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1. Introduction

This paper studies how matchmakers use prices to create search markets and to com-

pete with each other in two-sided matching environment, and how equilibrium outcomes

compare with monopoly in terms of prices, market structure and sorting efficiency. The

monopoly outcome is analyzed in Damiano and Li (2003). In a matching environment with

agents that have private information about their one-dimensional type characteristics, a

monopoly matchmaker uses a schedule of entrance fees to sort different types of agents on

the two sides of a matching market into different search markets, where agents randomly

form pairwise matches. The first-best matching outcome is positive assortative under

the standard assumption that the match value function exhibits complementarities. The

same outcome maximizes the monopolist’s revenue if the complementarities are sufficiently

strong relative to the rent lost due to elicitation of private type information.

Price competition in a matching environment differs from the standard Bertrand mod-

els because prices also play the role of sorting heterogeneous agent types into different

search markets. Aside from the usual strategy of lowering price to steal rivals’ market

share, we identify a pricing strategy called “overtaking” that is unique to the sorting role

of prices. Overtaking a rival is achieved by charging a price just higher than the rival

does, and thus providing a market with a higher quality (average agent type). When the

price difference is small enough, the rival’s search market loses all its customers because

quality difference dominates. The overtaking strategy is crucial for our result that the

role of prices to facilitate sorting is comprised by the need to survive price competition.

We show that the competitive outcome can be less efficient in sorting than the monopoly

outcome.1

Our paper is related to a growing literature on competing marketplaces (Katz and

Shapiro, 1985; Fujita, 1988; Gehrig, 1998; Caillaud and Jullien, 2000, 2001; Ellison, Fu-

denberg and Mobius (2002); Ellison and Fudenberg, 2002). For a comprehensive review of

1 Sorting efficiency is the subject of a recent paper by McAfee (2002). He shows how most of the
efficiency gains in sorting can be made with just two search markets. He does not consider the incentives
of market participants.
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this literature, see Armstrong (2002). These papers emphasize increasing returns, or thick

market effect, which favor the dominance of a single marketplace, and ignore sorting by

assuming that agents are homogeneous when they choose which market to participate in.

A central question in the literature is whether and when multiple marketplaces can coexist

in equilibrium. In contrast, in our model thick market effect is absent, and complementar-

ity between heterogeneous agent types is the driving force behind sorting by prices. We

do not claim that increasing returns are unimportant for competing marketplaces, but we

abstract from these considerations to focus on the impact of price competition on sorting.

In section 2 we lay out the framework of duopoly price competition in a matching

environment. We introduce the concept of market structure, and borrow from a refinement

concept in sequential games to select a unique market structure for any price profile. Price

competition in our model takes the form of overtaking to provide higher sorting quality

with a higher price, as well as undercutting the rival’s price as in standard Bertrand

competition. The benchmark cases of efficient market structure for a social planner and

optimal market structure for a monopolist, each with two search markets, are presented

in section 3. We show that the incentives of the monopolist to differentiate the two search

markets are aligned with those of the social planner, but total search market coverage by

the monopolist may be smaller.2 In section 4, we provide the main results of the paper

about price competition and sorting. We show that no pure-strategy equilibrium exists in

the simultaneous-move pricing game, because by overtaking each matchmaker can drive the

rival out of the market and increase the revenue. We provide a sufficient condition for the

two matchmakers to coexist in the equilibrium of the sequential-move version of the pricing

game. The first-mover has to create a niche market for the low types in order to survive

the overtaking strategy of the second-mover, which in equilibrium serves the higher types.

The equilibrium outcome of the duopoly competition involves inefficient sorting, because

the search markets created by the two matchmakers are insufficiently differentiated. We

conclude the paper in section 5 with some discussions about robustness of our main results

when more than two search markets are created.
2 The monopolistic sorting problem in the present paper is not covered by the characterization in

Damiano and Li (2003), because here we assume the monopolist is constrained in the number of search
markets that can be used.
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2. A Duopoly Model of Competing Matchmakers

Consider a two-sided matching environment. Agents of the two sides have heterogeneous

one-dimensional characteristics, called “types.” For simplicity, we assume that the type

distribution function is F for both sides, with a support [a, b] ⊆ IR+, and a continuous

density function f . For notational convenience, we assume that b is finite, but our analysis

applies to the case of infinite support with appropriate modifications. The two sides are

assumed to have the same size.

A match between a type x agent and a type y agent from the other side produces

a value of xy to both of them. This match value function satisfies the standard comple-

mentarity condition (positive cross partial derivatives). Agents are risk neutral and care

only about the difference between the expected match value and the entrance fee they pay.

Unmatched agents get a payoff of 0, regardless of type.

Two matchmakers, unable to observe types of agents, use entrance fees to create two

search markets. For each i = 1, 2, let pi be the entrance fee charged by matchmaker i. Each

agent participates in only one search market, where they form pairwise matches randomly.

In each search market, the probability that a type x agent meets a type y agent from the

other side is given by the density of type y in that search market. For simplicity, we assume

that search markets are costless to organize. The objective function of each matchmaker

is to maximize the sum of entrance fees collected from agents.

2.1. Monopoly and duopoly market structures

For any pair of entrance fees p1 and p2, agents have three participation strategies: par-

ticipate in matchmaker 1’s search market, participate in 2’s market, and not participate.

We examine the Nash equilibria of the simultaneous move game played by the agents, and

for concreteness refer to each equilibrium as a “market structure.” Since our model is

symmetric with respect to the two sides, we can restrict our attention to symmetric Nash

equilibria, with the same size of participants in each search market.

For any two types c, c′ ∈ [a, b], with c < c′, let µ(c, c′) be the mean type on the

interval [c, c′]. Without loss of generality, suppose that p1 < p2 ≤ b2. One “monopoly
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market structure,” denoted as M1, is no agents participating in search market 2. The

participation threshold c1 for search market 1 is determined by
{

c1µ(c1, b) = p1 if p1 ∈ [aµ(a, b), b2];

c1 = a if p1 ∈ [0, aµ(a, b)).
(2.1)

The above condition implies that the threshold participation type is either a type c1 that

is indifferent between participating in search market 1 and not participating, or the lowest

type a, which strictly prefers participation. The other monopoly market structure, denoted

as M2, is no agents participating in search market 1; the participation threshold c2 for

search market 2 is similarly determined.

The prices p1 and p2 may also support a “duopoly market structure,” denoted as

D12, where types between c1 and c2 participate in search market 1 and types above c2

participate in search market 2.3 This occurs if either there exist participation thresholds

c1 and c2, with a ≤ c1 < c2, such that

c1µ(c1, c2) = p1;

c2(µ(c2, b)− µ(c1, c2)) = p2 − p1,
(2.2)

or there is c2 such that
aµ(a, c2) > p1;

c2(µ(c2, b)− µ(a, c2)) = p2 − p1.
(2.3)

In both cases above, the threshold type c2 is indifferent between participating in search

market 2 and in search market 1. In the first case, the threshold type c1 is indifferent

between participating in search market 1 and not participating at all, while in the second

case, type c1 is the lowest type a, which strictly prefers participating in search market 1.

Whether a pair of prices p1, p2 with p2 < p1 support a duopoly market structure, denoted

D21, is determined similarly.

The assumption of complementarity in the match value function implies that partici-

pation decisions are made according to threshold rules, such that the three choices, namely

participating in search market 2, participating in search market 1 and not participating,

3 When p1 = p2 we assume that the two matchmakers evenly split the types above the participation
threshold; the analysis is unaffected by this assumption.
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are ordered from high to low, with the preference of any type between a higher choice

over a lower one implying the same preference for any higher type. As a result, the two

monopoly market structures and the duopoly market structure, together with the “null

market structure” where agents participate in neither search market, cover all possible

equilibrium market structures.

We now make an assumption that rules out multiple duopoly market structures for

given p1 and p2. This is necessary for characterizing the equilibrium market structure. A

sufficient condition for there to be at most one duopoly market structure is that µ(t, x′)−
µ(x, t) is a non-decreasing function in t for any t ∈ (x, x′) ⊂ [a, b]: in equations (2.2), this

condition guarantees that c2 is positively related to c1 from the second equation while they

are negatively related from the first equation, so that there can be at most one solution

to the two equations; in equations (2.3) this condition guarantees that there is a single c2

that satisfies the second equation. The derivative of µ(t, x′) with respect to t is given by

∂µ(t, x′)
∂t

=
f(t)(µ(t, x′)− t))

F (x′)− F (t)
. (2.4)

This derivative converges to 1
2 as x′ approaches t.4 Further, the derivative of ∂µ(t, x′)/∂t

with respect to x′ has the same sign as 1
2 (t+x′)−µ(t, x′), which is non-negative if f ′(·) ≤ 0.

Thus, ∂µ(t, x′)/∂t is non-decreasing in x′ if f ′(·) ≤ 0. Similarly, the derivative of µ(x, t)

with respect to t, given by

∂µ(x, t)
∂t

=
f(t)(t− µ(x, t))

F (t)− F (x)
,

converges to 1
2 as x approaches t, and is non-decreasing in x if f ′(·) ≤ 0. Non-increasing

density is sufficient to imply that µ(t, x′)− µ(x, t) is non-decreasing in t as ∂µ(t, x′)/∂t ≥
1
2 ≥ ∂µ(x, t)/∂t. We make the following assumption.

