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Abstract

Does Algorithmic Trading Improve Liquidity?

Algorithmic trading has sharply increased over the past decade. Equity market liquidity

has improved as well. Are the two trends related? For a recent five-year panel of New

York Stock Exchange (NYSE) stocks, we use a normalized measure of electronic message

traffic as a proxy for algorithmic liquidity supply and trace the associations between liquidity

and message traffic. Based on within-stock variation, we find that algorithmic trading and

liquidity are positively related. To sort out causality, we use the start of autoquoting on

the NYSE as an exogenous instrument for algorithmic trading. Previously, specialists were

responsible for manually disseminating the inside quote. As stocks were phased in gradually

during early 2003, the manual quote was replaced by a new automated quote whenever there

was a change to the NYSE limit order book. This market structure change provides quicker

feedback to traders and algorithms and results in more message traffic. For large-cap stocks

in particular, quoted and effective spreads narrow under autoquote and adverse selection

declines, indicating that algorithmic trading does causally improve liquidity.



Technological change has revolutionized the way financial assets are traded. Back office

improvements can support vastly increased trading volume. Retail investors place orders via

computer rather than speaking to a broker on the phone. Trading floors have largely been

replaced by electronic trading platforms (Jain (2005)).

The nature of order execution has changed dramatically as well, as many market

participants now employ algorithmic trading (AT), commonly defined as the use of com-

puter algorithms to manage the trading process. From a starting point near zero about

ten years ago, AT is now thought to be responsible for 1

3
of trading volume in the U.S and

is expected to account for perhaps half of trading volume by 2010 (Economist (2007a)).

The intense activity generated by algorithms threatens to overwhelm exchanges and mar-

ket data providers (Economist (2007b)), forcing significant upgrades to their infrastructures

(Economist (2007a)).

Before algorithmic trading took hold, a pension fund manager who wanted to buy

30,000 shares of IBM might hire a broker-dealer to search for a counterparty to execute the

entire quantity at once in a block trade. Alternatively, that institutional investor might have

hired a New York Stock Exchange (NYSE) floor broker to go stand at the IBM post and

quietly “work” the order, using his judgment and discretion to buy a little bit here and there

over the course of the trading day to keep from driving the IBM share price up too far. As

trading became more electronic, it became easier and cheaper to replicate that floor trader

with a computer program doing algorithmic trading (see Hendershott and Moulton (2007)

for evidence on the decline in NYSE floor broker activity). Now virtually every large broker-

dealer offers a suite of algorithms to its institutional customers to help them execute orders

in a single stock, in pairs of stocks, or in baskets of stocks. Algorithms typically determine

the timing, price, and quantity of orders, dynamically monitoring market conditions across

different securities and trading venues, reducing market impact by optimally (and possibly

randomly) breaking large orders into smaller pieces, and closely tracking benchmarks such

as the volume-weighted average price (VWAP) over the execution interval.

Many observers think of algorithms from the standpoint of this institutional buy-

side investor.1 But there are other important users of algorithms. Some hedge funds and

broker-dealers supply liquidity using algorithms, competing with designated market-makers

and other liquidity suppliers. For assets that trade on multiple venues, liquidity demanders

often use smart order routers to determine where to send a marketable order. All of these

are also forms of algorithmic trading.2

1See, for example, Domowitz and Yegerman (2005).
2Algorithms can also be used to formulate trading decisions and strategies as well as implement them.
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As AT has grown rapidly over the past ten years or so, liquidity in world equity

markets has also dramatically improved. Based on these two coincident trends, it is tempting

to conclude that algorithmic trading is at least partially responsible. But it is not at all

obvious a priori that AT and liquidity should be positively related. If algorithms are cheaper

and/or better at supplying liquidity, then AT may result in more competition in liquidity

provision, thereby lowering the cost of immediacy. However, the effects could go the other

way if algorithms are used mainly to demand liquidity. Limit order submitters grant a

trading option to others, and if algorithms make liquidity demanders better able to identify

and pick off an in-the-money trading option, then the cost of providing the trading option

increases, and spreads must widen to compensate. In fact, AT could actually lead to an

unproductive arms race, where liquidity suppliers and liquidity demanders both invest in

better algorithms to try to take advantage of the other side, with measured liquidity the

unintended victim.

In this paper, we attempt to gauge empirically the relationship between algorithmic

trading and liquidity. We use a normalized measure of NYSE electronic message traffic as

a proxy for algorithmic trading. This message traffic includes electronic order submissions,

cancellations, and trade reports. Because we normalize by trading volume, variation in

our AT measure is for the most part driven by variation in limit order submissions and

cancellations. This means that our measure is mainly picking up variation in algorithmic

liquidity supply. This liquidity supply is likely coming both from proprietary traders making

markets algorithmically and from buy-side institutions using “slice and dice” algorithms.

AT’s effect on liquidity is assessed using two empirical approaches. First, panel

regressions are used to establish that time-series increases in algorithmic trading are associ-

ated with more liquid markets. To disentangle causality, we use the start of autoquoting on

the NYSE as an exogenous instrument for algorithmic trading. Previously, specialists were

responsible for manually disseminating the inside quote. This was replaced in early 2003

by a new automated quote whenever there was a change to the NYSE limit order book.

This market structure change provides quicker feedback to traders and algorithms and re-

sults in more electronic message traffic. The change was also phased in for different stocks

at different times, and we take advantage of this non-synchronicity to cleanly identify the

effects.

We find that algorithmic trading does in fact improve liquidity for large-cap stocks.

There are clearly feedback effects between the portfolio strategy side and the execution side. For example,
algorithmic execution could be the difference in making a trading-intensive algorithmic portfolio strategy
feasible. Our data reflect counts of actual orders submitted and canceled, so we focus on the execution side
of algorithms.
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Quoted and effective spreads narrow under autoquote. The narrower spreads are a result

of a sharp decline in adverse selection, or equivalently a decrease in the amount of price

discovery associated with trades. There are no significant effects for smaller-cap stocks, but

our instrument is weaker here, so the problem may be a lack of statistical power.

Surprisingly, we find that algorithmic trading increases realized spreads and other

measures of liquidity supplier revenues. This is surprising because we expected that if AT

improved liquidity, the mechanism would be competition between liquidity providers. But

the evidence clearly indicates that liquidity suppliers are capturing some of the surplus for

themselves. To help make sense of this counter-intuitive result, we introduce the generalized

Roll model developed in Hasbrouck (2007), modified to allow algorithmic liquidity supply.

The model matches up with all our empirical findings. In particular, it shows that liquidity

supplier revenues depend on the degree of competition between the marginal liquidity sup-

pliers. To put it starkly, in a world without algorithms, liquidity supplier revenues depend

on the degree of competition between liquidity supplier humans. In a world with algorithms,

liquidity supplier revenues depend on the degree of competition between algorithms. Our

results suggest that, at least immediately following the start of autoquote, there was less

competition between the best algorithms, perhaps because new algorithms require consider-

able investment and time-to-build.

The paper proceeds as follows. Section 1 discusses related literature. Section 2

describes our data and analyzes algorithmic trading and its impact from 2001 through 2005.

Section 3 examines algorithmic trading and liquidity surrounding the NYSE’s staggered in-

troduction of autoquote in 2003. Section 4 discusses and interprets the results, and Section 5

concludes.

1 Related literature

There are very few papers that address algorithmic trading directly, but there are several

strands of academic literature that touch related topics. Most models take the traditional

view that one set of traders provides liquidity via quotes or limit orders and another set of

traders initiates a trade to take that liquidity – for either informational or liquidity/hedging

motivations. Many assume that liquidity suppliers are perfectly competitive, e.g., Glosten

(1994). Glosten (1989) models a monopolistic liquidity supplier, while Biais, Martimort, and

Rochet (2000) allow for an arbitrary number of symmetric competing liquidity suppliers and
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find that liquidity suppliers’ rents decline as the number increases. Our initial expectation is

that AT would lead to entry of additional liquidity suppliers, and reduce their overall rents.

The development and adoption of AT also involves strategic considerations. While

algorithms have low marginal costs, there may be substantial development costs, and it may

be costly to optimize the algorithms’ parameters for each security. The need to recover these

costs should lead to the adoption of algorithmic trading at times and in securities where

the returns to adoption are highest (see Reinganum (1989) for a review of innovation and

technology adoption).

As discussed briefly in the introduction, liquidity supply involves posting firm com-

mitments to trade. These standing orders provide free trading options to other traders.

Using standard option pricing techniques Copeland and Galai (1983) value the cost of the

option granted by liquidity suppliers. The arrival of public information renders existing or-

ders stale and can put the free trading option into the money. Foucault, Roëll, and Sandas

(2003) study the equilibrium level of effort that liquidity suppliers should expend in monitor-

ing the market to avoid this picking off risk. Improvements in technology allow algorithms to

inexpensively perform such monitoring.3 In this way AT may be a way to implement Black

(1995) idea of limit orders indexed to a market index. If AT reduces the cost of the free

trading option implicit in limit orders, then measures of adverse selection should decrease

with AT. If some users of AT are better at avoiding being picked off, they can impose adverse

selection costs on other liquidity suppliers (similar to the mechanism in Rock (1990)) and

even drive other liquidity suppliers out.

