Two Sided Markets with Substitution: Mobile Termination Revisited

Jerry Hausman, MIT
Julian Wright, NUS
jhausman@mit.edu

June 30, 2006

- Mobile networks an example of two sided markets: both subscribers and inward callers derive utility
o Mobile networks have relatively high fixed costs and low marginal costs
o Differential pricing of outgoing and incoming calls has led to regulatory concern and intervention
o Do regulators have sufficient knowledge to "rebalance" prices in an economically rational manner?
- Usually have adopted a cost based measure to set termination prices.
- Not based on economic welfare of end users
- Previous literature implications
o Even in highly competitive mobile markets each operator will set "monopoly" termination price
- Profits will be competed away to subsidize mobile subscribers
o Competitive bottleneck means equilibrium termination charges are "too high"
o However, optimal termination charges are above cost since fixed line callers receive a positive externality by being able to call additional mobile subscribers
- Additional welfare is virtual price minus actual price for that call: $\mathrm{pf}^{*}>\mathrm{p}_{\mathrm{f}}$
- Hausman estimated lower bound virtual price in Australia to be $\mathrm{A} \$ 1.07$ compared to FTM price of $\$ 0.33$
- Hausman found that new mobile subscribers had approximately the same average amount of incoming calls as existing subscribers
- Additional externality arises from MTM calls
- Contribution of this paper: FTM callers are also likely to be mobile subscribers
o In Australia penetration rate is above 70\%
o Mobile subscribers can substitute MTM calls for FTM calls

Main Results of Paper

- Analytical results of paper
o Mobile operators will set termination charge below the monopoly level
o Equilibrium termination charges are not necessarily too high compared to welfare maxing termination price
o Additional Network externalities imply socially optimal charges can be further above costs
- Calibrate model to Australian data
o Allowing for MTM to substitute for FTM causes equilibrium termination charge to decrease below monopoly level
o Model predicts $\$ 0.25$ somewhat above observed level of $\$ 0.21$, but this amount had decreased due to previous regulation
- Bottleneck theory predicts $\$ 0.33$
o Find socially optimal termination charge to be $\$ 0.18$ well above cost of $\$ 0.05$ cents cost of termination
o Use cost based regulation leads to lower welfare that unregulated equilibrium level.

- Model specification:

o Non-mobile subscriber can only make FTM calls at price p_{f} to reach someone "on-the go" with utility $\mathrm{v}_{\mathrm{f}}\left(\mathrm{p}_{\mathrm{f}}\right)$
o Mobile subscribers can also make a MTM call at price p_{m} and achieves utility $\mathrm{v}\left(\mathrm{p}_{\mathrm{f}}, \mathrm{p}_{\mathrm{m}}\right)$
o For a person on the go to another person on the go a MTM call is made with utility $\mathrm{V}_{\mathrm{m}}\left(\mathrm{p}_{\mathrm{m}}\right)$
o We assume a higher own price elasticity of FTM calls when you can substitute to MTM:

$$
\left|\frac{\partial \bar{q}_{f}}{\partial p_{f}} \frac{p_{f}}{\bar{q}_{f}}\right|>\left|\frac{\partial q_{f}}{\partial p_{f}} \frac{p_{f}}{q_{f}}\right|,
$$

