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This paper is about the emerging field of neuroeconomics, which seeks to ground economic 

theory in details about how the brain works. This approach is a sharp turn in economic thought. Around 

the turn of the century, economists made a clear methodological choice, to treat the mind as a black box 

and ignore its details for the purpose of economic theory (13). In an 1897 letter Pareto wrote  

It is an empirical fact that the natural sciences have progressed only when they have 
taken secondary principles as their point of departure, instead of trying to discover the 
essence of things. ... Pure political economy has therefore a great interest in relying as 
little as possible on the domain of psychology (quoted in Busino, 1964, p. xxiv (14)).  
 
Pareto’s view that psychology should be ignored was reflective of a pessimism of his time, about 

the ability to ever understand the brain.1 As William Jevons wrote a little earlier, in 1871  

I hesitate to say that men will ever have the means of measuring directly the feelings of the human heart. 

It is from the quantitative effects of the feelings that we must estimate their comparative amounts (45).  

This pessimism about understanding the brain led to the popularity of “as if” rational choice models. 

Models of this sort posit individual behavior which is consistent with logical principles, but do not put 

any evidentiary weight on direct tests of whether those principles are followed. For example, a consumer 

might act as if she attaches numerical utilities to bundles of goods and choose the bundle with the highest 

utility, but if you ask her to assign numbers directly her expressed utilities may not obey axioms like 

transitivity. The strong form of the as-if approach simply dismisses such direct evidence as irrelevant 

because predictions can be right even if the assumptions they are based on are wrong (e.g., Friedman, 

1953 (36)).2 

As-if models work well in many respects. But tests of the predictions that follow from as-if 

rational choice (as well as direct tests of axioms) have also established many empirical anomalies.  

Behavioral economics describes these regularities and suggests formal models to explain them (e.g. 

Camerer, 2005). Debates between rational-choice and behavioral models usually revolve around 
                                                      
1 However, Colander (2005)(23; 20) notes that Ramsey, Edgeworth and Fisher all speculated about measuring utility directly 
before the neoclassical revolution declared utility to be inherently unobservable and only revealed by observable choices. 
Ramsey and Edgeworth speculated about a ”psychogalvanometer” and a ”hedonimeter”, respectively, which sound remarkably 
like modern tools. Would these economists be neuroeconomists if they were reincarnated today? 
2 The most charitable way to interpret Friedman’s “F-twist” is that theories of market equilibrium based on utility-maximization 
of consumers are equivalent, at the market level, to unspecified other theories which allow violations of utility-maximization but 
include some institutional repairs or corrections for those violations. That is, the theory states U M , but even if U is false, there 
is an alternative theory [(not - U)andR]  M, in which a “repair condition” R suffices in place of assumption U, to yield the same 
prediction M. If so, the focus of attention should be on specifying the repair condition R. 
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psychological constructs, such as loss-aversion (46) and a preference for immediate rewards, which have 

not been observed directly. But technology now allows us to open the black box of the mind and observe 

brain activity directly. The use of data like these to constrain and inspire economic theories, and make 

sense of empirical anomalies, is called “neuroeconomics” (17; 22; 73). It is important to note that 

neuroeconomists fully appreciate that the revealed-preference approach does not endorse the idea of 

measuring utilities directly (44). The neuroeconomic view does not “misunderstand” the revealed 

preference approach to economics; it simply takes a different approach. Furthermore, the presumption is 

that creating more realistic assumptions will lead to better predictions. Friedman’s view was that (1) 

theories should be judged by accuracy of predictions; and (2) false assumptions could lead to accurate 

predictions. Neuroeconomics shares the emphasis on accuracy in principle (1), but also bets on the 

possibility that improving the accuracy of assumptions will lead to more accurate predictions.  

An analogy to organizational economics illustrates the potential of neuroeconomics. Until the 

1970’s, the “theory of the firm” was basically a reduced-form model of how capital and labor are 

combined to create a production function, as the basis for an industry supply curve. Contract theory 

opened up the black-box of the firm and modeled the details of the nexus of contracts between 

shareholders, workers and managers (which is what a firm is). The new theory of the firm replaces the 

(still useful) fiction of a profit-maximizing firm which has a single goal, with a more detailed account of 

how components of the firm interact and communicate to determine firm behavior. Neuroeconomics 

proposes to do the same by treating an agent like a firm: Replace the (useful) fiction of a utility-

maximizing agent who has a single goal, with a more detailed account of how components of the agent’s 

brain interact and communicate to determine agent behavior.  

Much of the potential of neuroeconomics comes from recent improvements in technology for 

measuring brain activity. For example, fMRI measures oxygenated blood flow in the brain (which is 

correlated with neural activity on the scale of a couple of seconds and a few millimeters). Behavior of 

animals and patients with localized lesions to specific areas of the brain can help us determine if the 

damaged area is necessary for certain behaviors. At an even more detailed level, one can record activity in 

a single neuron at a time (single-unit recording), generally from primates but occasionally from 

neurosurgical patients. Older tools like electroencephalogram (EEG), recording very rapid electrical 

activity from outer brain areas, and psychophysiological recording (skin conductance and pupil dilation, 

for example), continue to be useful, often as complements that corroborate interpretations from other 

methods.  

All these tools give clues about a detailed theory of how decision making actually works. The 

success of the rational actor model in “as if” applications shows that this level of detail is not necessary 

for certain sorts of analysis, especially those that deal with populations of decision makers instead of 
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individuals. (For example, neuroeconomics will never displace the powerful concepts of supply and 

demand, and market equilibrium.) However, a deeper understanding of the mechanics of decision making 

will help us understand deviations from the rational model better. Knowing the process of decision 

making should allow us to understand not only the limits of our abilities to calculate optimal decisions, 

but also the heuristics that we use to overcome these limits.  

Furthermore, in most areas of behavioral economics there is more than one alternative theory. 

Often there are many theories which are conceptually different but difficult to separate with current data. 

To the extent that some of these theories commit to neural interpretations, the brain evidence can help sort 

out which theories are on the right track and also suggest new theories. The study of “ambiguity-

aversion” detailed in section 4 is intended in this paper as a case study how two types of brain evidence 

(fMRI and lesion-patient behavior) can adjudicate a long-standing debate in decision theory about 

whether ambiguity-aversion exists and where it comes from.  

The ability to use these neuroscientific technologies to establish neural circuitry depends on the 

fact that the brain is largely modular in structure. A lot is known about which general areas of the brain 

deal with vision, hearing, and other sensory information; and these areas are consistently activated across 

people. While the degree of modular specialization is sometimes surprising (e.g., there is a “facial 

fusiform area” apparently devoted to face recognition), most higher-order processing requires a “circuit” 

or collaboration among many component processes which are in turn parts of different modules. Less is 

known about higher processing than specific sensory processing, but neuroscientists have a general idea 

of where certain types of emotional and rational processing occurs, and empirical regularity is 

accumulating very rapidly.  

 

1. NEUROECONOMIC BRAIN IMAGING EXPERIMENTS 

Brain imaging, or scanning, is the neuroscientific tool that now gets the most attention. Functional (fMRI) 

imaging uses the same magnetic resonance (MR) scanner that has been used for medical purposes for 

decades. The innovation in fMRI, which began only about ten years ago, is scanning the brain much more 

rapidly to detect differing levels of oxygenated blood in the brain when subjects are performing some 

task. Most brain imaging involves a comparison of brain activity when a subject performs an an 

“experimental” task and a “control” task. The difference between images taken while the subject is 

performing the two tasks provides a picture of regions of the brain that are differentially activated by the 

experimental task. The modular nature of the brain allows us to interpret these activations in the context 

of other evidence about what tasks activate the same areas.  