AT may also be used by traders who trying to passively accumulate or liquidate

a large position (see Keim and Madhavan (1995) for evidence of large orders being broken

up). How aggressively to execute trades involves complex dynamic optimization problems

to determine order size, order frequency, and order type. Bertsimas and Lo (1998) study

optimal execution strategies in the presence of temporary price impacts. Conditional on

the constraint of completing the entire transaction by a fixed date, orders are broken into

pieces so as to minimize cost. Almgren and Chriss (2000) extend this by considering the

risk that arises from breaking up order and slowly executing them. Obizhaeva and Wang

(2005) optimize assuming that liquidity does not replenish immediately after it is taken but

only gradually over time. Many brokers build models with such considerations into their AT

products that they sell to their clients.

For each component of the larger transaction a trader (or algorithm) must choose

3See Rosu (2006) for a model where limit orders are constantly adjusted.

4



the type and aggressiveness of the order. Cohen et al. (1981) and Harris (1998) focus on

the simplest choice: market order versus limit order. If a trader chooses a non-marketable

limit order, the aggressiveness of the order is determined by its limit price (Griffiths et al.

(2000) and Ranaldo (2004)). How aggressively a limit order should be priced depends on

how price affects the time to execution (Lo, MacKinlay, and Zhang (2002)). If limit orders

do not execute, traders may cancel them and resubmit them with more aggressive prices.

Hasbrouck and Saar (2007) find that on the INET trading platform (now Nasdaq’s trading

mechanism) a large number of limit orders are cancelled within two seconds.4

2 Data and full sample analysis

To study the relationship between algorithmic trading and liquidity, we start with a monthly

panel of NYSE common stocks. We limit ourselves to the post-decimalization regime because

the change to a one penny minimum tick was a structural break that substantially altered the

entire trading landscape, including liquidity metrics and order submission strategies. The

sample extends for almost five years, beginning in February 2001 and ending in December

2005. We start with a sample of all NYSE common stocks that can be matched across the

NYSE’s Trade and Quotes (TAQ) and the CRSP databases and retain the stocks that are

present throughout the whole sample period (in order to maintain a balanced panel). Stocks

with an average share price of less than $5 are removed from the sample, as are stocks with

an average share price of more than $1,000. The resulting sample comprises 943 common

stocks.

Stocks are sorted into quintiles based on market capitalization. Quintile 1 refers to

large-cap stocks and quintile 5 corresponds to small-cap stocks. All variables used in the

analysis are 99.9% winsorized (that is, values smaller than the 0.05% quantile are set equal

to that quantile, and values larger than the 99.95% quantile are set equal to that quantile).

4Boehmer, Saar, and Yu (2005) show that NYSE’s introduction of OpenBook, which disseminates limit
order book information beyond the best quote, is associated with an increase in the cancellation rate of limit
orders.
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2.1 Proxies for algorithmic trading

We cannot directly observe whether a particular order is generated by a computer algorithm.

For cost and speed reasons, most algorithms do not rely on human intermediaries but instead

generate orders that are sent electronically to a trading venue. Thus, the rate of electronic

message traffic may be a useful proxy for the amount of algorithmic trading taking place. In

the case of the NYSE, electronic message traffic includes order submissions, cancellations,

and trade reports that are handled by the NYSE’s SuperDOT system and captured in the

NYSE’s System Order Data (SOD) database. The electronic message traffic excludes all

specialist quoting, as well as all orders that are sent manually to the floor and are handled

by a floor broker.

[insert Figure 1]

The main issue is whether and how to normalize the message traffic numbers. The

top half of Figure 1 shows the evolution of message traffic over time. We focus on the largest-

cap quintile of stocks, as these constitute the vast bulk of stock market capitalization and

trading activity. Immediately after decimalization at the start of 2001, the average large-cap

stock sees about 35 messages per minute during the trading day. There are a few bumps

along the way, but by the end of 2005, there are an average of about 250 messages per

minute (more than 4 messages per second!) for these same large-cap stocks. We could, of

course, simply use the raw message traffic numbers, but there has been a marked increase

in trading volume over the same interval, and without normalization a raw message traffic

measure may just be capturing the increase in trading rather than the change in the nature

of trading. Therefore, we normalize by calculating for each stock each month the number

of electronic messages per $1,000 of trading volume. This normalized measure still rises

rapidly over the five-year sample, while measures of market liquidity such as proportional

spreads have declined sharply but appear to asymptote near the end of the sample (see,

for example, the average quoted spreads in the top half of Figure 2), which occurs as more

and more stocks are quoted with the minimum spread of $0.01. Since we are essentially

regressing spreads on algorithmic trading measures, we want both measures to have this

same general shape over time. Thus, our preferred measure is just the negative reciprocal

of the messages per dollar traded. Specifically, algo tradit is calculated as the negative of

trading volume (in thousands of dollars) divided by the number of electronic messages. The

time-series evolution of this measure is displayed in the bottom half of Figure 1. For the

largest-cap quintile, there is about $7,000 of trading volume per electronic message at the
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beginning of the sample in 2001, decreasing dramatically to about $1,100 of trading volume

per electronic message by the end of 2005. Over time, smaller-cap stocks display similar time-

series patterns. Cross-sectionally, there is a positive monotonic relationship between market

cap and trading volume per message. In general, we focus more on time-series behavior

rather than the cross-sectional patterns.

It is worth noting that our algorithmic trading proxies may also capture changes in

trading strategies. For example, messages and algo tradit will increase if the same market

participants use algorithms but modify their trading or execution strategies so that those

algorithms submit and cancel orders more often. Similarly, the measure will increase if

existing algorithms are modified to “slice and dice” large orders into smaller pieces. This is

useful, as we want to capture increases in the intensity of order submissions and cancellations

by existing algorithmic traders, as well as the increase in the fraction of market participants

employing algorithms in trading.

2.2 Summary statistics

[insert Table 1]

Table 1 contains means by quintile and within-stock standard deviations for all of the

variables used in the analysis. We measure liquidity using quoted half-spreads, effective half-

spreads, 5-minute realized spreads, and 5-minute price impacts, all of which are measured

as share-weighted averages and expressed in basis points as a proportion of the prevailing

midpoint. The effective spread is the difference between an estimate of the true value of the

security (the midpoint of the bid and ask) and the actual transaction price. For the tth trade

in stock j, the proportional effective half-spread (espreadjt) is defined as:

espreadjt = qjt(pjt − mjt)/mjt, (1)

where qjt is an indicator variable that equals +1 for buyer-initiated trades and −1 for seller-

initiated trades, pjt is the trade price, and mjt is the quote midpoint prevailing at the time of

the trade. We follow the standard trade-signing approach of Lee and Ready (1991) and use

contemporaneous quotes to sign trades and calculate effective spreads (see Bessembinder

(2003), for example). For each stock each day, we use all NYSE trades and quotes to

calculate quoted and effective spreads for each reported transaction and calculate a share-
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weighted average across all trades that day. For each month we calculate the simple average

across days. We also measure quoted depth at the time of each transaction and report

share-weighted averages measured in thousands of dollars. For example, the mean effective

half-spread of 3.67 basis points for stocks in the largest-cap quintile corresponds to a half-

spread of 1.68 cents (or a whole spread of 3.36 cents) on a stock with the mean share price

of $45.90.

[insert Figure 2]

The figures show quite clearly that, over time, algorithmic trading is gradually in-

creasing while liquidity is gradually improving. Figure 1 shows that algorithmic trading

increases almost monotonically. The spread measures in Figure 2 are not nearly as mono-

tonic, with illiquidity spikes in both 2001 and 2002 that correspond to sharp stock market

declines. Nevertheless, one is tempted to conclude that these two trends are related. The

analysis to come investigates exactly this relationship using formal econometric tools rather

than casual armchair empiricism.

2.3 Correlations

[insert Table 2]

We begin with Table 2, which uses our monthly panel to provide a set of univariate cor-

relations between spreads, algorithmic trading variables, volume, volatility, and share price

variables. It is interesting to note that the cross-sectional (between) correlation between

spreads and algo tradit is positive. This matches the cross-quintile evidence in Figure 1 and

Figure 2. This is clearly driven by the cross-section of volume because the correlation with

raw message traffic is strongly negative. Perhaps there is a fixed component to message

traffic, in that a certain amount of message traffic is required for price discovery regardless

of how much trading occurs, giving rise to the positive cross-sectional correlation between

spreads and algo tradit. While there is undoubtedly value to further analyzing the causes

and effects of cross-sectional variability in algorithmic trading, we focus hereafter on within-

stock correlations, because we want to understand the impact of the change in algorithmic

trading over time.