Assumption 1. The density function f is non-increasing.

For the analysis that we will carry out, we also need the standard assumption of

monotone hazard rate. Let ρ(·) be the inverse hazard rate function. We assume that

4 The derivative ∂µ(t, x′)/∂t at x′ = t can be calculated using L’Hospital rule and solving for it from

the resulting equation. It is equal to 1
2

because a continuous density is locally uniform.
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ρ′(·) ≤ 0. This is equivalent to the assumption that the right tail distribution function

1 − F (·) is log-concave, which implies that the conditional mean function µ(t, b) satisfies

dµ(t, b)/dt ≤ 1 (An, 1998).

Assumption 2. The hazard rate function of F is non-decreasing.

For any (x, x′) ⊂ [a, b], let µl be the partial derivative of µ(x, x′) with respect to x,

and µr be the derivative with respect to x′. Then, the above two assumptions imply that
1
2 ≤ µl ≤ 1, and 0 ≤ µr ≤ 1

2 .

Note that the uniform distribution and the exponential distributions are the two

opposite extremes of distributions that satisfy Assumption 1 and Assumption 2. The

uniform distribution on [a, b] has a constant density function, while the hazard rate function

is strictly increasing. The exponential distribution on [a,∞) has a strictly decreasing

density function, while the hazard rate function is constant.

2.2. Selection of market structures

Unlike in standard Bertrand price competition, in a matching environment participation

decisions of agents are not completely determined by prices. What an entrance fee buys

for agents on one side of the search market depends on participation decisions by the

agents on the other side of the market. Nash equilibrium alone does not pin down the

market structure. It is possible to have multiple market structures for a given pair of

prices. Indeed, from equations (2.1), for any p1, p2 ∈ [0, b2], either of the two monopoly

market structures M1 and M2 can be supported as equilibrium. Loosely speaking, M1 is

an equilibrium because the “belief” that no agents participate in matchmaker 2’s market

is self-fulfilling. In contrast, the duopoly market structures cannot be supported by all

price pairs. Before introducing a market structure selection criterion, we first determine

the range of prices that allow the duopoly market structures to operate.

Fix any p1 ∈ [0, b2]. Using equations (2.2) and (2.3), first we determine the range of

prices p2 above p1 that allow D12 to operate; a similar procedure determines the range of

price pairs for D21. Define s(p1) as the smallest p2 ≥ p1 such that D12 obtains, given by

s(p1) =

{√
p1µ(

√
p1, b) if p1 ≥ a2;

p1 + a(µ(a, b)− a) if p1 < a2.
(2.5)
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At p2 = s(p1), equation (2.2) is satisfied by c1 = c2 =
√

p1 if p1 ≥ a2, and equation (2.3)

by c1 = c2 = a if p1 < a2. The interpretation is that at p2 = s(p1), if p1 ≥ a2 then the

duopoly market structure is such that only type
√

p1 agents participate in search market

1 and all higher types participate in search market 2; if p1 < a2 then D12 is such that

only type a agents participate in search market 1 and all other agents participate in search

market 2. Under Assumption 1, there is no solution in c1 and c2 with c1 < c2 to equations

(2.2) or (2.3) if p2 < s(p1): duopoly market structure D12 cannot be sustained if p2 is

smaller than s(p1), because the price difference is too small for search market 1 to attract

even a single low type when all higher types join search market 2. Intuitively, since the

quality difference (µ(c2, b)−µ(c1, c2)) between the two markets is strictly positive, a price

difference is needed for the low quality market to have a positive market share.

Next, define g(p1) as the greatest p2 ≥ p1 such that D12 obtains, according to:

g(p1) =

{
p1 + b(b− µ(c1, b)) if p1 ≥ aµ(a, b);

p1 + b(b− µ(a, b)) if p1 < aµ(a, b),
(2.6)

where c1 is uniquely determined by c1µ(c1, b) = p1 in the first case, and c1 = a in the

second case. The interpretation is as follows. At p2 = g(p1), equation (2.2) is satisfied

by some c1 ≥ a and c2 = b if p1 ≥ aµ(a, b), and equation (2.3) by c1 = a and c2 = b if

p1 < aµ(a, b). In either case, at p2 = g(p1), only the highest type b agents participate in

search market 2. Under Assumption 1, there is no solution in c1 and c2 to equations (2.2)

or (2.3) if p2 > g(p1): duopoly market structure D12 cannot be sustained if p2 is greater

than g(p1), because the price difference is too great for search market 2 to attract even the

highest type. Intuitively, in any duopoly market structure, the quality difference between

the two markets is bounded from above, so the high quality market cannot operate if the

price difference is too large.

Since the agents in our matching model play a coordination game given the prices, a

crucial ingredient in a selection criterion for monopoly market structures is the specification

of “out-of-equilibrium beliefs.” Consider the monopoly market structure M1. Given the

prices p1, p2 and the expected type µ1 in search market 1, it would be profitable for a type

x agent to deviate to search market 2 if search market 2 is believed to have an (out-of-

equilibrium) expected type µ2 such that xµ1 − p1 < xµ2 − p2. Borrowing from Banks and
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Sobel’s (1987) theory of refinement in sequential games (“universal divinity”), we say that

a type x agent is “most likely to deviate” to search market 2 if the set of expected types

µ2 that induce the deviation is the largest among all types.5 We introduce the following

definition.

Definition 1. A monopoly market structure is unstable if the type that is the most likely

to deviate is strictly better off with the deviation provided only agents of the same type

on the other side of the market deviate.

Fix any p1 < p2. Consider M1 again. The expected type µ1 and the threshold type

c1 in search market 1 are determined according to (2.1). We claim that type b is the most

likely to deviate. Intuitively, since the price p2 of the alternative search market is higher

than the price p1 of the existing search market, it will most likely attract the type that

cares most about match quality, which is type b. More precisely, first note that among all

types in [a, c1], type c1 has the largest set of expected types µ2 that induce the deviation,

because xµ2 − p2 > 0 implies that c1µ2 − p2 > 0 for any x ∈ [a, c1]. Further, among all

types in [c1, b], type b has the largest set of expected types µ2 that induce the deviation

because xµ2 − p2 > xµ1 − p1 implies that bµ2 − p2 > bµ1 − p1 for any x ∈ [c1, b]. By

Definition 1, M1 is stable if and only if

b2 − p2 ≤ bµ(c1, b)− p1.

From the definition of g(p1) (equation 2.6), stability is equivalent to p2 ≥ g(p1).

Now consider M2. The expected type µ2 and the threshold type c2 in search market 2

are determined according to (2.1). We claim that in this case the threshold type c2 is most

likely to deviate. The intuition is that the alternative search market now has a lower price

p1 than the currently operating search market does, so it will most likely attract the type

that cares the least about match quality among all participating types, which is type c2.

5 The concept of universal divinity of Banks and Sobel does not directly apply to our model, because
we deal with a coordination game among different types of agents on the two sides of the market, as opposed
to the problem of how to update belief after an out-of-equilibrium move. Nonetheless, the common feature
in these two problems is that in equilibrium selection one has to impose restrictions on beliefs that are not
restricted by rationality.
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More precisely, note that among all types in [a, c2], type c2 has the largest set of expected

types µ1 that induce the deviation. Among all types in [c2, b], type c2 again has the largest

set of expected types µ1 that induce the deviation, because xµ1 − p1 > xµ2 − p2 implies

that c2µ1 − p1 > c2µ2 − p2 for any x ∈ [c2, b]. By Definition 1, for the case where c2 > a,

M2 is stable if and only if

c2
2 − p1 ≤ c2µ(c2, b)− p2 = 0,

and for the case where c2 = a, M1 is stable if and only if

a2 − p1 ≤ aµ(a, b)− p2.

From the definition of s(p1) (equation 2.5), stability is equivalent to p2 ≤ s(p1).
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Combining the results above, we conclude that (i) neither of the two monopoly market

structures is stable when p2 ∈ [s(p1), g(p1)], (ii) M1 is the only stable structure when

p2 > g(p1), and (iii) M2 is the only stable structure when p2 ∈ (p1, s(p1)). Note that when

p2 ∈ [s(p1), g(p1)], our selection criterion picks out the duopoly structure D12 by excluding

both M1 and M2. By symmetry a unique market structure is selected in the region where

p1 > p2. We refer to case (ii) above as matchmaker 1 “undercutting” matchmaker 2, and

case (iii) as matchmaker 2 “overtaking” matchmaker 1.

Figure 1 depicts the selected market structure for the case in which types are uniformly

distributed on [a, b]. The dashed line in the duopoly region D12 represents the border

between the section where c1 = a and the section where c1 > a. It is implicitly defined by:

aµ(a, c2) = p1;

c2(µ(c2, b)− µ(a, c2)) = p2 − p1,
(2.7)

where c2 varies from a (at p1 = a2 and p2 = aµ(a, b) on the s function) to b (at p1 = aµ(a, b)

and p2 = aµ(a, b) + b(b − µ(a, b)) on the g function). The participation constraint of the

lower threshold type c1 is binding in the c1 > a section of D12, and slack in the c1 = a

section. The dashed line in the duopoly region D21 is symmetrically defined as in (2.7).