Imaging is increasingly popular for two reasons. First, it is non-invasive, unlike single neuron 

recording, which implants electrodes directly into the brain, or transcranial magnetic stimulation (TMS), 
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which stimulates brain areas creating temporary lesions. Second, fMRI provides relatively good temporal 

and spatial resolution, even for areas deep in the brain (which cannot be measured by EEG). Images are 

taken every few seconds and data are recorded from voxels which are 3-4 cubic millimeters in size. 

Scanning is expensive, but usually modest sample sizes (10-20 subjects) are enough to establish 

suggestive regularity if studies are well-designed.  

There have already been several prominent studies of economic decision making using fMRI and 

PET (Positron Emission Tomography), another form of scanning technology3.  We mention a few to show 

how imaging can address the kinds of questions economists care about. All these results are tentative; 

more will be learned rapidly in the next few years.  

 

1.1. Game theory and social emotions.  Experiments have proved very useful in testing game theory, 

because game theory often depends on subtle details of moves and information which can be easily 

controlled in an experiment (and difficult to measure in many field applications (19)). Neuroeconomics 

experiments enable a similar attention to detail of how equilibration results from cognition and how social 

preferences influence strategic behavior.  

In an early study, McCabe et al (2001)(53) compared brain activity when subjects played trust 

games against other humans, compared to playing against randomized opponents. Among players who 

did not cooperate very often, there were no differences in activity between the two conditions. But among 

high cooperators, there was additional activity in frontal cortex when playing other humans. McCabe et al 

interpret this activity as evidence of a specialized “theory of mind” circuitry used to form beliefs about 

what other human players will do. Frith et al find a similar result comparing play of a mixed-strategy 

game (rock, paper, scissors) against a randomized opponent that the subject was told was a computer to a 

randomized opponent that the subject was told was human. In both cases subjects were simply playing 

against the Nash equilibrium strategy that randomizes between all three strategies, but in the condition 

where they were told they were playing another human being there were significant activations in the 

anterior paracingulate cortex (39). These studies show neurally, that forming beliefs about another 

player’s moves is fundamentally different then forming beliefs about “nature’s” moves, even when these 

are empirically identical.  

In the ultimatum game, one player, the proposer, offers a take-it-or-leave-it share x of an amount, 

say $10, to another player, the responder. If the responder takes the offer they both earn $10-x and x, 

                                                      
3 For PET, subjects are injected with a small amount of radioactive solution (often glucose with a radioactive marker) and the 
scanner simply localizes where the radioactive material goes during different tasks. The advantage of this method over fMRI is 
that PET measures glucose metabolism, a more direct correlate to neural activity than the BOLD signal. The major disadvantage 
is that it has a much lower temporal resolution (on the order of minutes rather than seconds)  
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respectively. If the responder rejects the offer they both get nothing and the game is over. This game has 

been studied in hundreds of experiments. The typical result is that players offer around 40% of the pie 

(often half), and offers below 20% are rejected in most societies (e.g. (19) chapter 2).4  

Sanfey et al (63) studied the behavior of responders who received offers in ultimatum games, 

using fMRI. They found that when offers were unfair ($1-2 out of $10) compared to fair, three areas were 

active: Dorsolateral prefrontal cortex (DLPFC), anterior cingulate (ACC) and insula. The insula is an area 

that is active in registering body discomfort; it is activated when people feel, among other things, social 

exclusion (31), and disgust (15). Their interpretation is that neurons in the insula are activated by 

unfairness, the DLPFC is processing future reward from keeping the money, and the ACC is an arbiter 

that weighs these two conflicting inputs to make a decision. Whether players reject unfair offers or not 

can be predicted rather reliably (a correlation of .45) by the level of their insula activity.  

One controversy in behavioral economics is the nature of social preferences expressed in games 

like the ultimatum game, trust games, and their kin which are used to study reciprocity. Consider 

punishment, the willingness of A to punish B, if A believes B has treated her badly. If the players play 

only once, A has no direct or reputational incentive to punish B at all. So what is A thinking or feeling 

when she punishes B?  

This question was studied using PET imaging by de Quervain et al (26). In their study, two 

players, A and B, played a trust game in which A invested money, which grew in value, and the “trustee” 

player B could repay or keep the money(71; 9). The subject, A, whose behavior was imaged was asked, 

after play, whether she wanted to punish the trustee or not. The “price” of punishment was also varied so 

that during some conditions A punished at a direct cost to herself.  

When players punished, de Quervain et al found activity in the nucleus accumbens (part of the 

striatum), a region known for processing rewards derived from actions (58). Thus, punishment appears to 

generate an internal sense of reward, just as receiving money does. They also found activity in frontal 

cortex when the price of punishment was being weighted. To an economist, this means that a preference-

based theory in which punishment motives and money-earning motives are neurally similar, and respond 

to prices in a thoughtful way implemented by frontal cortical activity, ts what the brain is doing and 

provide a simple way to modify the self-interest assumption mathematically.  

fMRI has also been used to help understand the neural basis of the concept of equilibrium in 

games. In game theory, players are in equilibrium when they all best-respond to accurate beliefs about 

what other players will do. But this concept of equilibrium is focused on a static situation; it says nothing 
                                                      
4 There are interesting variations between average offers across societies, however, which are correlated with the degree of 
market integration and production of public goods in those societies (Henrich et al, 2003 (19)). From a neural point of view, we 
believe differing social norms of fairness in these societies probably generate different activity in insula, which generate different 
offer and rejection patterns. Just as the food and social habits that people find disgusting can vary across cultures, so can norms of 
what offers are “disgustingly unfair”.  
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about how players reach equilibrium. One neuroscientific hypothesis of equilibrium is that an equilibrium 

choice requires that the player use similar circuitry to make her own choice, and form her beliefs about 

the other player, perhaps simulating the other player’s choice, to make an accurate guess. Put differently, 

if a player is using a simple decision rule like “one-step reasoning” (pick the strategy with the highest 

average payoff, as if the other players’ choices are all equally likely), then more reasoning will be evident 

calculating the optimal choice than in guessing what others will do (because the guess is a simple diffuse 

prior which requires little thought).  

These considerations suggest that when activity during the act of making a choice, and activity 

when making a guess, overlap sufficiently, equilibrium choices are more likely – that is, equilibrium is a 

“state of mind” revealed by a high degree of mental overlap in choosing and guessing. Indeed, Bhatt and 

Camerer (12) found a sharp difference between differential activity in choosing and reporting beliefs 

when trials were in equilibrium (beliefs were accurate and choices were optimal given guesses) and out-

of-equilibrium.  

In equilibrium trials, there is only a small difference in activity between choosing and reporting 

beliefs. This difference is in the ventral striatum, an area known to encode anticipated reward. This area 

may imply that players expect larger rewards from making choices (since the payment schemes were not 

identical across the two tasks of choosing and guessing), or that players have a kind of internal “cash 

register” which senses when they have made an accurate equilibrium choice, even though the games were 

played without feedback.  

In out-of-equilibrium trials, there was differing activity in many areas between the task of 

choosing a strategy and to guessing what others will choose. These areas include the DLPFC (observed 

by Sanfey et al), and paracingulate cortex (observed by Frith et al). This is consistent with the idea that 

many players have a rather shallow way of forming beliefs which requires little processing, consistent 

with some behavioral models of limited “levels of thinking” (21).  

