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Abstract
This paper looks at competition in the Telecommunication industry

with non-linear tariffs and network based price discrimination where one
of the networks has a relative advantage. We investigate profit-maximizing
network pricing behaviour, in particular competitively chosen unregulated
non-cooperative access prices at potentially asymmetric market equilibira.

1 Introduction

The recent literature on the network interconnection and pricing strategies in the
Telecommunications Industry originating in the work of Armstrong (1998) and
Laffont, Rey, and Tirole (LRT 1998a,b) has generically assumed that competi-
tion takes place between symmetric networks. Within this symmetric framework
the analysis of Gans and King (2001) has shown that with non-linear tariffs and
network based price discrimination the optimal (i.e. profit-maximizing) choice
of negotiated reciprocal access charges will imply a negative markup so that call
termination is in fact subsidized.

This theoretical finding is not warranted by the empirical findings however
and does not explain the rising concern among competition authorities about
the welfare effects of such charges being ’too high’. The German Monopolkom-
mission (2003, p.91) based on a study by wik-Consult, a consulting firm, has
published the following table for average access charges (in cent per minute)
charged by the four mobile phone networks that are hitherto unregulated:

1998 1999 2000 2001 2002
T-Mobile 22,86 27,86 17,09 14,39 14,30
Vodafone 28,44 28,44 28,51 15,42 14,30
E-Plus 42,60 42,60 42,68 19,03 16,94
O2 29,24 29,24 29,32 18,77 17,88

0The author is grateful to Steffen Hoernig, Martin Hellwig, Mark Armstrong, and an
anoymous referee for comments.
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Based on a study by the Competition Commission (2003) for the UK, the
Monopolkommission suggests that the cost for such termination services are
only about half of the charges, i.e. between 7 and 7,8 cent. A recent paper by
Behringer (2004a) has shown that allowing for non-cooperatively chosen access
charges does not preclude the existence of equilibrium in the symmetric model
and that such profit-maximizing access charges will imply a positive markup
on termination cost. The latter has been noted to be the consequence of the
”double marginalization” of complementary product pricing by two firms in
LRT, 1998a and Gans & King, 2001 who refrain from calculating this markup
explicitly. The scepticism of competition authorities with regard to negotiated
access charges is warranted by the results in Behringer (2004b) who finds that
the total welfare consequence of such negotiated charges are detrimental as
compared to non-cooperatively chosen charges or a ’bill-and-keep’ regime.

The assumption of symmetry of the two networks in the previous models is
a most welcome simplifying device to keep the analysis of the optimal pricing
vectors that form the Nash equilibrium of the game tractable. However, in
many cases of regulatory concern it is a new entrant who competes against an
incumbent with an established market share and hence the assumption seems to
be unfortunate. A tractable theoretical analysis of non-reciprocal access charges
in asymmetric settings is thus considered ”one of the most valuable areas for
future research”, (see Armstrong, 2003, p.373). Previous research in asymmetric
environments is scarce however. Carter & Wright, 2003 is the most complete
and the closest to our model but as Gans and King, 2001 they are only able
to show that firms would want to deviate from cost based access prices and
cannot give a prediction of how the asymmetry of the setting is reflected in the
equilibrium non-cooperative access charges and thus how to judge the observed
data in the table above. Peitz, 2005, also investigates the issue but focuses on
the impact of asymmetric regulation.

The present paper sets out to determine the profit-maximizing choice of un-
regulated non-reciprocal access prices using the technology of Armstrong (1998).
In addition, one of the networks has an inherent advantage over the other that
is not based on its technology but on the perception of its service by consumers.

In practice it is often argued that the possibility of high termination charges
was important for the business strategy of late entrants such as E-Plus and
O2 that were competing with the established networks T-Mobile and Voda-
fone (formerly Mannesmann). High termination revenue is seen as allowing the
disadvantaged, small networks to offer for example pre-paid phones with no
monthly charge and where the cost of the technical unit is often subsidized. As
a result an ex-ante (downward) regulation of termination charges would hurt
disadvantaged firm disproportionately and may even lead to market exit. Our
analysis enables us to judge the validity of such claims within the framework of
the formal model provided.
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2 The Model

The setup builds upon LRT, 1998b in using a product differentiation model
with mass one consumers distributed uniformly on the unit interval with two
networks located at the extremes.