The within-stock correlation between quoted spreads and algorithmic trading is

negative and significant. This is a contemporaneous correlation, and we do not have anything
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yet to say about causality. But it appears that, stock by stock in the panel, algorithmic

trading is high when spreads are narrow. We also find that algorithmic trading is negatively

correlated with volatility, where volatility is measured as the standard deviation of daily

midpoint returns for a given month.

2.4 Panel regressions

To confirm that these univariate correlations are robust, we specify regressions for our

monthly panel that are of the form:

Lit = αi + γt + βAit + δXit + εit, (2)

where Lit is a liquidity measure (quoted spread, effective spread, or quoted depth) for stock

i in month t, Ait is the algorithmic trading measure algo tradit, and Xit is a vector of control

variables, including trading volume, return volatility, inverse price, and log market cap. Firm

fixed effects are always included (αi); results are always reported with and without calendar

fixed effects (γt). We estimate separate regressions for each of the market-cap quintiles, and

standard errors are robust to general cross-section and time-series heteroskedasticity and

within-group autocorrelation (see Arellano and Bond (1991)).

[insert Table 3]

The results are in Table 3 Panel A, and they are qualitatively consistent across the

size quintiles. The sign of the algorithmic trading coefficient depends on whether time dum-

mies are included. When there are no calendar fixed effects, the regression is identified using

only within-stock variation. Here the results match the univariate within-stock correlations:

the coefficient on algo tradit is negative and significant, indicating that an increase in algo-

rithmic trading is associated with narrower quoted or effective spreads. When time dummies

are added, changes to common market-wide liquidity factors are removed, and the regres-

sion is identified using only idiosyncratic changes in liquidity. Interestingly, the coefficient on

algo tradit changes sign in this case. This does not cast doubt on our other results; it implies

only that algorithmic trading and idiosyncratic liquidity are negatively related. However, it

does suggest that the positive time-series association within a given stock between liquidity

and algorithmic trading is driven by changes in market-wide common liquidity factors.
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If spreads narrow when algorithmic trading increases, it is natural to decompose the

spread along the lines of Glosten (1987) to determine whether the narrower spread means

less revenue for liquidity providers, smaller gross losses to liquidity demanders, or both. We

estimate revenue to liquidity providers using the 5-minute realized spread. The proportional

realized spread for the tth transaction in stock j is defined as:

rspreadjt = qjt(pjt − mj,t+5min)/mjt, (3)

where pjt is the trade price, qjt is the buy-sell indicator (+1 for buys, −1 for sells), mjt is

the midpoint prevailing at the time of the tth trade, and mj,t+5min is the quote midpoint five

minutes after the tth trade (the price at which the liquidity provider is assumed able to close

her position).

We measure gross losses to liquidity demanders due to adverse selection using the

5-minute price impact of a trade (adv selectionjt), defined using the same variables as:

adv selectionjt = qjt(mj,t+5min − mjt)/mjt. (4)

Note that there is an arithmetic identity relating the realized spread, the adverse

selection (price impact), and the effective spread espreadjt:

espreadjt = rspreadjt + adv selectionjt. (5)

For these spread components, we estimate panel regressions of the same form as

before, and the results are in Panel B of Table 3. Again we report results with and without

calendar fixed effects, but we focus on the results without time dummies. Both realized

spreads (espreadjt) and price impacts (adv selectionjt) are negatively associated with algo-

rithmic trading. More algorithmic trading is associated with narrower effective spreads, and

these narrower spreads imply lower revenue per trade for the liquidity provider as well as

smaller gross losses to liquidity demanders. But the relative contributions of the two compo-

nents are very different. Most of the narrowed spread is due to a decline in adverse selection

losses to liquidity demanders. Depending on the size quintile being studied, 75% to 90% of

the narrowed spread is due to a smaller price impact. We discuss this in considerable detail

below, but we suspect that while manually submitted limit orders are eventually picked off
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by informed traders, algorithms are better able to avoid some of these informed traders by

a so-called “cancel and replace” of the stale limit order.

So far, all we have identified are time-series associations between algorithmic trading

and liquidity. We cannot yet say anything about the direction of causality. It is certainly

easier to tell a story that goes in the standard direction. For example, algorithmic trading

could be providing competition in liquidity provision, thereby improving liquidity. But

algorithmic trading is an endogenous choice variable that depends on liquidity, among other

parameters. Liquidity is also endogenous and depends on a variety of factors, including the

technological and other costs incurred by liquidity providers. Sorting out causality requires

an exogenous instrument, and we turn to that in the next section.

3 Autoquote

As a result of the reduction of the minimum tick to a penny in early 2001 as part of deci-

malization, the depth at the inside quote shrank dramatically. In October 2002, the NYSE

proposed that a “liquidity quote” for each stock be displayed along with the best bid and

offer. The NYSE liquidity quote was designed to provide more information about expressed

trading interest at prices outside of the best bid and offer (it was also designed to recap-

ture some of the block trading business that the NYSE had lost to upstairs markets and

to algorithms). A liquidity quote was to be a firm bid and offer for substantial size, typ-

ically at least 15,000 shares, accessible immediately via a new type of market order called

Institutional Xpress.5

At the time of the liquidity quote proposal, specialists were responsible for manually

disseminating the inside quote.6 Clerks at the specialist posts on the floor of the exchange

were typing rapidly and continuously from open to close and still were barely keeping up

with order matching, trade reporting, and quote updating. In order to ease this capacity

constraint and free up specialists and clerks to manage a liquidity quote, the exchange

proposed to allow the inside quote to be disseminated automatically. Under NYSE Rule 60,

display book software would “autoquote” the NYSE’s highest bid or lowest offer whenever

5For more details, the NYSE proposal is contained in Securities Exchange Act Release No. 47091 (De-
cember 23, 2002), 68 FR 133.

6There was one main exception. If a new or cancelled SuperDOT limit order would change the inside
quote, system software automatically disseminated an updated quote after 30 seconds if the specialist had
not already done so.
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there was a change to the limit order book via SuperDOT. This would happen when a

better-priced order arrived, when the inside quote was traded with in whole or in part, or

when the size of the inside quote changed.

[insert Figure 5]

In early 2003, the liquidity quote proposal became enmeshed in a dispute over prop-

erty rights between the exchange and data vendors such as Bloomberg. The SEC eventually

issued a stay delaying the implementation of the liquidity quote, and liquidity quote did

not become operational until June 13, 2003. Meanwhile, the NYSE began to phase in the

liquidity quote and autoquote software on January 29, 2003, starting with 6 active, large-cap

stocks. During the next two months, over 200 additional stocks were phased in at various

dates, and all remaining NYSE stocks were phased in on May 27, 2003. Figure 5 provides

some additional details on the phase-in process. Because liquidity quotes were not yet acces-

sible or widely disseminated during this phase-in period, the only change to market structure

from January to May 2003 was the non-synchronous addition of autoquote, making this an

ideal exogenous event for study.

In fact, even when liquidity quotes became firm in June 2003, they had little impact

on trading. Only a handful of large orders ever used the Institutional Xpress order type,

mainly because the spread was typically quite large relative to what could be negotiated in

the upstairs market. Most of the information in the liquidity quote was already available to

traders and algorithms via NYSE’s Openbook product, which provided periodic snapshots

of the NYSE limit order book (see Boehmer, Saar, and Yu (2005) for an analysis of the intro-

duction of OpenBook). Ultimately, liquidity quotes were deemed an unsuccessful innovation

and were abandoned in July 2005. But the autoquote feature stayed in place.

For algorithmic traders, autoquote was an important innovation, because it provided

much more immediate feedback about the potential terms of trade. Autoquote allowed

algorithmic liquidity suppliers to, say, quickly notice an abnormally wide inside quote and

provide liquidity accordingly via a limit order. Algorithmic liquidity demanders could quickly

access this quote via a conventional market or marketable limit order or by using the NYSE

Direct+ facility, which provided automatic execution for limit orders of 1,099 shares or less

against the exchange’s disseminated quote.
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3.1 Autoquote sample

To study the effects of autoquote, we build a daily panel for NYSE common stocks. The

sample begins on December 2, 2002, which is approximately two months before the autoquote

phase-in begins, and it extends through July 31, 2003, about two months after the last batch

of NYSE stocks moves to the autoquote regime. For consistency, we start with the same

share price filters as before: stocks with an average share price of less than $5 or more than

$1000 are removed. To make our various autoquote analyses comparable, we use the same

sample of stocks throughout this section. The Hasbrouck (1991a, 1991b) decomposition

(discussed below in section 3.3.2) has the most severe data requirements, so we retain all

stocks that have at least 21 trades per day for each day in the eight-month sample period.

This leaves 1,082 stocks in the sample.

Stocks are then sorted into quintiles based on market capitalization. Quintile 1

refers to large-cap stocks and quintile 5 corresponds to small-cap stocks. All variables used

in the analysis are 99.9% winsorized (that is, values smaller than the 0.05% quantile are

set equal to that quantile, and values larger than the 99.95% quantile are set equal to that

quantile).