Bhatt and Camerer also studied what happens when players generate second-order beliefs – that 

is, what do they think the other player thinks they will do? (These complex judgments are important in 

successful deception and in creating social emotions like shame5). There are two ways to generate a 

second-order belief: (1) Apply some general circuitry for forming a belief, but take the other player’s 

perspective; or (2) figure out what you plan to choose, and then ask whether the other player is likely to 

guess your choice. Two facts support the second explanation: Choices and second-order beliefs match 

surprisingly often; and there is more overlap in neural activity during the choice and second-order belief 
                                                      
5 (29) measured second-order beliefs in trust games similar to those studied by McCabe et al above. In their games, each investor 
was asked how much they thought the trustee would repay (call this guess Einvestor (y)), and the trustee was asked to guess the 
investor’s guess about repayment (i.e,. Etrustee (Einvestor (y))). The second-order guess was correlated (.44) with the trustee’s actual 
repayment y. This correlation suggests the trustee’s feel a sense of moral obligation to live up to the investor’s expectations, so 
their second-order belief about what that investor expectation is, is an important driver of their decision.   
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tasks than between those tasks and the belief task. Furthermore, players who were more self-focused, in 

the sense of equating their choice and their second-order belief (differentially activating the anterior 

insula) actually earned less in the game.  

 

1.2. Intertemporal choice. The problem of intertemporal choice has been studied at length in economics 

and psychology. One apparent empirical fact is that people display a “preference for immediacy”. When 

faced with two decisions about future payoffs, one later than the other, they act as if they are very patient 

(i.e. they possess a relatively high discount factor). When these same subjects are given the choice 

between an immediate reward and a future payoff they show a strong tendency to choose the immediate 

reward, implying a much lower discount factor (50; 59). Fitting discount factor functions to data from 

rewards at different points in time across many animal species (including humans) generally shows a 

hyperbolic form, d(t) =1/(1 + kt), rather than an exponential d(t) = dt. For modeling purposes, a good 

approximation to the hyperbolic form is a two-piece “quasi-hyperbolic” function, which weights current 

rewards by 1, and future rewards at time t by ßδt(50). When ß =1 the function reduces to an exponential. 

The parameter ß captures the preference for immediacy, and δ expresses the relative preference for 

rewards at different future points.  

This two-piece function is a natural candidate for study in fMRI because the two systems can be 

isolated by comparing different types of choices. Indeed, McClure et al find that when people choose 

between an immediate reward and a future reward (with presumed weights of 1 and ßδ) relative to two 

distant rewards (with relative weights of δt and δt+1) areas with projections from the limbic regions are 

active. When weighing any two choices, many areas are active, but only prefrontal and anterior cingulate 

areas seem to be involved in the δ system.  

 

2. FINDING CIRCUITRY 

Finding areas of differential brain activity from fMRI is not actually the main goal of these 

studies. The real goal is to use the observed brain activity to hypothesize a “circuit” of different brain 

regions that interact to generate a behavior (such as a decision). To understand the circuit, we need to 

know which areas are active, and how they interact. Using scanning evidence, the neural circuitry of 

decisions must be largely inferred from what we know of neurophysiology and the time series of 

activations in various parts of the brain. Even so, scanning evidence is only sufficient to show that the 

activated regions are correlated with the decision task. More evidence is necessary to establish any causal 

link between brain areas and decisions.  

One way to determine whether a region is a necessary part of a circuit is to observe patients who 

have local lesions in that region. These patients are generally victims of strokes, encephalitis, other brain 
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injuries, and neurosurgical interventions. An ideal lesion patient has a localized lesion, preferably bilateral 

(on both sides of the brain), which overlaps a specialized functional or neuroanatomical area of the brain. 

If the patient with damage to region X is reasonably normal in most cognitive functions (like IQ and 

memory), and if the patient does not do a task normally, we can infer that region X is a necessary part of 

the circuit for that task. Other methods of establishing necessity include creating temporary lesions using 

TMS. But even these techniques only establish that the regions are necessary for a task, not that they are 

sufficient. There is also some research being done on the role of different neurotransmitters, rather than 

specific brain areas, in certain decision making processes. These studies can actually demonstrate the 

sufficiency of different neurotransmitters for certain behaviors. For example Kosfeld et al. found that you 

can increased the level of trust in a person by administering a dose of oxytocin.(49).  

Lesion patients show startling dissociations between tasks that seem remarkably similar. For 

example, there are lesion patients who can write well, but can’t read. Patients with permanent 

“anterograde amnesia” – the awful inability to form new memories – do not form conscious declarative 

explicit memories for emotions or physical procedures. However, these patients actually do form such 

memories implicitly; that is, they know information but don’t know that they know it. This dissociation 

indicates that declarative memories, and meta-knowledge are stored separately.6  

The study described in the section below uses a combination of fMRI scanning evidence and 

behavioral data from lesion patients to examine the circuitry of choice under uncertainty. Lesions in the 

same areas activated in a scanning study can help us understand the interactions of the regions and 

establish whether a lesioned area is a necessary part of a hypothesized circuit.  

Another important tool which will prove valuable in neuroeconomics is what neuroscientists call 

“computational models” (which economists would call a “calibration exercise”). In computational 

models, a detailed numerical specification of a neural circuit is suggested. Given those details, simulated 

input to the circuit leads to a predicted output (typically depending on the values of some free 

parameters). The model is calibrated by finding parameter values which maximize the .t of predicted 

output to actual data. Compared to models in economics, these specifications are often incredibly detailed 

and clearly motivated by what is known about neuroanatomical connections between areas (e.g., Kim and 

Whalen (47)). As in economic theory, computational models are valuable because they force the modeler 

to be perfectly clear about how the components of a circuit are linked, and the hypothesized circuit is 

subjected to empirical scrutiny.  

 

                                                      
6 For example, if you show anterograde amnesiacs a chess board and ask “Do you know how to play?” they will often say “No” 
even if they’ve been taught the rules before. But if you force them to play – “Let’s just start” – they will play chess according to 
the rules. They know the rules, they just don’t know that they know them. This syndrome was illustrated effectively in the 
popular 2002 movie “Memento”(6).  
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3. AMBIGUITY AVERSION 

The study described in this section uses a combination of fMRI scanning evidence and behavioral 

experiments with lesion patients to examine the circuitry of choice under uncertainty. It is meant as a 

detailed illustration of how fMRI can be used to do neuroeconomics, with more detail than is typically 

permitted in neuroscience journals.  

In theories of choice under uncertainty used in social sciences and behavioral ecology, the only 

variables which should influence an uncertain choice are the judged probabilities of possible outcomes 

and the evaluation of those outcomes. But confidence in judged probability can vary widely. In some 

choices, such as gambling on a roulette wheel, probability can be confidently judged from relative 

frequencies, event histories, or from an accepted theory. At the other extreme, such as the chance of a 

terrorist attack, probabilities are based on meager or conflicting evidence, where important information is 

clearly missing. The two types of uncertain events are often called risky and ambiguous, respectively. In 

subjective expected utility theory (SEU), the probabilities of outcomes should influence choices but 

confidence about those probabilities should not. But many experiments show that many people are more 

willing to bet on risky outcomes than on ambiguous ones, holding judged probability of outcomes 

constant (18). This empirical aversion to ambiguity motivates a search for neural distinctions between risk 

and ambiguity, as in other studies on neuroeconomics, which explored the neural foundations of 

economic decision.(42; 17; 54)  

 

3.1. Background.  

3.1.1. The Ellsberg Paradox. The difference between risky and ambiguous uncertainty is illustrated by the 

Ellsberg paradox (32). Imagine one deck of 20 cards composed of 10 red and 10 blue cards (the risky 

deck). Another deck has 20 red or blue cards, but the composition of red and blue cards is completely 

unknown (the ambiguous deck). A bet on a color pays a fixed sum (e.g., $10) if a card with the chosen 

color is drawn, and zero otherwise (Fig. 1a).  