The additively separable quadratic utility function of a consumer located at
some x ∈ [0, 1] purchasing from network j located at unity is

u(q, x) = q(1− 1
2
q) + ηxt (1)

with a horizontal preference parameter t > 0 the benefit of which is independent
of the amount of costly calls initiated q, and an asymmetry parameter η > 0,
where η > 1 implies an exogenous advantage for the (incumbent) network j
over network i located at the origin. This advantage has a multiplicative feature
and thus affects those closer to their preferred brand more than those further
afar. Whence an advantage for one network implies an increase in the perceived
product differentiation for that product, i.e. consumers that are located close to
unity and use network j0s services are even more happy to do so if η increases.

This modelling is slightly different from Carter & Wright, 2003 where the
advantage is additive to the location and thus affects all consumers of that
network equally (but can be scaled with the product differentiation parameter)
which they interpret as ”brand loyalty”. Note that both specifications share the
feature that within a simple Hotelling product differentiation model without
(or with equal) prices, a large asymmetry implies that the disadvantaged firm
is driven out of the market.

We order the unit mass of consumers such that the difference of their ’ad-
dress’ x to a network is proportional to their individual fixed benefit from being
connected, with the consumer furthest away from the network at the origin re-
ceiving exactly zero fixed benefit. Hence t represents the maximum pure benefit
of being connected to a network (without initiating any costly calls but including
calls received) and is assumed to be exogenous.

Utility maximization implies that individual demand for the service is

q(p) = 1− p (2)

i.e. linear as in Armstrong (1998) and the indirect utility function is

v(p) ≡
Z ∞
p

q(ζ)dζ = q(p)

µ
1− 1

2
q(p)

¶
− pq(p) (3)

which (with p ≤ 1 for non-negative quantities) is decreasing and strictly convex
in price.
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The networks use a two-part tariff consisting of a unit price (e.g. per minute
of the service) p and a fixed charge (e.g. a monthly rental charge) G and thus
the total per capita consumer j valuation given location x ∈ [0, 1] is

Ux = v(p)−G+ ηxt (4)

A consumer is indifferent between the two networks given his location x ∈ [0, 1]
with networks using two-part tariffs and network-based price discrimination if
and only if the utility of this marginal consumer satisfies

Ux = (1− x)v(pjon) + xv(pjoff )−Gj + ηxt = (5)

xv(pion) + (1− x)v(pjoff )−Gi + (1− x)t

which we call the ’Hotelling indifference condition’. The introduction of network-
based price discrimination implies that despite interconnection there are ’tariff-
mediated network externalities’ present given that prices for on- and off-net
calls differ. Consumers of network i are better off if more consumers joint the
network if on-net prices are below off-net prices and vice versa. The location
of the indifferent consumer who expects a given market share gives the net-
work’s equilibrium market shares if all expectations are correctly fulfilled at the
equilibrium price vector.

We specify marginal costs as c ≡ 2c0 + c1 < 1 for a call within one network
resulting from origination and termination (c0) and the intermediate line service
cost c1 which we assume to occur at the originating end of the call. Network i0s
marginal cost for a call from its network to the other network are c+ aj − c0 as
it has to pay the access charge aj to network j, whereas the actual cost of the
call is c due to the networks’ identical technologies. Firms also face a fixed cost
F > 0 and a per-capita cost H > 0.

The two networks are assumed to be playing a non-cooperative two-stage
game in which they first choose their optimal access price parameter ak simul-
taneously and in the second stage their price vector

Ξk ≡ ©pkon(ak, a−k), pkoff (ak, a−k), Gk(ak, a−k)ª k = i, j (6)

simultaneously in order to maximize profits Πk(Ξk,Ξ−k) (where with two players
−k = j if k = i or vice versa), taking as given the parameter vector of the other
network. A vector Ξk is a best response for player k to his rivals’ vector Ξ−k if

Πk(Ξk;Ξ−k) ≥ Πk(Ξ0k;Ξ−k) (7)

for all Ξ0k 6= Ξk in the multidimensional support of the price space.
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The solution concept for the full game is pure strategy subgame perfect Nash-
equilibrium (SPNE) and the game is solved by backward induction. The price
vector Ξ∗ and the access charge a∗ constitute a subgame perfect Nash equilib-
rium strategy of the game iff