The strategy of overtaking is unique to the sorting role of prices. Overtaking a rival

is achieved by charging a price slightly higher than the rival does to provide a search

market with a higher quality. This induces deviation from the rival’s search market by

the highest type agents, which triggers further deviations by lower type agents. Thus, the

overtaking strategy plays on the differences in willingness to pay for quality (average match

type) between the highest and the lowest type agents participating in a market. When

matchmakers are allowed to use more prices and create more search markets, the overtaking

strategy becomes less effective because, as markets become shorter, the differences in

willingness to pay between the highest and lowest participant in each market are reduced.

A more detailed discussion on the robustness of overtaking in a sorting environment with

many prices is provided in section 5.

Our selection criterion can be thought of as a strengthening of trembling hand perfec-

tion in strategic-form games (Selten, 1975). We will illustrate this point with the monopoly
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market structure M1 (the lower-priced search market). A Nash equilibrium is trembling

hand perfect if it is a limit of totally mixed “ε-equilibria” where players are constrained to

choose non-optimal strategies (tremble) with increasingly small probabilities. Applied to

our model, the convergence of non-optimal participation decisions of agents would generate

an expected match quality µ2 of matchmaker 2’s market, which is what we have referred

to as the out-of-equilibrium belief. Although the concept of trembling hand perfection

itself does not impose any restrictions on how different types of agents might tremble, it is

natural to require that a type x make the non-optimal decision of participating in market

2 more often than another type x′, if x is more likely to deviate to market 2 than x′ (in

the sense of having a larger set of expected type µ2 that would make deviation optimal

for x). Any tremble that respects this monotonicity requirement will generate a µ2 that

lies between the unconditional mean µ(a, b), when all types tremble with the same proba-

bility, and b, when the type most likely to deviate (type b) trembles infinitely more often

than other types, as in our selection criterion (Definition 1).6 A stronger monotonicity

requirement in terms of a greater rate of increase in trembling probabilities for types that

are more likely to deviate, makes it more difficult to sustain M1 as a stable equilibrium for

small price differences, and brings the version of trembling hand perfection closer to our

selection criterion. Further, our criterion is robust in the sense that independent of how

strong the monotonicity requirement is, M1 is stable if the price difference is large enough.

3. Monopolistic Sorting

In this section we examine the sorting efficiency achieved by a monopolist who can create

at most two search markets. A benchmark is the second-best market structure, the choice

of a planner who faces the same information constraints as the monopolist and who can

6 Myerson’s (1978) proper equilibrium is also a refinement of trembling hand perfection, and is similar
in spirit to our selection criterion. In a proper equilibrium each player trembles on his second best strategy
infinitely more often than the third best and so on. The general idea is that more costly mistakes are
made less often. Properness imposes restrictions on how a given player trembles among his non-optimal
strategies, while our selection criterion imposes restrictions on how trembling on a given non-optimal
action varies across different types of agents. Because trembling probabilities are specified according to
how costly mistakes are to individual agents, proper trembling generally does not satisfy the monotonicity
requirement. Detailed characterization of proper equilibria in our model is available upon request.

– 11 –



use two prices to create two search markets to maximize the sum of expected match values.

We consider the differences in the solutions for the planner and for the monopolist both in

terms of total coverage of the two search markets and in terms of differentiation between

the two markets.

The planner is assumed to maximize the total match value achieved by two search

markets. The planner’s maximization problem reflects the same two constraints faced by

the matchmaker/s: the information constraint that agents’ type is privately known and the

technology constraint that at most two search markets can be created. As the monopoly

matchmaker, the planner has to use prices to give proper incentives for agents to sort into

two search markets. The objective function of the planner reflects the assumption that the

planner gives equal weight to each agent’s utility and to the revenue from matchmaking.

This is a reasonable assumption since the planner could always redistribute the revenue

through lump sum transfers.

In the analysis of this section, it is more convenient to use threshold types instead of

prices as choice variables for the planner and for the monopolist. This change of variables

is valid. For any prices p1 and p2, a unique market structure obtains with their threshold

types c1 and c2, according to our selection criterion (Definition 1). Conversely, for any

threshold types c1 and c2, say c1 ≤ c2, the price p1 is given by the indifference of type

c1 between the lower quality market and non-participation, and the price p2 of the higher

quality search market is given by the indifference of type c2 between the two markets.7

3.1. Market coverage

To gather some intuition before plunging into the full problem of comparing the monop-

olist’s optimal market structure with the efficient market structure, we consider how the

two compare when only a single price is allowed.

The planner’s single-price sorting problem is to choose a participation threshold c to

maximize the total match value

(1− F (c))µ2(c, b).

7 When c1 = a, there are multiple prices p1 that implement the same market structure. However, the
monopolist will always choose to bind the participation constraint of type c1 in order to maximize the
revenue, while any such price p1 gives the planner the same total match value.
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The first order condition is

f(c)(µ2(c, b)− 2cµ(c, b)) = 0.

By Assumption 2, µ(c, b)− 2c is a decreasing function of c, implying that the derivative of

the total match value function crosses 0 at most once and from above. Thus, the efficient

threshold c∗ is either a corner solution at a (if µ(a, b) ≤ 2a), or uniquely determined by

the first order condition

µ(c∗, b) = 2c∗. (3.1)

In contrast, the monopolist chooses a threshold c to maximize the revenue

(1− F (c))cµ(c, b).

We will show that the above revenue function is quasi-concave, i.e. the derivative crosses

zero at most once and from above. First, if the solution ĉ is interior then it satisfies the

first order condition

ρ(ĉ)µ(ĉ, b) = ĉ2. (3.2)

Since µl(c, b) ≤ 1 by Assumption 2, from equation (2.4) we have

ρ(c) ≥ µ(c, b)− c (3.3)

for any c. Together with µ(c, b) > c, the first order condition (3.2) implies

µ(ĉ, b)− ĉ ≤ ρ(ĉ) < ĉ, (3.4)

and therefore µ(ĉ, b) < 2ĉ. It follows that ĉ > c∗ if ĉ > a. Further, because µl(c, b) ≤ 1

and ρ′(c) ≤ 0, the derivative of ρ(c)µ(c, b) − c2 is less than ρ(c) − 2c, which by (3.4) is

less than 0 at any ĉ that satisfies the first order condition (3.2). Thus, the above revenue

function is quasi-concave. It follows that the second order condition of the monopolist’s

problem is satisfied, and equation (3.2) uniquely determines the solution ĉ if it is interior.

Finally, since the monopolist’s revenue is 0 at c = b, if ρ(a)µ(a, b) ≤ a2, the solution to the

monopolist’s problem is given by ĉ = a. But in this case the planner’s solution c∗ is also
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a, because ρ(a)µ(a, b) ≤ a2 implies that the inequalities (3.4) can be derived in the same

way with ĉ = a, which in turn implies µ(a, b) < 2a.

The monopolist’s search market is smaller and more selective than the planner’s be-

cause raising the participating threshold has different effects for the monopolist and for the

planner. For both of them, raising the threshold has the same negative effect of reducing

the size of the search market (decreasing 1 − F (c)), but the positive effect of making the

search market more selective is different. The monopolist is concerned with the change

in the marginal type’s willingness to pay the participation fee, whereas the planner cares

about the change in the average expected type. In particular, under Assumption 2, in-

creasing the threshold has a proportionally larger impact on the revenue cµ(c, b) than on

the total expected match values µ2(c, b). More precisely, the derivative of ln(cµ(c, b)) is

greater than the derivative of ln(µ2(c, b)).

The result that the monopolist’s optimal market coverage ĉ is smaller than the plan-

ner’s coverage c∗ is anticipated by Damiano and Li (2003). There we have shown that the

monopolist maximizes the expected sum of virtual match values, defined as the product

of virtual match type x − ρ(x) for each type x and the match quality that type x gets.8

It follows that the monopolist will never serve agents of negative virtual types. This does

not change even though the monopolist is restricted in the number of prices and search

markets that can be offered in the present model, as opposed to unrestricted schedules in

Damiano and Li (2003). As shown in equation (3.4), at the monopolist’s optimal threshold

ĉ, the virtual type ĉ − ρ(ĉ) is strictly positive.9 In contrast, there is no reduction from

match type to virtual match type for the planner because the information rent needed to

elicit private type information is internalized. Combining equation (3.1) with the inequal-

ity (3.3), we have that at the planner’s efficient choice c∗, the virtual type is negative (with

possible exception when c∗ = a). Note that under Assumption 2, the virtual type function

8 Damiano and Li (2003) study monopoly price discrimination in a general asymmetric matching
environment, where the virtual match type functions are different for the two sides. Rayo (2002) studies
how a monopolist can use price discrimination to sell status goods. His problem can be interpreted as
a special case of the matching model of Damiano and Li (2003), where the two sides of the matching
environment are identical.

9 The result that the virtual type is non-negative for the monopolist does not depend on Assumption
2. It follows immediately from the first order condition (3.2) as µ(ĉ, b) ≥ ĉ.
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c− ρ(c) is increasing, and so positive virtual type for the monopolist and negative virtual

type for the planner confirm our result that the market coverage is generally smaller for

the monopolist.

3.2. Market differentiation

Now we examine the original two-price problems of the planner and the monopolist. The

planner chooses c1 and c2, with c1 < c2, to maximize the total match values:

(F (c2)− F (c1))µ2(c1, c2) + (1− F (c2))µ2(c2, b). (3.5)

The monopolist chooses c1 and c2 to maximize the revenue from the two search markets:

(1− F (c1))c1µ(c1, c2) + (1− F (c2))c2(µ(c2, b)− µ(c1, c2)).