In experiments with these choices, many people would rather bet on a red draw from the risky 

deck than a red draw from the ambiguous deck, and similarly for blue (8; 52). If betting preferences are 

determined only by probabilities, this pattern is a paradox. In theory, disliking the bet on a red draw from 

the ambiguous deck implies that its subjective probability is lower (pamb(red) < prisk(red)). The same 

aversion for the blue bets implies pamb(blue) < prisk(blue).  But these inequalities, and the fact that the 

probabilities of red and blue must add to one for each deck, implying that 1= pamb(red) + pamb(blue) < 

prisk(red) + prisk(blue) =1, a contradiction. The paradox can be resolved by allowing choices to depend on 

subjective probabilities of events and on the ambiguity of those events. For example, if ambiguous 

probabilities are subadditive, then 1 - pamb(red) - pamb(blue) represents reserved belief and indexes the 
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degree of aversion to ambiguity(65). Other models assume additive but set-valued probabilities, i.e. 

people believe that there is a range of possible probabilities, and ambiguity aversion is the result of people 

pessimistically assuming the worst probability. This model, and others, is silent about possible neural 

circuitry. Ambiguity aversion suggests that choices can depend on how much relevant information is 

missing, or how ignorant people feel compared to others (37; 34).  

 

3.1.2. Ambiguity Aversion in Economics and Social Science. Aversion to taking action in ambiguous 

situations has been studied in economics, and politics (56), including macroeconomic policy-making(64), 

wage-setting and contracting (11; 55), strategic thinking(51; 16), voting(40), and financial investment(27; 

33). We illustrate with two examples from law and finance.  

Law provides an interesting example which illustrates the psychology of ambiguity-aversion. In 

Scottish law there are three verdicts – guilty, not guilty, and not proven. The third is an unusual verdict in 

legal systems.7 According to Peter Duff (28), the difference between “not guilty” and “not proven” is that 

the verdict of “not guilty” means that the accused definitely did not commit the crime, that is, it is a 

positive declaration of innocence, whereas the verdict of “not proven” is thought to imply solely that the 

accused’s guilt has not been conclusively demonstrated (p. 193). The “not proven” and “not guilty” 

verdicts have the same legal implication, because both prohibit retrial even in the face of new evidence. 

“Not proven” verdicts are returned in about a third of jury trials, typically when the jury thinks the 

defendant is actually guilty but cannot legally convict because of a lack of corroborating evidence which 

is required by Scottish law. For example, these verdicts are common in sexual assault trials where the 

only witness to the crime is the accusing victim, and the jury believes the defendant is guilty but cannot 

convict based on the weight of available evidence.8  

Turning to finance, “Home bias” in investment is an important economic pattern which might be 

due to ambiguity-aversion. Home bias is the tendency for investors to invest in stocks which are literally 

closer to home. For example, investors in most countries tend to invest heavily in stocks from their home 

country and very little in stocks from foreign countries. In 1989 American, Japanese, and British investors 

held 94%, 98%, and 82% of their investments in home-country stocks (27) even though the latter two 

markets account for only a modest fraction of the world portfolio. International home bias is shrinking 

however (4) as more investors buy global index funds and overseas stocks.  

Unless investors have private information about their home stocks, home bias is a mistake 

because it leads to portfolios which are highly undiversified (especially for investors who do not live in 
                                                      
7 “Not proven” is a vestige of an earlier time when juries just decided on whether facts were proven or not proven, and judges 
decided guilt based on those factual judgments. 
8 In the recent (2004-5) trial of former pop star Michael Jackson for child molestation, who was acquitted, some jurors said they 
believed he was guilty but the evidence wasn’t sufficient to prove his guilt. In Scotland they might have delivered a “not proven” 
verdict.  
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the US or Japan). Using 1989 data, French and Poterba (35) estimate that given the apparent tradeoff 

between risk (stock return variation) and return (average percentage returns), the extra risk due to the 

reluctance to hold foreign stocks amounts to a sacrifice in annual percentage return of 1-2% per year. 

Assuming an average unbiased return of 7% (69), a typical historical estimate, a person with home bias 

who invests a lump sum at age 25 will end up with only half as much money at age 65 as an investor who 

is unbiased and holds a worldwide index fund.  

Interestingly, home bias exists at many levels besides the international one: Portfolio managers 

prefer to invest in companies with headquarters nearby, US investors preferred their own regional “Baby 

Bell” companies after the breakup of AT&T, workers invest too heavily in the stock of the companies 

they work for, and investors in many countries prefer to invest in nearby companies or in those whose 

managers speak the same language that they do (43).  

There are basically four explanations9 of home bias: (i) Higher transaction costs of buying foreign 

stocks; (ii) inside information about local stocks; (iii) optimism about relative returns of local stocks(70); 

and (iv) aversion to ambiguity (which is usually called a taste for familiarity in finance research). The 

transaction cost and inside information explanations (i and ii) do not explain patterns like investment in 

the Baby Bell spinoff stocks. If investors are optimistic about local stocks and pessimistic about nonlocal 

stocks (explanation (iii)), they should short-sell the latter, but rarely do. (An investor who is ambiguity-

averse toward nonlocal stocks will not want to buy them, and won’t want to sell them short either.) 

Therefore, the familiarity explanation (iv) holds up rather well across all the levels of home bias that have 

been documented. This explanation is consistent with the idea that investors have a pure distaste for 

betting on either side of a proposition which they lack knowledge or familiarity about, which is very 

much like the knowledge treatment in our experiments.  

 

3.1.3. Theory. Individuals, including economists, have a hard time understanding their own in consistency 

with regard to ambiguity. Ellsberg wrote:  

There are those who do not violate the axioms, or say they won’t, even in these 

situations; such subjects tend to apply the axioms rather their intuition, and when in 

doubt, to apply some form of the Principle of Insufficient Reason. Some violate the 

axioms cheerfully, even with gusto; others sadly but persistently, having looked into their 

hearts, found conflicts with the axioms and decided, in Samuelson’s phrase, to satisfy 

their preferences and let the axioms satisfy themselves. Still others tend, intuitively, to 

                                                      
9 A fifth explanation springs from the observation that patriotism across countries, measured by the World Values Survey, is 
correlated across countries with the extent of countrywide home bias (30). This is the national equivalent of preferring to bet on 
your home team in sports, but it does not seem to explain all the other levels of home bias.  
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violate the axioms but feel guilty about it and go back into further analysis. (Ellsberg 

1967)  

 

The standard way to think about choice under uncertainty is to assume that a person’s value for a 

gamble is simply the average of the possible outcomes weighted by the probabilities that the outcome will 

occur. Specifically assume that there is a set of possible states of the world e ∈ E, each occurring with 

some probability (or with some probability distribution function if E is continuous), p(e) and a set of 

actions f ∈ L, which yield some out come with utility f (e) if e occurs. Expected utility theory states that 

the utility of some action f ∈ L is equal to ∑e∈E p(e)f (e) (or the corresponding integral for continuous E). 

The existence of this sort of representation depends on the Independence Axiom stated below.  

 

Axiom 3.1. Independence Axiom ∀f, g, h ∈  L, where L is the set of possible actions, f f g  αf + (1 – 

α)h f αg + (1 -α)h∀α∈ (0, 1).  

Behavioral experiments have found many counterexamples to this axiom even in unambiguous 

situations. Maurice Allais first challenged this axiom in 1953 with a thought experiment. Consider four 

lotteries:  

A -100 with certainty  

B -0 with 1% chance, 100 with 89% chance and 500 with 10%  

C -0 with 89% 100 with 11% chance  

D -0 with 90% chance and 500 with 10% chance  

Expected utility theory implies that A  f  B   C  f  D, but in fact, most people would tend to choose A 

and over B, but D to C (3).  

