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Abstract

The externalities advertisers receive from newspaper readers and that operating

system users receive from software developers are among the leading features of those

“platform” industries. However, they are rarely incorporated into applied models of

imperfect competition. We argue this omission is due to a basic theoretical indeter-

minacy created by these externalities and propose the solution concept of Insulated
Equilibrium to resolve it. At such equilibrium, each platform’s price on one side of

the market adjusts to participation on the other side so as to insulate its own alloca-

tion, eliminating both the necessity for consumer coordination and the multiplicity

of platform best replies. This allows us to solve a model of oligopoly without the

unrealistic restrictions typically imposed for tractability and to demonstrate that the

fundamental additional distortion created by consumption externalities is analogous

to that identified by Spence (1975)’s analysis of a quality-choosing monopolist.
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and especially Jacques Crémer for very helpful comments and discussions. We thank Rui Wang and
Will Weingarten for their superb research assistance. White gratefully acknowledges the NET Institute
(www.NETinst.org) and Weyl the Microsoft Corporation for their financial support. All errors are our own.
†Harvard University Department of Economics; alexanderwhite@fas.harvard.edu
‡Harvard University Society of Fellows & Toulouse School of Economics; weyl@fas.harvard.edu

http://www.NETinst.org
mailto:alexanderwhite@fas.harvard.edu
mailto:weyl@fas.harvard.edu


1 Introduction

Apple and Microsoft’s competing operating systems confront a set of challenges that also
faces newspapers, credit cards, Internet service providers and search engines. However,
these challenges are not reflected in the “canonical model” of imperfect competition. Such
firms all sell multiple products, and the challenges in question arise from the externalities
between the consumers of these different products. For instance, a particular operating
system is more appealing to end users if the number of applications it boasts is greater;
meanwhile, it is more appealing to application developers if it features a greater number
of users. This paper offers a way to incorporate these consumption externalities into the
canonical model and to analyze their implications for industrial policy.

In doing so, we build on a recent theoretical literature on such “two-sided markets”
or “multi-sided platforms”.1 This literature has highlighted the pervasiveness of these
consumption externalities throughout different industries and the fact that their influence
on pricing can be of first-order importance. For example, it has offered a convincing
explanation for otherwise puzzling negative prices we observe, drawing a clear link
between phenomena such as operating system subsidies to application development,
credit card point systems and the free availability of almost all websites.

Policymakers have clearly expressed interest in the effects of these externalities. For
example, many have claimed that network neutrality regulation benefits consumers by ex-
panding their choice of websites. Quantitative evaluation of these claims requires a model
flexible enough to incorporate rich structures of consumer preferences and firm hetero-
geneity. However, rich models of “one-sided” competition, such as Berry, Levinsohn, and
Pakes (1995) (BLP), have been considered intractable in the platform context.2

We argue that this apparent intractability stems from a basic indeterminacy in the cur-
rent theory. In view of this, the paper aspires to make three contributions. First, it builds
a model whose generality is comparable to that of standard one-sided models of compe-
tition that also includes consumption externalities, and it uses this model to illustrate this
indeterminacy. Second, it proposes the solution concept of Insulated Equilibrium, which
restores full predictive power to the model and whose criterion, we argue, is motivated
by sound economic logic. Third, it identifies a fundamental force, which, in addition to
classical market power can lead prices, under imperfect platform competition, to differ
from their socially efficient levels.

1An excellent recent survey of this literature, pioneered by Caillaud and Jullien (2003), Rochet and Tirole
(2003), Evans (2003) and Parker and Van Alstyne (2005), is given by Rysman (2009).

2Armstrong (2006) says of the extension of a rich two-sided monopoly model, “A full analysis of this
case is technically challenging in the case of competing platforms” (p. 671).
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In order to understand both the indeterminacy we refer to above and our proposed
solution, consider two issues: Consumer Coordination and Armstrong’s Paradox. Consumer
Coordination refers to the fact that, when there are consumption externalities, the optimal
decision for any given consumer of which platform(s) to patronize, or, as we say hereafter,
to “join”, depends on the choices made by consumers on the other “sides of the market”.
Thus, for a given set of prices charged by platforms, there can be multiple equilibria.
This has been a well known issue in the economics of networks since at least Katz and
Shapiro (1985), and it can arise when there is only one platform as well under competition.
Its crucial implication is that, when considering the price setting decisions of platforms,
demand is not necessarily well defined.

By contrast, Armstrong’s Paradox, first observed by Armstrong (2006), arises only
when there are at least two platforms. It says that when platforms can charge prices for
their products that are functions of the participation of consumers on the other side of
the market, virtually any outcome can be supported as a Subgame Perfect Equilibrium.3 The
assumption that platforms can charge participation-contingent, as opposed to just flat,
prices seems very reasonable in view, for example, of the per transaction pricing of credit
cards, the per game pricing of video games and the per click pricing of search engines.