3.2 Autoquote results

[insert Table 4]

Autoquote clearly leads to greater use of algorithms. Message traffic increases by about

50% in the most active quintile of stocks as autoquote is phased in (see Figure 5), and the

daily within-stock correlation between message traffic and the autoquote dummy reported in

Table 4 is 0.08. Correlations are higher for large-cap stocks, consistent with the conventional

wisdom that algorithmic trading was more effective at the time for active, liquid stocks.

Table 4 also shows that there is also a significant positive correlation between the autoquote

dummy and our preferred measure of algorithmic trading algo tradit, which is the negative of

dollar volume (in hundreds) per electronic message. This plus the exogenous phase-in makes

the introduction of autoquote an ideal instrument for assessing the impact of algorithmic

liquidity suppliers.7

7In the IV regression tables (Tables 5-7), we report F statistics that reject the null that the instruments do
not enter the first stage regression. We are therefore not concerned about the “weak instruments problem,”
also because our F statistics range from 5.88 to 7.32 and Bound, Jaeger, and Baker (1995, p.446) mention
that “F statistics close to 1 should be cause for concern.”
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Within-stock correlations in Table 4 also show that after the introduction of auto-

quote turnover is higher, volatility is lower, and share prices are higher. However, we have

no intention of ascribing these results to autoquote. These results likely reflect the fact that

the market rose during the early part of 2003 for unrelated reasons, and they highlight the

importance of the staggered introduction of autoquote for cleanly identifying the effect of

the market structure change. By including time dummies in the panel specification, we can

use non-autoquoted stocks as controls, comparing phased-in autoquoted stocks to not-yet-

autoquoted stocks. The time dummies also absorb potential nonstationarity in the time

series.8

Our principal goal is to understand the effects of algorithmic liquidity supply on

market quality, and so we use the autoquote dummy as an instrument for algorithmic trading

in a panel regression framework. Our main instrumental variables specification is a daily

panel of 1,082 NYSE stocks over the eight-month sample period spanning the staggered

implementation of autoquote. The dependent variable is one of five liquidity measures: the

quoted (half) spread, the effective half-spread, the 5-minute realized spread, or the 5-minute

price impact of a given trade, all of which are share-volume weighted and measured in basis

points, or the quoted depth in thousands of dollars. We have fixed effects for each stock as

well as time dummies, and we include share turnover, volatility (measured as the standard

deviation of daily midquote returns in percent), the inverse of share price, and the log of

market cap as control variables. Results are virtually identical if we exclude these control

variables. Based on anecdotal information that algorithmic trading was relatively more

important for active large-cap stocks during this time period, we estimate this specification

separately for each market-cap quintile.

[insert Table 5]

The results are reported in Panel A of Table 5, and the most reliable effects are in

larger stocks. For large-cap stocks (quintiles 1 and 2), the autoquote instrument shows that

an increase in algorithmic liquidity supply narrows both the quoted and effective spread. To

interpret the estimated coefficient on the algorithmic trading variable, recall that the algo-

rithmic trading measure algo tradit is the negative of dollar volume per electronic message,

measured in hundreds of dollars, while the spread is measured in basis points. Thus, the

IV estimate of -0.52 on the algorithmic trading variable for quintile 1 means that an in-

crease in algorithmic trading from the whole-sample mean of $2,634 of volume per message

8In the IV regression tables (Tables 5-7), we test for any remaining nonstationarity in the residuals
through Dickey-Fuller tests. We reject the null of nonstationarity in all cases.
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implies that quoted spreads narrow by 0.52 basis points. Over the whole five-year sample

interval, the average within-stock standard deviation for algo tradit is 11.2 or $1,120, so a

unit standard deviation change in our algorithmic trading measure is associated with a 5.82

basis point change in proportional spreads. The IV estimate on algo tradit is statistically

indistinguishable from zero for quintiles 3 through 5. This could be a statistical power issue.

Figure 5 shows that most small-cap stocks were phased-in at the very end, reducing the

non-synchronicity needed for econometric identification. Perhaps as a result, the autoquote

instrument is only weakly correlated with algorithmic trading in these quintiles.

3.3 Decomposition of the spread improvement

As discussed earlier in the paper, narrower effective spreads imply either less revenue per

trade for liquidity providers, smaller gross losses to liquidity demanders, or both. In Table 5

Panel B, we decompose effective spreads into a realized spread component and an adverse

selection or price impact component in order to understand the source or sources of the

improvement in liquidity under autoquote. IV regressions are repeated using each component

of the spread.

The results are somewhat surprising. For quintiles 1 through 3 (large and medium-

cap stocks), the realized spread actually increases significantly after autoquote, indicating

that liquidity providers are earning greater net revenues. These greater revenues are offset

by a larger decline in price impacts, implying that liquidity providers are losing far less to

liquidity demanders after autoquote. As before, nothing is significant for the two smallest-

cap quintiles.

We describe these results as surprising because they do not match our priors going

into the analysis. We thought that if autoquote improved liquidity, it would be because

algorithmic liquidity suppliers were low-cost providers who suddenly became better able to

compete with the specialist and the floor under autoquote, and thereby improving overall

liquidity by reducing aggregate liquidity provider revenues. Instead, it appears that liquidity

providers in aggregate were able to capture some of the surplus created by autoquote.

[insert Table 6]

Which liquidity providers benefit? We do not have any trade-by-trade data on the

identity of our liquidity providers, but we do know specialist participation rates for each
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stock each day, so we can see whether autoquote changed the specialist’s liquidity provision

market share. We conduct an IV regression with the specialist participation rate on the

left-hand side, and the results in Table 6 confirm that, at least for the large-cap quintile

of stocks, specialists appear to participate less under autoquote, suggesting that it is other

liquidity providers who capture the surplus created by autoquote.

Table 6 also puts a number of other non-spread variables on the LHS of the IV

specification. The most interesting is trade size. At least for the two largest quintiles,

the autoquote instrument confirms most observers’ strong suspicions that the increase in

algorithmic trading is one of the causes of smaller average trade sizes in recent years.

3.3.1 Lin-Sanger-Booth decomposition

The decomposition of the effective spread introduced above has the advantage of being

simple, but it also has distinct disadvantages. In particular, it chooses an arbitrary time

point in the future (five minutes in this case) and implicitly ignores other trades that might

have happened in that five-minute time period. Lin, Sanger, and Booth (Lin, Sanger, and

Booth (1995)) develop a spread decomposition model that is estimated trade by trade and

accounts for order flow persistence (the empirical fact, first noted by Hasbrouck and Ho

(1987), that buyer-initiated trades tend to follow buyer-initiated trades).9 Let

δ = Prob[qt+1 = 1|qt = 1] = Prob[qt+1 = −1|qt = −1] (6)

be the probability of a continuation (a buy followed by a buy or a sell followed by a sell).

Further suppose that the change in the market-maker’s quote midpoint following a trade is

given by:

mt+1 − mt = λtqt. (7)

The dollar effective half-spread st = qt(pt − mt) and is assumed constant for simplicity. If

there is persistence in order flow, the expected transaction price at time t+1 does not equal

mt+1 but instead is:

9See Barclay and Hendershott (2004) for discussion of how the Lin, Sanger, and Booth spread decompo-
sition relates to other spread decomposition models.
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Et(pt+1) = δ(mt + qt(λt + st)) + (1 − δ)(mt + qt(λt − st)

= mt + qt(λt + (2δ − 1)st). (8)

This expression shows how far prices are expected to permanently move against the market-

maker. While the market-maker earns st initially, in expectation he then loses λt +(2δ−1)st

due to adverse selection and order persistence, respectively. Note that this reduces to Glosten

(1987) if δ = 0.5 so that order flow is independent over time. We can identify the adverse

selection component λ by regressing midpoint changes on the buy-sell indicator, and we can

identify the order persistence parameter with a first-order autoregression on qt. The remain-

ing portion of the effective spread is revenue for the market maker, referred to by LSB as

the fixed component of the spread. Thus, spreads are decomposed into three separate com-

ponents: a fixed component associated with temporary price changes, an adverse selection

component, and a component due to order flow persistence. The fixed, temporary compo-

nent continues to reflect the net revenues to liquidity suppliers after accounting for losses

to (the now persistent) liquidity demanders. The adverse selection component captures the

immediate gross losses to the current liquidity demander, while the order flow persistence

component captures the expected gross losses to those demanding liquidity in the same di-

rection in the near future. We estimate the model and calculate components of the effective

spread for each sample stock each day.

[insert Figure 6]

For each of the market-cap quintiles, the three panels of Figure 6 show how the three

LSB spread components evolve over the whole 2001 to 2005 sample period. There are no

consistent trends in the fixed component: around the implementation of autoquote, there is

an increase for the smallest quintile, but this increase does not extend to the other quintiles.