Fix c1 and consider how the planner and the monopolist choose c2.

For the planner, the first order condition with respect to c2 is

f(c2)(µ(c2, b)− µ(c1, c2))(µ(c1, c2) + µ(c2, b)− 2c2) = 0. (3.6)

For any c1, there exists at least one c∗2 that satisfies the above first order condition, as

µ(c1, c1)+µ(c1, b) ≥ 2c1 and µ(c1, b)+µ(b, b) ≤ 2b. Such c∗2 is unique too: under Assump-

tion 2, µr(c1, c2) + µl(c2, b) ≤ 1
2 + 1 < 2. Moreover, an increase in c1 leads to a greater c∗2,

and we can write:
dc∗2
dc1

=
µl(c1, c

∗
2)

2− µr(c1, c∗2)− µl(c∗2, b)
. (3.7)

For the monopolist, the first order condition with respect to c2 is

µ(c2, b)− µ(c1, c2)
c2 − µ(c1, c2)

=
1− F (c1)

ρ(c2)
c2 − c1

F (c2)− F (c1)
. (3.8)

The right-hand-side of equation (3.8) approaches 1 while the left-hand-side becomes arbi-

trarily large when c2 takes on the value of c1, and the opposite happens when c2 approaches

b. As a result, for any c1, there exists at least one ĉ2 that satisfies the above first order con-

dition. Further, the right-hand-side of equation (3.8) is increasing c2, because Assumption

1 implies that the ratio (c2 − c1)/(F (c2) − F (c1)) increases with c2 while ρ(c2) decreases
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with c2 by Assumption 2. The left-hand-side is decreasing in c2, because µl(c2, b) ≤ 1

by Assumption 1. Thus, the ĉ2 that satisfies (3.8) is unique. Finally, the right-hand-

side of equation (3.8) is decreasing in c1 because ρ′(·) ≤ 0 and f ′(·) ≤ 0 imply that

(1− F (c1))(c2 − c1)/(F (c2)− F (c1)) decreases with c1, while the left-hand-side increases

with c1 because µ(c2, b) ≥ c2. Therefore, an increase in c1 leads to a greater ĉ2.

Comparison between c∗2 and ĉ2 for fixed c1 reflects different incentives for the planner

and the monopolist to differentiate search market 2 from search market 1. For both the

planner and the monopolist, increasing c2 raises the qualities (expected match types) in

both search markets at the expense of reducing the relative size of the higher quality market

(search market 2). The size effect is the same for the planner and for the monopolist, but

the effects on the qualities are different because the monopolist is concerned with the

change in the marginal type’s willingness to pay, whereas the planner cares about the

change in the average expected type. Unlike the comparison of market coverages in the

one-price problem, the comparison between c∗2 and ĉ2 is sensitive to the type distribution.

To see this, note that using the identity

(F (c2)− F (c1))µ(c1, c2) + (1− F (c2))µ(c2, b) = (1− F (c1))µ(c1, b), (3.9)

we can rewrite the objective function of the planner as

(1− F (c1))(µ2(c1, b) + (µ(c1, b)− µ(c1, c2))(µ(c2, b)− µ(c1, b))),

and the objective function of the monopolist as10

(1− F (c1))(c1µ(c1, b) + (µ(c1, b)− µ(c1, c2))(c2 − c1)).

The two expressions above conveniently isolate the effect of market coverage from the effect

of market differentiation. In the objective function of the planner (1 − F (c1))µ2(c1, b) is

the total match value generated by just one search market with threshold c1, representing

the market coverage effect, while (1− F (c1))(µ(c1, b)− µ(c1, c2))(µ(c2, b)− µ(c1, b)) is the

10 The following restatement of the monopoly revenue shows that for any c1 adding a second search
market with any c2 ∈ (c1, b) increases the revenue. That is, the monopolist will always create two search
markets instead of a single one.
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additional gain in total match value from dividing the covered types into two markets,

which is the differentiation effect. Similarly, (1 − F (c1))(µ(c1, b) − µ(c1, c2))(c2 − c1) is

the additional revenue to the monopolist from dividing the total market (c1, b) into two

markets through the threshold c2. Since c1 and hence µ(c1, b) are fixed, the difference

between the problems of the planner and of the monopolist comes down to that between

µ(c2, b)− µ(c1, b) and c2 − c1. It follows that the planner’s solution c∗2 is smaller than the

monopolist’s solution ĉ2 if the proportional rate of increase of µ(c2, b)− µ(c1, b) is smaller

than the proportional rate of increase of c2 − c1 for all c2. This is equivalent to

µl(c2, b) ≤ µ(c2, b)− µ(c1, b)
c2 − c1

. (3.10)

For a host of special distributions which have a linear conditional mean function

µ(·, b), the condition (3.10) holds with equality for any c1 and c2, so that c∗2 = ĉ2. For

example, under the uniform distribution with f(x) = 1/(b− a), we have µ(c, b) = 1
2 (c+ b),

and so both sides of (3.10) are equal to 1
2 for any c1 and c2. Under the exponential

distribution with f(x) = γ exp (−γx), we have µ(c, b) = x + 1
γ , and so both sides of (3.10)

are equal to 1 for any c1 and c2. For distributions with a decreasing linear density function

f(x) = 2(1 − (x − a)/(b − a))/(b − a), we have µ(c, b) = 1
3 (2c + b), and so both sides of

(3.10) are equal to 2
3 for any c1 and c2.

More generally, note that the left-hand-side of (3.10) is the slope of the conditional

mean function µ(c, b) at c2, while the right-hand-side is the slope of the line segment

connecting the two points corresponding to c1 and c2 on the conditional mean function.

Therefore, for distributions that have a strictly concave condition mean function µ(·, b),
condition (3.10) holds with strict inequality for any c2 > c1. Conversely, the inequality

(3.10) is reversed in any region of the support [a, b] for a distribution that has a strictly

convex conditional mean function µ(·, b) in the region.11

We regard the difference between c∗2 and ĉ2 as secondary to the difference in terms

of market coverage. We have already seen from the previous analysis of one-price planner

and monopolist problems that market coverage is greater for the planner. Now we show

11 Numerical examples of trapezoidal distributions (i.e., decreasing linear density with f(b) > 0) with
either c∗2 < ĉ2 or c∗ > ĉ2 for given c1 are available upon request.
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that the same is true for the two-price problems. The first order condition with respect to

c1 for the planner is:

f(c1)(µ(c1, c2)− 2c1) = 0. (3.11)

Thus, there is a unique solution c∗1 if

µl(c1, c
∗
2) + µr(c1, c

∗
2)

dc∗2
dc1

< 2.

Using the relation (3.7) between c∗2 and c1, we can show that the above holds because

µl(c2, b) < 1 and µr(c1, c2) ≤ 1
2 by Assumption 1 and Assumption 2. Further, we can show

that c∗1 ≤ c∗ (with equality only if c∗ = a), so that a planner with two prices available

will expand the market coverage relative to a planner with a single price. This can be

seen by comparing (3.11) to (3.1) and using the fact that µ(c1, c
∗
2) < µ(c1, b).12 For the

monopolist, the first order condition with respect to c1 is:

1− F (c2)
F (c2)− F (c1)

(c2 − c1) =
ρ(c1)µ(c1, c2)− c2

1

µ(c1, c2)− c1
. (3.12)

As in the case of one-price monopolist, the two-price monopolist will never serve any agent

with a negative virtual type, i.e. at the optimal ĉ1 we have ĉ1 ≥ ρ(ĉ1). To see this, note

that if ĉ1 < ρ(ĉ1), then the right-hand-side of equation (3.12) is greater than ĉ1, implying

(1− F (ĉ2))ĉ2 > (1− F (ĉ1))ĉ1. (3.13)

Since the revenue of the monopolist can be alternatively written as:

((1− F (c1))c1 − (1− F (c2))c2)µ(c1, c2) + (1− F (c2))c2µ(c2, b),

and since the monopolist can always choose c1 just below c2 to make the first term arbi-

trarily small, the inequality (3.13) implies that the monopolist is not choosing ĉ1 optimally,

a contradiction. Therefore, as in the case of one-price sorting, the market coverage remains

smaller for the monopolist than for the planner. We summarize the findings so far as the

following proposition:

12 It follows from equation (3.6) that c∗2 < b for any c1.

– 18 –



Proposition 1. (i) Total market coverage is at least as large for the planner as for

the monopolist; (ii) monopolist market differentiation is efficient given the total market

coverage if the type distribution is uniform.

The restriction to two-price schedules in the present model exaggerates the extent

to which market coverage differs for the planner and for the monopolist. At least for

the uniform type distribution case, the difference in market coverage becomes smaller

eventually when more search markets are feasible. Moreover, as long as a/b > 1
2 , i.e. the

virtual match type of a is positive, all types will be optimally served for both the planner

and the monopolist if the number of search markets allowed is sufficiently large.