o Mobile Subscriber benefits-vary across the population

- Make MTF calls
- Make MTM calls
- Ability to be reached
- Ability to receive calls
o Benefits have a distribution function G across population with hazard function $\mu=\mathrm{g} /(1-\mathrm{G})$
o Non-subscribers get utility from FTM calls of Nv_{f} where N is number of mobile subscribers
o Mobile subscribers get utility: $\mathrm{b}-\mathrm{r}_{\mathrm{i}}+\mathrm{N}\left(\mathrm{v}+\mathrm{v}_{\mathrm{m}}\right)$ where b is exogenous benefit of subscribe (from above), r_{i} is subscription price, an last term is utility from calling people on the go
o Assume homogenous Bertrand price competition with MTM calls price set at marginal cost with 2 part tariff giving this solution.
- Analysis for the general case
o Rental price is $r=f-\pi_{T}$ where f is the cost per subscriber and π_{T} is FRM termination profit which lower subscription price or subsidizes handsets.
- Assuming all "excess" termination profits are competed away
o Critical value for people who subscribe is
$b^{*}=r-\left(v-v_{f}+v_{m}\right) N$ so demand for mobile is
$N=1-G\left(b^{*}\right)$
- Network effects cannot be too strong or will tip to 100% penetration.
- We assume will not happen and satisfied in calibrated model.
o Number of mobile subscriber increases with FTM termination charge a through 2 effects:
- (1) higher profits per subscriber leads to lower subscription prices-"waterbed effect" and
- (2) Higher a, the termination charge, leads to higher price of FTM calls so more people subscribe so they can substitute to MTM calls. Effect not included in models to date.
- Let a_{M} be profit maximizing (monopoly) termination rate where no MTM substitution exists (current
literature) and let equilibrium termination charge with MTM substitution be a_{N} with N held fixed, and a^{*} be equilibrium termination charge and c be termination cost
- Prop 1: $\mathrm{c}<\mathrm{a}^{*}<\mathrm{a}_{\mathrm{N}}<\mathrm{a}_{\mathrm{M}}$ so allowing for MTM substitution lowers both FTM termination charge and retail price
o Result occurs because FTM demand is more elastic in presence of MTM substitution holding penetration constant and penetration increases with mobile termination charge so $\mathrm{a}^{*}<\mathrm{a}_{\mathrm{N}}$
- Compare to termination charges that maxes SWF:

$$
W=\int_{b^{*}}^{\bar{b}}\left(b-r+N\left(v+v_{m}\right)+(1-N) v_{f}\right) g(b) d b .
$$

where first term is utility for mobile subscribers and second term is for non-mobile subscribers. After substitution we max:

$$
W=\int_{b^{*}}^{\bar{b}}\left(b-f+G \pi_{M}+(1-G) \pi_{0}+(1-G)\left(v+v_{m}\right)+G v_{f}\right) g(b) d b,
$$

- Prop 2: Welfare maxing termination charge a_{w} is above cost c . The equilibrium termination charge a^{*} can be either higher or lower than a_{w}.
o Need it to exceed cost to subsidize mobile subscription so previous regulation as in UK is not correct.
o Empirical evidence that UK regulation increases prices and decreases subscriptions:

Figure 1: Comparison of Indexed Wireless Prices for U.S. and U.K

- Allowing for MTM substitution negates key result from earlier literature that $\mathrm{a}^{*}>\mathrm{a}_{\mathrm{w}}$ is no long true.
o Before $a^{*}=a_{m}$ and for $a_{m}-\varepsilon$ for small ε always increased welfare since to first order π_{T} (envelope theorem) remained unchanged but FTM prices decreased.
o Now an ε change from a* decrease the number of mobile subscribers since they have less need to avoid high FTM prices.
- Decreasing penetration decreases welfare because of the positive externality on others who can call them: virtual price is higher than equilibrium price, $p_{f}^{*}>p_{f}$
- "Monopoly outcome" is eliminated by MTM competition
- However, even previous literature did not demonstrate that setting mobile termination charge to cost, c , increased welfare
- My calculations for Australia demonstrated otherwise
o In "mature market" with penetration at 100\% question is without subsidy would penetration decrease?
- If not (mobile is a "necessity) then $\mathrm{a}_{\mathrm{w}}=\mathrm{c}$
- However, unlikely to be the situation.

Compare to US where we have RPP instead of CPP so no termination subsidy exists

- Despite highly competitive industry and low prices we have penetration at around 75%.

