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Abstract

This paper proposes a model of Bertrand competition between
platforms and analyzes the sustainability of dominant platform
equilibria in two-sided markets with the following characteris-
tics: i) platforms are essential bottlenecks for buyers (users) to
access the products offered by sellers (developers); ii) sellers en-
ter the market before buyers; iii) only sellers can multihome; iv)
platforms can charge fixed fees on both sides and variable fees
(royalties) to sellers. The central issue arising in such a context
is the ability of platforms to credibly commit to the price they
will charge buyers when they set their prices for sellers. The pos-
sibility of commitment changes the pricing game substantially by
enlarging the set of pricing strategies available to platforms and
we investigate its effect on the sustainability of dominant plat-
form equilibria and resulting profits, both when sellers are bound
to exclusivity and when they are allowed to multihome.
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"Olaf [Olafsson] was about two-thirds of the way through his speech

when he said, "I would like to call up Steve Race to tell you a little bit more

about the Sony Playstation." So I walked up. I had a whole bunch of sheets

of paper in my hands, and I walked up, put them down on the podium, and

I just said, "$299," and walked off stage to this thunderous applause."1

Steve Race, president of Sony Computer Entertainment of America, at

the first E3 (Electronic Entertainment Expo), May 11-13, 1995, Los Angeles

1 Introduction

Most of the recent literature on two-sided markets has modelled the two

"sides" or categories of agents as arriving at the same time and therefore

playing a simultaneous coordination game. While no one would argue that

all agents in such markets arrive at the same time in a literal sense, there

is a widely held view, according to which the equilibria of the simultaneous-

move game represent the equilibria which would arise in a more realistic,

sequential-move game. This is probably true as long as agents of the two

categories or "sides" arrive in a sufficiently alternated fashion or as long as

demands by the two sides are sufficiently elastic so that the order of ar-

rival is irrelevant. Some two-sided markets fit this descrition: credit cards

(merchants and consumers); yellow page directories, TV, newspapers (ad-

vertisers and viewers/readers); real-estate agents and other intermediaries

(buyers and sellers), etc.

However, there are several prominent categories of two-sided markets,

for which this stylized representation does not seem particularly well-suited,

because there is a natural and well-defined order of arrival of the two sides, in

the sense that most members of one side of the market arrive before most

members of the other side. For example, in the software and videogame

markets, most application and game developers join platforms (operating

systems and game consoles) before most users do. This is for technological

reasons: application and game development are long and costly processes,

therefore platform vendors in these markets have to start courting develop-

ers almost at the same time as they begin developing the platform, in order

1Quoted by Kent (2003), p.516.
Note: Olaf Olafsson, president of Sony Electronic Publishing.

2



to ensure that enough application support will be available for it at launch.

An operating system or game console could not be launched simultaneously

to both users and developers, because no users would buy it without ap-

plications or games and by the time any become available, users would be

gone to another platform.

In this paper we depart from previous literature by focusing on the strate-

gic issues arising when the two sides of a market arrive in a clear and well-

defined order. This stylized fact raises a number of important questions.

First, is it possible and/or desirable for platforms to credibly commit to the

price they will charge the side arriving later when trying to attract the side

arriving earlier? Second, what is the pricing structure in such markets? In

particular, does sequential arrival imply that the pricing structure will be

biased in favor of the side arriving earlier?

We propose a model for studying Bertrand competition among platforms

and the sustainability of dominant platform equilibria in two-sided markets

with the following characteristics: i) platforms are essential bottleneck in-

puts for buyers (users) to access the products offered by sellers (developers);

ii) sellers arrive before buyers; iii) only sellers can multihome2; iv) platforms

can charge fixed fees on both sides and variable fees (royalties) on the seller

side. The central issue arising in this context is the ability of platforms to

commit to the price they will charge buyers when they set their prices for

sellers. The possibility of commitment changes the pricing game substan-

tially by enlarging the set of pricing strategies available to platforms and we

investigate its effect on profits in dominant platform equilibria, both when

sellers are bound to exclusivity and when they are allowed to multihome.

Perhaps the main characteristic of two-sided markets is the presence of

bilateral indirect network effects giving rise to a "chicken-and-egg" problem.

However, in our case, since developers arrive before users, this implies that

indirect network effects are asymmetric: once sellers have decided which

platform to support, the coordination problem on the buyer side vanishes.

Buyers will simply adopt the platform offering the largest surplus, taking into

2Indeed, mainly for cost reasons, not many people buy two computers or two
videogame consoles. However independent application and game developers generally
support more than one platform.

3



account the price it charges and the number of supporting sellers. Thus, the

only coordination game is played by sellers. It would then seem natural that

platforms should concentrate all their efforts on attracting developers, or,

in other words, on capturing the "chicken side" of the market. One would

consequently expect platform profit structures to be generally biased in favor

of developers, i.e. that the share of net revenues from the developer side

of the market in total platform profits will be lower than the share of net

revenues from the user side. It turns out that this is not necessarily true.

On the one hand, most operating system vendors have adopted a business

model, which involves subsidizing the developer side of the market and mak-

ing most profits on users; on the other hand however, virtually all videogame

console manufacturers3 have chosen the opposite business model: they sell

consoles to users at or below cost and make the bulk of their revenues on the

developer side of the market. More specifically, operating system vendors

generally subsidize developers through tools, support, conferences, etc.4 and

they seldom charge variable fees. By contrast, console makers derive their

revenues from royalties charged to game developers. As an example, for

their most recent console releases, the royalties charged by Sony for PS2,

Nintendo for GameCube and Microsoft for XBox range from $8 to $10 per

game sold5.

Furthermore and perhaps not coincidentally, commitment to user prices

seems to play a significant strategic role in videogame console makers’ an-

nouncements prior to console launch, most notably at the E3 conference6.

By contrast, it does not seem to be such an important factor in the soft-

ware market. Indeed, major operating system vendors such as Microsoft,

Sun, IBM, etc., are not particularly well-known for announcing user prices of

their upcoming versions prior to launch or at developer conferences, where

they generally try to lure developers by focusing mainly on application pro-

gramming interfaces and other software development issues.

Consistent with these observations, commitment and the determination
3At least since 1989, the year when Nintendo first launched the NES in the United

States.
4See Evans (2003).
5See Kent (2001).
6See Kent (2001).
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of variable fees are strongly interdependent in our model. Royalties link

the pricing game for sellers and the subsequent pricing game for buyers.

Specifically, positive royalties announced in the first stage act as negative

"marginal costs" for platforms when they compete for buyers in the second

stage. There are two conflicting effects of royalties, which drive most of the

mechanisms in our model: on the one hand, absent commitment to buyer

(user) prices, high royalties provide a better competitive position vis-a-vis

buyers in the second stage by allowing platforms to price more aggressively,

but on the other hand, from an ex ante (i.e. prior to stage one) perspec-

tive, a platform expecting to extract most of the surplus created by sellers’

products has an incentive to set low royalties in order to maximize this sur-

plus. Furthermore, the pricing structure may or may not favor developers

depending on the rules of the pricing game being played, in particular the

feasibility of platform commitment, the possibility for sellers to multihome

and sellers’ fixed cost structure.

In this paper we restrict attention to dominant platform equilibria, i.e.

equilibria in which one platform benefits from favorable seller expectations

and corners both sides of the market. There are two reasons for this choice.

First, it can be shown that more balanced, market-sharing equilibria are

either unstable or non-existent in our model because platforms are perfect

substitutes for each other; moreover, the study of market sharing equilibria

does not offer any additional insights relative to the study of dominant

platform equilibria. Second and perhaps most important, in the markets we

are interested in, dominance by a single platform seems to be a pervasive

feature: Campbell Kelly (2003) for example states that 80% market share

for a single platform is very common in both the software and the videogame

markets.

The overarching idea arising from our model is that platforms’ (partial)

inability to extract surplus from both sides of the market leads to welfare-

reducing pricing distorsions. In the case of a monopoly platform, we show

that if it faces favorable developer expectations then it is able to extract

the entire social surplus and therefore its pricing will be socially optimal. If

on the other hand it is confronted with unfavorable developer expectations,

its inability to extract the full social surplus leads to inefficient pricing and
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lower social welfare.

In the case of two competing platforms, we show that when credible

commitment to user prices is not feasible, a dominant platform equilibrium

is always sustainable, both under a developer exclusivity regime as well as

when multihoming is permitted. In this case, the challenger’s only feasible

pricing strategy is to do whatever it takes in order to attract developers (by

subsidizing their fixed costs) and then hope to recoup on users. The dom-

inant platform may find it more profitable to be in a multihoming regime;

however, the resulting level of social welfare is always higher under exclusiv-

ity. Moreover, socially optimal pricing never arises in this case.

When commitment is feasible, the game becomes significantly more com-

plex because the challenger can use divide-and-conquer pricing strategies on

both sides of the market. In particular, rather than using direct subsidies

to fight off developers’ unfavorable expectations, it can commit to very low

prices for users, which signals to developers that it will win the user battle.

This enables the challenger to charge developers higher prices than it could

without credible commitment. In this case, a dominant platform equilibrium

is no longer necessarily sustainable under an exclusivity regime, however it

is always sustainable when developers are allowed to multihome. From a

social welfare perspective, commitment by the dominant platform is always

better than no-commitment. However, platform competition introduces a

misalignment between the dominant platform’s objectives and social welfare

maximization, which is why the dominant platform may sometimes find it

more profitable not to commit.

The paper is organized as follows: the next section presents a brief discus-

sion of the relevant literature, section three sets up the modelling framework

and the fourth section is devoted to the analysis of the monopoly platform

case. The fifth section provides a full characterization of the second stage

pricing game for users. Section six analyzes the full pricing game between

two competing platforms with a dominant platform, with and respectively

without platform commitment to user prices. Section seven concludes.
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2 Relevant literature

Our paper belongs to the very recent literature on two-sided markets, pio-

neered by Armstrong (2002) (hereafter A), Rochet and Tirole (2003) (here-

after RT) and Caillaud and Jullien (2002) (hereafter CJ). RT and A empha-

size the role of relative price elasticities of demand on the two sides of the

market in determining platform pricing structures. However, by assuming

elastic demands on both sides, they abstract from issues of coordination,

multiple equilibria and market dominance by a single platform. The paper

closest in spirit to ours is CJ: they study competition among intermediaries

with homogeneous populations on both sides of the market and the sus-

tainability of dominant platform and market sharing equilibria, which arise

endogenously as a consequence of indirect network effects. By contrast with

RT and A, who assume platforms can only use fixed fees, CJ allow for more

sophisticated pricing instruments, most notably variable fees conditional on

succesful matching. However, in all these papers the volume of transactions

between the two sides of the market is not directly affected by platforms’

prices: RT and A essentially assume that each member of one side inter-

acts with an exogenously given proportion of members on the other side,

whereas in CJ, each member of one side transacts with only one member of

the other side (in case matching is succesful). In our model the variable fees

charged by the platform (royalties) play a central role, because they affect

the prices and volumes of trade between developers and users and therefore

social welfare.

Our solution and equilibrium concept are directly adapted from CJ; we

also borrow their terminology for pricing strategies, in particular divide-and-

conquer. However, in their model the two sides are essentially symmetric

from all points of view and are assumed to arrive and coordinate simulta-

neously, therefore timing or commitment issues do not arise. By contrast,

we assume sequential arrival (developers arrive before users), implying that

the coordination game is played by developers, and that only developers

can multihome and be charged variable fees, for the reasons exposed above.

Finally, another innovation of our framework is to study the influence of

"economies of scale" resulting from multihoming: the fixed cost of porting

an existing application to another platform can be lower than the initial fixed
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cost of developing from scratch. The developer fixed cost structure (aside

from payments to platforms) plays an important role when multihoming is

possible, which up to now has not been studied by the two-sided market

literature.

Lastly, our paper is related in an interesting way to Stahl (1988). His

paper studies two-stage price competition between merchants, who must

compete both for input suppliers and for consumers. He analyzes two pricing

games: in the first game, there is winner-take-all competition for supplies

in the first stage and competition for users in the second stage, given the

capacities acquired in the first stage. In the second game, the timing is

reversed. Stahl shows that all these games have a unique subgame perfect

Nash equilibrium, which most of the time yields Walrasian prices. This

is in stark contrast with the games we study here, which exhibit multiple

equilibria. The difference is due to the fact that in Stahl’s model there

are no indirect network effects between the two sides of the market, i.e

input suppliers (akin to developers in our model) and consumers (users).

