Informational Intermediation and Competing Auctions

John Kennes

Centre for Applied Microeconometrics University of Copenhagen Aaron Schiff Department of Economics

University of Auckland

Toulouse, June 2006

1 Introduction

• Matched data (general equilibrium and longitudinal)

labor, asset and product trade

• Stylized facts

price dispersion, unstable relationships, and reputations matter

• Research motivation (public policy, commercial, academic)

What are the consequences of third party actions in these markets?

Structural approaches to modelling matched data

1. **Undirected matching** (Diamond, Mortensen and Pissarides) The answers to basic questions:

who meets with whom?

who gets paid what?

are largely imposed by the matching technology and sharing rule assumed.

2. **Directed matching** (Peters (1984), McAfee (1993) and Wolinsky(1988)). Above modelled as the outcome of a non-cooperative game.

A simple directed search model: Competing auctions

1. **Communications game** (Frogs croak for mates):

Male frogs croak in the dark, female frogs listen and locate

2. **Pricing game** (Auction):

Bidding by females

Informational Intermediation

Suppose:

(i) males are heterogeneous;

(ii) information partition available (to third party) at fixed cost F;

(iii) information can be sold as

- 1. guidebooks (to females)
- 2. accreditations (to males)

What we wish to find out?

- 1. Matching technology and price determination with infomediation
- 2. Public incentives to create information partition
- 3. Private incentives to pay for information partition (guidebooks and accreditations)
- 4. Monopoly incentives to create information partition
- 5. Trade-offs between business models (accreditations or guidebooks)

2 The model

- *M* buyers and N = 1 sellers, $\Phi \equiv M/N$.
- Two types of seller each with a single unit for sale:
 - Half are good type and have quality level 1 for sale.
 - Half are *bad type* and have quality level $\theta \in (0, 1)$ for sale.
 - Define average quality $\tilde{q} = \frac{1}{2}(1+\theta)$.
- Asymmetric information: Buyers know only \tilde{q} .

- A good of quality q is worth q to a buyer and zero to a seller.
- Sellers advertise competing auctions.
 - Only quality information is relevant.
- Buyers simultaneously choose the auction of a single seller to visit ⇒ search (coordination) frictions.
- Assume that buyers become perfectly informed of a seller's quality after turning up at the auction but before bidding ⇒ effectively Bertrand competition among buyers.

- Concentrate on a mixed-strategy equilibrium where buyers randomize over seller locations.
- Can show that in a 'large' market with buyer-seller ratio x:
 - Prob. a buyer is alone at a seller: e^{-x}
 - Prob. a seller gets at least one buyer: $1 e^{-x}$
 - Prob. a seller gets more than one buyer: $1 (1 + x) e^{-x}$

3 Unguided benchmark

- If all buyers are uninformed about sellers' qualities, each buyer visits the location of every seller with equal probability.
- Equilibrium welfare: $(1 e^{-\Phi}) \tilde{q}$.
- Welfare losses due to search frictions: $e^{-\Phi}\tilde{q}$.

4 Representing information

- The third party divides sellers into two 'submarkets' with expected qualities q_h and q_l , where $\theta \leq q_l < \tilde{q} < q_h \leq 1$.
- The fraction of sellers in the q_l submarket is α .
- Define an *information partition* as (α, q_l) , and note that $q_h = (\tilde{q} \alpha q_l) / (1 \alpha)$.

Let φ_l and φ_h be buyer-seller ratios. Fraction β of buyers are informed of the information partition (α, q_l). Uninformed buyers randomize over sellers.
 Informed buyers search more intensively in the high-quality submarket.

$$\begin{split} \phi_l &= \begin{cases} (1-\beta) \Phi & \text{if EC} \\ \Phi - (1-\alpha) \ln (q_h/q_l) & \text{otherwise} \end{cases} \\ \phi_h &= \begin{cases} \left(1 + \frac{\alpha\beta}{1-\alpha}\right) \Phi & \text{if EC} \\ \Phi + \alpha \ln (q_h/q_l) & \text{otherwise} \end{cases} \end{split}$$

• The *exclusion constraint* is satisfied:

$$e^{-\phi_h}q_h \ge e^{-\phi_l}q_l$$

• In equilibrium, if $\beta > 0$, then $\phi_l < \Phi < \phi_h$ and $\partial \phi_l / \partial \beta \le 0$, $\partial \phi_h / \partial \beta \ge 0$.