Insulated Equilibrium resolves these two issues by positing that platforms will engage
in a form of “robust implementation”, which can be summarized as follows.

1. Holding fixed the strategies of all other platforms, each platform identifies its optimal
feasible allocation on each side of the market.

2. From among the many price functions that weakly implement this desired alloca-
tion, each platform selects Residually Insulating Tariffs, which are special in that they
remove any scope for problems of Consumer Coordination and thus guarantee that
the chosen allocation will be realized.

When all platforms do this as a best response to one another, it is an Insulated Equi-
librium. It is straightforward to see that their doing so eliminates issues of Consumer
Coordination.4 We show that, for any allocation, a unique set of such tariffs exists, and
thus Insulated Equlibrium completely eliminates the indeterminacy brought on by Arm-
strong’s Paradox. An implication of this is that the demand system and observation of
equilibrium prices suffice to identify firms’ marginal costs, returning us, from an identifi-
cation perspective, to the familiar confines of standard static industrial organization.

3The argument for why this is true is quite subtle and thus we defer it to the body of the paper (see
Section 5.3). Note, however, that it is very closely related to the argument of Klemperer and Meyer (1989).

4In this regard, we build on Weyl (2010), which introduces Insulating Tariffs in a monopoly setting.
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This Myersonian (1981) approach whereby platforms are seen to “select” allocations
and then implement them is underpinned in our setting by a classical result from quasi-
linear general equilibrium theory, which we extend to our smooth, large, two-sided econ-
omy. We show that for a given equilibrium allocation of consumers to platforms, there is a
unique supporting price vector. This result ensures the validity of this way of framing the
problem, as it guarantees that the mapping from allocation to profits is indeed a function.
Note, however, that despite this framing in terms of allocation, platforms’ conduct is Nash-
in-prices, and that our model generalizes the differentiated Bertrand (and not Cournot)
model of competition to multi-sided markets.5

Armed with these technical tools, we then analyze first-order conditions characterizing
Insulated Equilibria. We show that there are two fundamental forces governing the
relationship between the equilibrium allocation and the optimum. One of these forces is
the classical Cournot (1838) market power distortion and the other is the Spence distortion,
owing its name to the seminal analysis in Spence (1975) of a monopolist’s choice of
quality. While, as a general matter, the effect that an intensification of competition has
on the market power distortion is well known, the effect of such an intensification on the
Spence distortion depends crucially on the structure of consumer heterogeneity and the
distribution of the demand.

Importantly, our model accommodates such issues. We make no specific assumptions
on (i) functional forms for firm costs or distribution of user preferences, (ii) the dimen-
sions of heterogeneity of consumer preferences, (iii) the dimensions of heterogeneity of
consumer preferences, (iv) the number and symmetry of platforms or (v) consumption
patterns (i.e., single versus multi-homing). Instead we assume only mild “regularity”
conditions in these dimensions.

While the model we consider throughout most of the paper has exactly two sides
and no externalities within sides, we show at the end how these restrictions can be easily
relaxed. It should thus be possible to use our framework to evaluate models of competition
among firms in markets with consumption externalities that are no more restrictive than
the models typically used to study competition in markets without such externalities. We
therefore believe that our approach has the potential to enrich the applied analysis of
platform competition and to significantly inform regulatory policy in such markets.

Section 2 frames our argument, previewing the payoffs of our approach and relating
it to other work. Section 3 develops the formal model. Following this, we derive our
main technical results in Sections 4 and 5, though longer and less instructive proofs are

5The conduct we assume on a given side of the market can easily be adapted. Since issues of one-sided
conduct are not our focus here, and due to its use in applied work, we stick throughout to Bertrand.

3



left to an appendix. We discuss first-order conditions in Section 6 and conditions for
the stability, uniqueness and existence of equilibrium in Section 7. Section 8 considers
several applications and extensions: 8.1 models mergers between platforms, 8.2 covers the
aforementioned generalizations, and 8.3 sketches a way forward for using our approach
to perform structural estimation in multi-sided industries. Section 9 concludes.

2 This Paper’s Contribution in Context

In this section, we first preview the payoffs delivered by the model and solution concept
that we develop in the subsequent sections of the paper. We then describe the ways in
which our results enrich previous literature on multi-sided platforms.

2.1 Platform Pricing

Our model and solution concept provide precise and intuitive, but general, first-order
conditions characterizing the market equilibrium of competing multi-sided platforms.
These generalize the classical conditions for Nash-in-prices equilibrium in a differentiated
products industry, to a multi-sided setting. They also nest, as a special case, the optimality
conditions for a multi-sided monopolist of Weyl (2010) (W10).