Most alternatives to SEU focus on modifying this axiom to varying degrees. Several of these fall 

under the general rubric of Maxmin Expected Utility (MEU).(41) In these models decision makers have a 

convex set of priors (a set of possible probability distributions over possible “states of nature”) and act as 

if the worst case is realized.10 The model uses a weakened version of the independence axiom, called 

“certainty-independence”:  

 

Axiom 3.2. Certainty-independence ∀f, g ∈  L and h ∈  Lc, where Lc is the set of constant acts, and 

∀α∈ (0, 1), ff g iffαf + (1 - α)hf αg + (1 -α)h.  

                                                      
10 Returning to the Ellsberg example, a prior is simply the vector (p, 1 - p) where p is the probability that the state is red. As you 
can see the set of overall possible priors is the line segment in the real plane going between the points (0,1) -definitely black, to 
(1,0) -definitely red. A decision makers set of priors in this example is taken to be an unbroken segment of this line. 
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The standard independence axiom is stronger than certainty independence in that it allows h to be 

any act in L rather than restricting it to constant acts Lc, but both of these axioms explicitly deal with the 

reduction of compound lotteries, since this is at the center of how we represent ambiguity mathematically. 

Namely there is some set of possible probability distributions over the states of nature, in the first stage of 

the compound lottery one of these distributions is chosen and in the second stage the actual state of nature 

is chosen. Under SEU this is equivalent to a one stage lottery where the possible distributions are linearly 

combined (in the discrete case the probability that some state e ∈  E occurs is simply ∑P Ł (P )P (s) 

where P is a possible distribution and Ł(P) is the likelihood with which it occurs).  

In addition, Gilboa and Schmeidler included an uncertainty aversion axiom, which states that 

decision makers prefer a mixture of acts with objective probabilities over the acts themselves.  

∀f, g ∈ L and α ∈. (0, 1), f ~ g implies αf + (1 - α)g f  f .  

Under standard conditions with the aforementioned changes, the preference relation is 

represented by a function J(f ) up to a unique affine transformation.  

J(f ) = min {∫ u ο f dP |P∈. C} 

where f is an act, u is a von-Neuman-Morgenstern utility function over outcomes, and C is a closed and 

convex set of finitely additive probability measures on the states of nature.  

In these models pessimism can be measured by the size of the set of priors. Larger sets of priors11 

will generally include worse possibilities and imply more pessimism. These models explain the Ellsberg 

paradox by allowing the probabilities assigned to each outcome (red or black), depend on the bet that is 

made, i.e. there is a set of possible values from p(R) ranging from p* to p*. When betting on red, the 

“worst” prior out of the decision maker’s set is the one with the lowest odds on red, p(R)= p*, so the 

expected utility of the red bet is low. When betting on black, the worst prior out of the set is the one with 

the lowest odds on black, p(R)= p* so p(B)=1 – p*, so the expected utility of the black bet is low. In this 

account, the subadditivity of the revealed subjective probabilities in the paradox is due to the fact that 

different priors are used to evaluate the expected utility of each bet. This effect is like “Murphy’s Law”: If 

something can go wrong, it will.  

Other models treat ambiguity as a two stage lottery where the actual probabilities are chosen in a 

first stage. (68) Here the explanation for ambiguity aversion comes from a violation of the reduction of 

compound lotteries. Non-expected utility is used to explain the Ellsberg paradox.  

Finally, some models take the stance that ambiguity aversion is an overgeneralization of a 

rational aversion to asymmetry in information. (37) These models argue that since many people confront 

                                                      
11 In the Ellsberg example larger intervals for possible p  
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incomplete information when they are facing a better informed opponent, they treat the Ellsberg paradox 

as if there is asymmetric information (i.e., they act like they are playing a game against a malevolent 

experimenter who is trying to trick them). We examine this “hostile opponent” hypothesis with the third 

treatment in our study, where they actually play against a better-informed opponent.  

At some point in the future, economic theories might specify not only the link between 

unobservable factors and observed choices (such as beliefs and bet choices), but also a claim about neural 

circuitry that implements observed choices. Reviewing the many theoretical papers on ambiguity, we 

found only one suggestion about neural activity, in Raiffa (1963). He writes:  

But if certain uncertainties in the problem were in cloudy or fuzzy form, then very often 

there was a shifting of gears and no effort at all was made to think deliberately and 

reflectively about the problem. Systematic decomposition of the problem was shunned 

and an over-all ’seat of the pants’ judgment was made which graphically reflected the 

temperament of the decision maker. 

 

Raiffa’s suggestion seems to be that under ambiguity, deliberation and reflection (thought to be activities 

in prefrontal cortex) are limited, and a temperamental “seat of the pants” judgment takes over. 

Unfortunately, the seat of the pants is not a brain area but we could interpret him more broadly as 

suggesting a rapid emotional reaction to ambiguity. Thus, we translate Raiffa’s observation, in neural 

terms, as implying a more rapid emotional reaction to ambiguous choices than to risky ones.  

 

3.2. Experimental Design. We explored the neural differences with varying levels of uncertainty by 

using a combination of fMRI data and behavioral data from lesion patients. The fMRI study used three 

experimental treatments: Bets on card decks (based on the Ellsberg example above); bets  
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FIGURE 1. Sample screens from the experiment. The top-panel conditions are called ambiguous 
because the subject is missing relevant information that is available in the risk conditions (bottom-
panel). Subjects always choose between betting on one of the two options on the left side or taking 
the certain payoff on the right. (A) Card-deck treatment: Ambiguity is not knowing the exact 
proportion, risk is knowing the number of cards (indicated by numbers above each deck). (B) 
Knowledge treatment: Ambiguity is knowing less about the uncertain events (e.g., Tajikistan) 
relative to risk (e.g., New York City). (C) Hostile opponent treatment: Ambiguity is betting 
against an opponent who has more information (who drew a three-card sample from the deck) than 
risk (where the opponent drew no cards from the deck). Bets win if the subject chooses the 
realized color and opponent chooses the opposite color, if both players choose the same color they 
take the sure payoff.  
 

 

on high-and low-knowledge world events; and bets against an informed or uninformed opponent (Fig. 1).  

The card deck treatment is a baseline pitting pure risk, where probabilities are known with 

certainty, against pure ambiguity. The knowledge treatment uses choices about events and facts, which 

fall along a spectrum of uncertainty from risk to ambiguity. From the perspective of the MEU model, the 

high-knowledge questions correspond to smaller sets of priors than the low-knowledge question.  

The hostile opponent’s treatment offers bets against another person, who is either better-informed 

or equally-informed about the contents of an ambiguous deck than the subject. In this condition the 

“opponent” draws a sample of cards from an ambiguous deck before making his bet. The subject has the 

option of making a simultaneous bet, but this will only count if the subject bets on the opposite color of 

the color the informed opponent chose. Since the opponent should always bet on the majority color from 

his sample, the subject’s bet will only count when it is on the minority color from a random sample in the 
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deck, i.e. when the subject is more likely to lose than win. This implies that the subject’s expected value 

from winning is lower when the opponent is informed.12  

Notice that all three treatments have one condition where the subjects are missing some relevant 

information relative to the other. We call all these treatments the ambiguous conditions and the other 

treatments the risky conditions. Subjects made 24 choices in each treatment between certain amounts of 

money and bets on events. The amount of the certain payoff and the bet varied across trials.  

In these experiments we allow at 6-8 seconds between trials. This break was necessary to allow 

the activations caused by the previous trial to dissipate. We also randomize the length of these intertrial 

intervals, because using a fixed interval can create anticipation effects in the seconds just before the new 

trial is presented; these effects are diminished by having a random intertrial interval length.  