Πk(Ξk∗, ak∗;Ξ−k∗, a−k∗) ≥ Πk(Ξk, ak;Ξ−k∗, a−k∗) ∀ Ξk, ak and ∀k. (8)

2.1 Solving the second stage

Network j will choose to solve the program

max
Ξj

©
Πj(Ξj ;Ξi)

ª
=

 (1− x)×
"
Gj −H +

¡
pjon − c

¢
(1− x)qjon+³

pjoff − (c+ ai − c0)
´
xqjoff

#
+

x(1− x)(aj − c0)qioff − F


(9)

subject to the ’Hotelling indifference condition’ (5)

x =
v(pjon)− v(pioff )−Gj +Gi − t

v(pion) + v(p
j
on)− v(pjoff )− v(pioff )− t(1 + η)

and given the vector Ξi of network i. Here (1−x)qjon gives the individual demand
for on-net calls for a customer of the second network under a balanced-traffic as-
sumption and (1−x) is network j0s scale or market share. The pure termination
profit for j is denoted as x(1− x)πj(aj) ≡ x(1− x)(aj − c0)qioff .
Note that under a balanced-traffic assumption the net number of calls from

the incumbent’s network to the second network (or vice versa) is zero if pioff =

pjoff even if networks differ in their respective scales. A larger advantage for
network j, i.e. a large choice of η will then push the marginal consumer closer to
the origin of the unit interval leading to a larger market share for the advantaged
network. The choice of network i with scale x is symmetric.

We first determine the network’s optimal on-net and off-net prices.

Lemma 1 Any best response of network i to network j satisfies

Πi(pi∗on = c, p
i
off , G

i;Ξj) ≥ Πi(p0ion, pioff ,Gi;Ξj)
for all p0ion 6= pi∗on in the support of the price vector space. Similarly, for given
access charges āi, āj any best response of network i to network j satisfies

Πi(pion, p
i∗
off = c0 + c1 + ā

j , Gi;Ξj) ≥ Πi(pion, p0ioff (āj), Gi;Ξj)
for all p0ioff 6= pi∗off in the support of the price vector space. The symmetric
result holds for network j.
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Proof:
Standard.¥

We thus find that it is a dominant strategy for any network to set its own on-
net price and off-net price markup at the cost levels. In other words, setting the
on-net price equal to cost, i.e. pk∗on = p

−k∗
on ≡ p∗on = c and the off-net price equal

of network k to perceived marginal cost pk∗off = c0 + c1 + ā
−k will be optimal

for each network k independently of the price vector of the other network −k.
We now proceed to calculate the equilibrium fixed charge for each network.

Proposition 2 Any best response of network i to network j concerning its fixed
charge must satisfy

Gj = H + (1− 4x)v(p∗on) + 2xv(pj∗off ) +
(2x− 1)v(pi∗off ) + (2x− 1)πiT (ai) + (2x(η + 1)− 1) t

and any best response of network j to network i concerning its fixed charge must
satisfy

Gi = H + (4x− 3)v(p∗on) + 2(1− x)v(pi∗off ) +
(1− 2x)v(pj∗off ) + (1− 2x)πjT (a) + (2 + η − 2x(η + 1)) t

where from the ’Hotelling indifference condition’ (5)

x =
v(p∗on)− v(pi∗off )−Gj +Gi − t

2v(p∗on)− v(pj∗off )− v(pi∗off )− t(1 + η)

Proof:
Network j0s total profit is given as

Πj =



(1− x)×
 (1− x)

³
v(pjon)− v(pioff )

´
+

x
³
v(pjoff )− v(pion)

´ +
t(x(1 + η)− 1) +Gi −H

+
x(1− x)πjT (a)− F


(10)

where x(1− x)πjT (a) denotes the termination profit of network j. We now take
the derivative with respect to the optimal scale of network j

∂Πj

∂x
= −


 (1− x)

³
v(pjon)− v(pioff )

´
+

x
³
v(pjoff )− v(pjon)