Indeed, since merchants compete in bids for suppliers, the latter only care

about the price they are being offered and not about the decisions of other

suppliers. In our model, by contrast, developers’ profits depend crucially

on the final user market share obtained by the platforms(s) they support,

which gives rise to indirect network effects. Thus, Stahl’s framework is very

similar to a modified version of our model, in which platforms would compete

in buyout bids for developers rather than in access charges. Moreover, in

Stahl’s model, the only link between the two sequential pricing stages is the

capacity acquired by merchants in the first stage, whereas in our model, the

link is provided by the royalty rates charged by platforms. Lastly, the reversal

of the pricing stages in Stahl (1988) (merchants sell forward contracts to

consumers first) corresponds in a way to our introduction of the possibility

of commitment to user prices, except that our commitment game is more

general, since platforms can choose whether or not to commit, whereas in

Stahl, the timing and rules of the game are exogenously imposed.
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3 Model

There are three types of agents in our model: consumers, developers and

platforms. Platforms are indispensable to consumers in order to use the

applications produced by developers; however, purchasing a platform only

provides access to the applications supported by that platform (there is

incompatibility between platforms). Moreover, developers cannot make ap-

plications compatible with a platform without the latter’s consent.

We assume there is a continuum of users, normalized at [0, 1], identical

in their tastes for platforms and with independent and identically distributed

preferences for applications. The platform offers no standalone utility to

users: this assumption simplifies the exposition but nothing essential would

change if we allowed users’ valuations for each platform to be greater than

07. Users’ valuations for any given application are randomly drawn from

an interval [0, v], according to a cumulative distribution G, where G0 > 0,

G (0) = 0, G (v) ≤ 18.
Developers are also modeled as a continuum [0, N ], where N is to be

interpreted as the number of developers per user. They are assumed to

act independently of each other. Developing an application has a fixed

initial development cost of ḟ and, consistent with our focus on software-like

markets, 0 marginal cost. However, we assume that an application developed

for a platform can be ported to another platform at an additional fixed cost

of γf , with 0 < γ ≤ 1. The case γ < 1 is equivalent to a sort of increasing

returns to scale when developers support more than one platform. A smaller

γ means that porting is less costly relative to development "from scratch".

We assume away any differences in developing and porting costs across

platforms, that is development and porting costs are the same, regardless of

the platform for which the application has been initially developed.

7This would capture the existence of in-house (i.e. produced by the platform)
applications or games for example.

8G (v) < 1 corresponds to the case, in which a fraction (1−G (v)) of users is not
interested in the application, so that they do not purchase it even at a price of 0.
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We define the per user demand for any application priced at p:

d (p) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G (v) if p ≤ 0

G (v)−G (p) if 0 ≤ p ≤ v

0 if v ≤ p

We assume that users do not know their valuation for the applications

developed for a platform prior to making their platform adoption decisions,

which implies that user choices are made based on expected surplus. The

consequnce of this assumption is that platforms are able to serve user de-

mand optimally. Any user’s expected surplus from an application priced at

p and available on the platform he has purchased is:

S (p) =

vZ
p

(G (v)−G (v)) dv =

vZ
p

d (ρ) dρ

Denote by DU the overall user demand for a platform. Since users’

preferences for any given application are uncorrelated, total user demand for

an application developed for the platform is:

D (p) = d (p)DU

Platforms have three pricing instruments at their disposition: fixed fees

for users PU , fixed fees PD and variable fees or royalties r for developers.

Thus, although marginal cost is 0, developers face a variable fee r charged

by the platform. In all the pricing games we consider platforms publicly

announce their prices, i.e. we assume away the possibility of secret offers

and discrimination on either side. Moreover we restrict attention to "simple"

price vectors
¡
PU , r, PD

¢
, thus ruling out more sophisticated pricing such as

exclusivity discounts or multihoming penalties or any sort of other contingent

clauses.

Net profits of a developer for a single platform are then:

(p− r) d (p)DU − PD − f

Therefore each developer for that platform will set a price p (r) given by:

p (r) = argmax
p
(p− r) d (p) (1)
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Define:

πD (r) = (p (r)− r) d (p (r))

Then profits from developing for a single platform are:

πD (r)DU − PD − f

In our model users always adopt only one platform. However developers

may sometimes multihome, i.e. port their application to more than one

platform. Suppose a developer chooses to support two competing platforms

1 and 2, where platform i = 1, 2 charges prices
¡
ri, P

D
i

¢
and attracts DU

i

users, with DU
1 +DU

2 = 1. Then his total profits from multihoming are:

πD (r1)D
U
1 + πD (r2)D

U
2 − PD

1 − PD
2 − (1 + γ) f

Turning now to plaforms, the expression of total profits for a platform

charging prices
¡
PU , r, PD

¢
and serving N developers and DU users is:

ΠP = PUDU +Nrd (p (r))DU +NPD

We will oftentimes discuss both price structure and profit or revenue

structure. By pricing structure we mean the price configuration
¡
PU , r, PD

¢
.

Define:

ΠPD=NPD +Nrd (p (r))DU

ΠPU =PUDU

ΠPD is the part of net platform profits obtained on the developer side

of the market, while ΠPU is the part obtained on the user side. The profit

structure is then the configuration
¡
ΠPD,ΠPU

¢
.

3.1 Definitions and technical assumptions

We make the usual assumptions on d (p), which ensure the concavity of

the maximization problem (1) and imply that πD (r) is decreasing and p (r)

increasing in r.

Furthermore, define:

r∗ = sup{r, p (r) = 0}
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r∗ is the maximum royalty rate for which it is optimal for developers to

price their applications at 0. Clearly r∗ < 0 and p (r) = 0 for all r ≤ r∗.

We denote by W (p (r)) the total social surplus per user created by an

application priced at p (r), the sum of user surplus S (p (r)) and developer

revenues per user p (r) d (p (r)):

W (p) = S (p) + pd (p)

Since p (r) is decreasing in r, both S (p (r)) andW (p (r)) are decreasing

in r and are maximized for r = r∗, i.e. when the application is sold at

marginal cost, which is equal to 0.

Also, in order to simplify the exposition, from now on we write everything

as a function of r alone, i.e.:

d (r)≡ d (p (r))

πD (r)≡ (p (r)− r) d (r)

S (r)≡S (p (r))

W (r)≡W (p (r))

Let us now define a function Φ (r) , which plays a central role in our

model:

Φ (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S (r∗) + rd (r∗) if r ≤ r∗

S (r) + rd (r) if r∗ ≤ r ≤ v

0 if v ≤ r

Φ (r) represents the sum of consumer surplus and the platform’s royalty

revenue per application and per user, when the royalty rate is r. We will

see below that nΦ (r) can be interpreted as the strength of a platform’s

competitive position vis-a-vis users, when it has attracted n developers and

has not yet committed to user prices.

We make the following assumptions:

Assumption 1 Φ admits a unique maximum on the interval ]r∗, v[9.
9It is straightforward to show that:

Φ0 (r) = (1−G (p (r)))

∙
1− p0 (r)

µ
1 + r

g (p (r))

1−G (p (r))

¶¸
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This assumption of a unique maximum is quite appealing intuitively.

When the royalty rate is too high, the application price is high and thus the

demand for the aplication is low, so that both royalty revenues and consumer

surplus are low. In turn, when the royalty rate is strongly negative, consumer

demand and surplus are high but the negative royalty revenue outweighs this

positive effect.

Let then:

rΦ=argmax
r

Φ (r)

Φ=Φ (rΦ)

Moreover, since Φ (r) −→ −∞ when r → −∞ and Φ (0) = S (0) > 0,

there exists a unique r0 ∈]−∞, 0] such that:

Φ (r0) = 0

The typical shape of Φ is depicted in figure 1.

Assumption 2 πD (rΦ) ≥ f

This assumption simply requires fixed development costs to be low enough

so that development is still profitable, even for "high" royalty rates.

Assumption 3 πD (0) ≥ Φ ≥ πD (rΦ)

Assumption 3 is purely technical and simplifies calculations.

It is straightforward to verify that assumptions 1 and 3 are satisfied by

the following family of demand functions10:

d (p) = (1− p)θ for θ ∈ [0,+∞[

which implies that this assumption is satisfied as long as the hazard rate g(p(r))
1−G(p(r))

is increasing and p0 (r) is increasing, constant (but different than 0) or only "slowly"
decreasing in r relative to the function between paranthesis, which is increasing in r.
Then Φ0 (r) < 0 when r → v and Φ0 (r) = 0 for r low enough (negative).
10We obtain:

r∗ =−1
θ
; r0 =

−θ
θ2 + θ + 1

; rΦ =
1

θ2 + θ + 1

Φ (r) =
θθ

(1 + θ)
θ+2

(1− r)
θ ¡
θ +

¡
θ2 + θ + 1

¢
r
¢

πD (0) =
θθ

(1 + θ)θ+1
> Φ =

θ2θ

(θ + 1)
¡
θ2 + θ + 1

¢θ > πD (rΦ) =
θ2θ+1¡

θ2 + θ + 1
¢θ+1
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Also, note that assumptions 2 and 3 imply:

πD (0) ≥ Φ ≥ πD (rΦ) ≥ f

3.2 Timing and commitment

We assume the timing of arrival is well defined: all application developers

arrive in the first stage and all users arrive in the second stage.

Given non-simultaneous arrival of the two sides, there are two scenarios

to consider, according to whether platforms have or not the possibility to

credibly commit to their prices PU
i for users in the first stage, i.e. when they

set their prices for developers. If commitment is feasible then each platform

i can either announce its full set of three prices
¡
PU
i , ri, P

D
i

¢
∈ R3 in the

first stage or announce only
¡
ri, P

D
i

¢
∈ R2 and wait until the second stage

to set PU
i . If not, both platforms are limited to the second option.

There are thus two types of pricing games:

The no-commitment pricing game

Stage 1) Platforms i = 1, 2 simultaneously announce their prices
¡
ri, P

D
i

¢
for developers.

Developers simultaneously and non-cooperatively decide which -if any-

platform to develop for. Let Ni denote the number of developers supporting

platform i.

Stage 2) Platforms i = 1, 2 simultaneously announce their prices PU
i

for users, taking PD
i , ri and Ni for i = 1, 2 as given.

Stage 3) Developers announce their prices and users decide which -if
any- platform to adopt and which applications to purchase, among those

supported by the platform they have chosen.

The commitment pricing game

Stage 1) Platforms i = 1, 2 decide whether to commit to user prices or
not and simultaneously announce their prices: platforms j having chosen to

commit announce
¡
PU
j , rj, P

D
j

¢
; platforms k having chosen not to commit

announce
¡
rk, P

D
k

¢
.

15



Developers simultaneously and non-cooperatively decide which -if any-

platform to develop for. Let Ni denote the number of developers supporting

platform i.

Stage 2) Platforms k simultaneously announce their prices PU
k for users,

taking PU
j and

¡
PD
i , ri, Ni

¢
for i = 1, 2 as given.

Stage 3) Developers announce their prices and users decide which -if
any- platform to adopt and which applications to purchase, among those

supported by the platform they have chosen.

4 Monopoly platform

It is useful to start by analyzing optimal pricing and commitment by a single

monopoly platform in order to gain some insight into the mechanisms at

work in our model.

First note that commitment to user prices is always a weakly dominant

strategy for a monopoly platform. Indeed, any outcome of the pricing game

with no commitment can be replicated in the pricing game with commitment

simply by committing to the user price the platform would charge anyway

in the second stage. However, credible commitment to user prices may not

be feasible, therefore we will treat both cases.

In the second stage, total user demand as a function of platform prices

PU and r and of the number n of developers supporting the platform is:

DU
¡
PU , r, n

¢
=

⎧⎨⎩1 if nS (r)− PU ≥ 0

0 if nS (r)− PU < 0

PU is either determined from stage 1 in the commitment pricing game,

in which case the platform has no strategic variables to choose in the second

stage, or it is the only strategic variable that the platform can set in stage

2 in case commitment is not feasible.