Let j denote a particular firm, I denote a side of the market, P denote price, N denote
the fraction of consumers participating, Cj

I
denote marginal cost to platform j of serving

side I, µ denote the inverse (partial) hazard rate of demand (the standard market power
distortion often denoted by P′Q). Let D represent the diversion ratio matrix with j, kth

element ∂Nk
∂Pj /

(
−
∂Nj
∂Pj

)
, the fraction of sales lost by platform j in response to an increase

in its price increase that are recouped by platform k. Finally, let Mj,· and M·,j denote,
respectively, the jth row and column of a matrix M. The first-order condition for insulated
equilibrium pricing is that, for each firm j, on each side of the market I,

PI,j = Cj
I

+ µI,j︸              ︷︷              ︸
Exactly as in a

standard market

− NJ ,j ·

[−∂NJ

∂PJ

]−1 [
∂NJ

∂NI

]
j,·︸                     ︷︷                     ︸

≈ Average value to marginal
opposite-side consumers

·

[
−DI

·,j

]
, (1)

whereJ , I. Note that the first terms come directly from classical industrial organization
theory: price equals marginal cost plus the optimal differentiated Bertrand mark-up, the
inverse partial hazard rate of demand. To interpret the additional “two-sided markets”
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term, it is useful to compare it to that arising in the monopoly setting of W10 where([
−
∂NJ

∂PJ

]−1 [
∂NJ

∂NI

])
j,·
· −DI

·,j collapses to the average willingness of a marginal consumer on

side J to pay for the participation of a marginal consumer on side I. This is the part of
the externality created by this marginal side I consumer that the platform can extract per
consumer on side J .

As we discuss extensively in Section 6.2, the broader expression that we show is valid
under oligopoly is a natural extension of this same notion. The jth diagonal entry of
∂NJ

∂PJ
is the density of side J users just indifferent between consuming a bundle including

platform j and consuming a bundling excluding it: the mass of j’s marginal users. This
matrix’s j, kth entry for j , k is the mass of users indifferent between consuming a bundle
including platform j but not platform k and consuming a bundle including platform k
but not platform j: the mass of “switching” users marginal between j and k. Thus, ∂NJ

∂PJ

is a natural multi-product extension of the “mass of marginal users”. Similarly, we show
that the jth diagonal entry of ∂NJ

∂NI
is the product of the density of j’s marginal users and

the average value these place on a marginal side I user, while its j, kth entry for j , k is
the density of j, k switching users multiplied by the average value such users would place
on a marginal side I user joining platform k, if they were to join k. Thus this matrix is a
natural extension of the product of the mass of marginal users and their average marginal
valuations for users on the other side.

Therefore
([
−
∂NJ

∂PJ

]−1 [
∂NJ

∂NI

])
j,·
·

[
−DI

·,j

]
generalizes W10’s monopoly pricing rule to the

oligopoly setting, in the same way that, for example, the matrix equation for a multi-
variate regression generalizes the ratio of the covariance to the variance of the regressor.
For example, in the case considered by Armstrong (2006), when all marginal values are
constant and homogeneous across all individual-platform pairs, this quantity collapses to
exactly that marginal value.

This allows us to consider the impact of intensified competition on the relationship
between social and private objectives. While it is well known that, in standard markets,
intensified competition will reduce incentives for distortionary above-cost pricing, in
platform settings, market power introduces a second Spence (1975) distortion into pricing,
as firms have an incentive to focus on externalities perceived by marginal consumers,
rather than those perceived by all consumers. As we argue in Section 6.3, whether
competition is likely to alleviate or exacerbate the Spence distortion depends on the
nature of heterogeneity among platforms.

If platforms differ along horizontal or vertical dimensions orthogonal to consumer
valuations of externalities, then competition is likely to ameliorate the Spence distortion as
it leads platforms to attend switching rather than exiting users’ valuation of externalities,
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which are more likely to be representative of the full population of participating users.
However, if platforms differentiate themselves vertically in the number of users they have
on the other side of the market, users switching between the platforms are likely to have
valuations for users on the other side that are below those of the “high quality” and that
are above those of the “low quality” platform.

A canonical issue in competition policy is the evaluation of the impacts on consumer
welfare of a potential merger. Evaluating a merger between two multi-sided platforms re-
quires extending standard merger evaluation techniques to accommodate both the multi-
product nature of multi-sided platforms and, more importantly, the additional presence
of Spencian welfare effects. To illustrate how our model enables this, in Section 8.1 we
extend Jaffe and Weyl (2010b) (JW)’s quantification of the standards embodied in the US
government’s recently released merger guidelines to the context of platform competition
(U.S. Department of Justice and the Federal Trade Commission, 2010).

