLN—%HQ — 0Oas,

where |||, is the L? distance.
ii) Consistency of ¢y y, 1%17]\,

Since g (z,y) = ¢*(x) € G and g (x,y) = ¥* (y) € G, when (p,7) € H, we
deduce from Lemma 3.5 the equicontinuity property, which implies the two
following a.s. convergences:

v = [en@hv@)de— [ @) (@) dr =1, as.
By = [UinWix (wdy— [0S () dy=1, as.

The solutions (951,N77L1,N) and ((,bl,N,{bLN) of problems 1 and 2 are
proportional up to the terms (y/an,/By). Therefore, we have:

. 1N
HSOLN - @1”2 = \/T_N — ¥

2

PIN — @1”2 + H <1 - \/%—N) P1N

IN

2
= ||P1n —801H2 + ‘1 - %

7

and we deduce that HSAOLN - cp1H2 — 0 a.s. An analog computation gives
H¢1,N - %Hz — 0 a.s.
i11) Consistency of 5\17 N

It is a consequence of the equicontinuity property.
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C.2 Asymptotic expansion of ji; v, ¢; y

1) Expansion of the first order condition

The equations (3.7) can be written as:

[ o1 @) + 8610 @) le ) + b (a,)) dy

= (llq + 5ﬂ1,N) [901 () + 601 N (UC)} )

[ lor @+ 801x @] [£ @) + 6w ()] = 1.

where the differential terms are 6y y = {3 v — H1, P18 = Q1N — $15
6y =¢y—cand d fN = fN — f. A first order expansion provides the system
below:

/5901N (z,y dy+/<,01 ) d¢n (2,y) dy (C.1)
= 01y N1 () + 111007 N (),
[ @ofy @ de+2 [0 @ f @) 60 x @dr=0.  (C2)

Let us denote:
i . 1 ;
Ay @) = [ o1 ) den @) dy, Bix =—5 [ G @) 8fw (@) da.

The conditions (C.1) and (C.2) become:

b o1 (@) + nd (@ / Sun )@y dy = Ay (@), (C3)

[ 1@ f @861 @) do = By, (€4

(5g01 ~ () admits a Fourier expansion on the eigenfunction basis ¢; (),
J=1

o0

5901N Z NSOJ

where the constant term is zero since 69017 n is asymptotically zero mean. By
replacing in system (C.3) — (C'4) , we get:

AI,N (x) = oy ey (z) + ZE‘,N (Hl - Mj) ¢; (),

Bin = bin.

45



We deduce the explicit form of the solution:

iy = (Awier) = [y @y @) f (@) e, (C3)

> <A1,N790j>

§¢1 n () = Bineg; (z) +
1N 1 T

@; (). (C.6)

i1) Asymptotic expansions of 8¢y (z,y) and <A1,N; goj>

66N(.7:,y) = (5[

)
~ 6fN (yvz)f(xvz) P f(yvz) 6fN (3772) »
= | e ey T

> (3772) £ T  — f(yvz)f(xvz) £ 2) dz
IR IeE AR e F e

which allows to simplify <A1 N, goj> as follows:

AlN soj //901 y) p; (z) 6en (2,y) f (,.) dady

(xz

///901 y)p; (@ .’Z 5fN (y,z) dxdydz

+///901 y) o (z f y)j §fn (x,2) dedydz

f(ya Z)f( > ) £
[ ] [erwe; @ LS F O 0 ) dadyaz
/(@

- [ [ [y @ MR e o e

- [[aw|[oe >f<x|z>d]6f (1,2) dyd=
+//¢j( [ ]5fN 2) dedz
//sol D [/f“ 2 ]6fN< ) drdy
- [fortea] e

= uj//sol 5fzv z,y) dxdy
+puf //90] )1 (y) 8fw (,y) dady

dy]éf (,2) dz
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1 [ 01 (@) 05 (@) 8 (@) da
—uluj/% () 6fn (y)dy
// [ufwl (z) ¥, (y)+u1§s0j () ¥y ()
—pnr (@) 9; () — 1 iy () 0, (y)} 8fn (x,y) dxdy.
In particular:
(Ao = st [ [lor @1 )+ 61 @)
R (2) — 3 (y)] 6 fn (w,y) dady.

A similar computation provides:

A (@) = —(//sol £ @128y (0,2) dydz + 1} [0y ()8 (a,2) dz
—ner ()8 ) =it [ 1) f (o] 2) 8y (2)dz)
= o (v [0 @ @2 de = ey @ efx @) (€D

after the elimination of the terms of higher order.
i13) Convergence rates of the estimators

Finally, we can note that the estimators of the canonical correlations and

canonical variates do not converge at the same rate. Indeed, from theorem
A~ ~ 1

3.7, we deduce that By y and <A17N,gol> converge at rate N~ 2, whereas

A _d
Ay n () converge at rate N_%hm?,. We deduce from (C.3) and the compar-
ison of rates that:

. 1
NhiiN‘SSOl,N (7) ~ i NthAlN( ).
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C.3 Asymptotic distribution of j1; v, ¢; v, Yy

i) Asymptotic distribution of ji; y

From the expansion 61 y =~ <A1,N; 901> , we deduce by theorem 3.7 that:

\/Néﬂl,N 4 N (0,W1),

where

Vo= S Covloy (Xt (Ya) + 1 (Xn) 01 (Ya)

k=—00

_/h%‘P% (Xn) — 1 1/’1 (Y, ) 01 (Xngr) ¥y ( Yoix) +

Yy (Xnik) 1 Yark) —Mf% (Xnyk) — pi ¢1( Yoik)| -

ii) Asymptotic distribution of ¢; y

From the expansion 6¢; y () =~ Iu—llflLN (x), we deduce:

21 (@) = 50 [ 00 ) = b @)] 0o () o

and, by theorem 3.7:

VNI (218 (@) =1 (@) 5 N (0, W1 (@),

where

(1:15 )/{1/’1( ) — N%@l( )]Qf(a?,y)dy,

u) du (/% fly|z)dy — um())

- /K u)du V [y (V) | X = al.

Wi(x) = /Kl

ii1) Asymptotic distribution of 1%2»7 N

The result is immediate by symmetry.
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C.4 Asymptotic expansion of )\ 1N gpf N

1) Expansion of the first order condition

We can directly consider the pair (A1,p;) and its estimated counterpart
(5\171\7,@171\7) . The pair (A1, ;) satisfies:

/s01 (x| y)dz = Mgy (v), (C.8)
[F@ @ yde=1,

where f (x| y) = f(x,y) /f(.,y) . Similarly, the pair (j\ﬁN, @EN) satisfies:
. ; R
[t @) @ ) de = Ninel ). (c9)

/SolN()fN( Jdx =1,

where f}\? (x|y) = fﬁ (z,y) /f}\? (.,y). The two previous equations can be
written as:

/ [%’1 (w) + 6@5]\, (x)} [f (x| y) + 6 /% (x| y)} da

- <)\1 + 5Xff N) [sol (y) + 6@y (y)} ;

[ lor @+ 8015 @) [£ @)+ 6 £ ()] = 1.

‘R ‘R
where the differential terms are 0\ y = A y — A1, 091 v = @1y — ¢ and
1 fR = ff\? — f. A first order expansion provides the system below:

/5s01N (z]y dw+/s01 )6 /R (x| y) da (C.10)

~R R
=6 ner () + M6y ()

/ﬁ (2) 68 (z,.) do + 2/<,01 (2) f (2,.) 8¢y () dv=0.  (C.11)

Let us denote:

A A A 1 o

AEN (y) = /801 () 5f11\? (7 |y)dx, BEN =73 80% () 5f11\? (z,.)dx.
The conditions (C.10) and (C.11) become:

“R R
oM v (y) + )\1590{%,1\7 /5801 N (z|y)dr = A1 v (), (C.12)
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[ 1@ (@) 60ty (@) do = BEy. (€13

Let us now multiply both sides of equation (C.12) by ¢; (y) f(.,y) and
integrate with respect to y, we obtain:

<A5N"’01> - 5XffN+A1/% () 61N () f (- y) dy
_//5"5% (@)1 (W) f (x| y) f(y) dody.
By using now the reversibility property, we get:
/ / 8¢ty (@)1 () f (2 | ) f (,y) dady
N //5@% (@) o1 ) f(y | ) f(x,.) dody
=M / 81ty (2) ¢y (2) f (x,.) da,

and we conclude that:

ohiw = (Ao = [ [or @ ) 6/F @9)f (2y)dedy. (C14)

i) Asymptotic expansion of 6 £ (z | y)
We get: -

518 (,y)  6fR ()
fy) 2(y)

SfR (x| y) ~ f(x,y),

and we deduce:

A{%,N (y) =~

e [/sol )85 e = offt (o) [ o1 (@) £ () da]
1

= Flw) [/%01 (@) 6 /8 (,9) dz — Mgy (y) 5ff§(-,y)], (C.15)

and, in particular:

oy = (Al = [ [ [on @ or @) = Met )] 6 () dady.

iii) Convergence rates of the estimators

As in the non reversible case, AfN (y) tends to zero at rate Nféhl_]\?,

whereas <AfN, gol> and 3{%, tend to zero at rate N~2. We conclude that:

N 1 A
\V thfN(S‘PEN (y) ~ )\_1 Nh‘cllNAfN (y) -
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C.5 Asymptotic distribution of )\l N gpr

‘R
i) Asymptotic distribution of \; y

From the expansion of 65\§N o~ <A{2N, 501> , we deduce by theorem 3.7 that:

VNoALy SN (0,VF)

where

= = Z Cov [(pl n) o1 (Vo) — )\190% (Ya),

k—foo

@1 (Xnir) 91 (Yosk) = A1 (Yoss)] -

ii) Asymptotic distribution of ¢y
From the expansion 6@, y (z) ~ 5~ LAy (2), we deduce:

1 1
v (1) = 50

1) = Moy @6 )y,

and, by theorem 3.7, that:

UNBE, (22 (@) — ¢ @) S N (0,0 ).

Wi () = ; j P — [ K@ [ le1 ) = My @ £ ()

= )\ /K1 ) du </g01 flz)dy— )\19‘91())

w)du Ve (Y) [ X = a].

l\D
1\3

= 2)\2

=

o1