Platform profits in stage 2 are then:

ΠP
2 =

¡
PU + nrd (r)

¢
DU

¡
PU , r, n

¢
If the platform has not committed to its user price in stage 1 then it
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maximizes its second stage profits by setting:

PU =

⎧⎨⎩nS (r) if Φ (r) ≥ 0

∞ if Φ (r) < 0

which yields:

ΠP
2 = nmax (Φ (r) , 0)

Thus, if the monopoly platform cannot commit to user prices, the royalty

rate r it sets in the first stage has to satisy Φ (r) ≥ 0 or, equivalently, r ≥ r0.

Indeed, no developer will ever sign up to a royalty rate such that r < r0 < 0

because they correctly anticipate in this case that the platform will set a

prohibitively high user price in the second stage in order to make 0 sales and

avoid having to pay the costly negative royalties it has announced. When

credible commitment is feasible however, the platform no longer faces this

constraint and its second stage profits may well turn out to be negative11.

In order to capture both of these possibilities, denote by P the vector of

prices announced by the platform in the first stage. If the platform commits

to user prices, then P =
¡
PU , r, PD

¢
∈ R3. If not, P =

¡
r, PD

¢
∈ R2.

Then we can write user demand from the perspective of stage 1 as a function

of P and n:

DU (P, n) =

⎧⎨⎩1{nS(r)−PU≥0} if P =
¡
PU , r, PD

¢
1{nΦ(r)>0} if P =

¡
r, PD

¢ (2)

where

1{condition} =

⎧⎨⎩1 if condition

0 if not condition

Working our way backwards to the beginning of stage 1, the platform

maximizes total profits under the developer participation constraint. How-

ever, the strategic complementarities between developers’ participation de-

cisions give rise to indirect network effects and therefore multiple equilibria,

in the sense that for any given price vector P announced by the platform in

the first stage, there may be several equilibrium configurations of developers’

11They are generally outweighed by positive revenues from fixed fees in the first
stage.
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participation decisions. Formally, given P, there exists an equilibrium with

n developers supporting the platform, 0 ≤ n ≤ N , if and only if:⎧⎨⎩ n > 0 =⇒ ΠD (P, n) ≥ 0

n < N =⇒ ΠD (P, n) ≤ 0

where ΠD (P, n) are developer profits:

ΠD (P, n) = πD (r)DU (P, n)− PD − f

We can then define the developer demand function as a mapping n (.),

which associates to each price vector P an equilibrium number of develop-

ers n (P) supporting the platform. Note that these definitions are general

enough to include both the commitment and the no-commitment pricing

games.

It is apparent that in general there exist multiple developer demand

functions. Each of them describes developers’ (interdependent) adoption

decisions for every price vector P announced by the platform in the first

stage.

An equilibrium is then a pair (P, n (.)) where n (.) is a developer demand

function and P maximizes the profits of a platform facing developer demand

function n (.).

Given the simultaneous nature of the developer coordination game, this

equilibrium concept can be interpreted as a rational expectations equilibrium,

in which, given P, each infinitesimal developer has expectations about all

developers’ adoption decisions, namely the fraction choosing to support the

platform, and in equilibrium expectations are common and fulfilled.

Using this interpretation, we focus here on two polar developer demand

functions, stemming from two types of developer expectations.

The first one is favorable developer expectations: each infinitesimal de-

veloper expects all developers to support the platform, as long as they obtain

non-negative profits by doing so at the prices announced by the platform.

This type of expectations may arise for example if the platform in question is

a long-standing incumbent or benefits from outstanding reviews in special-

ized magazines; it could be Microsoft’s Windows, Sony’s Playstation, Palm,
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etc. Formally:

nF (P) = N1{ΠD(P,N)≥0}

It follows that the platform sets P in order to maximize its profits subject

to the developer participation constraint, which in this case is:

PD ≤ πD (r)DU (P, N)− f (3)

The second demand function we analyze stems from unfavorable devel-

oper expectations: each infinitesimal developer expects no developer will

support the platform as long as this is consistent with the price vector an-

nounced. This type of expectations might prevail if the platform is a new

entrant or if does not benefit from good reviews. Examples could be Palm’s

1993 debut with Zoomer, IBM’s failure with OS/2, etc. Formally:

nNF (P) = N1{ΠD(P,0)>0}

In this case, the platform sets P to maximize profits subject to:

PD < πD (r)DU (P, 0)− f (4)

We treat each of these two cases in turn and show that they lead to very

different pricing structures.

a) Favorable developer expectations

If the monopoly platform benefits from favorable developer expectations,

then the relevant constraint is (3).

Assume first that commitment to user prices is feasible. It is then easily

seen that the optimal solution is to set PU = NS (r) and PD = πD (r)−f .
The royalty rate r is thus chosen to maximize ΠP = NW (r)−Nf and the

solution is r = r∗ yielding:

ΠP = NW (r∗)−Nf

In particular, p (r) = 0 so that optimal pricing by the platform induces

socially optimal pricing by developers (marginal costs are equal to 0). This

result is due to the fact that the platform extracts all the surplus from both
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sides of the market, therefore its profits are equal to total social welfare12.

More precisely, given that developers have market power, the platform will

subsidize them through negative royalties in order to maximize the total sur-

plus created by each application, which it can subsequently extract through

fixed fees on both sides of the market. Net revenue from the developer side

is negative:

ΠPD=N
¡
PD + r∗d (r∗)

¢
= N (p (r∗) d (r∗)− f)

=−Nf < 0

Meanwhile, net revenues on the user side are positive:

ΠPU = NS (r∗) = NW (r∗) > 0

Now assume the platform is unable to credibly commit to its price for

users. Developers correctly anticipate that the platform will attract all users

by charging PU = NS (r) in the second stage, but only as long as Φ (r) ≥ 0.
Therefore the platform charges them PD = πD (r) − f and maximizes

NW (r) − Nf subject to r ≥ r0. Since W (r) is decreasing in r, the

solution is to set r = r0, yielding:

ΠP = NW (r0)−Nf

which is strictly lower than under commitment, as expected. The profit

structure is more balanced:

ΠPD=Np (r0) d (r0)−Nf ≷ 0
ΠPU =NS (r0) > 0

Thus, in this case the ability to commit raises social welfare.

We summarize all the above results in the following proposition.

12This is where the assumption that users do not know their valuations for applica-
tions ex-ante, i.e. before purchasing the platforms, is important. However, the strong
result above matters only as a reference point against which we can compare all of
the subsequent results, therefore their substance does not hinge on this simplifying
assumption.
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Proposition 1 A monopoly platform facing favorable developer expecta-

tions extracts the entire social surplus. If commitment to user prices is

feasible, its pricing is socially optimal: it requires charging a royalty rate

equal to r∗ < 0, thus inducing developers to sell their applications at the

socially optimal price of 0. The resulting pricing structure involves a net

subsidy to the developer side of the market and recoupment on the user

side. If credible commitment to the price for users is not feasible then the

platform charges a royalty rate equal to r0 > r∗ and obtains strictly lower

profits, so that social welfare is lower.

b) Unfavorable developer expectations

In this case, the platform is constrained by (4).

Assume first that the platform cannot credibly commit to user prices.

Then, using (2), (4) simplifies to:

PD < −f

This price attracts all developers, because although they expect the

platform to completely fail in the marketplace (DU (P, 0) = 0), they will

still support it in order to collect the net reward −PD − f ≥ 0. But then
the platform will recoup on users by charging:

PU = NS (r)

Profits are then:

ΠP = NΦ (r)−Nf

and are maximized for r = rΦ > r0.

Assume now that credible commitment to user prices is possible. (4)

becomes:

PD < πD (r) 1{PU<0} − f

This expression implies that, in order to solve the chicken-and-egg prob-

lem, the platform vendor has exactly two pricing strategies at its disposi-

tion: either PU < 0 or PD < −f . Following Caillaud and Jullien (2001),
we call these strategies divide-and-conquer (DC). This terminology is self-

explanatory and will become clear below.
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i) DC strategy targetted at developers

By charging PD < −f the platform attracts all developers, which then
enables it to charge PU = NS (r). Therefore this pricing strategy is exactly

identical to the unique strategy available to the platform when commitment

is not feasible. Profits are again:

ΠP = NΦ (r)−Nf

and are maximized for r = rΦ

ii) DC strategy targetted at users

Now the platform subsidizes users by committing to PU ≤ 0. Such a
price credibly signals to developers that the platform will attract all users,

irrespective of their decisions. Developers understand this, therefore the

platform can charge them:

PD = πD (r)− f

Profits are then:

ΠP = Np (r) d (r)−Nf

and are maximized for r = 0.

Note that, since developers arrive before users, although we say that

this strategy is "targetted at users", it is in fact still indirectly targetted

at developers: a negative PU signals to developers that all users will be

attracted.

The following proposition synthesizes the preceding analysis.

Proposition 2 A monopoly platform facing unfavorable developer expec-

tations is unable to extract the entire social surplus.

If credible commitment to user prices is feasible then optimal platform

pricing requires r = 0, PD = πD (0) − f and PU = 0, yielding profits

ΠP = NπD (0)−Nf and a profit structure biased in favor of users: ΠPD =

NπD (0)−Nf > 0 and ΠPU = 0. Social welfare is SW = NW (0)−Nf .

If credible commitment to user prices is not feasible then the optimal pric-

ing solution is to set r = rΦ, PD = −f and PU = NS (rΦ), yielding profits

ΠP = NΦ − Nf and the following profit structure: ΠPD = NrΦd (rΦ) −
Nf ≷ 0 and ΠPU = NS (rΦ) > 0. Social welfare is SW = NW (0)−Nf .
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It is interesting to note that, when commitment is feasible, the profit

structure shifts away from subsidizing developers when it becomes "harder"

to attract them, i.e. when developer expectations change from favorable to

unfavorable: indeed, the two corresponding revenue structures are opposite.

This counterintuitive result suggests that the timing of arrival of chicken

and eggs is less important than market structure and the pricing instruments

available.

Under unfavorable developer expectations, both platform profits and so-

cial welfare are higher when commitment is possible13. However, this is

"pure luck" here in the sense that, because of unfavorable developer expec-

tations, the platform is no longer able to extract the entire social surplus

created by applications, implying that its incentives are no longer aligned

with those of a hypothetical social planner. This can be seen by comparing

the differences in platform profits and social welfare under commitment and

no-commitment:

∆ΠP = N
¡
πD (0)− Φ

¢
≷ N (W (0)−W (rΦ)) = ∆SW

It is insightful to illustrate the preceding analysis graphically. One can

view the difference between platform profits and total social welfare as a

premium that the platform has to pay in order to overcome unfavorable

developer expectations. Indeed, given that it cannot charge the first best

optimal prices corresponding to favorable expectations and thereby extract

the entire social welfare, the platform has to give up a part of this surplus in

order to make any profits at all. The question is which part of social surplus

should it sacrifice?

In figure 2, total social surplus per application W (r) is broken down

into developer profits πD (r) and second period surplus Φ (r), i.e. the sum

of user surplus and platform royalty revenue. By subsidizing developers the

platform chooses to give up developer profits and therefore it chooses r = rΦ

in order to maximize the red curve corresponding to Φ (r), as opposed to

maximizing total social surplus W (r), i.e. the black curve.

13This is easily seen by recalling assumption 3 and that W (r) is decreasing in r.
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Figure 3:

In figure 3, total social surplus per application is now split into developer

profits gross of fixed cost f plus platform royalty revenues (= p (r) d (r))

and user surplus S (r). Thus, when the platform chooses to subsidize users,

it chooses to give up user surplus and finds itself on the brown curve, which

once again leads to an inefficient royalty rate (r = 0).

Both these diagrams illustrate the misalignments between the platform’s

objectives and the social planner’s, caused by unfavorable developer expec-

tations and leading to inefficiencies: indeed, social welfare is always strictly

lower than under favorable developer expectations. We will see in the next

sections how competition between platforms can lead to similar inefficiencies,

as it forces platforms to give up parts of total social surplus and therefore

entail potentially inefficient pricing14.

14Note that total welfare depends solely on the royalty rate in our simple model
because fixed fees are just transfers with no effect on the quantities traded.
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5 Platform competition for users

We now turn to the analysis of the pricing game played by two competing

platforms. The Bertrand pricing game played in stage 2 (competition for

users) is entirely determined by the outcome of stage 1, most notably de-

velopers’ adoption decisions. We will therefore first fully characterize the

outcome of the battle for users under all possible scenarios; we will use this

characterization in all subsequent subsections in order to solve the entire

pricing game.