Let the number of search markets be N . The planner chooses a sequence of thresholds

c1, . . . , cN , in increasing order, to maximize total match value

N∑

i=1

(F (ci+1)− F (ci))µ2(ci, ci+1),

where cN+1 = b. The first order condition with respect to ci, i = 2, . . . , N , is

µ(ci−1, ci) + µ(ci, ci+1) = 2ci, (3.14)

and is given by equation (3.11) for c1. As in the two-price case, the above first order

conditions can be characterized recursively, starting from i = N . For the uniform type

distribution case, these relations are given by:

c∗i = c∗i−1 +
1
N

(b− c1) (3.15)

for each i = 2, . . . , N . In other words, the thresholds are evenly spaced given any market

coverage [c1, b]. It then follows from the first order condition (3.11) with respect to c1 that

c∗1 = max
{

1
2N + 1

b, a

}
, (3.16)

implying full market coverage eventually as N increases. For the monopolist, the objective

is to maximize the revenue
N∑

i=1

(1− F (ci))ciµ(ci, ci+1).
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Under the uniform type distribution, market differentiation takes the same form as for the

planner, so equation (3.15) holds for the optimal thresholds ĉi. The first order condition

with respect to c1 takes the same form as in the two-price case, given by (3.12), and for

the uniform case reduces to

c2
1 − c1(b− c1) =

1
2N2

(b− c1)2. (3.17)

As N increases, the optimal interior solution ĉ1 decreases and becomes arbitrarily close to
1
2b. Thus, if a/b > 1

2 , both the planner and the monopolist provide full market coverage

when N is sufficiently large.

4. Competitive Sorting

In this section we analyze the equilibrium outcome under duopolistic competition. We

assume that the two matchmakers each choose a single price to maximize revenue. It

turns out that no pure-strategy equilibrium exists in the simultaneous-move pricing game,

because by overtaking each matchmaker can drive the rival out of the market and increase

the revenue. Characterization of the equilibrium in the sequential-move pricing game is

complicated by the need to consider both the market structure where the first-mover serves

the lower quality market and the symmetric structure. An additional complication arises,

because unlike in the case of monopoly, we need to consider the sections in the duopoly

regions where the participation constraint of the threshold type for the lower quality search

market is not binding. Indeed, we will show that in some cases the only way for the first-

mover to survive the overtaking strategy of the second-mover is to lower its price sufficiently

to serve all lower types and leave some rents to the lowest type (type a).

The natural comparison is between the equilibrium outcome with two competing

single-price matchmakers and the outcome with a two-price monopoly matchmaker. We

will make comparisons in terms of both market coverage and market differentiation, as

these are the two factors that determine sorting efficiency measured by the total match

value. From Proposition 1, we know that the total market coverage is smaller for the

monopolist than for the planner, while at least in the case of uniform type distribution,
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the market differentiation is the same. We will show that under competition the coverage

is expanded but the quality difference is reduced relative to monopoly. The comparison in

terms of sorting efficiency is thus ambiguous. We will give examples in which competition

yields a smaller total match value than monopoly.

4.1. Simultaneous competition

Consider a static game where the two matchmakers choose prices simultaneously. In this

subsection we show that feasibility of the overtaking strategy to each matchmaker implies

that there is no pure-strategy Nash equilibrium in prices.

First, note that only a duopoly market structure is a candidate for equilibrium out-

come. This is due to the fact that given the competitor’s price, say p1, the other match-

maker can always earn a positive profit by overtaking (charging a p2 just above p1). This

strategy drives the competitor out of the market and guarantees a positive revenue.

Second, in any duopoly market structure, by using the overtaking strategy each match-

maker can earn a revenue strictly greater than the competitor, which is impossible. To

see this point, without loss of generality suppose that p1 ≤ p2 and the duopoly market

structure D12 obtains. The participation threshold c̃1 and c̃2 are determined by equation

(2.2), or in the case of c̃1 = a, by equation (2.3). If matchmaker 2 charges a price just

above p1, say p1 + ε′, in the case of c̃1 > a, matchmaker 2 becomes a monopoly and the

participation threshold c′ satisfies (2.1). Comparing the two equations c′µ(c′, b) = p1 + ε′

and c̃1µ(c̃1, c̃2) = p1, we conclude that c′ < c̃1 for some ε′ slightly greater than zero. In

the case of c̃1 = a, matchmaker 2 becomes a monopoly by charging a price just above

p1, and the participation threshold c′ = a. In either case, matchmaker 2 earns a strictly

greater revenue in deviation than matchmaker 1 does in the duopoly market structure

through a higher price and a larger search market. Similarly, given p2, if matchmaker

1 overtakes matchmaker 2 with a price just above p2, say p2 + ε′′, then matchmaker 1

becomes a monopolist and the participation threshold c′′ satisfies (2.1). Comparing the

two equations c′′µ(c′′, b) = p2 + ε′′ and c̃2µ(c̃2, b) = p2 + c̃2µ(c̃1, c̃2) − p1 > p2 (because

c̃2µ(c̃1, c̃2) − p1 > c̃1µ(c̃1, c̃2) − p1 = 0), we conclude that c′′ < c̃2 for some ε′′ slightly

greater than zero. This implies that matchmaker 1 earns a strictly greater revenue in
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deviation than matchmaker 2 in the duopoly market structure. Thus, feasibility of the

overtaking strategy implies the impossible scenario that, in equilibrium, each matchmaker

should earn a revenue strictly greater than the competitor. We summarize the analysis in

the following proposition:

Proposition 2. There is no pure-strategy equilibrium in a simultaneous-move game.

The non-existence of pure-strategy equilibria in the simultaneous-move game points

to a difference between competing matchmaking and the standard Bertrand price com-

petition. Payoff discontinuities exist in both competing matchmaking and in Bertrand

competition, and tend to homogenize prices in the absence of any asymmetry between the

competitors. While in Bertrand competition this leads to marginal cost pricing, in com-

peting matchmaking prices cannot be determined in a similar fashion because they also

play the role of sorting.

Existence of a mixed-strategy equilibrium can be established using the concept of

payoff-security of Reny (1999). Our simultaneous-move game is discontinuous, because

market structure switches from one monopoly structure to the other one when prices move

from below the diagonal to above (Figure 1). However, by charging a slightly higher

price each matchmaker can secure a payoff at worst only marginally lower against small

perturbations of its rival’s price. It follows that the mixed-extension of our simultaneous-

move game is payoff-secure, and therefore a mixed strategy equilibrium in prices exists

(Corollary 5.2 in Reny, 1999).13

4.2. Surviving overtaking

Rather than studying mixed-strategy equilibria in a simultaneous-move game, we look at

pure-strategy (subgame perfect) equilibria in a sequential-move game. For the remainder of

this section, we consider a game where matchmaker 1 first picks a price p1, and matchmaker

2 then chooses p2 after observing p1. From our analysis of the simultaneous-move game we

know that the sequential-move game gives an advantage to matchmaker 2 because it can

13 An additional condition needed for Reny’s result to apply, reciprocal upper semicontinuity, is satisfied
in our model, because the sum of the payoffs to the matchmakers is continuous.
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secure a revenue strictly higher than matchmaker 1 through overtaking. We are interested

in finding out whether this advantage is so overwhelming that matchmaker 1 cannot survive

as a first-mover.14 One hope for matchmaker 1 to survive overtaking is to choose a price so

low that matchmaker 2 finds more profitable creating another differentiated search market

rather than overtaking matchmaker 1 and drive it out of the competition. We distinguish

two cases: a > 0 and a = 0.

Assume a > 0. Fix any p1 < a2. First, note that by equation (2.6), g(p1) converges

to b(b − µ(a, b)) as p1 approaches 0. Under Assumption 1, µ(a, b) ≤ 1
2 (a + b), so that

b(b − µ(a, b)) ≥ a2. Thus, for p1 < a2, it is not possible for matchmaker 2 to drive

matchmaker 1 out of the market by undercutting. Refer to Figure 1. It remains to show

that for p1 sufficiently small, it is not optimal for matchmaker 2 to drive matchmaker 1 out

of the market by overtaking. By equation (2.1), the monopoly structure M2 obtains for

any p2 ∈ (p1, s(p1)). The threshold type of participation is c2 = a because by assumption

p1 < a2 < aµ(a, b). Matchmaker 2’s revenue from overtaking is simply p2 for any p2 ∈
(p1, s(p1)), so any such p2 is not optimal. For any p2 ∈ [s(p1), g(p1)], the duopoly market

structure D12 obtains. By equation (2.3), c1 = a, and c2 satisfies

c2(µ(c2, b)− µ(a, c2)) = p2 − p1.

Consider how matchmaker 2’s revenue in the duopoly structure D12, given by p2(1−F (c2)),

changes at p2 = s(p1). Since c2 = a at p2 = s(p1), the derivative of matchmaker 2’s revenue

with respect to p2 at s(p1) is given by

1− f(a)s(p1)
µ(a, b)− a + a

(
µl(a, b)− 1

2

) .

So the derivative is positive if and only if

µ(a, b)− a + a

(
f(a)(µ(a, b)− a)− 1

2

)
> f(a)s(p1). (4.1)

As p1 approaches 0, s(p1) approaches a(µ(a, b) − a). Thus, the derivative of matchmaker

2’s revenue is positive at p2 = s(p1) for p1 approaching 0, if and only if µ(a, b) > 3
2a.