Calibrated Model

- Use Australian data for 2004. 3 large carriers, Telstra, Optus, and Vodafone with 1 smaller carrier
o High degree of competition. ACCC says that neither Optus nor VOD earned cost of capital but no barriers to expansion.
o Parameters from ACCC report: $\mathrm{N}=0.72$, p_{f} $=\$ 0.33, \mathrm{p}_{\mathrm{m}}=\$ 0.10$ (our estimate), $\mathrm{a}=\$ 0.21, \mathrm{r}=\$$ 22.00 per month, $\mathrm{Q}_{\mathrm{m}} / \mathrm{Q}_{\mathrm{f}}=2.6$ (In RPP countries such as US and HK ratio is near 1.0)

O ACCC (as did Offcom) use $E_{f}=0.6$ which is inconsistent with monopoly termination claim

- We use 1.3 but also use a range of elasticities
- Our model can treat inelastic demand while previous models cannot
o Additional assumptions:
- ratio of FTM to MTM calls from home when both are free (or same price) is set to 4.0
- Cross price elasticity of demand of FTM calls is 0.5 of own price elasticity
- Elasticity of mobile penetration is 0.55
(Hausman (1997) and (2002))
- We consider ranges of these variables
- For now we use quadratic utility and linear demand along with a uniform distribution
o Solve model and find termination subsidy is about \$4.11 per month. (Within "close" range of actual termination profit per subscriber)
o Equilibrium termination charge from model is $\$ 0.25$ while observed amount is $\$ 0.21$ but that had been reduced due to prior regulation.
- Monopoly model predicts charge of \$0.33 well above the observed value.
- We now vary termination charge and find:
o Increase in termination charge increases penetration since it allow a subscriber to use MTM and avoid higher FTM price
o Penetration is maximized at a $=\$ 0.30$ since high FTM prices (above profit maxing level) encourage more subscription
o Welfare maxing level is $\mathrm{a}_{\mathrm{W}}=\$ 0.18$, which is lower than equilibrium but much higher than cost of $\$ 0.05$.
o Cost based W is lower than market based W
- Termination rate would need to be about $\$ 0.30$ to get same W as cost based rate
- Interesting at this termination rate you approximately maximize penetration

Figure 1: Welfare, Penetration Rate and Termination Profits

- Sensitivity analysis does not lead to significant changes
o Used log-logistic distribution (like log normal)
- Welfare maxing $\mathrm{a}_{\mathrm{w}}=\$ 0.238$ even closer to equilibrium a $=\$ 0.25$ value
- Maximum penetration is at $\mathrm{a}=\$ 0.30$
o Original model major changes:
- if FTM own price elasticity is 0.6 (ACCC value and Offcom value) then $\mathrm{a}_{\mathrm{w}}=\$ 0.32$ which exceeds current observed value by over 50\%
- If FTM own price elasticity is 2.0 then $\mathrm{a}_{\mathrm{w}}=$ $\$ 0.14$. Note still much higher than cost estimate.
- Can find combinations of parameters where equilibrium termination charge is too lowbelow welfare maxing price

- Conclusions and future research

o Regulator "monopoly termination view" misses 2 important points:

- (1) Some or all of termination profit used to lower subscription prices, which is the two sided market effect.
- Leads to increased utility for both mobile subscribers and for fixed lined caller who can now reach people on the go. New subscribers are like "new goods"—Hausman (1997)
- (2) MTM can substitute for FTM.
- Allowing for substitution the monopoly termination implication of being "too high" no longer holds true.
o In Australia using regulatory elasticities we find monopoly termination rate is much higher than observe market determined termination rate so ignoring MTM substitution is probably incorrect
o Market determined termination rate is considerably closer to welfare maximizing termination rate that a cost based rate
o Market determined rate leads to higher welfare than cost based rate for all reasonable parameter values except when no subscription margin elasticity exists.
- However, difference here cannot be large because MTM substitution exists for nearly everyone.
- Policy recommendation: cost based termination charge is incorrect.
o Consumer welfare is higher with market determined outcome for rates
o While a small decrease may increase welfare it is beyond the ability of regulators to determine the optimal rate (even if they did PP\&E)
- Future research: have used log-logistic distribution and would like to combine it with more general demand system.
o Hope to use a 2-level CES system with bottom level the choice between FTM and MTM calls with top level decision to call someone on the go given price index from lower level
o Will be a second order flexible demand system given the 2-good lower level choice situation.