Let N = (Ne1, Ne2 , Nm) be the distribution of developers among the

two platforms at the beginning of stage 2. Nei is the number of develop-

ers supporting platform i exclusively and Nm is the number of developers

supporting both platforms (i.e. multihoming)15. It is then convenient to

define:

Ni = Nei +Nm

the total number of developers supporting platform i.

Also, let P = {P1,P2} be the vector of prices announced by the plat-
forms in the first stage. If platform i credibly commits to a user price PU

i

in the first stage, then Pi =
¡
PU
i , ri, P

D
i

¢
∈ R3 and PU

i can no longer

be modified in the second stage. If platform i makes positive sales then

PU
i ≤ NiS (ri). Its second stage profits are

¡
PU
i +Nirid (ri)

¢
DU

i , where

DU
i is the number of users joining platform i. Note in particular that PU

i

may be lower than −riNid (ri), implying that platform i makes negative

profits in the second stage.

If on the other hand platform i has not committed to its user price in

the first stage then Pi =
¡
ri, P

D
i

¢
∈ R2 and PU

i is determined during

the second stage Bertrand pricing game. However, in this case platform i

will never price below the "marginal cost"−Nirid (ri), meaning that, absent

commitment to user prices, second stage platform profits cannot be negative.

Consequently, the highest utility platform i can offer users conditional on

not having committed to user prices is NiS (ri) + Nirid (ri) = NiΦ (ri),

which is also equal to the highest profits platform i can earn in the second

15Note that under exclusivity Nm ≡ 0 and Ne1 +Ne2 = N , whereas under multi-
homing 0 ≤ Ne1 +Ne2 , Nm ≤ N .
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stage, obtained by setting PU
i = NiS (ri). It follows that in this case the

royalty rate announced to developers has to satisfy:

Φ (ri) ≥ 0⇐⇒ ri ≥ r0 (5)

Indeed, if this condition did not hold then platform i would be certain

to make negative profits in the second stage, which it can simply avoid by

charging an astronomical user price PU
i . This ensures it will make 0 sales

and will not have to pay the costly negative royalty rate it has announced

to developers16. Knowing this, such an ri will attract no developers.

Before proceeding, we need to specify how users distribute themselves

when they are indifferent between the 2 platforms:

Assumption 3 If users are indifferent between platforms 1 and 2 then

they split in proportions (λ1, λ2) with λ1 + λ2 = 1 and λ1λ2 > 0.

Note that we assume the split is constant, i.e. independent of the distri-

bution of developers among the 2 platforms, as long as the latter offer the

exact same utility to users.

There are three possible scenarios to consider: both platforms have com-

mitted to user prices in the first stage, only one platform has committed to

its user price and lastly, none of the two platforms has committed to user

prices.

5.0.1 Both platforms have committed to user prices

In this case platforms do not make any strategic choices in the second stage

and the first stage price vector is P =
n¡

PU
i , ri, P

D
i

¢
i=1,2

o
.

User demand for platform i is then:

DU
i (P,N) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if
NiS (ri)− PU

i > NjS (rj)− PU
j

and NiS (ri)− PU
i ≥ 0

λi if NiS (ri)− PU
i = NjS (rj)− PU

j ≥ 0

0 if NiS (ri)− PU
i < NjS (rj)− PU

j

(6)

16Recall that Φ (ri) is negative if and only if:

ri < r0 < 0
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and total profits are:

ΠP
i = NiP

D
i +

¡
PU
i +Nirid (ri)

¢
DU

i

5.0.2 Platform i has committed, platform j has not committed

The vector of prices announced by platforms in the first stage is nowP =
©¡
PU
i , ri, P

D
i

¢
,
¡
rj, P

D
j

¢ª
.

Platform i wins the user battle if and only if the utility it offers users

is non-negative and higher than the maximum utility that platform j could

potentially offer, which translates into17:

¡
DU

i (P,N) , D
U
j (P,N)

¢
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1, 0) if NiS (ri)− PU

i > NjΦ (rj)

(λi, λj) if NiS (ri)− PU
i = NjΦ (rj) ≥ 0

(0, 1) if NiS (ri)− PU
i < NjΦ (rj)

(7)

In stage 2 platform j sets:

PU
j = max

¡
−Njrjd (rj) , NjS (rj)−max

¡
NiS (ri)− PU

i , 0
¢¢

Total profits are:

ΠP
i =NiP

D
i +

¡
PU
i +Nirid (ri)

¢
DU

i

ΠP
j =NjP

D
j +

¡
NjΦ (rj)−max

¡
0, NiS (ri)− PU

i

¢¢
DU

j

5.0.3 Neither platform has committed

In this case the first stage price vector becomes P =
n¡

PU
i , ri, P

D
i

¢
i=1,2

o
.

Platform i wins if and only if the maximum utility it could potentially

offer users is higher than what j could offer. Thus18:

DU
i (P,N) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if NjΦ (rj) > NjΦ (rj)

λi if NiΦ (ri) = NjΦ (rj)

0 if NiΦ (ri) < NjΦ (rj)

(8)

17For simplicity, we already assume that Φ (rj) ≥ 0.
18We already assume Φ (ri), Φ (rj) ≥ 0.
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In stage 2 platform i will set:

PU
i = max (−riNid (ri) , NiS (ri)−NjΦ (rj))

Thus, total profits from the perspective of stage 1 are:

ΠP
i = NiP

D
i + (NiΦ (ri)−NjΦ (rj))D

U
i

With these characterizations in hand, we can now turn to the analysis

of the full pricing game between two-competing platforms.

6 Platform competition with a dominant platform

Just like in the case with a monopoly platform, the coordination game played

by developers in the first stage admits multiple equilibria for any given price

vector P. In order to formalize the definition of our equilibrium concept, we

adapt the definitions from Caillaud and Jullien (2002).

Denote by SD the set of strategies available to developers:

SD =

⎧⎨⎩ {0, e1, e2} if multihoming is not permitted

{0, e1, e2,m} if multihoming is feasible
where 0 stands for no development, ei for exclusive development for

platform i and m means that the developer supports both platforms.

The expression of developer profits for each strategy available as a func-

tion of the vector of prices P =(P1,P2) and the distribution of developers

N = (Ne1, Ne2 , Nm) is then:

ΠD (s,P,N) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

πD (ri)D
U
i (P,N)− PD

i − f if s = ei

πD (r1)D
U
1 (P,N) + πD (r2)D

U
2 (P,N)

−PD
1 − PD

1 − (1 + γ) f
if s = m

0 if s = 0

where DU
i (P,N), i = 1, 2, are defined in the previous section.

Definition 3 A distribution of developers N = (Ne1 , Ne2, Nm) is an equi-

librium distribution given P =(P1,P2) if and only if:

Ns > 0 =⇒ ΠD (s,P,N) ≥ max
s0∈SD
s0 6=s

ΠD (s0,P,N)
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A system of developer demand functions is a mapping N (.), which as-

sociates to every price vector P an equilibrium distribution of developers

N (P).

Definition 4 An equilibrium is a pair (N (.) ,P), where i) N (.) is a system
of developer demand functions and ii) P is a Nash equilibrium of the reduced

form pricing game induced by N (.).

Note again that these definitions are general enough to cover both the

commitment and the no-commitment pricing games. Also, as noted be-

fore, this equilibrium concept can be interpreted as a rational expectations

equilibrium, in which developer expectations are common and fulfilled.

Clearly, there exist multiple equilibria stemming from different systems

of developer demand functions. Caillaud and Jullien (2002) study the sus-

tainability of two types of equilibria: dominant platform equilibria, in which

one platform covers both sides of the market, and market-sharing equilibria,

in which both platforms are active.

In all that follows we focus our attention exclusively on dominant plat-

form equilibria. There are two reasons for doing so.

First, from a theoretical standpoint, the matching model proposed by

Caillaud and Jullien (2001) exhibits complementarities between matchmak-

ers due to the imperfection of the matching technique. Indeed, if one plat-

forms does not perform a match, the other platformmay do so, therefore it is

only natural that market-sharing equilibria arise, some of them being asym-

metric, with one platform acting as a first source and charging 0 transaction

fees and the other acting as a second source with positive transaction fees.

By contrast, in our model platforms are perfect substitutes and it can be

shown (at the price of lengthy calculations, which do not offer any additional

insights) that market-sharing equilibria are either unstable or non-existent.

Moreover, since only developers play a coordination game, we cannot easily

adopt Caillaud and Jullien’s monotonicity refinement for systems of devel-

oper demand functions. Finally, our focus is on commitment issues and it
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turns out that analyzing only dominant platform equilibria is sufficient in

order to gain the main insights.

Secondly and perhaps most importantly, there is a strong empirical rea-

son for this restriction: in the markets we are interested in, dominance by

a single platform at any given point in time seems to be the norm. Indeed,

in most operating systems markets there exists one platform with an 80%

plus market share (Microsoft’s Windows for PCs, Palm for PDAs, Symbian

for smartphones) and the same is true in the videogame market (Nintendo’s

NES circa 1986-1991, Sega’s Genesis circa 1992-1994, Sony’s Playstation

circa 1995-2001). This phenomenon is in contrast with other two-sided mar-

kets, in which one typically observes several platforms sharing the market

on more equal terms: Visa, Mastercard and American Express in the credit

card market; e-Bay, Yahoo and Amazon in the on-line auctions market, etc.

Consequently, in all that follows we assume platform 1 is dominant and

platform 2 is dominated, in the sense that platforms 1 benefits from favorable

developer expectations: each infinitesimal developer expects all developers

to support platform 1 exclusively whenever this is an equilibrium given the

vector of prices announced by the two platforms in the first stage. Formally:

N (P) = (N, 0, 0)⇐⇒ ΠD (e1,P, (N, 0, 0)) ≥ max
s∈SD
s6=e1

ΠD (s,P, (N, 0, 0))

(9)

In words, a price vector is a dominant platform equilibrium if and only if

each individual developer’s preferred strategy at these prices and given that

he expects all other developers to develop exclusively for platform 1 is to

also develop exclusively for platform 1.

Lastly, we define sustainability of a dominant platform equilibrium as

follows:

Definition 5 A dominant platform equilibrium is sustainable if and only

if there exists P1 such that platform 2 cannot make non-negative profits

whenever platform 1 announces P1 and the system of developer demand

functions N (.) satisfies (9).
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6.1 Dominant platform equilibrium with no com-
mitment to user prices

We start with the (simpler) case in which platforms cannot credibly commit

to user prices in the first stage, so that the price vector is always P =n¡
ri, P

D
i

¢
i=1,2

o
and (5) must hold for i = 1, 2. We also need to distiguish

between two possible regimes: developers are bound to exclusivity with one

platform and developers are allowed to multihome.

6.1.1 Exclusivity

If developers can only develop exclusively for one platform, a necessary con-

dition for a set of prices
¡
PD
i , ri

¢
i=1,2

to be a dominant equilibrium for

platform 1 is:

πD (r1)− PD
1 − f ≥ max

¡
0,−PD

2 − f
¢

This condition says that each individual developer has to earn non-

negative profits from developing for platform 1 and have no incentive to

switch to platform 2 if he expects all other developers to register with 1.

Indeed, in this case, he can be sure that 1 will win the second period battle

for users, since NΦ (r1) ≥ 0.

Let us determine platform 2’s best response given 1’s prices PD
1 and r1.

Given unfavorable expectations against it, the only way platform 2 can

attract any developers and subsequently gain positive user market share is

by charging:

PD
2 < PD

1 − πD (r1) (10)

By doing so, it is certain to attract all developers and obtain profits:

ΠP
2 = NPD

2 +NΦ (r2)

which it maximizes subject to (10) and19:

Φ (r2) > 0

We obtain:
19Note that since πD (r1)−PD

1 − f ≥ 0 on the equilibrium path, (10) also ensures
that PD

2 ≤ −f , so that developers are sure to make non-negative profits by registering
with 2.
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Lemma 6 Platform 2’s best response to PD
1 and r1 when developer expec-

tations favor platform 1 is to set r2 = rΦ and PD
2 = PD

1 − πD (r1) (slightly

less), obtaining ΠP
2 = NPD

1 −NπD (r1) +NΦ.