´ +
t(x(1 + η)− 1) +Gi −H

+ (11)

(1− x)
 ³

v(pjoff )− v(pion)
´
−³

v(pjon)− v(pioff )
´ + (1 + η)t

+ (1− 2x)πjT (a) !
= 0
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which by using optimal pricing parameters and realizing that v(pi∗on) = v(pj∗on) =
v(p∗on), j 6= i yields the best response for Gj which is implicit in x. The Propo-
sition follows from symmetry.¥

The system of equations in the above proposition is linear and has a unique
solution. Taking the derivative with respect to the optimal scale given the
Hotelling indifference and solving for scale is isomorphic to the solution of the
first order necessary condition for the optimal choice of the fixed charge (hold-
ing the other networks fixed charge constant) using their connection via the
Hotelling indifference condition but more convenient when we look at second
order conditions below. Clearly the assumption of full market coverage allows
us to interchange the scales of the two networks as choice variables of the pro-
gram.

Also

Lemma 3 For given access charges āi, āj and sufficiently large t, the equilib-
rium scale x∗ is strictly decreasing in η and has a strictly positive lower bound.

Proof:
See Appendix.¥

This lemma has an important implication for the form that competition
between two networks takes. For any magnitude of the relative initial advantage
of one of the two networks (possibly the incumbent), there is always a strictly
positive market share x ≥ 1/3 for the second network which is unlike in the
standard Hotelling model where a large advantage of one firm drives the other
out of the market.

Note that this finding does not depend on the simple linear demand specifi-
cation we have used but also holds in the setting of LRT with constant elasticity
demand. A constant elasticity setting does not allow us to check for second order
sufficient conditions when we consider potentially asymmetric equilibria how-
ever. This can be done using our linear demand specification and is undertaken
below.

2.2 Solving the first stage

We now look at a network’s choice of the unregulated non-reciprocal access
charge markup ∆ in this model of network competition knowing from above
that the off-net retail prices are functions of this markup.
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Lemma 4 Given the advantage of network j (η > 1) is large, non-cooperative
access charges can be approximated by

∆j∗ ≡ aj∗ − c0 ≈ 1
2
(1− c) > 0

and

∆i∗ ≡ ai∗ − c0 ≈ 2
7
(1− c) > 0.

Proof:
See Appendix.¥

We are able to look at the components of each firm’s price vector for extreme
asymmetry. This gives an indication about a strategy that strongly disadvan-
taged late entrants such as E-Plus and O2 followed when entering the German
Telecommunications markets. We find the following result:

Lemma 5 Given the advantage of network j (η > 1) is large we find that the
components of the price vectors satisfy

∆j > ∆i

and

πjT (a
i) > πiT (a

j)

and

Gj > Gi

and

Πj > Πi.

Proof:
See Appendix.¥

The analysis thus shows that for large asymmetries a disadvantaged network
which targets a smaller market scale will chose a relatively lower access charge
than an advantaged network unlike the charges observed in the table in the
introduction. On the other hand a disadvantaged firm will also set a lower
fixed charge. Hence the initial strategy of late entrants gaining market share in
the German Telecommunications industry with a relatively low fixed charge as
observed in practice finds theoretical support.
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3 Equilibrium

We first present another comparative statics result:

Lemma 6 The equilibrium scale x∗ is strictly increasing in ai and decreasing
in aj for sufficiently large t.

Proof:
See Appendix.¥

The intuition for this result is simple: A higher access charge raises the
other network’s perceived cost that will be passed on to consumers via the off-
net call price thus moving the marginal consumer closer to the other network
and increasing own market share.

Performing a local analysis around the symmetric equilibrium using a Taylor
approximation we find that

Proposition 7 At the symmetric equilibrium η = 1 both firms will charge a
strictly positive non-cooperative access charge markup. In a neighbourhood of
the symmetric equilibrium both networks will optimally increase their access
charge markups for η > 1 and the advantaged network has the higher increase.

Proof:
See Appendix.¥

We therefore find that, as in the investigations of the symmetric setting,
the non-cooperative access charge markup with asymmetric networks is posi-
tive, both in the limit analysis (where contrary to the previous findings of the
”double marginalization” effect a limiting access charge can be approximated)
and in the local analysis around the symmetric equilibrium case η = 1. Hence
our theoretical results are in line with observed behaviour as exhibited in the
introduction.