In contrast, the adverse selection component falls sharply during the implementation of

autoquote in the first half of 2003. This is true across all five quintiles, and the change

appears to be permanent. Beginning in the second half of 2002 and continuing to the end of

2005, there is also a steady decline in the order persistence component of the spread. This

suggests less persistence, which could indicate that over this period algorithms and human

traders both become more adept at concealing their order flow patterns, perhaps by using

mixed order submission strategies that sometimes demand liquidity and sometimes supply

it.
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[insert Table 7]

As discussed above, we are fortunate and do not need to hang our hats on these

time-series declines. The staggered introduction of autoquote allows us to take out all

market-wide effects and focus on cross-sectional differences between the stocks that imple-

ment autoquote early vs. the stocks that implement autoquote later on. As we did for the

simpler decomposition, we can put any one of the LSB spread components on the LHS of our

IV specification to determine the sources of the liquidity improvement when there is more

algorithmic trading. The results are in Panel A of Table 7 and are quite consistent with the

earlier decomposition. For the largest two quintiles, autoquote (and the resulting increases

in algorithmic trading) are associated with an increase in the fixed component of the spread,

and a decrease in the adverse selection component and the order persistence component. The

drop in the adverse selection component is economically quite large. During the autoquote

sample period, the within standard deviation in our algorithmic trading variable is 4.54, so

a one standard deviation increase in algorithmic trading during this sample period leads to

an estimated change in the adverse selection component equal to 4.54∗−0.26, or about a 1.2

basis point narrowing of the adverse selection component. This is quite substantial, given

that the adverse selection component for the biggest quintile is only about 2 basis points on

average out of an overall 3.62 basis point effective half-spread. The coefficients on the other

two components are of similar magnitude, indicating similar economic importance. As in

the earlier decomposition, there are no significant effects for the smaller-cap quintiles.

3.3.2 Hasbrouck decomposition

While the Lin-Sanger-Booth model begins to consider persistence in order flow, it implicitly

limits the form of that persistence to an AR(1) process. Hasbrouck (1991a, 1991b) intro-

duces a VAR-based model that makes almost no structural assumptions about the nature

of information or order flow, but instead infers the nature of information and trading from

the observed sequence of prices and orders. In this framework, all stock price moves end up

assigned to one of two categories: they are either associated or unassociated with a recent

trade. Though the model does not make any structural assumptions about the nature of in-

formation, we usually refer to price moves as private information-based if they are associated

with a recent trade. Price moves that are orthogonal to recent trade arrivals are sometimes

considered based on “public information” (examples of this interpretation include Jones,

Kaul, and Lipson (1994) and Barclay and Hendershott (2003)).
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To separate price moves into trade-related and trade-unrelated components, we con-

struct a VAR with two equations: the first describes the trade-by-trade evolution of the quote

midpoint, while the second equation describes the persistence of order flow. Continuing our

earlier notation, define qjt to be the buy-sell indicator for trade t in stock j (+1 for buys, -

1 for sells), and define rjt to be the log return based on the quote midpoint of stock j from

trade t − 1 to trade t. The VAR picks up order flow dependence out to 10 lags:

rt =
10

∑

i=1

αirt−i +
10

∑

i=0

βiqt−i + εrt, (9)

qt =

10
∑

i=1

γirt−i +

10
∑

i=1

φiqt−i + εqt, (10)

where the stock subscripts j are suppressed from here on. The VAR is inverted to get the

VMA representation:

yt =

[

rt

qt

]

= θ(L)εt =

[

a(L) b(L)

c(L) d(L)

] [

εrt

εqt

]

, (11)

where a(L), b(L), c(L), and d(L) are lag polynomial operators. The permanent effect on price

of an innovation et is given by a(L)εrt + b(L)εqt , and because we include contemporaneous

qt in the return equation, cov(εrt, εqt) = 0 and the variance of this random-walk component

can be written as:

σ2

w = (

∞
∑

i=0

ai)
2σ2

r + (

∞
∑

i=0

bi)
2σ2

q , (12)

where the second term captures the component of price discovery that is related to trade,

and the first term captures price changes that are unrelated to trading (sometimes referred

to as public information). As discussed in Hasbrouck (1991a, 1991b), this method is robust

to price discreteness, lagged adjustment to information, and lagged adjustment to trades.

[insert Figure 7]

The VAR and the trade-related and non-trade-related standard deviations are es-

timated for each stock each day. We calculate monthly averages for each quintile during

the autoquote sample period and graph these in Figure 7. The most striking feature of

the graph is the decline in the trade-related standard deviation, while the non-trade-related
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standard deviations do not change much as autoquote is introduced. This indicates that

under autoquote much more information is being incorporated into prices without trade.

While these time-series effects appear large, again we prefer to identify the effect

using the staggered autoquote instrument. The IV panel regression is estimated first with the

daily trade-related standard deviation as the dependent variable. We then repeat using the

non-trade-related standard deviation on the left-hand side. The panel regressions continue

to include stock fixed effects, calendar dummies, and the same set of control variables.

The results can be found in Panel B of Table 7, and at least for the two larges

quintiles they confirm that the time-series graphs are not spurious. When a large-cap stock

adopts autoquote and experiences an exogenous increase in algorithmic trading, there is much

less trade-correlated price discovery, and much more price discovery that is uncorrelated with

trading. We discuss this further below, but it seems likely that algorithms are responding

quickly to order flow information and price moves of this and other stocks, and thereby

updating quotes to prevent them from becoming stale and being picked off. Consistent with

other methodologies, we do not find consistently reliable effects for the three smallest-cap

quintiles.

Based on our estimates, algorithmic trading has an economically important effect

on the nature of price discovery. During the autoquote sample period, the within standard

deviation in our algorithmic trading variable is 4.54, so a one standard deviation increase

in algorithmic trading during this sample period leads to an estimated change in trade-

correlated price discovery equal to 4.54 ∗ −0.22, or almost exactly a 1 basis point reduction

in the standard deviation of trade-correlated returns. Figure 7 shows that this is the same

order of magnitude as the actual level of trade-correlated standard deviations measured from

trade to trade, so this is indeed a substantial change in how prices are updated to reflect

new information over time.

4 Discussion and interpretation

To help make sense of our counter-intuitive results (particularly the realized spread or tem-

porary component results), we turn next to a very simple generalized Roll model that is a

slight variation on one developed in Hasbrouck (2007). Though the model is quite simple, it

provides a useful framework for thinking about algorithmic trading and delivers a number

of empirical predictions, all of which match our empirical results.
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4.1 A generalized Roll model

The “game” has two periods, each with an i.i.d. innovation in the efficient price:

mt = mt−1 + wt, (13)

where wt ∈ {ε,−ε} , each with probability 0.5. The game features three stages:

- At t = 0, risk-neutral humans can submit a bid and ask quote and, given full compe-

tition, the first one arriving bids her reservation price.

- At t = 1, humans can buy the information w1 at cost c. If they buy the information,

they can submit a new limit order.

- At t = 2, two informed liquidity demanders arrive, one with a positive private value

associated with a trade, +θ, the other with a negative private value, -θ.

We assume that 2c > θ, i.e., the cost of “observing” information for humans is

sufficiently high that they do not update their quotes. The technical assumption 2ε > θ is

also required so that only one of the two arriving liquidity demanders transacts at t = 2.

muu
2

mu
1

mud
2

mdd
2

m0

md
1

A0 A1

B0 B1

ε

There are four equally likely paths through the binomial tree: uu, ud, du, and dd,

where u represents a positive increment of ε to the fundamental value and d is a negative

increment. In equilibrium, humans do not buy the w1 information and update the quote at

t = 1, since they have to quote so far away from the efficient price to make up for c that

neither liquidity demander will transact at that quote (as 2c > θ). Given that they do not

acquire the w1 information, humans protect themselves by setting the bid price equal to
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m0 − 2ε and the ask price equal to m0 + 2ε. One of the liquidity demanders trades at t = 2

if the path is either uu or dd; the quote providers break even. If the path is ud or du, then

there is no trade, because the liquidity demander’s private value is too small relative to the

spread.

Clearly, under these assumptions all price changes are associated with order flow,

and there is no public information component.

4.1.1 The model with algorithmic trading

muu
2

mu
1

mud
2m0

A0 A1

B0

B1

θ

Now we introduce an algorithm that can buy the w1 information at zero cost (c = 0).

The results at t = 0 remain unchanged. At t = 1, the algorithm optimally issues a new quote.

To illustrate the idea, suppose w1 > 0. The algorithm knows that it is the only liquidity

provider in possession of w1, and so it puts in a new bid equal to m0 − θ. If w2 > 0 as well,

then a transaction takes place at the original ask of m0 + 2ε. If w2 < 0, then a liquidity

demander will hit the algorithm’s bid. This bid is below the efficient price, so there will

eventually be a reversal, and there is a temporary component in prices. Contrariwise, if

w1 < 0, the algorithm places a new ask at m0 + θ, which is traded with if it turns out that

w2 > 0.

