Informational intermediation and competing auctions

by J.Kennes & A.Schiff

Comments by B.Caillaud

Toulouse July 1st, 2006

Main contribution

Foundations for demand for certification services on both sides of a market with sellers of heterogenous quality:

Platform can observe quality on sellers' side and certify (some of) the high-quality sellers for a price p_A

Platform can sell certification information (list of certified sellers) to (some of) the buyers for a price p_G

Platform is a 2-sided monopolist

Pricing? i.e. how many sellers certified? and how widely is information sold to buyers?

Market with partial certification

Certification of σ % of HQ sellers to β % of the buyers induces:

- 2 submarkets: HQMkt with quality q_h and tightness $(\frac{\text{\#buyers}}{\text{\#sellers}}) \phi_h$, and LQMkt with $q_l(\sigma)$ and ϕ_l . NB: $\frac{\sigma}{2} \phi_h + (1 \frac{\sigma}{2}) \phi_l = \Phi$.
- For IB, $B(\phi_i, q_i) \nearrow \text{in } q_i$, + in $\phi_i [B = q_i e^{-\phi_i}]$
- Small β : $\phi_h \approx \phi_l \approx \Phi$ (little differences): $B(\Phi, q_h) > B(\Phi, q_l)$ Separation: all IB shop on HQMkt, $\phi_l^* = (1 - \beta)\Phi$
- When β increases, ϕ_h increases: congestion cancels quality advantage:

$$B(\phi_h^*, q_h) = B(\phi_l^*, q_l).$$

IB randomize for $\beta > \beta^*(\sigma)$. IB shop on HQMkt when β higher.

Buyers' demand for information

• For a buyer, willingness to pay for information is given by:

$$p_{G} = B(\phi_{h}^{*}, q_{h}) - \left[\frac{\sigma}{2}B(\phi_{h}^{*}, q_{h}) + (1 - \frac{\sigma}{2})B(\phi_{l}^{*}, q_{l})\right]$$
$$= (1 - \frac{\sigma}{2})[B(\phi_{h}^{*}, q_{h}) - B(\phi_{l}^{*}, q_{l})].$$

- More IB (β larger), less and less value of information: demand \nearrow
- When $p_G > 0$ (and $\beta < \beta^*$), more HQsellers certified (σ higher) means lower q_l on LQMkt and smaller tightness on HQMkt (more HQsellers), hence larger value of information (p_G increases in σ)

Sellers' demand for certification

• Seller's benefit: $p(\phi_i)$ increasing in ϕ_i ; willingness to pay for certification:

$$p_A = p(\phi_h^*) - p(\phi_l^*) \sim (\phi_h^* - \phi_l^*)$$

- If few IB (small β), higher σ means more HQsellers certified, hence less IB / certified seller: $\phi_h^* \setminus (\phi_l^* = (1 \beta)\Phi)$; hence $p_A \setminus$
- If many IB $(\beta > \beta^*)$; higher σ means:
 - 1. again, more HQsellers certified
 - **2.** but $q_l(\sigma) \searrow \Rightarrow \phi_l^* \searrow$ (and $\phi_h^* \nearrow$) to maintain buyers' indifference: $p_A \nearrow !$
 - 3. Demand may be upward sloping!
- When $\beta \nearrow$, difference in tightness \nearrow hence $p_A \nearrow$.

Monopolist platform

Optimum is to certify all HQsellers and sell the information to all buyers because:

- p_A increasing in σ on relevant range
- $lacktriangleq p_G$ also! More certified sellers helps increase the price for buyers
- p_G decreasing in β ... undecisive
- but p_A increases in β ! More informed buyers makes certification more valuable

More specific results

- Welfare increases (weakly) in β
- but ambiguous in $\sigma!$ $\sigma = 1$ not necessarily socially optimal (even in specific model)
- Distributional effects...
- Excess private incentives: Δwelfare < Δprofits from general certification.
 Intuition?
- Comparison of constrained pricing on one side; meaning?

Discussion

Sellers' role is relatively passive: no other way to signal, or to establish a reputation

Type of information sold by platform?

- soft: incentives to collect that information?
- hard: incentives of a buyer to resell information
- in e-commerce, rating on sellers' quality often provided by buyers

Endogenous entry / exit:

• e.g. if participation costs, UB may leave, hence with changes in tightness

Cost of certification per seller!