More interestingly in both analyses, given a relative advantage η 6= 1 for any
network, an advantaged network has the larger market share and will optimally
choose a relatively larger access charge than a disadvantaged network. This
result is to be contrasted with that of Carter & Wright, 2003, Proposition 1
for reciprocal access charges where both firms, the smaller and the larger firm
prefer a zero markup.
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3.1 Sufficiency Conditions

We now show that the vector of potentially asymmetric pricing parameters Ξ∗

is indeed maximizing the profit of each network for any access charges given
that the pure benefit of being connected t is sufficiently large and/or the degree
of asymmetry η is sufficiently large.

The sufficient condition of the maximization problem at the second stage is

Lemma 8 The own second partial derivatives with regard to scale is negative
for any access charges (ai, aj) if

t(1 + η) > 2v(p∗on)

and the condition is sufficient for post-entry profits for networks i,j, to be strictly
positive.

Proof:
See Appendix.¥

The sufficient condition for the maximization problem at the first stage and
hence for the whole game is

Lemma 9 The own second partial derivatives with regard to the access charges
(ai, aj) given the price vector choices Ξi,Ξjat stage one are negative if the value
of the pure benefit of being connected t and/or the degree of asymmetry η is
sufficiently large.

Proof:
See Appendix.¥
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4 Conclusion
In the preceding analysis we find that, as in the previous symmetric ”double
marginalization” results of LRT, 1998a and Gans & King, 2001 competitively
chosen access charges imply a positive markup on cost also in an asymmetric
setting where one network competes at a perceived disadvantage and we are able
to approximate this markup explicitly. We are thus able to bring the theoretical
analysis in line with observed behaviour as exemplified in the introduction.
Extending the analysis to asymmetric settings, which are highly prevalent in
practice, we are able to shed some light on questions of optimal pricing behaviour
that were previously left open.

Unlike in the simple Hotelling model of horizontal product differentiation
the advantaged network will not cover the full market, no matter how large the
relative advantage becomes. This implies that due to the high dimensionality of
the optimal pricing strategy involved, the Telecommunications market may be
more ’contestable’ than previous studies have suggested. Additionally we find
that for a sufficiently pronounced asymmetry, optimal fixed charges and profits
for both firms are increasing in the asymmetry parameter, i.e. that due to
the strategic interaction of the firms the advantage and the implied asymmetry
becomes an advantage for the ”disadvantaged” firm too.

We eventually find that around the symmetric equilibrium the disadvantaged
network will optimally set access charges below that of an advantaged network
covering a larger market in the asymmetric equilibrium and also that a strongly
disadvantaged network charges a strictly lower fixed charge. The former result
conflicts with, the latter is in accordance with data from the introduction and
hence it seems that there remains room for disadvantaged new entrants in the
Telecommunications industry to optimize on their pricing strategies.
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6 Appendix

Proof of Lemma 3:
As any equilibrium must satisfy the three equations in the previous Propo-

sition simultaneously we can derive the equilibrium scale of network i (and thus
of network j from full participation) in implicit form. From above we have

x∗(āi, āj) =

−3v(p∗on) + 2v(pi∗off (āj)) + v(pj∗off (āi))+
πiT (ā

i) + πjT (ā
j) + tη + 2t

−6v(p∗on) + 3v(pj∗off (āi)) + 3v(pi∗off (āj))+
2πjT (ā

j) + 2πiT (ā
i)) + 3tη + 3t

(12)

taking the derivative we find that x∗(āi, āj)is strictly decreasing in η if

t > v(p∗on)− v(pi∗off (āj))−
1

3
(πiT (ā

i) + πjT (ā
j)) (13)

and as limη→∞ x∗ = 1/3 it has a strictly positive lower bound in η.¥

Proof of Lemma 4:
Using the best responses Gi and Gj from Proposition 2 we find an optimal

scale x∗ that solves the system of equations simultaneously. Firm i0s post-entry
profit level at this first stage can be written as

Πi + F =

½
(x∗(ai, aj))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸¾
(14)

Using the product rule we find that optimal non-reciprocal access charges of
firm i necessarily satisfies