In the presence of algorithmic trading, part of the change in the efficient price is

revealed through a quote update without trade. Public information now accounts for a

portion of price discovery, and imputed revenue to liquidity suppliers is now positive. Thus,

the model can explain even the surprising empirical findings on realized spreads and trade-

correlated price moves. The model also delivers narrower quoted spreads and more frequent

trades, both of which are also observed in the data.
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To deliver an increase in realized spread, it is important in the model that competi-

tion between algorithms be less vigorous than the competition between humans. This seems

plausible in reality as well. As autoquote was implemented in 2003, the extant algorithms

might have found themselves with a distinct competitive advantage in trading in response

to the increased information flow, given that new algorithms take considerable time to build

and test.

What kind of information can algorithms efficiently observe? There are proba-

bly many answers, but it is hard to tell, given the general opacity practiced by algorithm

providers and users. Nevertheless, we suspect that two kinds of information are of first-order

importance. First, we think algorithms can easily take into account common factor price

information and adjust trading and quoting accordingly. For example, if there is upward

shock to the S&P futures price, an algorithmic liquidity supplier in IBM that currently rep-

resents the inside offer may decide to cancel its existing sell order before it is picked off

by an index arbitrageur or another trade, replace the sell order with a higher-priced ask.

Shocks to other stocks in the same industry could cause similar reactions from algorithms.

Second, some algorithms are designed to sniff out other algorithms or otherwise identify or-

der flow and other information patterns in the data. For example, if an algorithm identifies

a sequence of buys in the data and concludes that more buys are coming, an algorithmic

liquidity supplier might adjust its ask price upward. Information in newswires can even be

parsed electronically in order to adjust trading algorithms (see Economist (2007a)).

4.2 Alternative explanations

Up to now, we have focused on the algorithmic trading channel, but it is important to

consider whether a more mechanical explanation might account for our autoquote results.

What might we expect if autoquote simply makes quotes less stale and has no other effects?

First, it is worth noting that this is counterfactual, since autoquote increases message traffic

and our algorithmic trading proxy. But more timely quotes alone can also generate many of

the same results. Consider the effective spread, for example. Suppose for concreteness that

transactions are equally likely on either side of the efficient price mt:

pt = mt + qtst. (14)
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If quotes are stale, the observed midpoint m0
t differs from the efficient price by a stochastic

amount δt. If this error is uncorrelated and the support of δt extends beyond the interval

[−st, +st], then it is fairly easy to show that the calculated effective spread is biased upward:

Es0

t = E|pt − mt
0| > st, (15)

and anything that reduces the measurement error for the observed quote midpoint will tend

to reduce the measured effective spread.

Similarly, if quotes did not always reflect the arrival of new limit orders prior to

autoquote, the incremental quotes post-autoquote result in more non-trade related price

changes. If the overall variance of the efficient price does not change with the introduction of

autoquote, more of the variance in a Hasbrouck (1991a, 1991b) decomposition is attributed to

public information, and less is attributed to private information, simply because we observe

more quote changes.

In contrast, quoted spreads are unlikely to be affected in the same way by a mechan-

ical increase in the frequency of quotes disseminated. Nevertheless, we find that autoquote

affects quoted spreads at least as much as it affects effective spreads. This suggests that the

mechanical increase in quote disseminations does not account for our findings.

5 Conclusions

The declining costs of technology have led to its wide-spread adoption throughout financial

industries. The resulting technological change has revolutionized financial markets and the

way financial assets are traded. Many institutions now trade via algorithms, and we study

whether algorithmic trading at the NYSE improves liquidity. Using panel regressions over

the five years following decimalization, we establish that time-series increases in algorithmic

trading are associated with more liquid markets. To establish causality we use the staggered

introduction of a structural change at the NYSE (autoquoting) as an exogenous instrument

for algorithmic trading. We demonstrate that increased algorithmic trading lowers adverse

selection and decreases the amount of price discovery that is correlated with trading. These

results suggest that algorithmic trading lowers the costs of trading and increases the in-

formativeness of quotes and prices. Surprisingly, the revenues to liquidity suppliers also

increase with algorithmic trading. This is consistent with algorithmic liquidity suppliers
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having market power as they introduce their algorithms.

Finally, our results have important implications for both regulators and designers of

trading platforms. For example, the U.S. Securities and Exchange Commission’s Regulation

NMS (SEC (2005)) is designed to increase competition among liquidity suppliers. Our re-

sults highlight the importance of algorithmic liquidity suppliers and the benefits of ensuring

vigorous competition between them. Of course, markets need not leave this problem to the

regulator. Trading venues can increase competition among algorithms by lowering develop-

ment and implementation costs. For example, exchanges and other trading platforms can

calculate useful information and metrics to be fed into algorithms, distributing them at low

cost. A market can also allow algorithmic traders to co-locate their servers in the market’s

data center. Finally, offering additional order types, such as pegged orders, can lessen the

infrastructure pressures that algorithms impose.
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Table 1: Summary Statistics (943*59 stock*month)

This table presents summary statistics on our dataset, which combines TAQ, CRSP, and the NYSE System Order Data database. We create a
balanced panel that consists of monthly data on 943 stocks from February 2001 through December 2005. Stocks are sorted into quintiles based on
market capitalization, where quintile 1 contains large-cap stocks. All variables are 99.9% winsorized.

variable description (units) source mean
Q1

mean
Q2

mean
Q3

mean
Q4

mean
Q5

st.
dev.
wi-
thina

qspreadit share-volume-weighted quoted half spread (bps) TAQ 5.31 7.33 9.47 12.92 22.44 8.40
qdepthit share-volume-weighted depth ($1,000) TAQ 92.37 52.93 38.62 28.69 19.43 21.88
espreadit share-volume-weighted effective half spread (bps) TAQ 3.67 5.19 6.79 9.40 16.16 6.42
rspreadit share-volume-weighted realized half spread, 5min

(bps)
TAQ 0.96 1.24 1.56 2.19 4.95 2.82

adv selectionit share-volume-weighted adverse selection compo-
nent half spread, 5min, “effective-realized” (bps)

TAQ 2.71 3.96 5.23 7.22 11.21 5.02

messagesit #electronic messages per minute i.e. proxy for al-
gorithmic activity (/minute)

NYSE 131.99 71.70 43.46 28.86 15.84 43.79

algo tradit dollar volume per electronic message times (-1) to
proxy for algorithmic trading ($100)

TAQ/NYSE -26.34 -15.22 -10.88 -8.38 -5.95 11.20

dollar volumeit average daily volume ($mio) TAQ 112.13 31.70 13.85 7.03 2.82 23.18
tradesit #trades per minute (/minute) TAQ 5.84 3.19 2.02 1.43 0.80 1.28
share turnoverit (annualized) share turnover TAQ/CRSP 1.02 1.48 1.46 1.44 1.22 0.69
volatilityit volatility daily midquote returns (%) CRSP 1.75 1.95 1.96 2.16 2.54 1.01
priceit daily closing price ($) CRSP 45.90 38.60 33.09 27.98 20.62 9.53
market capit shares outstanding times price ($bln) CRSP 36.75 5.48 2.30 1.17 0.53 5.09
trade sizeit trade size ($1,000) TAQ 46.52 24.95 16.97 12.25 8.32 11.52
specialist participit specialist participation rate (%) NYSE 12.42 12.19 12.28 13.16 15.15 4.42
#observations: 943*59 (stock*month)
a: Based on the deviations from time means i.e. x

∗

i,t = xi,t − xi.



Table 2: Overall, Between, and Within Correlations

This table presents the overall, between, and within correlations for some variables in our sample, which
contains monthly observations from February 2001 through December 2005. For variable definitions, we refer
to Table 1.

messa−
gesit

algo

tradit

share

turnoverit

vola-
tilityit

1/priceit ln mar−
ket capit

qspreadit ρ(overall) -0.43* 0.10* -0.14* 0.54* 0.74* -0.57*
ρ(between) -0.51* 0.51* -0.09* 0.65* 0.83* -0.68*
ρ(within) -0.33* -0.23* -0.20* 0.48* 0.63* -0.59*

messagesit ρ(overall) -0.08* 0.13* -0.20* -0.24* 0.72*
ρ(between) -0.87* 0.08* -0.17* -0.32* 0.90*
ρ(within) 0.63* 0.19* -0.24* -0.13* 0.43*

algo tradit ρ(overall) -0.12* -0.12* 0.24* -0.52*
ρ(between) -0.11* 0.19* 0.36* -0.86*
ρ(within) -0.14* -0.28* 0.12* 0.02*

share turnoverit ρ(overall) 0.35* -0.07* -0.07*
ρ(between) 0.44* -0.03* -0.13*
ρ(within) 0.31* -0.12* 0.15*

volatilityit ρ(overall) 0.47* -0.29*
ρ(between) 0.72* -0.41*
ρ(within) 0.30* -0.33*

1/priceit ρ(overall) -0.44*
ρ(between) -0.45*
ρ(within) -0.66*

a: Based on the time means i.e. xi = 1

T

∑T

t=1
xi,t.

b: Based on the deviations from time means i.e. x
∗

i,t = xi,t − xi.