For each treatment, we estimated a general linear model (GLM) using standard regression 

techniques. Two primary regressors were used in the GLM, one for the ambiguity trials and one for the 

risky trials. The regressors were constructed in the following way: first we created a boxcar regressor 

(dummy variable) that was 1 during the risky (ambiguous) trial and 0 elsewhere. These regressors were 

then convolved with a “hemodynamic response function”, this function allows us to take into account the 

fact that the increase in oxygenated blood to an area of the brain is lagged and the time series has a 

distinctive shape. Maximum likelihood estimation was used to fitt:  

Bt = ßambAt +ßriskRt + ß0 

where {Bt} is the time series for some voxel in the brain13. Voxels with regression coefficients 

significantly different from 0 can be said to covary with either risk or ambiguity. We are mostly interested 

in which voxels are differentially activated by ambiguity with respect to risk, i.e. voxels where ßamb is 

significantly different from ßrisk.  

As the experiment was self-paced, the length of the trials varied14.  To find areas differentially activated 

by ambiguity and risk across all three treatments, a one-way ANOVA of the three conditions was 

                                                      
12 For example, assume that the subject has a prior that the deck will either contain 5 red cards and 15 blue cards or 15 red cards 
and 5 blue cards. Assume that the opponent draws one card before choosing how to bet, and the opponent always bets on the 
color that he drew. The subject, having no information about the deck, will bet randomly on red or blue. Suppose the subject 
chooses to bet on red (without loss of generality). When the deck has 5 red cards and 15 blue cards, the opponent will draw a blue 
with probability ¾.  As a result, the subject will end up betting against the opponent’s blue draw 75% of the time, and winning 
that bet only ¼ of the time. One-quarter of the time, the opponent draws a red card and bets red, in which case the subject’s red 
bet does not count (and the subject earns the sure amount c). Therefore, the subject’s expected value, conditional on the deck 
having 15 blue cards, is ¾ ¼x+ ¼c. The expected value conditional on the deck having 15 red cards is ¾c + ¼ ¾x. Since each of 
these conditional expected values is equally likely, the overall expected value is c/2  + 3/16 x. When the informed opponent does 
not have better information, then both subjects bet randomly and the subject’s expected value is c/2 + x/4 (since half the time 
their colors match and  they earn c, and half the time they bet and the subject wins that bet half the time). Comparing the two 
expected values, there is a small drop in expected value (x/4 - 3/16x = x/16) when betting against the informed opponent. This 
drop leads to a stricter constraint on when it is rational to take the gamble (x> 8/3c instead of x> 2c). 
13 The time series Bt for each voxel went through a high-pass filter and an AR(1) correction.  
14 Mean response times were 6.39 secs (ambiguity) and 6.16 secs (risk), and were not significantly different.  
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performed, correcting for non-sphericity, and excluding areas that are significantly different between the 

three treatments.  

The regressors were anchored to stimulus presentation, i.e. the original dummy variable turns 

“on” when the stimulus is presented as opposed to when a decision is made, based on the hypothesis that 

the reaction to uncertainty would occur before the decision. We also analyzed the time courses of 

activation anchored at both the stimulus onset and the decision time but did not find anything interesting 

when compared to the stimulus-to-decision “epoch”.  

 

3.3. Results.  

3.3.1. fMRI Study. Areas that were more active during the ambiguous condition relative to the risk 

condition are listed in Table 1. These included OFC and amygdala (Fig. 2a & b). Critchley et al found 

OFC activation as subjects anticipated information about a financial gain or loss. (25) Our study shows 

activity in this area even though there is no feedback during the experiment. More subtly the OFC appears 

to be involved in integrating emotional and cognitive information. OFC lesion patients often behave 

inappropriately in social situation despite knowledge of what proper behavior entails (10). So the OFC 

may be active generally in emotional integration over a wide spectrum of situations.  

The amygdala has been specifically implicated in processing information related to fear, e.g. 

recognizing frightened faces. (7; 2; 24) We hypothesized that this area would be important for processing 

uncertain events since risk and ambiguity aversion could be interpreted as fear of the unknown.15 In 

addition the role of the amygdala in reacting to missing information is consistent with evidence of its 

involvement in interpersonal evaluations with missing social information, where familiarity modulates 

amygdala response. (61) Showing unfamiliar black faces to white subjects elicits amygdala activation 

which correlates with the strength of implicit associations between black names and negatively-valenced 

words (61). This correlation disappears when the black faces are familiar (e.g., Bill Cosby), which 

suggests the amygdala may be partly reacting to ambiguity of the social evaluation of faces; activity 

dissipates when faces are familiar and more like risky gambles which have less missing social 

information. Similarity of activity in all three fMRI treatments also suggests that aversion to betting on 

ambiguous events may be an overgeneralization of a rational aversion to betting against other agents who 

are better-informed.  

Areas activated during the risk condition relative to ambiguity are listed in Table 2. These include 

the dorsal striatum (caudate nucleus) (Fig. 3a), an area that has been implicated in reward prediction. (67; 

                                                      
15 The amygdala is also involved in emotional learning and conditioning, both of which should be relevant in dealing with 
ambiguous situations (60).  
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58; 48) One earlier study (62) also found differential activation in the caudate during risk relative to 

ambiguity using PET.16  

Time courses also showed different patterns of activation in the ambiguity > risk and risk > 

ambiguity regions indicating two distinct systems at work. Whereas the amygdala and OFC reacted 

rapidly at the onset of the trial (Fig. 2c), the dorsal striatum activity built more slowly and peaks after the 

decision time (Fig. 3b). Furthermore, these activations are present in all three experimental treatments17 

(see Figures 4 and 5).  

One simplified way of interpreting this data is to hypothesize that there are two interacting 

systems (1) a vigilance system in the amygdala and OFC that responds more rapidly to the stimuli, and 

(2) a reward-anticipation system in the striatum that is further downstream. The overall activity 

differences in the contrasts indicate that system (2) is more active during risky decisions, which make 

sense since in these situations subjects have the information necessary for accurate reward prediction. 

Conversely, during ambiguous conditions, the first rapid system (1) appears to be more active, indicating 

that it may be reacting to the level of information available (less information during the ambiguous 

situations leads to greater vigilance in the form of higher activation levels in the amygdala and OFC). 

Both systems are active to varying degrees during risky and ambiguous trials, the difference is one of 

degree: as the level of information available to the decision maker rises, activity in system (1) declines 

relative more ambiguous situations; the converse is true of system (2). 

                                                      
16 (see the RC-AC image at http://www.econ.umn.edu/ arust/neuroecon.html). 
17 Note that it is rational in the hostile opponent’s treatment to discount some of the payoff in the gamble, as the gamble only 
wins if the better-informed opponent chose the wrong color. The hostile opponent hypothesis is that bets on ambiguous card 
decks and low-knowledge events, while normatively different than bets against the hostile opponent, are generated by similar 
neural circuitry. The time courses in the amygdala, OFC, and striatum are similar across all three treatments, consistent with this 
hypothesis.  
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FIGURE 2. Regions showing greater activation to ambiguity than risk: Random effects analysis of 
all three treatments revealed regions that are differentially activated in decision making under 
ambiguity relative to risk (at p . 0.001, uncorrected). These regions include (A) left amygdala, and 
right amygdala/parahippocampal gyrus, (B) bilateral OFC, and bilateral inferior parietal lobule 
(Table S2). (C) Mean time courses of amgydala and OFC (time synched to trial onset, dashed 
vertical lines are mean decision times; error bars are SEM; n=16). Time courses are plotted using 
the most signi.cant voxel in each cluster.  

 

We measure the degree of ambiguity aversion for each subject and see if this correlates with brain 

activity in a between-subjects analysis. The subjects’ utility functions for money are assumed to  
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FIGURE 3. Regions showing greater activation under risk than ambiguity: Random effects 
analysis of all three treatments revealed brain regions that are differentially activated in decision 
making under risk. These regions include (A) dorsal striatum, and also precuneus and premotor 
cortex (Table S3). (B) Mean time courses for risk areas (time synched to trial onset, dashed 
vertical lines are mean decision times; error bars are SEM; n=16). (C) These dorsal striatal areas 
were significantly correlated with the expected value of the subjects’ choices in the risk condition 
of the Card-Deck treatment (red, right), and both risk and ambiguity conditions of the Knowledge 
treatment (blue, left), p< 0.005. The laterality of these activations is consistent with the fact that 
language processing tends to occur in the left brain, while more abstract mathematical processing 
tends to occur in the right brain.  
 