2x∗(ai, aj)
∂x∗(ai, aj)

∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
=

−(x∗(ai, aj))2 ∂(v(p
j∗
off (a

i)) + πiT (a
i))

∂ai
(15)

Note that

∂(v(pj∗off (a
i)) + πiT (a

i))

∂ai
= c0 − ai (16)

so that as η goes out of bounds we have that

2(
1

3
)
∂x∗(ai, aj)

∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
≈ (1

3
)2(ai − c0) (17)
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has to hold. As now

∂x∗(ai, aj)
∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
≈ 1
9
(1− c)− 7

18
(ai − c0)

(18)

we find

ai ≈ c0 + 2
7
(1− c) (19)

approximates the equilibrium access charge in our setting.

Similarly for the strongly advantaged firm j post-entry profits are

Πj + F =

½
(1− x∗(ai, aj))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pi∗off (a
j)) + v(pj∗off (a

i)) + πjT (a
j∗)

¸¾
(20)

so that the optimal access charge a j necessarily satisfies

2(1− x∗(ai, aj))∂(−x
∗(ai, aj))
∂aj

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πjT (a
j)

¸
=

(1− x∗(ai, aj))2 ∂(v(p
i∗
off (a

j)) + πjT (a
j))

∂aj
(21)

and hence as η goes out of bounds we have that

2(1− 1
3
)
∂(−x∗(ai, aj))

∂aj

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πjT (a
j)

¸
≈ (2

3
)2(aj − c0)

(22)

has to hold. As now

∂(−x∗(ai, aj))
∂aj

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πjT (a
j)

¸
≈ 2
9
(1− c)− 1

9
(aj − c0)

(23)

we find the approximation

aj ≈ c0 + 1
2
(1− c) (24)

as was to be shown.¥
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Proof of Lemma 5:
Let the network with the exogenous advantage η > 1 be network j. Then

given the advantage is sufficiently large we find from the previous result that the
marginal consumers is located at 1/3 on the unit interval. The optimal access
charge markups approximately satisfy

∆j∗(x) ≈ 1
2
(1− c) > ∆i∗(x) ≈ 2

7
(1− c) (25)

and by replacing the arguments we find

v(p∗on) ≈
1

2
(1− c)2 (26)

and

v(pi∗off (a
j∗)) ≈ 1

8
(1− c)2 (27)

and

v(pj∗off (a
i∗)) ≈ 25

98
(1− c)2 (28)

and

πjT (a
i∗) ≈ 10

49
(−1 + c)2 (29)

and

πiT (a
j∗) ≈ 1

4
(1− c)2 (30)

If η is sufficiently large, optimal fixed charges satisfy

Gj∗ > Gi∗ (31)

as the last terms in Gj∗and Gi∗ dominate andµ
2(
1

3
)(η + 1)− 1

¶
t >

µ
2 + η − 2(1

3
)(η + 1)

¶
t (32)

or

2

3
η − 1

3
>
1

3
η +

4

3
(33)

always holds. Trivially total profits are larger for the advantaged firm.¥
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Proof of Lemma 6:
From (12) we have the equilibrium scale as

x∗(ai, aj , η) =

−3v(p∗on) + 2v(pi∗off (aj)) + v(pj∗off (ai))+
πiT (a

i) + πjT (a
j) + tη + 3t

−6v(p∗on) + 3v(pj∗off (ai)) + 3v(pi∗off (aj))+
2πjT (a

j) + 2πiT (a
i)) + 3tη + 3t

(34)

Taking derivatives we have

∂x∗(ai, aj , η)
∂ai

= −2
−ai(aj)2 + (c− 1) (ai)2 +

³
2 (c− 1)2

´
aj + 6t

¡
ai − 1 + c¢

(−(ai)2 − (aj)2 − 2 (1− c) (ai + aj) + 6t(1 + η))
2 > 0

(35)

and

∂x∗(ai, aj , η)
∂aj

= 2
−(ai)2aj + (c− 1) (aj)2 +

³
2 (c− 1)2

´
ai + 6t

¡
aj − 1 + c¢

(−(ai)2 − (aj)2 − 2 (1− c) (ai + aj) + 6t(1 + η))
2 < 0

(36)

for sufficiently large t as ai, aj < 1− c by assumption.¥

16



Proof of Proposition 7:
Again firm i0s post-entry profit level at the first stage can be written as