*: Significant at a 95% level.



Table 3: Effect of AT on Spread in the Full Sample

This table regresses various measures of the (half) spread on our algorithmic trading proxy. We use our full sample, which consists of monthly

observations from February 2001 through December 2005. We estimate

Lit = αi + γt + βAit + δXit + εit

where Lit is a spread measure for stock i in month t, Ait is the algorithmic trading measure algo tradit, and Xit is a vector of control variables,
including share turnover, volatility, 1/price, and log market cap. We always include fixed effects and report results with and without time dummies.
We regress by quintile and report t-values based on standard errors that are robust to general cross-section and time-series heteroskedasticity and
within-group autocorrelation (see Arellano and Bond (1991)).

Coefficient on algo tradit Coefficients on control variablesa

Q1 Q2 Q3 Q4 Q5
turnover

sharesit

vola−
tilityit

1/priceit
ln mkt

capit

time
dum-
mies

R2

Panel A: Quoted spread, quoted depth, and effective spread
qspreadit (1) -0.06** -0.17** -0.29** -0.46** -0.86** -1.83** 1.78** 57.54** -2.66** No 0.71

(-19.37) (-19.98) (-18.53) (-16.78) (-17.89) (-17.11) (35.44) (11.98) (-15.85)
(2) 0.03** 0.04** 0.05* 0.12** 0.22** -0.17 1.06** 74.68** -0.17 Yes 0.80

(6.40) (3.14) (1.87) (3.41) (2.39) (-1.60) (18.70) (12.53) (-0.80)
qdepthit (1) -1.37** -1.45** -1.43** -1.45** -1.32** 11.74** -8.44** 76.04* 8.46** No 0.49

(-22.44) (-28.46) (-26.66) (-24.37) (-20.32) (7.25) (-13.48) (1.81) (3.06)
(2) -1.19** -1.14** -1.09** -1.01** -1.03** 13.53** -7.70** 55.81* 3.03 Yes 0.54

(-10.40) (-11.96) (-10.54) (-13.00) (-6.72) (7.73) (-11.46) (1.66) (1.00)
espreadit (1) -0.05** -0.14** -0.23** -0.36** -0.67** -1.44** 1.37** 41.43** -1.95** No 0.70

(-18.99) (-20.97) (-19.44) (-16.58) (-17.79) (-16.22) (36.89) (14.57) (-13.76)
(2) 0.03** 0.03** 0.05** 0.09** 0.20** -0.10 0.77** 55.65** 0.14 Yes 0.80

(6.46) (3.07) (2.27) (3.43) (2.88) (-1.12) (17.39) (33.13) (0.98)
Panel B: Spread decompositions
rspreadit (1) -0.01** -0.02** -0.02** -0.04** -0.10** -0.47** -0.01 32.14** -0.23** No 0.39

(-6.70) (-5.96) (-4.53) (-5.35) (-6.34) (-8.60) (-0.32) (7.45) (-2.08)
(2) 0.01** 0.02** 0.04** 0.06** 0.12** -0.13** -0.07** 35.90** 0.46** Yes 0.46

(4.04) (3.58) (4.09) (4.64) (4.20) (-2.75) (-2.34) (9.05) (3.66)
adv selectionit (1) -0.04** -0.12** -0.21** -0.32** -0.57** -0.96** 1.38** 9.36** -1.71** No 0.67

(-16.99) (-23.96) (-22.94) (-18.02) (-18.75) (-12.05) (38.59) (2.34) (-11.65)
(2) 0.01** 0.00 0.01 0.03 0.08 0.03 0.84** 19.86** -0.31* Yes 0.78

(3.41) (0.70) (0.48) (1.60) (1.55) (0.33) (17.13) (4.61) (-1.79)
*/**: Significant at a 95%/99% level.
a: We use quintile-specific coefficients for the control variables and time dummies. For brevity, we only report the (across the quintiles)
market-cap-weighted coefficient for the control variables and its t-statistic.



Table 4: Overall, Between, and Within Correlations Autoquote Analysis

This table presents the overall, between, and within correlations for the variables used in the autoquote
analysis. It is based on daily observations in the period when autoquote was phased in, i.e. December
2, 2003, through July 31, 2003. For variable definitions, we refer to Table 1. We exploit the exogenous
autoquote dummy (0 before the autoquote introduction, 1 after) to instrument for algo tradit in order to
identify causality from algo tradit to our liquidity measures. In the IV estimation, we exclude identification
off of a time trend (by adding time dummies) and thus solely rely on the nonsynchronous introduction of
autoquote (see Figure 5). Before we report the IV estimation results in subsequent tables, this table reports
correlations between the instrument (auto quoteit) and the endogenous variable (algo tradit) after removing
the time trend.

messa−
gesit

algo

tradit

share

turnoverit

vola-
tilityit

1/priceit ln mar−
ket capit

Panel A: Overall, between, and within correlation after removing the time trend
auto quoteit ρ(overall) 0.15* -0.05* 0.02* 0.03* 0.02* 0.10*

ρ(between) 0.23* -0.16* 0.06 0.09* 0.04 0.18*
ρ(within) 0.08* 0.03* -0.01* 0.00 0.01* -0.01*

Panel B: Within correlation by quintile after removing the time trend
auto quoteit Q1 ρ(within) 0.15* 0.03* 0.01* -0.00 0.03* -0.03*
auto quoteit Q2 ρ(within) 0.03* 0.04* -0.01* 0.00 -0.02* 0.01*
auto quoteit Q3 ρ(within) 0.05* 0.03* 0.00 -0.00 0.01 -0.02*
auto quoteit Q4 ρ(within) 0.01* 0.00 -0.00 -0.00 -0.01 0.01
auto quoteit Q5 ρ(within) -0.00 0.03* -0.02* 0.00 0.05* -0.04*
a: Based on the time means i.e. xi = 1

T

∑T

t=1
xi,t.

b: Based on the deviations from time means i.e. x
∗

i,t = xi,t − xi.

*: Significant at a 95% level.



Table 5: Effect of AT on Spread: Nonsynchronous Autoquote Introduction as Instrumental Variable

This table regresses various measures of the (half) spread on our algorithmic trading proxy. It is based on daily observations in the period when

autoquote was phased in, i.e. December 2, 2003, through July 31, 2003. We use the exogenous nonsynchronous autoquote introduction to instrument

for the endogenous algo tradit to identify causality from algorithmic trading to liquidity. We estimate

Lit = αi + γt + βAit + δXit + εit

where Lit is a spread measure for stock i on day t, Ait is the algorithmic trading measure algo tradit, and Xit is a vector of control variables, including
share turnover, volatility, 1/price, and log market cap. We always include fixed effects and time dummies. The set of instruments we use consists of
all explanatory variables, except that we replace algo tradit with auto quoteit. We regress by quintile and report t-values based on standard errors
that are robust to general cross-section and time-series heteroskedasticity and within-group autocorrelation (see Arellano and Bond (1991)).

Coefficient on algo tradit Coefficients on control variablesa

Q1 Q2 Q3 Q4 Q5
share

turnoverit

vola−
tilityit

1/priceit
ln mkt

capit

time
dum-
mies

DF test
statisticb

Panel A: quoted spread, quoted depth, and effective spread
qspreadit -0.52** -0.42** -0.43 -0.16 9.92 -2.80** 0.90** 108.30** -3.55** Yes -321.0**

(-3.23) (-2.21) (-1.44) (-0.05) (1.22) (-3.01) (9.70) (7.49) (-2.27)
qdepthit -3.47** -1.43 -1.99 15.49 0.61 -5.16 -1.64* -3.90 12.12 Yes -300.3**

(-2.50) (-1.16) (-1.07) (0.39) (0.19) (-0.64) (-1.87) (-0.03) (0.83)
espreadit -0.18** -0.32** -0.35 -1.63 4.65 -1.01** 0.69** 72.72** -1.27 Yes -329.8**

(-2.65) (-2.23) (-1.56) (-0.42) (1.16) (-2.32) (9.51) (10.91) (-1.45)
Panel B: spread decompositions
rspreadit 0.35** 0.76** 1.03** 14.26 15.88 3.13* -1.06** 45.81** 5.06 Yes -303.6**

(3.53) (3.97) (2.06) (0.46) (1.36) (1.92) (-2.15) (4.14) (1.18)
adv selectionit -0.53** -1.07** -1.39** -15.48 -11.21 -4.12** 1.75** 26.61* -6.27 Yes -298.3**

(-3.57) (-4.08) (-2.06) (-0.47) (-1.33) (-2.24) (3.29) (1.84) (-1.34)
#observations: 1082*167 (stock*day)
F test statistic of hypothesis that instruments do not enter first stage regression: 7.32 (F (5, 179587)), p-value: 0.0000
*/**: Significant at a 95%/99% level.
a: We use quintile-specific coefficients for the control variables and time dummies. For brevity, we only report the (across the quintiles) market-
cap-weighted coefficient for the control variables and its t-statistic.
b: We report the Dickey-Fuller test statistic based on the residuals in order to diagnose nonstationarity. A significant test statistic rejects the null
that the series contains a unit root, i.e. it rejects nonstationarity.