 

follow a power function u(x, ρ)= xρ, which is conveniently characterized by one parameter and widely 

used in empirical estimation of this sort. Subjects are assumed to weight probabilities according to the 

function π(p, γ)= pγ.  The ρ parameter is interpreted as the risk aversion coefficient, i.e., the curvature of 

the utility function. The p parameter is interpreted as the ambiguity aversion coefficient, i.e., how much 

do people over(under)-weight probabilities because they are not confident in their judgments. If subjects 

over-weight ambiguous probabilities (γ < 1), we characterize them as ambiguity-preferring. If they under-

weight ambiguous probabilities (γ > 1, as in the nonadditive prior view), we characterize them as 

ambiguity-averse. If subjects weight probabilities linearly (p =1), we characterize them as ambiguity-

neutral. We assume subjects combine these weighted-probabilities and utilities linearly, so that their 

weighted subjective expected utility is U (p, x, γ, ρ)= π (p, γ)u(x, ρ).  

The tasks are all binary choices in which subjects either choose a gamble to win x (with 

probability p) or 0, or a certain payoff c. For the risky deck, the ratios of the cards are the probabilities. 

For the ambiguous decks and all knowledge questions, we assumed p =1/2. If subjective p is different 

than 1/2 (e.g., because a subject happens to know a lot about fall temperatures in New York), then 
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subjective probabilities are not held constant across the knowledge trials. This possibility biases our 

analysis against finding common regions of activation across treatments, so would  

 

 
FIGURE 4. Time courses of percentage signal change in brain regions that are differentially 
activated in decision making under ambiguity in Card-Deck, Knowledge and Informed Opponent 
conditions. Note that the qualitative aspects of the activation differences between ambiguity and 
risk are preserved between the pooled time courses in Figure 2.  
 
 
 

imply that the results described in the text are conservative about the true extent and commonality of 

ambiguity and risk-specific regions. We constrain γ =1 in all risk conditions and estimate p from 

behavioral data in the ambiguity conditions.  

The probability that the subject chooses the gamble rather than the sure amount c is given by the 

logit or softmax formula, P (p, x, c, γ, ρ)=1/(1 + exp{- λ(U (p, x ρ) - u(c, ρ.))}). The parameter λ is the 

sensitivity of choice probability to the utility difference (the degree of inflection), or the amount of 

“randomness” in the subject’s choices (λ =0 means choices are random; as λ increases the function is 

more steeply inflected at zero).  

Denote the choice of the subject in trial i by yi, where yi =1 if subject chooses the gamble, and 0 if 

the subject chooses the certain payoff.  

We fit the data using maximum likelihood, with the log likelihood function  

Σyi [yi log (P(p, x, c, γ, ρ, λ)) + (1− yi) log (1-P(p , x, c, γ, ρ, λ)]. 
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This analysis gives us a value of γj for each subject in the fMRI experiment. The γj estimated 

from the knowledge rounds positively correlates with brain activity across subjects as measured by the 

contrast values, β jamb -  β jrisk, between ambiguity and risk (averaged over the three treatments) in the right 

OFC (r = .55, p<.02, one-tailed), and left OFC (r =0.37, p< 0.1, one-tailed) (Fig.  

 

 

 
FIGURE 5. Time courses of percentage signal change in brain regions that are differentially 
activated in decision making under risk in Card-Deck, Knowledge and Informed Opponent 
conditions. Note once again that the qualitative patterns are preserved in the pooled time courses 
in Figure 3.  
 
 
 

6a). This means that the subjects who exhibited more ambiguity-aversion revealed by choice also 

show greater neural differences between risk and ambiguity in the OFC. 18 

 

3.4. Lesion Data. To validate the fMRI results and establish a necessary role for the OFC, we conducted 

behavioral experiments similar to the card deck task above using a lesion method. Twelve neurological 

subjects with focal brain lesions were partitioned into those whose lesions included the focus of OFC 

activation revealed in our fMRI study (n=5), and a comparison group whose lesions in the temporal lobe 

did not overlap with any of our fMRI foci (n=7). The two groups had equivalent IQ, mathematical ability, 

and performance on other background tasks as well as decision tasks. This excludes these factors as 

possible explanations for the differences in risk and ambiguity aversion between the two groups.  

As noted above behavioral data was collected from 12 patients with focal lesions to determine the 

necessity of OFC activation for ambiguity aversion. In the ambiguity condition, patients were shown an 

actual card deck with 20 cards, in some mixture of red and black they could not see. They were given a 

series of choices between certain amounts of points (15, 60, 30, 40, 25 in that order) and bets on the color 

of their choice from the card deck for 100 points. In the risky condition they were shown a deck with 

exactly 10 red and 10 black cards whose colors they could see. They made choices between a bet on the 

                                                      
18 We also analyzed activations based on actual decisions: trials where people gambled vs. trials where they chose the sure 
payoffs. We found some interesting activations in these subtractions, but there do not appear to be any interaction between these 
decision conditions and the ambiguity vs. risk conditions. This implies that the differences we see in the Ambiguity/Risk 
comparisons are purely the reaction to the level of uncertainly the subject is exposed to. While these reactions are almost 
certainly then an input into the actual decision, the areas we see appear to be involved in evaluation of the situation rather than 
determining choice.  
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color of their choice from the deck for 100 points, or certain amounts of 30, 60, 15, 40, and 25 (in that 

order, see Table 1)19 .  

We could estimate ρ and γ for each individual in the fMRI study. We were, however, forced to pool data 

within each patient group because there are not enough data points to estimate each patient’s parameter. 

The behavioral data were pooled and a bootstrap procedure was used to create 100 pseudosamples with 

corresponding (γ, ρ) pairs. Two-dimensional confidence interval analysis of these pairs (Fig. 6b) shows 

that frontal patients are risk-and ambiguity-neutral (i.e., the hypothesis that γ =ρ =1 cannot be rejected). 

This behavior of frontal patients was significantly different than the damage control group, who were 

averse to both risk and ambiguity. The OFClesioned group was therefore abnormally neutral toward 

ambiguity (which is, ironically, a hallmark of rationality under SEU).  

The parameter γ  enables us to link the fMRI and lesion studies. Assume that the frontal patients 

would have a right OFC (ROFC) contrast value of zero if they were imaged during these tasks (since all 

have ROFC damage). Then we can guess what value of γ  the OFC patients might exhibit behaviorally, by 

extrapolating correlation between ROFC activity and γ  in Figure 6a to the case where there is zero 

activity in ROFC. This extrapolation gives a predicted γ = .85. The actual value estimated from the OFC 

patients’ behavioral choices is γ = .82, which is reasonably close to the extrapolated prediction.  

 

3.5. Discussion. The two hypothesized systems, amygdala/OFC, and striatum are active in both 

ambiguity and risk; the differences in activation between the two are driven by the level of uncertainty in 

the different conditions. The fact that we see similar activation patterns for the real-world treatment as the 

card-deck treatment supports the hypothesis that risk and ambiguity are in fact points on a spectrum of 

uncertainty rather than two completely different entities. The reaction of the amygdala and OFC seems to 

be tied to the level of perceived uncertainty. That these areas are also activated by the hostile-opponent 

treatment indicates that the reaction to uncertainty is an instance of a more general “vigilance” reaction to 

possibly dangerous situations.  