Πi + F =

½
(x∗(ai, aj , η))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i) + v(pi∗off (a

j)) + πiT (a
i)

¸¾
(37)

The optimal non-reciprocal access charge of firm i for any degree of asymmetry
η > 0 necessarily satisfy

∂Πi(η)

∂ai
= 2x∗(ai, aj , η)

∂x∗(ai, aj , η)
∂ai

·
t(1 + η)− 2v(p∗on)+

v(pj∗off (a
i)) + v(pi∗off (a

j)) + πiT (a
i)

¸
+

(x∗(ai, aj , η))2
∂(v(pj∗off (a

i)) + πiT (a
i))

∂ai
!
= 0 (38)

Setting c0 = 0 from here to simplify notation somewhat we find that a solution
necessarily has to satisfy

x∗
¡
ai, aj , η

¢Ã−aix∗ ¡ai, aj , η¢+ ∂x∗
¡
ai, aj , η

¢
∂ai

¡
aj
¡
aj − 2(1− c)¢− (ai)2 + 2t(1 + η)

¢! !
= 0

(39)

and for an interior solution

Φi(η) ≡ −aix∗ ¡ai, aj , η¢+ ∂x∗
¡
ai, aj , η

¢
∂ai

¡
aj
¡
aj − 2(1− c)¢− (ai)2 + 2t(1 + η)

¢ !
= 0

(40)

Post-entry profits for the other firm are

Πj + F =

½
(1− x∗(ai, aj , η))2 ×

·
t(1 + η)− 2v(p∗on)+

v(pi∗off (a
j)) + v(pj∗off (a

i)) + πjT (a
j∗)

¸¾
(41)

Note that the profit terms are fully symmetric except for the own scale scalar.
We find that a solution to the optimal non-reciprocal access charge of firm j
necessarily satisfies the first order condition

(x∗
¡
ai, aj , η

¢− 1)Ãaj((1− x∗ ¡ai, aj , η¢) + ∂(x∗
¡
ai, aj , η

¢
)

∂aj
(ai(ai − 2(1− c))− (aj)2 + 2t(1 + η))

!
!
= 0

(42)

or for an interior solution

Φj(η) ≡ aj((1− x∗ ¡ai, aj , η¢) + ∂x∗
¡
ai, aj , η

¢
∂aj

(ai(ai − 2(1− c))− (aj)2 + 2t(1 + η))
!
= 0

(43)
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Using first-order Taylor expansions of the form

Φk(η) ≈ Φk(η)¯̄
η=1

+
∂Φk(η)

∂η

¯̄̄̄
η=1

(η − 1)∀ k = i, j and i 6= j (44)

for η close to 1, i.e. around the symmetric equilibrium, we find the linearized
simultaneous equation system for an interior solution can be approximated by

0 = −x∗ ¡ai, aj , η¢ ai + ∂x∗
¡
ai, aj , η

¢
∂ai

¯̄̄̄
¯
η=1

¡
4t− (ai)2 − aj(2(1− c)− aj)¢+

(45)

 ∂
∂x∗(ai,aj ,η)

∂ai /∂η

¯̄̄̄
η=1

¡
4t− (ai)2 − aj(2(1− c)− aj)¢

− ∂x∗(ai,aj ,η)
∂η

¯̄̄̄
η=1

ai +
∂x∗(ai,aj ,η)

∂ai

¯̄̄̄
η=1

2t

 (η − 1)
and symmetrically

0 = (1− x∗ ¡ai, aj , η¢)aj + ∂x∗
¡
ai, aj , η

¢
)

∂aj

¯̄̄̄
¯
η=1

¡
4t− (aj)2 − ai(2(1− c)− ai)¢+

(46)

 ∂
∂x∗(ai,aj ,η))

∂aj /∂η

¯̄̄̄
η=1

¡
4t− (aj)2 − ai(2(1− c)− ai)¢

− ∂x∗(ai,aj ,η)
∂η

¯̄̄̄
η=1

aj + ∂x∗(ai,aj ,η)
∂aj

¯̄̄
η=1

2t

 (η − 1)
From the above Lemma for the symmetric equilibrium η = 1 we find that for
large t we have