Table 6: Effect of AT on Nonspread Variables: Nonsynchronous Autoquote
Introduction as Instrumental Variable

This table regresses nonspread variables on our algorithmic trading proxy. It is based on daily observations

in the period when autoquote was phased in, i.e. December 2, 2003, through July 31, 2003. We use the

exogenous nonsynchronous autoquote introduction to instrument for the endogenous algo tradit to identify

causality from algorithmic trading to these nonspread variables. We estimate

Mit = αi + γt + βAit + εit

where Mit is a nonspread variable for stock i on day t, and Ait is the algorithmic trading measure. We always
include fixed effects and time dummies. We regress by quintile and report t-values based on standard errors
that are robust to general cross-section and time-series heteroskedasticity and within-group autocorrelation
(see Arellano and Bond (1991)).

Coefficient on algo tradit

Q1 Q2 Q3 Q4 Q5
time
dum-
mies

DF test
statistica

share turnoverit 0.04 -0.07* 0.01 -0.20 -0.36** Yes -272.3**
(1.03) (-1.77) (0.07) (-0.26) (-2.89)

tradesit 0.58** -0.01 -0.01 -0.51 -0.15** Yes -245.7**
(2.60) (-0.23) (-0.15) (-0.33) (-2.60)

trade sizeit -2.04** -0.80** -0.33 2.26 -0.22 Yes -261.6**
(-4.63) (-3.23) (-0.69) (0.20) (-0.60)

specialist participit -0.59** -0.23 -0.92 -13.19 -1.89** Yes -259.4**
(-2.22) (-1.24) (-1.43) (-0.29) (-2.02)

#observations: 1082*167 (stock*day)
F test statistic of hypothesis that instruments do not enter first stage regression: 5.88
(F (5, 179607)), p-value: 0.0000
*/**: Significant at a 95%/99% level.
a: We report the Dickey-Fuller test statistic based on the residuals in order to diagnose nonstationarity. A
significant test statistic rejects the null that the series contains a unit root, i.e. it rejects nonstationarity.



Table 7: Lin-Sanger-Booth and Hasbrouck Decompositions: Nonsynchronous Autoquote Introduction as In-
strumental Variable

This table regresses the components of Lin-Sanger-Booth (LSB) and Hasbrouck decompositions on our algorithmic trading proxy. It is based on

daily observations in the period when autoquote was phased in, i.e. December 2, 2003, through July 31, 2003. The LSB decomposition accounts for

order persistence in decomposing the bid-ask spread. It identifies a fixed (transitory) component (LSB95 fixedit), an adverse selection component

(LSB95 adv selit), and a component due to order persistence (LSB95 order persistit) (see Section 3.3.1 and Lin, Sanger, and Booth (1995) for

details). As the LSB decomposition limits persistence to that of an AR(1) process, we also estimate a Hasbrouck VAR-based model to identify the size

of the trade-related (stdev tradecorr compit) and trade-unrelated (stdev nontradecorr compit) components of permanent price changes in between

transactions (see Section 3.3.2 and Hasbrouck (1991a, 1991b) for details). For the regressions, we use the exogenous nonsynchronous introduction of

autoquote to instrument for the endogenous algo tradit to identify causality from algorithmic trading to these LSB and Hasbrouck components. We

estimate Mit = αi + γt + βAit + δXit + εit

where Mit is a LSB or Hasbrouck component for stock i on day t, Ait is the algorithmic trading measure, and Xit is a vector of control variables,
including share turnover, volatility, 1/price, and log market cap. We always include fixed effects and time dummies, but leave out the control variables
in the Hasbrouck component regressions. We regress by quintile and report t-values based on standard errors that are robust to general cross-section
and time-series heteroskedasticity and within-group autocorrelation (see Arellano and Bond (1991)).

Coefficient on algo tradit Coefficients on control variablesa

Q1 Q2 Q3 Q4 Q5
share

turnoverit

vola−
tilityit

1/priceit
ln mkt

capit

time
dum-
mies

DF
test
statistica

Panel A: Effect of AT on effective half spread components cf. Lin, Sanger, and Booth (1995)
LSB95 fixedit 0.26** 0.59** 0.69** 9.91 8.97 2.35** -0.28 26.23** 3.85 Yes -296.4**

(3.63) (4.16) (2.26) (0.46) (1.36) (2.07) (-0.80) (3.81) (1.29)
LSB95 adv selit -0.26** -0.61** -0.84** -12.19 -7.72 -2.58* 0.57 15.70** -4.26 Yes -291.7**

(-3.46) (-3.80) (-2.14) (-0.46) (-1.32) (-1.85) (1.32) (1.99) (-1.15)
LSB95 order persistit -0.18** -0.30** -0.21 0.66 3.30 -0.82** 0.41** 30.68** -0.90 Yes -328.2**

(-3.06) (-3.10) (-1.60) (0.28) (1.21) (-2.33) (8.66) (6.24) (-1.43)
Panel B: Effect of AT on trade- and nontrade-correlated component of efficient price innovation cf. Hasbrouck (1991a,1991b)
stdev tradecorr compit -0.22** -0.26** -0.30* -3.39 -0.57** Yes -257.2**

(-2.62) (-3.08) (-1.69) (-0.30) (-2.73)
stdev nontradecorr compit 0.13** 0.13** 0.13 1.03 0.13 Yes -272.2**

(2.48) (2.36) (1.47) (0.28) (1.12)
#observations: 1082*167 (stock*day)
F test statistic of hypothesis that instruments do not enter first stage regression: Panel A: 7.32 (F (5, 179587)), p-value: 0.0000; Panel B:
5.88 (F (5, 179607)), p-value: 0.0000
*/**: Significant at a 95%/99% level.
a: We use quintile-specific coefficients for the control variables and time dummies. For brevity, we only report the (across the quintiles) market-
cap-weighted coefficient for the control variables and its t-statistic.
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Figure 1: These graphs depict (i) the number of (electronic) messages per minute and (ii)
our proxy for algorithmic trading, which is defined as the negative of trading volume (in
thousands of dollars) divided by the number of messages. The graphs are done by market-
cap quintile, where Q1 is the large-cap quintile.
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Figure 2: These graphs depict (i) quoted half spread, (ii) quoted depth, and (iii) effective
spread. All spread measures are share-volume weighted averages. The graphs are done by
market-cap quintile, where Q1 is the large-cap quintile.
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Figure 3: These graphs depict the two components of the effective spread: (i) realized spread
and (ii) the adverse selection component, i.e. the (permanend) price impact. The spread
decomposition is based on the 5 minute delayed spread midpoint. The graphs are done by
market-cap quintile, where Q1 is the large-cap quintile.



2002 2003 2004 2005 2006

10

20

30

40

50

60

70

80

90
trade_sizeit (trade size ($1,000))

Q1 
Q3 
Q5 

Q2 
Q4 
95% conf. interval 

2002 2003 2004 2005 2006

1

2

3

4

5

6

7

8

9
tradesit (#trades per minute (/minute))

Q1 
Q3 
Q5 

Q2 
Q4 
95% conf. interval 

2002 2003 2004 2005 2006

25

50

75

100

125

dollar_volumeit (average daily volume ($mio))
Q1 
Q3 
Q5 

Q2 
Q4 
95% conf. interval 

2002 2003 2004 2005 2006

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

volatilityit (volatility daily midquote returns (%))
Q1 
Q3 
Q5 

Q2 
Q4 
95% conf. interval 

Figure 4: These graphs depict (i) trade size, (ii) the number of trades per minute, (iii) daily dollar volume, and (iv) daily
midquote return volatility. The graphs are done by market-cap quintile, where Q1 is the large-cap quintile.
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Figure 5: This graph depicts the staggered introduction of autoquote on the NYSE. It
graphs the number of stocks in each market-cap quintile that are autoquoted at a given
time. Quintile 1 contains large-cap stocks.
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Figure 6: These graphs depict the three components of a Lin-Sanger-Booth spread decom-
position, which accounts for order persistence. It identifies a fixed (transitory) component
(LSB95 fixedit), an adverse selection component (LSB95 adv selit), and a component due
to order persistence (LSB95 order persistit) (see Section 3.3.1 and Lin, Sanger, and Booth
(1995) for details). The graphs are done by market-cap quintile, where Q1 is the large-cap
quintile.
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Figure 7: These graphs depict a VAR-based Hasbrouck decomposition of the permanent
price change in between transactions into a trade-related (stdev tradecorr compit) and trade-
unrelated (stdev nontradecorr compit) component (see Section 3.3.2 and Hasbrouck (1991a,
1991b) for details). The graph depicts the autoquote sample period which runs from De-
cember 2002 through July 2003. The graphs are done by market-cap quintile, where Q1 is
the large-cap quintile.