¥

In order for the dominant platform equilibrium to be sustainable, platform

1’s prices have to be such that platform 2’s best response is unprofitable,

i.e.:

NPD
1 < NπD (r1)−NΦ (11)

Platform 1 maximizes its profits ΠP
1 = NPD

1 +NΦ (r1) subject to (11),

Φ (r1) ≥ 0 and πD (r1)−PD
1 − f ≥ 0. Recalling assumption 3, these three

constraints reduce to:

Φ (r1) ≥ 0

PD
1 < πD (r1)− Φ

yielding the following optimization problem for platform 1:

max
r1

©
NW (r1)−NΦ

ª
subject to Φ (r1) ≥ 0.
Recalling thatW (r) is decreasing in r and using assumptions 2 and 320,

we obtain the following characterization of the dominant firm equilibrium.

Proposition 7 A dominant platform equilibrium always exists when devel-
opers cannot multihome and platforms cannot commit to user prices. The

dominant platform 1 sets r1 = r0 and PD
1 = πD (r0)−Φ and obtains profits

ΠP
1 = NW (r0)−NΦ. The profit structure is: ΠPU

1 = PU
1 = NS (r0) > 0

and ΠPD
1 = N

¡
p (r0) d (r0)− Φ

¢
≷ 0.

Social welfare is: SW = NW (r0)−Nf .

¥

20We use these assumptions to prove dominant platform profits are positive:

W (r0)− Φ = πD (r0)− Φ > πD (0)− Φ ≥ 0
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6.1.2 Multihoming

With multihoming, each developer has now three options (aside from no

development) instead of just two: exclusivity with platform i, i = 1 or 2 and

multihoming. Multihoming is preferred to exclusivity with platform j if and

only if:

πD (ri)D
U
i − PD

i − γf ≥ 0

This condition shows that there is a sense in which platform i benefits

from the fact that a developer already supports platform j. Indeed, if he did

not, the participation condition for the developer to platform i would be:

πD (ri)D
U
i − PD

i − f ≥ 0

which is more restrictive if γ < 1.

In order for the dominant platform equilibrium to be sustainable, we

have to impose that developers prefer exclusivity with platform 1 to both

exclusivity with platform 2 and multihoming.

Therefore, an equilibrium set of prices
¡
PD
i , ri

¢
i=1,2

has to satisfy (5)

and:

πD (r1)− PD
1 − f ≥max

¡
0,−PD

2 − f
¢

−PD
2 − γf ≤ 0

Using the same procedure as in the exclusivity case, we start by deter-

mining platform 2’s best response when facing unfavorable developer ex-

pectations and given platform 1’s prices. In order to have any chance of

obtaining any market share, 2 has to charge:

PD
2 ≤ −γf

This ensures that, developers prefer multihoming to exclusivity with plat-

form 1, even if platform 2 makes no sales to users. Otherwise, each individual

developer believes 2 will not attract any developer support and therefore will

not make any sales to users, so that it is rational not to develop for 2.

Furthermore, if Φ (r2) < Φ (r1) then platform 2 makes 0 sales to users

and therefore earns strictly negative profits. Thus, in order for the above
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subsidy to make any sense, 2 has to charge r2 such that:

Φ (r2) > Φ (r1) (12)

If r1 = rΦ, platform 2 makes positive profits if and only if developers

register exclusively with 2. Indeed, if they multihome, then regardless of how

users split between platforms, neck-to-neck competition for users results in 0

profits for both platforms in the second stage, which leaves platform 2 with

total profits of −Nγf < 0. And developers prefer exclusivity with platform

2 to multihoming in this case if and only if:

λ1π
D (rΦ)− PD

1 − γf < 0⇐⇒ PD
1 > λ1π

D (rΦ)− γf

However, 1 may not have to choose r1 = rΦ in order to keep platform 2

out: indeed, we know that absent competition, a platform has every interest

in setting the royalty rate it charges developers as low as possible. Then, if

Φ (r1) < Φ, platform 2 can charge Φ (r2) > Φ (r1) and win the battle for

users even if all developers keep multihoming.

The following lemma fully characterizes 2’s best response.

Lemma 8 Platform 2’s best response to 1’s prices is to set r2 = rΦ and

PD
2 = −γf . The resulting best response profits are:

ΠP
2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NΦ−Nγf −NΦ (r1) if

(Φ (r1) < Φ and PD
1 ≤ −γf) or

(Φ (r1) = Φ and PD
1 ≤ λ1π

D (r1)− γf)

NΦ−Nγf if
(Φ (r1) < Φ and PD

1 > −γf) or
(Φ (r1) = Φ and PD

1 > λ1π
D (r1)− γf)

Proof. See appendix.

Now that we have determined platform 2’s best response, it remains to

impose that platform 1’s prices do not allow 2 to obtain positive profits with

its best response. The following proposition fully characterizes the dominant

firm equilibrium.
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Proposition 9 A dominant platform equilibrium always exists when devel-
opers can multihome and platforms cannot commit to user prices. The domi-

nant platform charges r1 = rΦ and PD
1 = min

¡
λ1π

D (rΦ)− γf, πD (rΦ)− f
¢

obtaining profitsΠP
1 = NΦ−Nγf+N min

¡
λ1π

D (rΦ) , π
D (rΦ)− (1− γ) f

¢
≥

0 and the following revenue structure: ΠPU
1 = PU

1 = NS (rΦ) > 0 and

ΠPD
1 = NrΦd (rΦ)−Nγf +N min

¡
λ1π

D (rΦ) , π
D (rΦ)− (1− γ) f

¢
≷ 0.

Social welfare is: SW = NW (rΦ)−Nf

Proof. See appendix.

The interesting feature of this equilibrium is the influence of γ. Intu-

itively, one would expect the dominant platform’s equilibrium profits to be

increasing in γ: indeed, the higher γ, the more costly porting is and therefore

the easier it should be to fend off the challenging platform. The reason this

intuition turns out to be incorrect21 is that the dominant platform is forced to

resort to a "defensive strategy" (i.e. set PD
1 = min

¡
λ1π

D (rΦ)− γf, πD (rΦ)− f
¢
),

whose cost may well be strictly increasing in γ. We call this strategy "defen-

sive" because its purpose is to render multihoming preferrable to exclusivity

with the challenger rather than to render exclusivity with the dominant plat-

form preferrable to multihoming.

Comparing propositions (7) and (9), it appears that resulting social

welfare is lower under multihoming. This is because when multihoming

is possible, it is relatively easier for the challenger to attract developers,

which prevents the dominant platform from extracting developer profits and

consequently the latter sets its royalty rate so as to maximize the sum of

user surplus and royalty revenue, i.e. Φ (r) (recall figure 2). However, the

dominant platform may sometimes make higher profits under multihoming

than under exclusivity22. This illustrates an important insight of our model,

namely that competitive pressure from a challenging platform in this type

of two-sided market introduces a misalignment between the dominant plat-

form’s objectives and social welfare maximization, thereby inducing pricing

inefficiencies and lowering social welfare.

21Note indeed that for λ1πD (rΦ) ≤ πD (rΦ)− (1− γ) f , ΠP1 is decreasing in γ.
22This is true for example when λ1 is close to 1 and W (r0) < W (rΦ) +Φ− f .
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Finally, note that the socially optimal pricing (r = r∗) never arises in

equilibrium in this case.

6.2 Dominant platform equilibrium when commit-
ment to user prices is feasible

Let us now turn to the case in which platforms have the option of credibly

committing to user prices in the first stage. This option makes the game

significantly more complex, as we have to analyze both commitment and no-

commitment strategies for both the dominant platform and the challenger.

Moreover, credible commitment to user prices makes it possible for the

challenger to use divide-and-conquer pricing strategies targetted to users,

which were not feasible before.

As we will see below however, the desirability of commitment depends on

whether developers are under a regime of exclusivity or multihoming. In par-

ticular, whereas under exclusivity commitment is always a weakly dominant

strategy for the challenger, this is not necessarily the case under multi-

homing. For the dominant platform, the choice between commitment and

no-commitment turns out to be complex and depends on the parameters of

the model. However, the intuition for the relevant tradeoff is quite simple

and appealing: if the dominant platform does not commit, then it runs the

risk of seeing the challenger taking over the market by announcing low user

prices. If on the other hand it commits, then it can make sure the entrant

stays out by committing to low user prices. But in this case, come stage

2, the dominant platform no longer faces any competition for users and it

is unable to exploit this adavantageous position, therefore the user prices it

has committed to ex-ante turn out to be inefficiently low ex-post.

In order to analyze the dominant platform equilibrium we use the same

procedure as above, except that here platform 2’s best response involves

both a commitment and a pricing strategy, which we have to determine

given platform 1’s commitment and pricing strategies.

6.2.1 Exclusivity

In each of the pricing games with commitment (under exclusivity and mul-

tihoming) we have to treat two subgames, according to whether or not
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platform 1 commits to its user price.

Platform 1 does not commit to its user price This requiresΦ (r1) ≥
0. Now consider platform 2’s options.

If it chooses not to commit to its user price, then the pricing game is

identical to the one we analyzed above, when commitment was not feasible.

We know from Lemma 6 that in this case platform 2’s best pricing strategy

is to set r2 = rΦ and PD
2 = PD

1 − πD (r1), obtaining ΠP
2 = NPD

1 −
NπD (r1) +NΦ.

Suppose now that platform 2 commits to user price PU
2 in the first stage.

There are now two ways for platform 2 to gain market share: a DC strategy

targeted at users or a DC strategy targeted at developers.

i) DC strategy targetted at developers

The idea behind this strategy is exactly the same as under no-commitment:

platform 2 seeks to attract developers despite unfavorable beliefs. This can

only be done by charging:

PD
2 < PD

1 − πD (r1)

By charging such a price, 2 is certain to obtain the support of all de-

velopers, which which in turn allows it to commit to the same user price it

ended up charging without committing to user prices, namely:

PU
2 = NS (r2)

It is then clear that in this case platform 2’s best response is exactly the

same as without commitment, i.e. charge r2 = rΦ for profits:

ΠP
2 = NPD

1 −NπD (r1) +NΦ (13)

We can therefore conclude that commitment to user prices is a weakly

dominant strategy for platform 2 in this case, since a DC strategy on devel-

opers exactly replicates its only available strategy without commitment.

ii) DC strategy targetted at users

The point of this strategy for platform 2 is to convince developers that it

will win the user battle even without any developer support. 2 can achieve
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this by commiting to PU
2 low enough to overcome unfavorable developer

expectations, which, using (7), yields the following condition:

PU
2 < −NΦ (r1)

Indeed, given that platform 1 has not committed to user prices, develop-

ers anticipate that the latter will be able to compete for users by offering a

surplus up to NΦ (r1). But once it has set such a price for users, developers

know that platform 2 will win the user battle, so that 2 can charge them:

PD
2 ≤ πD (r2) + min

¡
PD
1 ,−f

¢
This condition ensures that developers prefer supporting 2 rather than 1

and that they obtain non-negative profits by doing so. We therefore obtain

that 2’s best response with a DC strategy aimed at users is to set r2 = 0,

obtaining profits of:

ΠP
2 = NπD (0) +N min

¡
PD
1 ,−f

¢
−NΦ (r1) (14)

Platform 1 maximizes its profits subject to the developer rationality con-

straint and to the condition that platform 2 is unable to make non-negative

profits with its best response strategy, i.e. both (13) and (14) must be

negative. Formally, 1 solves:

max
©
NPD

1 +NΦ (r1)
ª

subject to:

0≤Φ (r1) (15)

PD
1 ≤πD (r1)− Φ (16)

min
¡
PD
1 ,−f

¢
≤Φ (r1)− πD (0) (17)

Note that without (17) we would obtain exactly the same result as in

Proposition 7. The new constraint (17) corresponds to the possibility for

platform 2 of using a DC strategy on users, which platform 1 has to render

unprofitable. In fact, if it chooses not to commit, platform 1’s profits are

strictly lower than when commitment was not feasible for either platform:

indeed, plugging r0 into the constraints above, it is easily seen that the

solution from Proposition 7 is not admissible here.
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Proposition 10 Given that platform 1 does not commit to its user price,

its optimal pricing is:

If Φ + f < πD (0) and 2Φ ≤ πD (0) + πD (rΦ) then set r1 = rΦ and

PD
1 = Φ − πD (0) for profits ΠP

1 = 2NΦ − NπD (0). Social welfare is:

SW = NW (rΦ)−Nf .

If Φ+f < πD (0) and 2Φ > πD (0)+πD (rΦ) then set r1 = br and PD
1 =

Φ−πD (0) for profits ΠP
1 = 2NΦ (br)−NπD (0), where br is uniquely defined

by Φ (br)− πD (0) = πD (br)− Φ. Social welfare is: SW = NW (br)−Nf .