14 If existence of such equilibrium fails, then there is a continuum of equilibria indexed by the price
charged by the first-mover, where the first-mover earns zero revenue.
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The analysis above does not cover the case a = 0, since it assumes p1 < a2. When

a = 0, we have s(p1) =
√

p1µ(
√

p1, b) for all p1 ≥ 0 (equation 2.5). In Figure 1, this

means that the linear segments of the g and s functions and their inverses are absent.

Since s(0) = 0, matchmaker 2’s revenue from overtaking is arbitrarily close to zero when

p1 is sufficiently small. At the same time matchmaker 2’s maximum revenue in the D12

region is bounded away from zero. Therefore for p1 small enough overtaking cannot be

matchmaker 2’s best response.

We say that the type distribution is sufficiently diffused if µ(a, b) > 3
2a. When the

type distribution is sufficiently diffused, there is room for two matchmakers to coexist.

Note that the condition µ(a, b) > 3
2a is automatically satisfied if a = 0. The following

proposition summarizes our findings in this subsection.

Proposition 3. If the type distribution is sufficiently diffused, there exists a pure-strategy

equilibrium with a duopoly market structure in a sequential-move game.

A sufficiently diffused distribution allows the first-mover to survive overtaking by the

second-mover by focusing on a lower quality “niche” market. Note that when a > 0, the

survival strategy of charging p1 < a2 for the first-mover implies that all low types are served

and some rents are left to the lowest type (type a) with a relaxed participation constraint.

Further, the sufficient condition in the proposition for the existence of a duopoly market

structure depends on the type distribution only through the unconditional mean µ(a, b).

This is because at the boundary between the market structures M2 and D12, where p1 is

small and p2 = s(p1), the behavior of matchmaker 2’s revenue is independent of the type

distribution, and is locally identical to the behavior under the uniform type distribution.

Later in this section we show that the condition is also necessary for the sequential-move

game to have an equilibrium duopoly market structure under the uniform distribution.

4.3. Niche market

Proposition 3 provides a sufficient condition for the two matchmakers to coexist in an

equilibrium, by considering the second-mover’s incentives to overtake the first-mover while

ignoring the possibility that the second-mover may allow the first-mover to serve a higher
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quality search market in a duopoly structure. In this subsection we show that this latter

possibility does not arise if the type distribution is uniform. The market structure is D12

in any duopoly equilibrium, i.e. matchmaker 1’s niche market is the lower quality search

market while matchmaker 2 serves the higher one. To establish the claim, we will show

that regardless of p1, it is never optimal for matchmaker 2 to allow matchmaker 1 to serve

a higher quality search market.

For the following analysis, it is convenient to introduce some new notation. Recall

that the optimal threshold ĉ for a one-price monopolist, is either a, or if it is interior,

satisfies equation (3.2). Denote the corresponding optimal price as p̂, given by

p̂ = ĉµ(ĉ, b).

By equation (3.2) there is a one-to-one relation between the threshold type c and the price

p. Since the one-price monopolist’s revenue is quasi-concave in c, it is also quasi-concave

in p. Depending on the comparison between p1 and p̂, we distinguish four cases. It would

be helpful to refer to Figure 1 throughout this subsection. The first three cases are dealt

with for any type distribution; only case 4 requires the assumption of the uniform type

distribution.

Case 1. If p1 ∈ (g(p̂), b2], by charging p2 = p̂ matchmaker 2 can undercut matchmaker

1 and earn the maximal revenue of a one-price monopolist. This price is the best response

to such p1 and leaves zero revenue for matchmaker 1.

Case 2. If p1 ∈ (s−1(p̂), p̂), matchmaker 2 can overtake matchmaker 1 by charging a

price p2 = p̂ and again earn the maximal revenue of a one-price monopolist.15 This leaves

zero revenue for matchmaker 1.

Case 3. If p1 ∈ [0, s−1(p̂)], then we can show that matchmaker 2’s best response is

p2 ∈ [s(p1), g(p1)). That is, it is optimal for matchmaker 2 either to charge the highest

price that supports the monopoly market structure M2 (overtaking matchmaker 1 by

charging s(p1)), or to choose a price that allows matchmaker 1 to serve the lower search

market and supports the duopoly market structure D12. This is a candidate for equilibrium

15 It follows from s(0) = a(µ(a, b)− a) and p̂ ≥ aµ(a, b) that s−1(p̂) is well-defined.
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outcome with a duopoly market structure, because matchmaker 1 can potentially earn a

positive revenue (Proposition 3). To see this, first note that charging p2 ∈ [g(p1), b2], or

p2 ∈ [s−1(p1), p1), is not optimal because matchmaker 2 would have zero revenue. Charging

any price p2 ∈ [0, g−1(p1)] (undercutting), if such prices are feasible, or p2 ∈ (p1, s(p1))

(overtaking) is not optimal because these prices make matchmaker 2 a monopolist but they

are dominated by a higher price p2 = s(p1), which is closer to p̂ and where matchmaker 2

is also a monopolist but earns a greater revenue due to the quasi-concavity of the one-price

monopolist’s revenue function. It remains to show that any p2 ∈ [g−1(p1), s−1(p1)], if it

is feasible, is non-optimal. For any p2 in this region, the duopoly market structure D21

obtains and matchmaker 2 serves the lower quality search market. Notice that matchmaker

2’s revenue would be higher if he could be a one price monopolist at the same price.

This is because at the same price, as a monopolist, matchmaker 2 would be serving a

larger market. But then, due to the quasi-concavity of the one-price monopolist’s revenue

function, the monopolist revenue at p2 = s(p1) is larger that the monopolist revenue at

any p2 ∈ [g−1(p1), s−1(p1)], hence overtaking dominates any price in the D21 region.

Case 4. If p1 ∈ [p̂, g(p̂)], we can show that matchmaker 2’s best response is either

to undercut or overtake matchmaker 1, implying that this scenario is not a candidate for

an equilibrium outcome with coexistence of the two matchmakers. For any price p1 ∈
[p̂, g(p̂)], matchmaker 2 has maximum four viable options. (i) Matchmaker 2 can overtake

by charging p2 ∈ (p1, s(p1)]. Since p1 ≥ p̂, the matchmaker 2’s revenue decreases in the

overtaking region. By charging a price close to p1, the revenue from overtaking can be

made arbitrarily close to

(1− F (c2))p1, (4.2)

where by (2.1) c2 satisfies c2µ(c2, b) = p1. (ii) Matchmaker 2 can undercut by charging

p2 ≤ g−1(p1) (when g−1(p1) is defined). Since p1 ≤ g(p̂), the best undercutting price is

p2 = g−1(p1). The corresponding revenue is given by

(1− F (c2))g−1(p1), (4.3)

where by (2.1) c2 satisfies c2µ(c2, b) = g−1(p1). (iii) Matchmaker 2 can allow duopoly and

serve the higher quality market by charging p2 ∈ [s(p1), g(p1)]. However, this option is
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dominated by the option of overtaking: any p2 ∈ [s(p1), g(p1)] leads to a duopoly revenue

lower than the one-price monopolist revenue at the same price p2, but since s(p1) > p1 ≥ p̂,

the maximum monopolist revenue for matchmaker 2 when p2 ∈ [s(p1), g(p1)] is reached

at p2 = s(p1), which is in turn smaller than the revenue from overtaking. (iv) Lastly,

matchmaker 2 can allow duopoly and serve the lower quality market by charging p2 ∈
(g−1(p1), s−1(p1)). We want to show that this is never optimal because either undercutting

or overtaking would generate a greater revenue. This is the only place where the assumption

of uniform type distribution is used. As the argument mostly involves straightforward

calculations, we leave the details to the appendix. We summarize the analysis in this

subsection in the following proposition.

Proposition 4. Under the uniform type distribution, in any equilibrium of the sequential-

move game with a duopoly market structure, the first-mover serves the lower quality search

market.

While the above result depends on the assumption of the uniform type distribution,

the intuition behind it is more general. By charging a very low price, or a very high price,

the first-mover makes the overtaking strategy unappealing to the second-mover. Both low

and high prices deter overtaking and one would expect that, to survive overtaking, the first-

mover will target a niche market, serving either a small fraction of high types or a small

market of low types. A low price is also very effective against undercutting by matchmaker

2, while choosing a high price invites undercutting and makes the first-mover vulnerable.

What we have shown in this subsection is that under the uniform type distribution, when

the first-mover charges a price high enough to deter overtaking, the second-mover will

find it optimal to undercut. Thus, to deter undercutting as well as overtaking by the

second-mover, matchmaker 1 has to find its niche market with low prices.

4.4. Price competition and sorting

The preceding analysis has prepared us to consider the effects of price competition on equi-

librium sorting. Proposition 3 provides a sufficient condition for there to be an equilibrium

with a duopoly market structure by showing that with a sufficiently low price matchmaker
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1 can induce matchmaker 2 to serve the higher quality search market rather than overtake

matchmaker 1. Proposition 4 shows that with the uniform type distribution, in looking

for an equilibrium with a duopoly market structure, we need not consider the alternative

market structure where matchmaker 1 serves the higher quality search market. In this sub-

section, we ask how the equilibrium outcome compares with the optimal market structure

and pricing for a two-price monopolist.