0 = −x∗ ¡ai, aj , η¢ ai + ∂x∗
¡
ai, aj , η

¢
∂ai

¯̄̄̄
¯
η=1| {z }

+

¡
4t− (ai)2 − aj(2(1− c)− aj)¢| {z }

+

(47)

and the RHS is strictly decreasing in ai for given aj and

0 = (1− x∗ ¡ai, aj , η¢)aj + ∂x∗
¡
ai, aj , η

¢
∂aj

¯̄̄̄
¯
η=1| {z }

−

¡
4t− (aj)2 − ai(2(1− c)− ai)¢| {z }

+

(48)
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has the RHS strictly decreasing in aj for given ai. Thus for large t, c0 ≥ 0 and
η = 1 we find

ai − c0, aj − c0 > 0 (49)

has to hold for the system to be satisfied so that markups are strictly positive.

For any η > 0 and large t we have the approximate system of (45) and (46)
given by the best response functions

0 = −1
2
ai +

∂x∗
¡
ai, aj , η

¢
∂ai

¯̄̄̄
¯
η=1| {z }

+

¡
4t− (ai)2 − aj(2(1− c)− aj)¢| {z }

+

+

1

18

µ
−1 + c+ 1

2
ai
¶
(η − 1) (50)

and symmetrically

0 =
1

2
aj +

∂x∗
¡
ai, aj , η

¢
∂aj

¯̄̄̄
¯
η=1| {z }

−

¡
4t− (aj)2 − ai(2(1− c)− ai)¢| {z }

+

+
1

18

µ
−1 + c+ 1

2
aj
¶
(η − 1) (51)

as by assumption, ai, aj < 1 − c we find that the additional term for η > 1 is
strictly negative. Hence for η slightly above one, aj has to increase by more than
ai in order to keep the simultaneous equation system satisfied. If the advantage
is reversed, i.e. η < 1 then the additional term is positive and ai has to increase
by more than aj .¥
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Proof of Lemma 8:
The own second partial derivatives with respect to the optimal scale are

∂2Πi

∂x2
= 4v(p∗on)− 2t(1 + η)− 2v(pi∗off (aj))− 2v(pj∗off (ai))− 2πiT (ai) (52)

and

∂2Πj

∂x2
= 4v(p∗on)− 2t(1 + η)− 2v(pj∗off (ai))− 2v(pi∗off (aj))− 2πjT (aj) (53)

so that the condition is necessary and sufficient for the second derivative to be
negative for any ai and aj . By observation, given the optimal post-entry profit
functions (14) and (20) we find that the sufficiency result follows.¥

Proof of Lemma 9:
Taking derivatives we find

lim
η→∞

Ã
∂2Πi(pi∗on, pi∗off , G

i∗;Ξj∗, aj)
∂(ai)2

!
= (54)

lim
η→∞


−(x∗ ¡ai, aj , η¢)2 − 4∂x∗(ai,aj ,η)∂ai aix∗

¡
ai, aj , η

¢
+Ã

x∗
¡
ai, aj , η

¢
∂
∂x∗(ai,aj ,η)

∂ai /∂ai +

µ
∂x∗(ai,aj ,η)

∂ai

¶2!
×¡

2t+ 2tη − 2aj + 2caj + (aj)2 − (ai)2¢
 =

lim
η→∞

Ã
∂2Πj(pj∗on, p

j∗
off , G

j∗;Ξi∗, ai)
∂(aj)2

!
=

−16
27

< 0 ∀ t

Also

lim
t→∞

Ã
∂2Πj(pj∗on, p

j∗
off , G

j∗, aj ;Ξi∗)
∂(aj)2

!
= − 1

27

16η2 + 22η + 7

(1 + η)2
< 0 ∀ η (55)

and

lim
t→∞

Ã
∂2Πi(pi∗on, p

i∗
off , G

i∗, aj ;Ξj∗)
∂(ai)2

!
= − 1

27

7η2 + 22η + 16

(1 + η)
2 < 0 ∀ η (56)

and thus sufficiency follows.¥
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