If Φ + f ≥ πD (0) then set r1 = er and PD
1 = πD (er) − Φ for profits

ΠP
1 = NW (er)−NΦ, where er is uniquely defined by Φ (er) = πD (0) − f .

Social welfare is: SW = NW (er)−Nf .

Proof. See appendix.

Platform 1 commits to its user price Just like in the previous case,

it is easily seen that platform 2 does weakly better by committing to its user

price, because its DC strategy on developers is identical to its only available

strategy when it does not commit to user prices. Therefore we will directly

assume platform 2 commits to it user price PU
2 .

i) DC strategy aimed at developers

PD
2 < PD

1 − πD (r1)
23

Since this price secures all developers for platform 2, it can commit to a

user price (almost) equal to (recall (6)):

PU
2 = NS (r2) + min

¡
0, PU

1

¢
These prices enable 2 to capture both sides of the market entirely and

obtain profits of NΦ (r2)+min
¡
0, PU

1

¢
+NPD

1 −NπD (r1), which are max-

imized by setting r2 = rΦ:

ΠP
2 = NΦ+min

¡
0, PU

1

¢
+N

£
PD
1 − πD (r1)

¤
23Note that this directly implies that platform 2’s prices satisfy the developer

rationality constraint if it is satisifed by platform 1’s prices:

PD
2 < PD

1 − πD (r1) ≤ −f ≤ πD (r2)− f
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The expression above is interpreted as follows: the first term is the

maximum revenue that 2 can make on users given its choice of a DC strategy

targetted at developers; the second term is the cost of attracting users once

full developer support has been secured (this cost is positive only if PU
1

is negative); the third term is the cost of the DC strategy on developers,

i.e. the total amount of the subsidy needed to divert developers away from

platform 1.

ii) DC strategy aimed at users

Here, in order to convince developers that it will win the user battle even

without their support, platform 2 needs to commit to (slightly less than):

PU
2 = min

¡
0, PU

1 −NS (r1)
¢
= PU

1 −NS (r1)

where the second equality comes from the fact that on the equilibrium

path users must derive non-negative utility from joining platform 1.

Given this user price, developers are certain that platform 2 will win all

users, therefore the latter can charge:

PD
2 = πD (r2) + min

¡
PD
1 ,−f

¢
obtaining total profits:

ΠP
2 = Np (r2) d (r2) + PU

1 −NS (r1) + min
¡
PD
1 ,−f

¢
Thus, platform 2’s best response using a DC strategy aimed at users is

to set r2 = 0, obtaining:

ΠP
2 = NπD (0) + PU

1 −NS (r1) + min
¡
PD
1 ,−f

¢
A quick interpretation of the expression above runs as follows: the first

term is the maximum revenues that platform 2 can make on developers given

that it uses a DC strategy aimed at users (i.e. subsidizes users); the second

term is negative and represents the cost of the DC strategy (i.e. the subsidy

needed to divert them away from platform 1); the third term is the cost of

the strategy on developers, once users are already secured, which explains

why this cost is different from −f only when PD
1 is very low.

Turning now to platform 1, its prices need to be such that none of these

two DC strategies is profitable for platform 2. Relegating the algebra in the

appendix, we obtain the following proposition.
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Proposition 11 Given that platform 1 commits to its user price, its optimal
pricing strategy is the best of the two following options:

1) PU
1 = Nf − NΦ, r1 = min (0, r) and PD

1 = πD (r1) − f , yielding

ΠP
1 = Np (r1) d (r1)−NΦ, where r is uniquely defined by S (r) = πD (0)−

Φ. Social welfare is: SW = NW (min (0, r))−Nf .

2) PU
1 = NS (r∗)+Nf−NπD (0), r1 = r∗ and PD

1 = NπD (r∗)−NΦ,

yielding ΠP
1 = NW (r∗)−NΦ+Nf −NπD (0). Social welfare is: SW =

NW (r∗)−Nf .

Propositions 10 and 11 show that the dominant platform equilibrium

is not necessarily sustainable when commitment to user prices is feasible

and developers are bound to eclusivity. This is in contrast to proposition 7,

which showed that the dominant platform equilibrium was always sustainable

with exclusivity when user prices commitment was not feasible. The reason

is that commitment opens up the possibility for new and more agressive

pricing strategies by the challenger (platform 2), which lower the dominant

platform’s profits.

Social welfare is always higher when platform 1 commits, but the latter

may choose no commitment for strategic reasons -namely, in order to avoid

having to commit to low user prices, which ex-post turn out to be inef-

ficiently low from the platform’s perspective-, resulting in inefficiently high

royalty rates. Once again, absent the competitive pressure of the challenger,

the dominant platform would always prefer commitment, resulting in higher

profits and social welfare.

6.2.2 Multihoming

One of the most important changes with respect to the previous case, when

developers were bound to exclusivity, is that now commitment to user prices

is no longer a weakly dominant strategy for platform 2.

Platform 1 does not commit to its user price If platform 2 does

not commit to user prices either, then we are in a scenario we have already

analyzed above: platform 2’s best response without commitment is given

by lemma 8. Specifically, platform 2 sets r2 = rΦ and PD
2 = −γf . The
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resulting best response profits are:

ΠP
2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NΦ−Nγf −NΦ (r1) if

(PD
1 ≤ −γf and Φ (r1) < Φ) or

(Φ (r1) = Φ and PD
1 ≤ λ1π

D (r1)− γf)

NΦ−Nγf if
(Φ (r1) < Φ and PD

1 > −γf) or
(Φ (r1) = Φ and PD

1 > λ1π
D (r1)− γf)

(18)

Suppose now that platform 2 commits to its user price. Then it has the

choice between using a DC pricing strategy targetted at developers and one

targetted at users.

i) DC strategy targetted at developers

The first step of this strategy for platform 2 is the same as under no

commitment. It sets PD
2 ≤ −γf in order to ensure that developers prefer

multihoming to exclusivity with platform 1. Given such a price, in order to

win the battle for users and credibly signal this to developers, platform 2

has to charge (see 7):

PU
2 < NS (r2)−NΦ (r1) (19)

Indeed, if PU
2 did not satisfy this condition then, consistent with platform

1 dominance, developers would coordinate on multihoming, in which case

platform 2 would lose the user battle.

There are now two cases to consider, depending on whether PD
1 ≷ −γf .

If PD
1 > −γf then, since it is certain that platform 1 does not gain

any users, developers will prefer exclusivity with platform 2 to multihoming.

Therefore PD
2 has to satisfy:

PD
2 ≤ min

¡
−γf, πD (r2)− f

¢
(20)

Combining (20) and (19), it follows that platform 2’s best response in

this case is to set r2 = rΦ obtaining:

ΠP
2 = NΦ−Nγf −NΦ (r1) (21)

If PD
1 ≤ −γf then developers prefer multihoming to exclusivity with

platform 2, so that the relevant constraint on PD
2 is now:

PD
2 < min

¡
−γf, πD (r2)− PD

1 − (1 + γ) f
¢
= −γf
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where the equality follows from the observation that on the equilibrium

path platform 1’s prices must satisfy developer rationality, i.e.:

πD (r1)− PD
1 − f ≥ 0

The solution is then identical to the one we have found above: r2 = rΦ

and ΠP
2 = NΦ−Nγf −NΦ (r1).

Comparing this result with (18), it appears that there are cases -depending

on the prices charged by 1- in which no commitment is strictly better than

commitent for platform 2. In particular this is true only if PD
1 ≥ −γf and

Φ (r2) > Φ (r1). The reason is that in some cases, by not committing, plat-

form 2 avoids binding itself ex-ante to an inefficiently low user price from

an ex-post perspective. Indeed, suppose platform 2 can manage to "con-

vince" developers that it will win the battle for users even under the most

unfavorable circumstances for it (i.e. when developers multihome) and that

platform 1’s fixed fees ar too high (PD
1 > −γf). In such a scenario com-

mitment would require platform 2 to set a low user price, consistent with

expectations of multihoming, whereas if 2 waits until the second stage before

announcing its price for users, developers correctly anticipate that platform

2 will attract all users and will consequently give up the expensive (and

useless) registration with platform 1, leaving platform 2 in an uncontested

position to collect the entire user surplus.

ii) DC strategy targetted at users

Using (7), platform 2 is certain to attract all users despite unfavorable

developer expectations if and only if:

PU
2 < −NΦ (r1)

Once again, the maximum fixed fee that 2 can charge developers depends

on 1’s fixed fee.

If PD
1 ≥ −γf , then developers prefer exclusivity with 2 to multihoming.

Therefore, platform 2’s price have to be such that exclusivity with 2 is

rational and preferred to exclusivity with 1:

PD
2 < min

¡
πD (r2)− f, πD (r2) + PD

1

¢
= πD (r2)− f (22)
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In turn, if PD
1 < −γf , then developers will prefer multihoming to ex-

clusivity with 2. Platform 2’s prices have to be such that multihoming is

rational and preferred to exclusivity with 1:

PD
2 < πD (r2)− γf −max

¡
0, PD

1 + f
¢

(23)

Combining (22) and (23), we obtain the following expression for platform

2’s profit:

ΠP
2 = −NΦ (r1)+Np (r2) d (r2)−N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f if PD

1 ≥ −γf

PD
1 + (1 + γ) f if −f ≤ PD

1 ≤ −γf

γf if PD
1 ≤ −f

Maximizing yields r2 = 0 and:

ΠP
2 = NπD (0)−NΦ (r1)−N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f if PD

1 ≥ −γf

PD
1 + (1 + γ) f if −f ≤ PD

1 ≤ −γf

γf if PD
1 ≤ −f

(24)

Turning now to platform 1, its prices need to be such that none of these 3

strategies yields non-negative profits for platform 2. Therefore 1 maximizes

NPD
1 +NΦ (r1) subject to the constraint that (18), (21) and (24) are all

negative and developers make non-negative profits.

Proposition 12 If the dominant platform 1 does not commit to user prices
then it can keep platform 2 out of the market if and only if:

Φ > πD (0)− f

When this condition holds, letting br > r0 be the unique solution to

Φ (br) = πD (0) − f , platform 1’s optimal pricing is to set r1 = rΦ and

PD
1 = min

¡
λ1π

D (rΦ)− γf, πD (rΦ)− f
¢
, for profits:

ΠP
1 = NΦ−Nγf +N min

¡
λ1π

D (rΦ) , π
D (rΦ)− (1− γ) f

¢
≥ 0

Proof. See appendix.
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Platform 1 commits to its user price If platform 2 does not commit,

it starts as above by charging PD
2 ≤ −γf . Using (7), platform 2 wins the

user battle if and only if24:

NΦ (r2) > NS (r1)− PU
1 (25)

If NS (r1)−PU
1 > NΦ then platform 2 will not make any sales to users

(too strong competitive position of platform 1 on users) and consequently

it can not make non negative profits without committing.

If NS (r1)− PU
1 < NΦ then platform 2 sets r2 in order to satsify (25).

Again, the expression of 2’s profits depends on whether PD
1 ≷ −γf . If PD

1 >

−γf then developers prefer exclusivity with platform 2 to multihoming since
they know 2 will attract all users. Therefore platform 2 maximizes:

ΠP
2 = NPD

2 +NΦ (r2) + min
¡
0, PU

1

¢
subject to:

PD
2 <min

¡
−γf, πD (r2)− f

¢
NΦ (r1)≥NS (r1)− PU

1

The solution is to set r2 = rΦ and PD
2 = −γf entailing:

ΠP
2 = NΦ−Nγf +min

¡
0, PU

1

¢
(26)

If one the other hand PD
1 ≤ −γf then developers coordinate on multihoming

and platform 2 maximizes:

ΠP
2 = NPD

2 +NΦ (r2)−NS (r1) + PU
1

subject to:

PD
2 ≤min

¡
−γf, πD (r2)− PD

1 − (1 + γ) f
¢

NΦ (r2)≥NS (r1)− PU
1

The solution is once again r2 = rΦ and PD
2 = −γf but profits are lower:

ΠP
2 = NΦ−Nγf −NS (r1) + PU

1 (27)

24We do not have to worry about the knife edge situation NΦ (r2) = NS (r1)−PU
1

here, since platform 1 will never let it occur. Indeed, it can slightly lower PU
1 for a

discrete positive jump in profits.
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Suppose now that platform 2 commits to its user price. The derivation

of 2’s optimal pricing strategies in this case is very similar to some of the

proofs above, therefore we relegate the algebra in the appendix and simply

state the results.