First, we consider search market differentiation. In the duopoly market structure

D12, matchmaker 2 takes matchmaker 1’s price p1 ∈ [0, s−1(p̂)] as given and chooses

p2 ∈ [s(p1), g(p1)] to maximize the revenue from the higher search market:

(1− F (c2))p2,

where c2 is determined according to equation (2.2) or equation (2.3). Alternatively, we

can think of matchmaker 2 taking p1 as given and choosing c2 to maximize

(1− F (c2))(p1 + c2(µ(c2, b)− µ(c1, c2))),

where c1 is determined by

c1µ(c1, c2) = p1, (4.4)

or c1 = a if aµ(a, c2) ≥ p1. Compare the incentive of matchmaker 2 to differentiate the

higher search market from the competitor’s search market, to that of a two-price monopolist

to differentiate the higher search market from the lower one. The latter problem can be

thought of as taking p1 as given and choosing c2 to maximize

(F (c2)− F (c1))p1 + (1− F (c2))(p1 + c2(µ(c2, b)− µ(c1, c2))),

where c1 is determined in the same way as (4.4) or c1 = a if aµ(a, c2) ≥ p1. Equation (4.4)

implies that the size of search market 1 shrinks as c2 decreases. While the monopolist

internalizes the cannibalization of lower search market, matchmaker 2 in the duopoly

market structure has no such consideration. As a result, at the optimal choices ĉ1 and ĉ2

of the monopolist, the derivative of matchmaker 2’s revenue with respect to c2 is negative,

implying that for the same total market coverage c1 the equilibrium threshold for the higher
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quality market is lower than the corresponding monopoly threshold. In other words, there

is less market differentiation under competition than under monopoly. Note that this

comparison between monopolistic and competitive market differentiation is independent

of the type distribution. Thus, we have established the following:

Proposition 5. In any equilibrium of the sequential-move game with a duopoly market

structure where the first-mover serves the lower quality market, the equilibrium outcome

has less market differentiation than the optimal structure of a two-price monopolist.

The above result can be strengthened when the type distribution is uniform. In this

case, Proposition 4 implies that we can state Proposition 5 for any equilibrium in the

sequential-move game with a duopoly market structure. Further, by Proposition 1 the

monopolist and the planner have identical incentives in choosing c2 for a given p1. Thus,

competition between the two matchmakers induces a smaller, and less efficient, degree

of search market differentiation. This result will be used below to compare the sorting

efficiency under competition and under monopoly.

Next, we consider the effect of competition on search market coverage and show that

under competition the total coverage is at least as large as under the two-price monopoly.

We only need to establish the claim for the case where under competition c1 is greater

than a and determined by equation (4.4). Taking derivatives, we obtain from (4.4)

dc1

dc2
= − c1µr(c1, c2)

µ(c1, c2) + c1µl(c1, c2)
. (4.5)

We can then use the above expression to compute the derivative of matchmaker 2’s revenue

with respect to c2. At the boundary between M2 and D12 where c2 = c1 (and p2 = s(p1)),

equation (4.5) becomes dc1/dc2 = − 1
3 . For matchmaker 2’s revenue to increase with c2 at

the boundary, we need

ρ(c1)
(

µ(c1, b)− 4
3
c1

)
> c2

1. (4.6)

By the inequality (3.3), condition (4.6) implies that ρ(c1) > c1, i.e. the virtual type of

c1 is negative. Since the virtual type of ĉ1 for the two-price monopolist is positive, it

follows immediately that competition between two matchmakers leads to a greater market

coverage. However, condition (4.6) is in general not necessary for a duopoly equilibrium
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because matchmaker 2’s duopoly revenue function need not be quasi-concave. We resolve

this issue by assuming that the type distribution is uniform. Under this assumption,

condition (4.6) reduces to

c1 < (
√

19− 4)b. (4.7)

We can use (4.5) to verify that matchmaker 2’s revenue maximization problem is concave in

the c1 > a section of the duopoly region D12. It follows that condition (4.7) is a necessary

condition for matchmaker 2’s best response in the duopoly market structure to be interior,

or equivalently, for there to be an equilibrium outcome in the sequential-move game with

a duopoly market structure.

Before stating the above result on the comparison of market coverage, we use the

uniform type assumption to strengthen our previous finding in Proposition 3. In particular,

the condition stated in Proposition 3, which reduces to a/b < 1
2 , is necessary as well as

sufficient for an equilibrium duopoly market structure to exist. To establish this claim, we

assume a/b ≥ 1
2 and consider two cases: p1 ≤ a2 and p1 > a2. First, for any p1 ≤ a2,

by equations (2.5) and (2.6), a price of p2 ∈ [s(p1), g(p1)] leads to c1 = a in the duopoly

structure D12. As a result, one can verify that matchmaker 2’s revenue as a function

of c2 is concave. Since a/b ≥ 1
2 , equation (4.1) implies that matchmaker 2’s revenue is

decreasing at p2 = s(p1) for all p1 ≤ a2. Thus, the best response of matchmaker 2 to

p1 ≤ a2 is to charge p2 = s(p1) and serve all types as a monopolist. Matchmaker 1 cannot

survive the overtaking strategy of matchmaker 1 with a price p1 ≤ a2. Second, fix a price

of p1 > a2. In this case, c1 > a along the boundary between M2 and D12 (equation 2.5).

This implies that matchmaker 2’s duopoly revenue is decreasing in c2 along the boundary,

because condition (4.7) cannot be satisfied when a/b ≥ 1
2 . For any fixed p1, as c2 increases

c1 decreases (equation 4.5) to the left of the dashed line in the D12 region (Figure 1), and

by concavity matchmaker 2’s duopoly revenue decreases with c2. As c2 further increases,

c1 may become a to the right of the dashed line (if p1 is not too high). But in this case

we have dc1/dc2 = 0 instead of dc1/dc2 < 0 (equation 4.5), and therefore the duopoly

revenue continues to decrease to the right of the dashed line. Therefore, the maximum

duopoly revenue is achieved at the boundary between M2 and D12. It follows that there

is no equilibrium with a duopoly market structure if a/b ≥ 1
2 .
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As for Proposition 3, we say that the type distribution is sufficiently diffused if a/b < 1
2 .

We have the following result:

Proposition 6. Suppose that the type distribution is uniform. An equilibrium of the

sequential-move game with a duopoly market structure exists if and only if the type dis-

tribution is sufficiently diffused. Further, in any such equilibrium the market coverage is

at least as large as in the optimal structure of a two-price monopolist.

An implication of Propositions 5 and 6 is that the comparison between competition and

monopoly in terms of sorting efficiency can be ambiguous, because competition expands

the coverage but reduces the quality difference. To give some sense of the comparison

between competition and monopoly, we concentrate on a parameter range of the uniform

type distribution where the equilibrium outcome can be explicitly calculated. This is the

range where in equilibrium the first-mover serves all types and leaves some rents to the

lowest type.

We assume that
√

19− 4 <
a

b
<

1
2
.

Denote the equilibrium thresholds as c̃1 and c̃2, with corresponding prices p̃1 and p̃2. Since

condition (4.7) is necessary for an equilibrium with c̃1 > a, and since it cannot be satisfied

when a/b >
√

19 − 4, we have c̃1 = a. Further, the argument leading to Proposition 6

implies p̃1 < a2. Since c1 is no longer a variable, it is straightforward to solve for the

equilibrium by working backwards. For any p1 < a2, the best response of matchmaker 2

in terms of c2 can be found by revenue maximization. It is given by:

c2 = max
{

a,
1
2
b− p1

b− a

}
. (4.8)

Given the above best response, the optimal price p1 for matchmaker 1 is given by

p̃1 =
1
4
(b− 2a)(b− a).

It can be easily verified that p̃1 < a2 because a/b >
√

19 − 4. By equation (4.8), the

equilibrium threshold for matchmaker 2 is therefore

c̃2 =
1
4
(b + 2a). (4.9)
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The corresponding equilibrium price is

p̃2 =
1
8
(3b− 2a)(b− a).

We are ready to compare the total match value under competition and under the

two-price monopolist. The total match value is given by (3.5). Under competition, the

equilibrium thresholds are given by c̃1 = a and (4.9). The total match value is:

R̃ =
1
16

(5b2 + 6ba + 5a2)− 1
64

b2.

Under the monopolist, the optimal threshold ĉ1 can be solved from (3.17) with N = 2,

yielding ĉ1 = hb, with h = b(2
√

6 + 3)/15. The optimal threshold ĉ2 can be then obtained

from (3.15), as the market differentiation under monopoly is the same as under the planner.

The corresponding total match value is:

R̂ =
b− h

16(b− a)
(5b2 + 6bh + 5h2).

For reference, we also compute the total match value under the planner. The efficient

threshold c∗1 is given by (3.16) with N = 2, which implies c∗1 = a in the parameter range

under consideration. The optimal threshold c∗2 is given by (3.15). The total match value

is therefore:

R∗ =
1
16

(5b2 + 6ba + 5a2).

Evaluations of R̃ and R̂ reveal that there is a critical level of a/b such that R̃ < R̂ if and

only if the value of a/b is above the critical level.