5 Welfare effects

- Welfare always increases with guided versus unguided search because search is directed more accurately and search frictions are reduced.
- The welfare gain is:
 - Non-decreasing in the number of informed buyers.
 - Increasing in the 'informativeness' of the information partition, i.e. decreasing in q_l and increasing in α .
- Assuming no costs of creating information, welfare is maximized when a perfect information partition $(\frac{1}{2}, \theta)$ is given to all buyers.

Maximum possible welfare gain.

- Distributional effects relative to unguided search:
 - Uninformed buyers are worse off.
 - Informed buyers are worse off if they do not exclude low quality sellers in equilibrium, otherwise they may be better or worse off.
 - * The reduction in probability of getting a high quality product more than offsets the gains from being informed.
 - * But it is an always equilibrium for the β informed buyers to actually use the information (prisoners' dilemma).
 - Bad sellers are worse off.
 - Most or all of the welfare gains accrue to good sellers.

6 Monopoly information provision

• Suppose a monopolist accredits a fraction σ of the good sellers, creating an information partition:

$$\left(lpha \left(\sigma
ight), q_{l} \left(\sigma
ight)
ight) = \left(1 - rac{1}{2} \sigma, rac{1 - \sigma + \theta}{2 - \sigma}
ight)$$

- It charges a price p_A to good sellers to be accredited, and sells the resulting information partition to β of buyers at a price p_G .
- Generates equilibrium buyer-seller ratios $\phi_h(\beta, \sigma)$ among accredited (good) sellers and $\phi_l(\beta, \sigma)$ among unaccredited (good/bad) sellers.

6.1 Demand for guidebooks

$$p_{G}(\beta,\sigma) = \begin{cases} \alpha(\sigma) \left[e^{-\phi_{h}(\beta,\sigma)} - e^{-\phi_{l}(\beta,\sigma)}q_{l}(\sigma) \right] & \text{if EC} \\ 0 & \text{otherwise} \end{cases}$$

- Buyers are only willing to pay for a guidebook if it is sufficiently informative so as to enable them to exclude unaccredited sellers.
- Demand is well-behaved: Continuous, decreasing in β , increasing in σ .
 - More informed buyers increases competition in the accredited submarket and lowers the gains from being informed.

6.2 Demand for accreditations

$$p_{A}(\beta,\sigma) = p(\phi_{h}(\beta,\sigma)) - p(\phi_{l}(\beta,\sigma))$$

where $p(\phi) = 1 - (1 + \phi) e^{-\phi}$.

• Demand is not quite well behaved: Continuous, increasing in number of informed buyers, but demand slopes down $(\partial p_A/\partial \sigma < 0)$ when EC holds and slopes $up \ (\partial p_A/\partial \sigma > 0)$ when EC does not hold.

- An increase in σ has two effects:
 - 1. *Quantity effect:* The number of sellers in the high quality submarket increases and the number in the low quality submarket decreases.
 - 2. *Quality effect:* The expected quality of unaccredited sellers decreases $(q'_l(\sigma) < 0)$.
- If EC holds only the quantity effect operates (informed buyers are searching among accredited sellers with maximum intensity) ⇒ demand slopes down.
- If EC does not hold then both effects operate and the quality effect dominates
 ⇒ demand slopes up (network effect).

6.3 Monopolist's profit

$$\pi(\beta,\sigma) = \Phi p_G(\beta,\sigma)\beta + \frac{1}{2}p_A(\beta,\sigma)\sigma$$

- Monopolist chooses β and σ simultaneously, taking into account the demand interdependence.
- Total revenue is maximized by accrediting all good sellers and providing this information to all buyers: $\beta = \sigma = 1$.
 - This is true even if it means receiving no revenue from buyers.
 - The monopolist replicates the social planner's solution.

7 Incentives to invest in information

- Although the monopolist sets $\beta = \sigma = 1$, it is able to capture more surplus than the additional welfare that it generates.
 - Partly because of the upward-sloping demand for accreditations (when EC holds).
 - Thus assuming creation of information requires incurring a fixed cost F, the monopolist will choose to create information for fixed cost levels that a social planner would not.
 - Example (F = 0.0001)

- Conclusion
 - Informational intermediation in a matching game with directed search is a two-sided market.
 - The value of information is influenced by a network effect the incentive to gain accreditation can increase with the number of accredited sellers.
 - The network effect can dominate other factors and thus a third party may have an incentive to market guidebooks for free and extract all revenues from seller accreditation.
 - The third party may have an incentive to overinvest in information compared to the social planner. No obvious market based solutions.
 - A trade-off between two methods of selling information