Lemma 13 Platform 2’s best possible pricing strategies with commitment
in response to the dominant platform committing to its user price are:

i) DC targetted at developers, with PD
2 = −γf , r2 = rΦ and PU

2 =

NS (rΦ) + PU
1 −NS (r1), yielding ΠP

2 = NΦ−Nγf −NS (r1) + PU
1

ii) DC targetted at users, withPD
2 = πD (0)−

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f if PD

1 ≥ −γf

PD
1 + (1 + γ) f if −f ≤ PD

1 ≤ −γf

γf if PD
1 ≤ −f

,

r2 = 0 and PU
2 = PU

1 −NS (r1), yielding:

ΠP
2 = NπD (0)−NS (r1)+P

U
1 −N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f if PD

1 ≥ −γf

PD
1 + (1 + γ) f if −f ≤ PD

1 ≤ −γf

γf if PD
1 ≤ −f

Proof. See appendix.

Once again, comparing the characterization in Lemma 13 with platform

2’s best no-commitment strategy (26 and 27), it appears that platform 2

does strictly better in some cases by not committing to user prices. The

intuitive argument presented above for the case when platform 1 did not

commit to its user price applies here as well.

Let us turn now to platform 1 and determine its optimal pricing under

the constraint that it keeps platform 2 out of the market by rendering its

best response strategies unprofitable.

Proposition 14 The dominant platform 1 can always keep the rival plat-

form 2 out of the market and make non-negative profits by committing to

user prices. Its optimal price strategy which achieves this is to choose the

best option among the follwing two:

47



1) PU
1 = NS (r∗)−N max

¡
Φ, πD (0)− f

¢
, r1 = r∗ and PD

1 = πD (r∗)−
f , which yields ΠP

1 = NW (r∗)−N max
¡
Φ+ f, πD (0)

¢
> 0

2) PU
1 = Nγf − NΦ, r1 = 0 and PD

1 = πD (0) − f , which yields

ΠP
1 = NπD (0)−N (1− γ) f −NΦ > 0

Proof. See appendix.

Thus, we have proven that when developers can multihome a dominant

platform equilibrium is always sustainable: the dominant platform can guar-

antee non-negative profits by committing to its user price. From proposition

12 we know that it can also achieve non-negative profits without commit-

ment if and only if Φ > πD (0) − f . In this case, the choice between

commitment and no-commitment depends on the parameters of the model.

7 Conclusion

We have investigated the sustainability of dominant platform equilibria sus-

tained by favorable developer expectations in two-sided markets with devel-

opers and users, in which developers arrive before users. We have shown

that the dominant platform equilibrium is always sustainable when plat-

forms cannot commit to user prices, i.e. both under developer exclusivity

and multihoming. The dominant platform may find it more profitable to

be in a multihoming regime; however, the resulting level of social welfare

is always higher under exclusivity. Moreover, socially optimal pricing never

arises in this case.

These results change when platform commitment to user prices is fea-

sible. Under exclusivity, the dominant platform equilibrium is not always

sustainable. Commitment is a weakly dominant strategy for the challenger,

whereas the dominant platform may prefer not to commit to its user prices

in order to avoid having to set them too low. On the other hand, under a

multihoming regime, the dominant platform equilibrium is always sustain-

able. The dominant platform can keep the challenger out and make non-

negative profits by committing to its user prices; however, there are cases

when no-commitment is viable and yields higher profits than commitment.

Socially optimal pricing may arise in a dominant platform equilibrium, under

exclusivity as well as under multihoming.
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Regarding the influence of the developer fixed cost structure, we have

shown that dominant platform profits may turn out to be decreasing in

porting costs, so that the common intuition, according to which the latter

act as a barrier to entry protecting the incumbent’s position, is misguided.

Both from a social welfare and a consumer welfare perspective25, com-

mitment by the dominant platform is always better than no-commitment.

However, given the misalignment introduced by platform competition be-

tween the dominant platform’s objectives and social welfare maximization,

the dominant platform may sometimes find it more profitable not to commit.

One of the main conclusions emerging from our analysis is that, given

the complex balancing act that platforms operating in two-sided markets

must perform, their (partial) inability to extract surplus from both sides of

the market leads to welfare-reducing pricing distorsions. In particular, this

happens when platforms need to overcome unfavorable developer expecta-

tions and/or when there is competitive pressure from a challenging platform.

In this sense, our results can be interpreted to suggest that platform com-

petition is not necessarily desirable for social welfare.

Also, we have shown that price commitment plays a central role in two-

sided markets with sequential arrival of the two sides, most notably in de-

termining platforms’ pricing structures. Given the ubiquity of user price

announcement battles at developer conferences (E3) in the videogame in-

dustry26 and their relative scarcity in the software industry, our model can

be considered to provide a partial solution to the "software-videogames puz-

zle", i.e. the radically different platform pricing structures and business

models observed in these markets, which is surprising given their similar-

ities. However, much more empirical work is needed in this direction, in

particular systematic studies of the inner workings of the two industries,

platform-developer relations, etc...

Finally, we believe that pricing structure and commitment issues in dy-

namic models (with properly sequential, one-by-one entry of the two sides)

are the proper subjects for future research on two-sided markets.

25Indeed, absent commitment, user net surplus is always 0, since the platform who
manages to attract developers in the first stage has market power over users in the
second stage and the ability to exploit it.
26See our introductory quote by Steve Race.
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8 Appendix

Proof. of Lemma 8
Assume first that Φ (r1) < Φ. There are two cases to consider, according

to whether PD
1 ≷ −γf .

If PD
1 ≤ −γf , then developers prefer multihoming to exclusivity with

platform 2, even when they know that 2 wins the user battle. Then r2

and PD
2 need to be such that multihoming is both rational and preferred to

exclusivity with 1:

PD
2 ≤ min

¡
πD (r2)− PD

1 − (1 + γ) f, πD (r2)− γf
¢

Combined with PD
2 ≤ −γf , we obtain the following constraint:

PD
2 < min

¡
−γf, πD (r2)− γf −max

¡
0, PD

1 + f
¢¢

(28)

Platform 2 maximizes its profit ΠP
2 = NPD

2 +N [Φ (r2)− Φ (r1)] subject

to (28) and (12). Assume that:

πD (r2)− γf −max
¡
0, PD

1 + f
¢
≤ −γf (29)

Then 2’s best response profits are:

ΠP
2 = NW (r2)−N

¡
γf +max

¡
0, PD

1 + f
¢
+ Φ (r1)

¢
This expression is decreasing in r2, therefore platform 2 will choose the

lowest level of r2 feasible, subject to (29) and (12). Since πD (r2) is also

decreasing in r2 and πD (rΦ) ≥ f ≥max
¡
0, PD

1 + f
¢
, (29) is violated by all

r2 ≤ rΦ. Therefore, since Φ is decreasing to the right of rΦ, if there is a

solution to the problem above then (29) holds with equality.

We have thus shown that the best response by platform 2 necessarily

satisfies:

πD (r2)− γf −max
¡
0, PD

1 + f
¢
≥ −γf (30)

Constraint (28) becomes:

PD
2 ≤ −γf

It follows immediately that the optimal royalty rate for platform 2 is

r2 = rΦ (it satisfies both (12) and (30)) and its best response profits are:

ΠP
2 = NΦ−Nγf −NΦ (r1)
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Now assume that PD
1 > −γf . In this case, developers prefer exclusive

development for platform 2 to multihoming when (12) holds. Therefore r2
and PD

2 need to be such that exclusivity with 2 is both rational and better

than exclusivity with 1:

PD
2 < min

¡
−γf, πD (r2) + min

¡
PD
1 ,−f

¢¢
= min

¡
−γf, πD (r2)− f

¢
A very similar argument to the one above shows that the best response

by 2 necessarily involves:

πD (r2)− f ≥ −γf

Thus, just like in the first case, the relevant constraint is PD
2 ≤ −γf

and the optimal royalty rate is r2 = rΦ. Only now, 2 obtains higher profits,

since 1 is a non-factor in the user battle (it has no developer support):

ΠP
2 = NΦ−Nγf

Assume now that Φ (r1) = Φ. Platform 2 necessarily has to set r2 = rΦ

and attract developers exclusively in order to make non-negative profits.

However, this is possible if and only if:

λ1π
D (rΦ)− PD

1 − γf < 0⇐⇒ PD
1 > λ1π

D (rΦ)− γf (31)

If this condition holds, then developers prefer exclusive development for

platform 2 to multihoming. The same argument used above applies here

and we obtain the same result:

ΠP
2 = NΦ−Nγf

Otherwise, if (31) does not hold, then platform 1 dominance requires

that developers coordinate on multihoming, in which case platform 2 makes

total profits of −Nγf . Indeed, the rest of the surplus is dissipated through

competition for users in the second stage, because both platforms have the

same number of developers.

Proof. of Proposition 9
From the characterization of platform 2’s best response, it follows that

platform 1’s prices necessarily satisify: PD
1 ≤ −γf or r1 = rΦ and PD

1 ≤
λ1π

D (rΦ)− γf .
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With PD
1 ≤ −γf , platform 1 maximizes NPD

1 + NΦ (r1) subject to

PD
1 ≤ min

¡
−γf, πD (r1)− f

¢
and Φ (r1) ≥ 0. The solution is easily seen

to be PD
1 = −γf and r1 = rΦ leading to ΠP

1 = NΦ−Nγf ≥ 0.
But when r1 = rΦ platform 1 can charge PD

1 ≤ min
¡
λ1π

D (rΦ)− γf, πD (rΦ)− f
¢
,

obtaining:

ΠP
1 = NΦ−Nγf +min

¡
λ1π

D (rΦ) , π
D (rΦ)− (1− γ) f

¢
≥ NΦ−Nγf

Proof. of Proposition 10
First note that either (16) or (17) is binding at the optimum (other-

wise platform 1 could increase PD
1 ). Suppose (16) is binding; then ΠP

1 =

NW (r1)−NΦ and platform 1 will seek to set r1 as low as possible while

still satisfying r1 ≥ r0 and (17). But for r1 = r0, PD
1 = πD (r0) − Φ > 0

and −πD (0) < −f , therefore (17) is violated. Thus, (17) necessarily binds
at the optimum.

If Φ+ f < πD (0) then the only way (17) can bind is if PD
1 = Φ (r1)−

πD (0) implying ΠP
1 = 2NΦ (r1) − NπD (0). In this case platform 1 will

want to set r1 as high as possible or equal to rΦ on condition that (16)

holds. If 2Φ ≤ πD (0) + πD (rΦ) then the solution is r1 = rΦ. If 2Φ >

πD (0)+ πD (rΦ) then, since Φ (0)− πD (0) < 0 ≤ πD (0)−Φ, there exists

a unique br ∈ [0, rΦ] such that Φ (br)−πD (0) = πD (br)−Φ and the solution

is r1 = br.
If Φ+ f ≥ πD (0) then suppose that at the optimum Φ (r1)− πD (0) ≥

−f . Then (16) necessarily binds so that ΠP
1 = NW (r1)−NΦ and platform

1 wants to set r1 as low as possible. Since Φ (r0)−πD (0) = −πD (0) < −f ,
optimality requires Φ (r1) − πD (0) ≤ −f . If Φ (r1) − πD (0) < −f then
PD
1 = Φ (r1) − πD (0) and ΠP

1 = 2NΦ (r1) − NπD (0), so that r1 will be

set as high as possible. And, since Φ− πD (0) ≥ −f , we conclude that the
optimal solution in this case is r1 = er where Φ (er) = πD (0)− f (note thater ∈ [r0, rΦ]), which implies PD

1 = πD (er)− Φ.