The reason that the equilibrium outcome is less efficient in sorting than the monopoly

outcome when a/b is close to 1
2 can be understood as follows. We know from Proposition 1

that under the uniform type distribution assumption, the market differentiation is efficient

under monopoly. The only source of sorting inefficiency under monopoly comes from

insufficient market coverage compared with the planner’s coverage. When a/b is close to
1
2 , the loss from insufficient coverage is small: R̂ < R∗ because h > a, but the difference

shrinks when a/b increases towards 1
2 . In contrast, the equilibrium outcome has the efficient

market coverage (c̃1 = c∗1 = a) in the parameter range we are considering, but suffers from
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inefficiently small market differentiation (Proposition 5). Since the difference between R̃

and R∗ is independent of a/b while the difference between R̂ and R∗ shrinks when a/b

gets close to 1
2 , the equilibrium outcome has a lower total match value than the monopoly

outcome.

5. Discussions

One important restriction in the present model of competing matchmaking is that each

matchmaker is allowed to use only one price and create one search market. This restriction

may be justified by the cost of setting up search markets in an actual matching environ-

ment, but we have made the assumption to simplify the analysis. What is critical in the

restriction to one search market is not that matchmakers cannot create greater distinc-

tions among search markets. Rather, the restriction to one search market is the simplest

environment where price competition interferes with the sorting role of prices.

To see why our results on price competition and sorting efficiency are robust with

respect to this restriction, we first argue that if sorting is perfectly achieved by prices,

then the overtaking strategy becomes completely ineffective. Suppose that there is a

continuum of search markets, one for each type, offered either by a single matchmaker, or

by a continuum of matchmakers. The pricing schedule is such that each type maximizes

its payoff by choosing the search market designed for the type. More precisely, if q(x) is

the price for the type-x search market, then perfect self-selection is guaranteed if q′(x) = x

for each type x in [a, b]. Imagine that an entrant to the market introduces a new search

market with a price of p ∈ [q(a), q(b)]. The type that is most likely to deviate to the new

search market is q−1(p), i.e. the type that is paying the price p in the present market

structure, as this type has the largest set of “beliefs” about the match quality of the new

search market that would induce deviation. However, type q−1(p) is exactly indifferent

between staying in its present search market and deviation. The present market structure

is stable by Definition 1, and in particular is not vulnerable to overtaking. Moreover, any

deviating price p > q(b) is unacceptable, and if q(a) = 0, there is no room for entry. Thus,
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when sorting is perfectly achieved by prices, price competition can only take the form of

the usual Bertrand type.16

Next, we argue that as long as types are not perfectly sorted, overtaking is possible

and price competition affects sorting. To see this, suppose that there is an active search

market with a subscription fee p that has a non-degenerate type distribution. Then, this

market can be overtaken by an entrant with a new search market with a price p′ just above

p. This follows because the type that is most likely to deviate is the highest type in the

search market. Since the type distribution in the search market is non-degenerate, there

is a price p′ just above p such that the highest type strictly prefers the new search market.

By Definition 1, the present market structure is unstable.

Appendix

In this appendix we complete the argument for case 4 in the proof of Proposition 4. Here,

p1 ∈ [p̂, g(p̂)], and we want to show that any price p2 ∈ (g−1(p1), s−1(p1)) in the D21 region

is dominated by either the best overtaking price (p2 just above p1) or the best undercutting

price (p2 = g−1(p1)). We refer to the revenue given by (4.2) as the “maximum overtaking

revenue,” and the revenue given by (4.3) as the “maximum undercutting revenue” for any

p1. Note that the maximum overtaking revenue decreases with p1, while the maximum

undercutting revenue increases in p1. In addition, because for fixed p2 < p1 as p1 increases

c2 either decreases or does not change and c1 increases (see equations (2.2) and (2.3), with

the roles of the two matchmakers reversed), matchmaker 2’s maximum duopoly revenue

in the D21 region is increasing in p1.

The proof relies on two claims. The first claim is that there is a critical price p such

that for any p1 ≥ p matchmaker 2’s maximum duopoly revenue is achieved at the boundary

between M2 and D21. Thus, the maximum duopoly revenue coincides with the maximum

16 The same observation can be made in an alternative model of discrete types. Let xi, i = 1, . . . , N ,
be the types, with xi < xj for i < j. Then the only stable market structure is a set of prices pi, such that
p1 = 0 and pi+1 = pi +xi(xi+1−xi) for i = 1, . . . , N − 1. It is not possible to overtake any search market
because the prices are constructed so that for any deviating price p slightly above pi for each i, the type
most likely to deviate is exactly xi but type xi strictly prefer to stay in its current search market. It is not
possible to undercut any search market either, because for any p slightly below pi, the type most likely to
deviate is xi−1, which by construction strictly prefers to stay in its current search market.
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undercutting revenue for any p1 ≥ p. Note that matchmaker 1 makes zero revenue. The

second claim is that at p1 = p the maximum undercutting revenue, which equals the

maximum duopoly revenue, is smaller than the maximum overtaking revenue. For any

p1 < p, the maximum duopoly revenue is achieved in the interior of the D21 region, but it

is smaller than when p1 = p because as a function of p1 it is increasing. Since the maximum

overtaking revenue is decreasing in p1, it follows from the second claim that the maximum

duopoly revenue for any p1 < p is smaller than the maximum overtaking revenue at the

same p1.

It will be helpful to refer to Figure 1 throughout the proof. The boundary between M2

and D21, defined by p2 = g−1(p1) with c1 = b, has a kink at p1 = b(b− µ(a, b)) + aµ(a, b)

(equation 2.6). Let p̃ = b(b − µ(a, b)) + aµ(a, b). Note that p̃ is the highest p1 such that

c2 = a on the boundary. If p1 ≥ p̃, then c2 > a throughout the D21 region. If instead

p1 < p̃, then we have c2 = a to the left of the dashed line (including the boundary between

M2 and D21) and c2 > a to the right of the dashed line (see equation 2.7for the definition

of the dashed line). We distinguish two cases. In the first case, we establish the two claims

mentioned above by focusing on the section of the D21 region where c2 > a. This allows

us to characterize matchmaker 2’s duopoly revenue as a function of c2 (as opposed to p2).

It turns out that this is legitimate so long as the ratio a/b is small. In the second case, the

two claims are established by analyzing matchmaker 2’s duopoly revenue as a function of

p2 in the section where c2 = a. This is legitimate so long as the ratio a/b is large. The

two cases cover all parameter values of a and b.

Small a/b case. Consider the problem of choosing c2 to maximize the revenue for match-

maker 2 in D21, given by

(F (c1)− F (c2))c2µ(c2, c1),

where c1 satisfies

p1 = c1(µ(c1, b)− µ(c2, c1)) + c2µ(c2, c1).

Note that this maximization problem is valid only if c2 > a. Under the uniform type

distribution, the above relation becomes

p1 =
1
2
(c1b + c2

2), (A.1)
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from which we have
dc1

dc2
= −2c2

b
. (A.2)

It follows that the first order condition with respect to c2 is

1
2
c2
1 −

(
2c1

b
+

3
2

)
c2
2 = 0. (A.3)

Moreover, one can verify that equation (A.2) implies that the revenue is concave in c2.

Since c1 = b at the boundary between the two market structures M2 and D21, (A.1) and

(A.3) imply that there is a unique p1 = 4
7b2 such that equation (A.3) holds with equality at

p2 = g−1(p1). Further, straightforward calculations reveal that at p1 = 4
7b2, matchmaker

2’s maximum undercutting revenue is smaller than its maximum overtaking revenue. Thus,

we have established both claims mentioned above.

The above analysis is valid so long as the critical price p1 = 4
7b2 is greater than

p̃, which happens when a/b < 1/
√

7. If this does not hold, then for any p1 ≥ p̃, the

maximum duopoly revenue is achieved at the boundary of M2 and D21, leaving matchmaker

1 with zero revenue. The same logic as before implies that charging a price p2 in the D21

region is dominated by either overtaking or undercutting, if at p1 = p̃ matchmaker 2’s

maximum overtaking revenue is greater than the maximum undercutting revenue. Using

the assumption of uniform type distribution, we can verify that this is the case if the ratio

a/b satisfies:
√

5 + 4(a/b)2 +
2(a/b)− 2(a/b)3

1 + (a/b)2
< 3. (A.4)

The above inequality holds for small values of a/b (about 0.4425).

Large a/b case. Now let us look at matchmaker’s 2 revenue maximization problem when

c2 is fixed at a and c1 is determined by the equation

c1µ(c1, b)− p1 = c1µ(a, c1)− p2. (A.5)

Using the assumption of uniform type distribution, we can show that the revenue, given

by F (c1)p2, is a concave function of p2, and therefore the following first order condition is

sufficient for revenue maximization:

p2 =
1
2
p1 − 1

4
a(b− a). (A.6)
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Since c1 = b at the boundary between the two market structures M2 and D21, the same

analysis as in the small a/b case establishes the following two claims: (i) there is a unique

p1 = 1
2 (2b − a)(b − a) such that equation (A.6) holds with equality at p2 = g−1(p1), and

(ii) at p1 = 1
2 (2b − a)(b − a), for any value of a/b such that condition (A.4) is violated,

matchmaker 2’s maximum undercutting revenue is smaller than its maximum overtaking

revenue.

The above analysis is valid, if for any value of a/b such that condition (A.4) is violated,

the critical price p1 = 1
2 (2b − a)(b − a) is smaller than p̃, and if on the dashed line that

separates the c2 = a section of D21 from the c2 > a section of D21, matchmaker 2’s revenue

decreases with p2 (or equivalently, c2). The two conditions can be straightforwardly verified

using the uniform type distribution assumption.
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