An interesting implication of this study is that models of risk and ambiguity that treat the two as 

quantitatively instead of qualitatively different may be more neurally and therefore behaviorally accurate. 

The current models of risk aversion relying solely on the curvature of the utility function do not allow for 

this. The implication that both types of aversion are the result of a direct dampening of activity in the 

dorsal striatum, which may well be the internal representation of utility in the brain, could help resolve 

                                                      
19 There are three small differences in this task and the Card-Deck treatment in the fMRI experiment: (1) There were fewer 
choices in the lesion experiment, due to time constraints in conducting experiments with lesion patients and the need for multiple 
trials to extract fMRI signal; (2) there was wider range of certain point amounts in the lesion task (in case patients were extremely 
risk-and ambiguity-averse or -preferring); and (3) due to human subjects restrictions, the lesion task choices were not conducted 
for actual monetary payments.  
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some of the paradoxes of risk aversion as well as ambiguity aversion, for example the vastly different 

expressions of risk over small verses large bets.  

The regions implicated in our fMRI experiments and confirmed by behavioral experiments with 

lesion patients have been observed in previous studies using different tasks. The striatum-amygdala-OFC 

network is well-established in animal and human studies as a system for reward learning, including 

probabilistic learning (25). The OFC is highly interconnected with the basolateral amygdala. These 

interconnections appear to play vital roles in learning and reversal learning in rats (66).  

 

 
FIGURE 6. A) Regression of right OFC contrast values on the behavioral measure of ambiguity γ 
(calibrated from knowledge questions). B) Measures of risk (ρ) and ambiguity (γ) preferences of 
OFC (n =5) and control group (n =7). The risk neutral line (γ = 1) and the ambiguity neutral line 
(p = 1) demarcate four quadrants as labeled. Open symbols plot ML estimates of a group-level 
stochastic choice model (frontals: (γ =0.82, ρ =1.09); lesion controls: (γ =1.23, ρ = 0.74)). Solid 
symbols represents 100 bootstrapped (γ,ρ) estimates. Ellipses are two-dimensional 90% 
confidence intervals around the bootstrapped data. Angle of the ellipse reflects correlation 
between ρ and γ (0.42 for frontal, 0.31 for control).  
 
 
Lateral OFC, in particular, appears to be necessary to change existing associations (57). Our 

finding that the OFC is activated as a function of ambiguity, and that its damage reduces sensitivity to 

ambiguity, suggest that this structure is a necessary component for reacting to gradations of uncertainty.  
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The idea that ambiguity aversion in card deck and knowledge choices is related to rational aversion to 

betting against a better informed opponent (the hostile opponent hypothesis) is supported by similarities 

in time courses in the amygdala, OFC, and striatum between all three treatments.  

We present evidence that the human brain responds to varying levels of uncertainty, contrary to 

many decision theories which regard choices under risk and ambiguity as equivalent. FMRI data suggests 

that uncertainty is represented in a system that includes the amygdala and OFC.  

 

Both the amygdala and OFC are known to receive rapid, multi-modal sensory input; both are 

bidirectionally connected and known to function together in evaluating the value of stimuli (38); and both 

are likely involved in the detection and salient, relevant, and ambiguous stimuli. The latter function has 

been hypothesized especially for the amygdala (72; 1). Critically, such a function also provides a reward-

related signal that can motivate behavior, in virtue of the known connections between the amygdala/OFC 

and the striatum (5). Under ambiguity, the brain is alerted to the fact that information is missing, that 

choices based on the information available therefore carry more unknown (and potentially dangerous) 

consequences, and that cognitive and behavioral resources must be mobilized in order to seek out 

additional information from the environment.  

Understanding the neural basis of choice under uncertainty, in the broader sense including both 

risk and ambiguity, is important because it is a fundamental activity at every societal level, from 

retirement savings, to insurance pricing, to determining international military policy. These choices vary 

not only because of the presence of uncertainty, but the perceived level of uncertainty. Our results suggest 

that we pursue a unified model of uncertainty which would treat risk and ambiguity as points on a larger 

continuous scale. The knowledge treatment of the experiment further implies that the relevant level of 

uncertainty might be a function of mathematically unrelated factors, such as familiarity with related but 

irrelevant information.  

Finally, economists should care about understanding the neural basis of decision only if the extra 

level of detail helps us make predictions that standard economic theories would not make. For example, 

the evidence above suggests that the amygdala and OFC participate in evaluating the degree of 

uncertainty, generating an aversion to ambiguity, and also signaling a larger anticipated reward from risky 

bets to the striatum. Knowing that these particular areas are part of a candidate circuit is most useful for 

economics if we know something special about their properties and other functions they perform. 

Fortunately, a lot is known about the amygdala’s structure and function. It is rapidly activated by 

exposure to fearful stimuli (as briefly as 5-15 milliseconds of exposure to a fearful face (72)). 

Furthermore, it is possible that if there are competing stimuli which influence the amygdala, then the OFC 

cannot disentangle which stimulus generates the influence. These two properties lead to the following 
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prediction: Suppose the amygdala is stimulated by some fear-inducing stimulus which is independent of 

an ambiguous bet, such as anticipation of an impending electric shock a few seconds later. While waiting 

for the potential shock, the subject chooses between a sure amount or an ambiguous bet. If the OFC 

mistakes the amygdala activity from the shock anticipation for a fear of betting under ambiguity, then the 

subject may be more averse to ambiguous bets when a shock is anticipated (compared to control 

conditions when there is no shock anticipation). We do not know if this experiment will work; if the OFC 

can separate the influence of shock-anticipation fear from ambiguity-aversion-driven fear then the 

experiment will not work. But if the experiment does show an effect, then we have a very powerful 

challenge to the standard idea in economics of stable preferences. Adding the shock anticipation will have 

essentially changed the expressed preference, not because we have truly changed the degree of aversion to 

ambiguous bets, but because we used our knowledge of the components of circuitry to trick the OFC into 

thinking the amygdala was afraid of the bet rather than afraid of the shock.  

This phenomenon could even be incorporated into a theoretical model using standard parts from 

the economic theory hardware store. Suppose the amygdala is activated by various state variables (shock 

anticipation, fearful faces, ambiguous bets, etc.). The amygdala observes a state variable and sends a 

signal to the OFC. (This is like an infant who is crying, but the crying itself does not signal to a concerned 

parent what condition – hunger, pain, fatigue – caused the crying.) The OFC gets the signal but does not 

observe the state variable. The OFC must then make a decision, such as pricing an ambiguous gamble. 

Since the OFC does not know the source of fear, it implements more aversion to ambiguity.  

 

4. CONCLUSION 

The goal of neuroeconomics is to ground economic theory in details of how the brain works in 

decision making, strategic thinking, and exchange. One way to achieve this is to observe processes and 

constructs which are typically considered unobservable, to decide between many theories of behavioral 

anomalies like risk aversion, altruistic punishment, and reciprocity. Another likely outcome is that 

thinking about brain details will provide a new way of understanding concepts which have been 

traditionally left out of economic analysis, like emotion, willpower, habit, and the biological basis of 

demand. No one neuroeconomic study will be able to conclusively do either of these things, but by 

combining experiments and types of data we may gain insights into behavior that we cannot arrive at by 

introspection of behavioral observation.  

The study discussed in this paper illustrates both of these goals to varying degrees. First, it allows 

us to use neural evidence to discount models of ambiguity that treat is as merely a two stage lottery by 

showing that there may be two interacting systems determining the experienced utility of an option, one 

responding to the level of information in general and one that uses input from this system to discount the 
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reward of the possible results. Second it suggests a substantially different way to look at risk-aversion. 

Considering a more general uncertainty aversion that dampens the utility of a gamble gets allows us to 

consider careful models of risk where the context of the gamble is important, something that is very 

difficult if we only consider a single universal utility function.  
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