Proof. of Proposition 11
Platform 1 solves:

max
PU
1 ,r1,PD

1

©
PU
1 +Nr1d (r1) +NPD

1

ª
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subject to:

PD
1 ≤ πD (r1)− f (32)

min
¡
0, PU

1

¢
+NPD

1 < NπD (r1)−NΦ (33)

PU
1 +N min

¡
−f, PD

1

¢
< NS (r1)−NπD (0) (34)

There are four possibilities to consider:

i) PU
1 ≤ 0 and PD

1 ≤ −f which imply PU
1 +NPD

1 ≤ −Nf . (33) and

(34) become:

PU
1 +NPD

1 <NπD (r1)−NΦ

PU
1 +NPD

1 <NS (r1)−NπD (0)

Combining the three constraints we obtain:

ΠP
1 <N min

©
r1d (r1)− f, p (r1) d (r1)− Φ,Φ (r1)− πD (0)

ª
≤N min

©
r1d (p (r1))− f, p (0) d (0)− Φ,Φ− πD (0)

ª
≤ 0

This possibility is thus to be ruled out.

ii) PU
1 ≤ 0 and PD

1 ≥ −f
Then (32), (33) and (34) become:

PD
1 ≤ πD (r1)− f (35)

PU
1 +NPD

1 < NπD (r1)−NΦ (36)

PU
1 < NS (r1) +Nf −NπD (0) (37)

First, note that either (35) or (36) or both must be binding at the

optimum for platform 1, otherwise it could obtain higher profits by slightly

increasing PD
1 without violating the other constraints.

Next, we argue that we can without loss of generality assume (35)

is binding. Indeed, assume platform 1 can attain maximum profits with¡
PU
1 , r1, P

D
1

¢
and (35) is not binding; then (36) must be binding. Keeping

r1 fixed, let PD
0

1 = PD
1 +

ε
N
and PU

0

1 = PU
1 − ε, with ε chosen such that

PD
0

1 = πD (r1)− f ≥ −f . Then profits are unchanged and
³
PU

0

1 , r1, P
D
0

1

´
clearly satisfy all the constraints if they are satisfied by

¡
PU
1 , r1, P

D
1

¢
. We

have therefore constructed an optimal solution for which (35) is binding.
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Then, plugging PD
1 = πD (r1) − f in (36) and (37), the remaining

constraints are equivalent to:

PU
1 < N min

¡
0, f − Φ, S (r1) + f − πD (0)

¢
= N min

¡
f − Φ, S (r1) + f − πD (0)

¢
Assume first that at the optimum S (r1) + f − πD (0) ≤ f − Φ. Then

platform 1 can obtain profits (almost) equal to NW (r1)−NπD (0), which

implies that it will want to set r1 as low as possible. Since S (r∗) =W (r∗) >

πD (0)− f , at the optimum we necessarily have:

S (r1) + f − πD (0) ≥ f − Φ (38)

Thus PU
1 = Nf −NΦ and platform 1’s profits are (almost) equal to:

Np (r1) d (r1)−NΦ

which it maximizes subject to (38).

Let then r be the unique solution to:

S (r) + f − πD (0) = f − Φ⇔ S (r) = πD (0)− Φ

r exists since S (r∗) + f − πD (0) > 0 ≥ f − Φ ≥ f − πD (0).

The solution is then:

r1 = min (0, r) ∈ [r∗, 0]

If S (0)+max
¡
Φ, f

¢
> πD (0) then r1 = 0 and:

ΠP
1 = NπD (0)−NΦ ≥ 0

iii) PU
1 ≥ 0 and PD

1 ≤ −f

NPD
1 <NπD (r1)−NΦ

PU
1 +NPD

1 <NS (r1)−NπD (0)

The optimal solution requires the second constraint to be binding: it

suffices to set PD
1 low enough. We obtain: r1 = rΦ and ΠP

1 = NΦ −
NπD (0) ≤ 0. This option is to be ruled out as well.
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iv) PU
1 ≥ 0 and PD

1 ≥ −f

NPD
1 <NπD (r1)−NΦ

PU
1 <NS (r1) +Nf −NπD (0)

Ignore the first two constraints. Then, setting PU
1 and P

D
1 such that the

last two constraints are binding:

ΠP
1 = NW (r1)−NΦ+Nf −NπD (0)

which is maximized for r1 = r∗. Note that this is feasible since platforms

can commit to user prices, thus we do not have to impose Φ (r) ≥ 0 like
in the previous section. We now need to check the first two constraints are

satisfied:

PU
1 =NS (r∗) +Nf −NπD (0) = NW (r∗) +Nf −NπD (0)

≥NW (r∗)−NπD (0)

≥ 0
PD
1 =NπD (r∗)−NΦ > NπD (0)−NΦ

≥ 0

Therefore the solution is to set r1 = r∗, yielding:

ΠP
1 = NW (r∗)−NΦ+Nf −NπD (0)

Finally, platform 1 chooses between options ii) and iv).

Proof. of Proposition 12
Platform 1’s prices have to satisfy PD

1 ≤ min
¡
−γf, πD (r1)− f

¢
or

(r1 = rΦ and PD
1 ≤ min

¡
λ1π

D (r1)− γf, πD (r1)− f
¢
). Otherwise plat-

form 2 can make non-negative profits with its no-commitment pricing strat-

egy.

Profit maximization and (24) imply that platform 1 will set PD
1 as high

as possible, i.e. PD
1 = −γf or PD

1 = min
¡
λ1π

D (r1)− γf, πD (r1)− f
¢
.

Once again, if Φ ≤ πD (0) − f then platform 1 cannot keep 2 out. If in

turn Φ > πD (0)−f then platform 1 can either set PD
1 = −γf in which case

profit maximization implies r1 = rΦ, or PD
1 = min

¡
λ1π

D (r1)− γf, πD (r1)− f
¢
>
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−γf , in which case it has to set r2 = rΦ to preclude platform 2 from en-

tering. In any event NΦ − Nγf − NΦ (r1) < 0 is satisfied and therefore

the solution for this case is to set PD
1 = min

¡
λ1π

D (r1)− γf, πD (r1)− f
¢

and r1 = rΦ, obtaining:

ΠP
1 = NΦ−Nγf +N min

¡
λ1π

D (rΦ) , π
D (r1)− (1− γ) f

¢
≥ 0

Proof. of Lemma 13
i) DC strategy targeted at developers
Given the possibility of multihoming, 2 needs to charge PD

2 < −γf .
This is low enough to ensure multihoming is preferred to exclusivity with

platform 1 by all developers. However, in order to gain positive user market

share, 2 also needs:

PU
2 <min

¡
NS (r2) , P

U
1 −NS (r1) +NS (r2)

¢
=PU

1 −NS (r1) +NS (r2)

Indeed, if PU
2 violates this condition, then there exists an equilibrium, in

which all developers multihome, 2 loses the battle for users and consequently

makes negative profits.

Now, if PD
1 ≥ −γf , then developers prefer exclusivity with 2 to multi-

homing to exclusivity with 1, therefore platform 2 maximizes:

ΠP
2 = PU

1 −NS (r1) +NΦ (r2) +NPD
2

subject to:

PD
2 < min

¡
−γf, πD (r2)− f

¢
By the same argument used in the previous proofs, we know that the

optimal solution requires:

πD (r2)− f ≥ −γf

Therefore, platform 2 can obtain maximum profits of:

ΠP
2 = PU

1 −NS (r1) +NΦ−Nγf

56



by setting r2 = rΦ and PD
2 = −γf .

If on the other hand PD
1 < −γf , then developers prefer multihoming to

both exclusivity with 2 and exclusivity with 1. Platform 2 maximizes:

ΠP
2 = PU

1 −NS (r1) +NΦ (r2) +NPD
2

subject to:

PD
2 < min

¡
−γf, πD (r2)− PD

1 − (1 + γ) f
¢

If πD (r2) − PD
1 − (1 + γ) f ≤ −γf , then 2 will charge r2 as low as

this constraint allows, therefore, since any r2 ≤ rΦ violates the constraint,

it follows that the optimal solution necessarily involves:

πD (r2)− PD
1 − (1 + γ) f ≥ −γf

Platform 2 will then choose r2 = rΦ and obtain:

ΠP
2 = PU

1 −NS (r1) +NΦ−Nγf (39)

Finally, we need to check whether 2 could do any better by charging:

PD
2 < PD

1 − πD (r1) ≤ −f < γf

Such a price makes both multihoming and exclusivity with 2 more attrac-

tive than exclusivity with 1. However, we know that the developers’ choice

between multihoming and exclusivity with 2 depends solely on 1’s prices,

therefore the analysis will be exactly the same as above, except that now 2

is charging a lower price PD
2 . Clearly, this cannot yield higher profits.

ii) DC strategy targeted at users
Now platform 2 starts by attracting users at all costs:

PU
2 < PU

1 −NS (r1)

Then it can set prices for developers given that the latter know all users

will adopt platform 2 irrespective of their decision.

If PD
1 ≥ −γf , then developers prefer exclusivity with 2 to multihoming.

Therefore, platform 2’s price have to be such that exclusivity with 2 is

rational and preferred to exclusivity with 1:

PD
2 < min

¡
πD (r2)− f, πD (r2) + PD

1

¢
= πD (r2)− f (40)
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In turn, if PD
1 < −γf , then developers will prefer multihoming to ex-

clusivity with 2. Platform 2’s prices have to be such that multihoming is

rational and preferred to exclusivity with 1:

PD
2 < πD (r2)− γf −max

¡
0, PD

1 + f
¢

(41)

Combining (40) and (41), we obtain the following expression for platform

2’s profit:

ΠP
2 = PU

1 −NS (r1)+Np (r2) d (r2)−N

⎧⎨⎩ f if PD
1 ≥ −γf

PD
1 + (1 + γ) f if−f ≤ PD

1 ≤ −γf
γf if PD

1 ≤ −f

Maximizing with respect to r2 yields the expression given in the text.

Proof. of Proposition 14
Assume first that Φ < γf . In this case platform 2 can not make non-

negative profits without committing or with commitment to user price but

using a DC strategy targetted at developers, as long as NS (r1)−PU
1 ≥ 0,

which holds on the equilibrium path. Then platform 1 needs only worry

about the DC strategy on users and the developer rationality constraint:

PU
1 <NS (r1) +Nf −NπD (0)

PD
1 ≤πD (r1)− f

Platform 1’s optimal pricing is then to charge r1 = r∗ obtaining:

ΠP
1 = NW (r∗)−NπD (0) > 0

Assume now that Φ ≥ γf . Then platform 1’s prices have to satisfy

PU
1 < NS (r1) − NΦ or PU

1 < Nγf − NΦ or PD
1 ≤ −γf , in order to

prevent platform 2 from taking over the market by using its optimal no-

commitment strategy.

Suppose platform 1 charges PD
1 ≤ −γf . Then it maximizes ΠP

1 =

PU
1 +Nr1d (r1) +NPD

1 subject to:

PU
1 <NS (r1) +Nγf −NΦ

PU
1 <NS (r1)−NπD (0) +

½
PD
1 + (1 + γ) f if−f ≤ PD

1 ≤ −γf
γf if PD

1 ≤ −f
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Clearly it is then optimal to set PD
1 = −γf and PU

1 < NS (r1) +

N min
¡
γf − Φ, f − πD (0)

¢
implying:

ΠP
1 <NΦ (r1)−Nγf +N min

¡
γf − Φ, f − πD (0)

¢
≤NΦ−Nγf +N min

¡
γf − Φ, f − πD (0)

¢
≤ 0

Therefore any acceptable solution for platform 1 must have PD
1 > −γf ,

which requires PU
1 < NS (r1)−NΦ or PU

1 < Nγf −NΦ.

The first alternative is to choose the first of these two constraints, there-

fore maximizing profits subject to:

PU
1 <NS (r1)−N max

¡
Φ, πD (0)− f

¢
PD
1 ≤πD (r1)− f

We obtain PU
1 = NW (r∗) − N max

¡
Φ, πD (0)− f

¢
, r1 = r∗ and

PD
1 = πD (r∗)− f , yielding:

ΠP
1 = NW (r∗)−N max

¡
Φ, πD (0)− f

¢
> 0

The second alternative is to maximize profits subject to:

PU
1 <N min

¡
γf − Φ, S (r1)− πD (0) + f

¢
PD
1 ≤πD (r1)− f

Assume that at the optimum S (r1)−πD (0)+f < γf−Φ (≤ 0). Then
ΠP
1 = NW (r1)−NπD (0), therefore 1 wants to set r1 as low as possible.

But S (r∗)−πD (0)+f ≥ 0, therefore it must be that S (r1)−πD (0)+f ≥
γf −Φ. We then obtain PU

1 = Nγf −NΦ, r1 = 0 and PD
1 = Nγf −NΦ,

yielding:

ΠP
1 = NπD (0)−N (1− γ) f −NΦ
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