Asymmetric Equilibria and

Non-cooperative Access Pricing in Telecommunications

by

Stefan Behringer
Universität Frankfurt

Summary

- A model of two-way access pricing in telecommunications based on Armstrong, 1998 and Laffont, Rey, and Tirole, 1998a,b.
- The model looks at non-cooperative access charges with asymmetric mobile telecommunications networks that compete in two-part tariffs with price discrimination.

Previous Literature

- In a symmetric setting, LRT, 1998, and Gans and King, 2001 find that with non-cooperative access charges networks will deviate upwards from cost-based access due to a double marginalization effect.
- Carter and Wright, 2003 look at an asymmetric setting and also note that networks will deviate upwards from cost-based access but do not say how the asymmetry affects the charges.

Regulatory Practice

Mobile termination charges in Germany in cent/minute

	1998	1999	2000	2001	2002
T-mobile	27,86	27,86	17,09	14,39	14,30
Vodafone	28,44	28,44	28,51	15,42	14,30
E-Plus	42,60	42,60	42,68	19,03	16,94
O_{2}	29,24	29,24	29,32	18,77	17,88

Regulatory Practice

- Market shares in Germany (2003): T-Mobile 43%, Vodafone 37%, E-Plus 13%, and $\mathrm{O}_{2} 8 \%$.
- Mobile termination is currently still unregulated in Germany despite EU legislation. Political pressure has been responsible for recent reductions in charges.
- Monopolkommission suggests that true termination cost is about half of the charges (7,4 cent)

Regulatory Practice

- Monopolkommission advocates a costorriented price cap legislation as in the UK.
- It is unclear how the network do in fact set the access charges but they may be used collusively (see Höffler, 2006).
- High charges are seen as facilitating entry (or preventing exit) but this may not always be socially desirable (see Behringer, 2004b).

The Model

- A Hotelling model with two networks located at the endpoints on the unit line choosing two part tariffs with network-based price discrimination.
- We use the linear demand technology of Armstrong, 1998 and indirect utility for on-net or off-net calls is

$$
v(p) \equiv \int_{p}^{\infty} q(\zeta) d \zeta=q(p)\left(1-\frac{1}{2} q(p)\right)-p q(p)
$$

- A two stage game with non-cooperative access charges $\left(a^{k}, a^{-k}\right)$ chosen first followed by the price vector

$$
\Xi^{k} \equiv\left\{p_{o n}^{k}\left(a^{k}, a^{-k}\right), p_{o f f}^{k}\left(a^{k}, a^{-k}\right), G^{k}\left(a^{k}, a^{-k}\right)\right\} k=i, j
$$

- Asymmetry is multiplicative in the location term and consumer j utility is

$$
U_{x}=v(p)-G+\eta x t
$$

- Networks have marginal call cost of $\mathrm{c}=2 \mathrm{c}_{0}+\mathrm{c}_{1}$, and per-capita cost H .
- The game is solved backwards using subgame perfect Nash Equilibrium.
- Stage two:

Lemma 1 Any best response of network i to network j satisfies

$$
\Pi^{i}\left(p_{o n}^{i *}=c, p_{o f f}^{i}, G^{i} ; \Xi^{j}\right) \geq \Pi^{i}\left(p_{o n}^{\prime i}, p_{o f f}^{i}, G^{i} ; \Xi^{j}\right)
$$

for all $p_{o n}^{\prime i} \neq p_{o n}^{i *}$ in the support of the price vector space. Similarly, for given access charges \bar{a}^{i}, \bar{a}^{j} any best response of network i to network j satisfies

$$
\Pi^{i}\left(p_{o n}^{i}, p_{o f f}^{i *}=c_{0}+c_{1}+\bar{a}^{j}, G^{i} ; \Xi^{j}\right) \geq \Pi^{i}\left(p_{o n}^{i}, p_{o f f}^{\prime i}\left(\bar{a}^{j}\right), G^{i} ; \Xi^{j}\right)
$$

for all $p_{o f f}^{\prime i} \neq p_{o f f}^{i *}$ in the support of the price vector space. The symmetric result holds for network j.

Proposition 2 Any best response of network i to network j concerning its fixed charge must satisfy

$$
\begin{aligned}
G^{j}= & H+(1-4 x) v\left(p_{o n}^{*}\right)+2 x v\left(p_{o f f}^{j *}\right)+ \\
& (2 x-1) v\left(p_{o f f}^{i *}\right)+(2 x-1) \pi_{T}^{i}\left(a^{i}\right)+(2 x(\eta+1)-1) t
\end{aligned}
$$

and any best response of network j to network i concerning its fixed charge must satisfy

$$
\begin{aligned}
G^{i}= & H+(4 x-3) v\left(p_{o n}^{*}\right)+2(1-x) v\left(p_{o f f}^{i *}\right)+ \\
& (1-2 x) v\left(p_{o f f}^{j *}\right)+(1-2 x) \pi_{T}^{j}(a)+(2+\eta-2 x(\eta+1)) t
\end{aligned}
$$

where from the 'Hotelling indifference condition' (5)

$$
x=\frac{v\left(p_{o n}^{*}\right)-v\left(p_{o f f}^{i *}\right)-G^{j}+G^{i}-t}{2 v\left(p_{o n}^{*}\right)-v\left(p_{o f f}^{j *}\right)-v\left(p_{o f f}^{i *}\right)-t(1+\eta)}
$$

- Stage one:

Lemma 3 For given access charges \bar{a}^{i}, \bar{a}^{j} and sufficiently large t, the equilibrium scale x^{*} is strictly decreasing in η and has a strictly positive lower bound.

Lemma 4 Given the advantage of network $j(\eta>1)$ is large, non-cooperative access charges can be approximated by

$$
\Delta^{j *} \equiv a^{j *}-c_{0} \approx \frac{1}{2}(1-c)>0
$$

and

$$
\Delta^{i *} \equiv a^{i *}-c_{0} \approx \frac{2}{7}(1-c)>0
$$

Lemma 5 Given the advantage of network $j(\eta>1)$ is large we find that the components of the price vectors satisfy

$$
\Delta^{j}>\Delta^{i}
$$

and

$$
\pi_{T}^{j}\left(a^{j}\right)>\pi_{T}^{i}\left(a^{i}\right)
$$

and

$$
G^{j}>G^{i}
$$

and

$$
\Pi^{j}>\Pi^{i}
$$

Equilibrium

Lemma 6 The equilibrium scale x^{*} is strictly increasing in a^{i} and decreasing in a for sufficiently large t.

Proposition 7 At the symmetric equilibrium $\eta=1$ both firms will charge a strictly positive non-cooperative access charge markup. In a neighbourhood of the symmetric equilibrium both networks will optimally increase their access charge markups for $\eta>1$ and the advantaged network has the higher increase.

Second order necessary conditions are satisfied if either t or η are sufficiently large.

Conclusion

- We have analysed an asymmetric telecommunications industry with non-cooperative access charges.
- We find that firms will charge a strictly positive access charge markup as observed in practice.
- We find that it is the disadvantaged (and smaller) firm optimally sets a lower access charge (and a lower fixed charge) than the advantaged incumbent.
- Hence a downward regulation of access charges for entrants may in fact improve their competitive position.