In the multi-sided extension of the JW formula, the marginal opportunity costs of sales
created by the merger, often called Upward Pricing Pressure or “UPP” (Farrell and Shapiro,
2010), are multiplied by pass-through rates to obtain estimates of price effects and then
by quantities to obtain a local approximation to the effect on consumer welfare. In our
setting, two additional forces emerge. First, the marginal opportunity cost of a sale now
incorporates not only the standard value of diverted sales that determine UPP, but also the
marginal harm a competitor would incur by offering decreased externalities to consumers
on the opposite side, as a result of these diverted sales.

Second, the effect on consumer welfare is not only through the direct harm brought
by the incentive for firms to raise prices; changes in the levels of externalities due to
changes in participation on a given side also affect consumer welfare on the opposite side
of the market. Following Spence’s logic, these harms are proportional to the change in the
number of consumers on the other side of the market multiplied by (a certain version of)
the difference between the value that marginal consumers on the other side of the market
place on those externalities (which is extracted by the platform) and the value placed on
the externalities by average consumers on the other side. Our model can also be used for
other standard comparative static exercises. In particular, we look forward, in section 8.3,
to the future development of special cases of our model that can easily be estimated.

2.2 Context

Why were these simple and general results not feasible in prior work? The two issues of
multiplicity we discussed in the introduction, Consumer Coordination and Armstrong’s
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Paradox, stymied the tractability of a general model of multi-sided platforms. We now
discuss these two challenges as well as the dimensions along which we generalize, and
fail to generalize, with respect to the existing literature.

Caillaud and Jullien (2003), Ellison and Fudenberg (2003), Ellison, Fudenberg, and
Möbius (2004), Hagiu (2006), Ambrus and Argenziano (2009), Lee (2010) and Anderson,
Ellison, and Fudenberg (2010) study the coordination of consumers given prices. Many
equilibria are possible in these settings and the payoffs in the game played by platforms
depend sensitively on which equilibrium consumers are assumed to coordinate on by
refinements in the second stage. Our approach instead attributes the role of coordination
to platforms, who have a large stake in the matter and significant powers over the outcome,
rather than to consumers, who are multitudinous and dispersed.6

Armstrong’s Paradox, whereby infinitely many allocations can be supported as equi-
libria, or not, among competing platforms, stems from Proposition 3 of Armstrong (2006).
Armstrong argues that firms’ best responses are determined by the exact degree to which
competitors’ prices on one side of the market respond to changes in the number of con-
sumers on the other side, but that only the level of prices, and not the slope of such
responses, is tied down by equilibrium. We discuss this issue in more detail in Section 5.3.
While the motivation for Insulated Equilibrium is the view that it is reasonable to expect
platforms to pin down consumer behavior, if platforms indeed do this, then Armstrong’s
Paradox is resolved.7

Regarding the ways in which our model generalizes with respect to existing litera-
ture,8 a crucial aspect is its accommodation of arbitrary preference heterogeneity among
consumers. W10 shows that the comparative statics of a model of a two-sided monopolist
depend crucially on whether consumers differ primarily in their valuations for membership
or in their valuations for interaction with other consumers. However, with little or no em-
pirical basis for these assumptions, in prominent theoretical models in which platforms
compete for consumers, such as those in Anderson and Coate (2005), Armstrong (2006),
Armstrong and Wright (2007) and Peitz and Valletti (2008), and in econometric works,
such as those of Rysman (2004) and Kaiser and Wright (2006), consumers are assumed to

6Dybvig and Spatt (1983) discuss a seemingly similar but in most cases quite different notion of insurance.
7In a recent paper, Reisinger (2010) proposes a alternative approach to getting around Armstrong’s

Paradox, in a setting with the particular assumptions of Armstrong’s model and abstracting from the
issue of multiplicity of Consumer Equilibria. In essence, this approach points out that, under two-part
tariffs, introducing heterogeneity in consumers’ interaction behavior is equivalent to allowing them to price
discriminate in a regime with flat pricing. This, in turn, ties down platforms’ competitive responses to one
another.

8The best-known model of a monopoly platform is perhaps that of Rochet and Tirole (2006), which is
generalized by W10, while the best-known model of competing platforms is likely Armstrong (2006).
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be homogenous in their interaction values. A crucial implication of such a setup is that it
rules out, ex hypothesi, the Spence distortion (discussed in the introduction and in Section
6). Our model provides a framework for analyzing the interaction between this distortion
and variation in the competitive environment.9

Our approach also does not require making assumptions on functional forms of,
for instance, the distribution of consumer preferences or the platforms’ cost curves. In
contrast, a common assumption in models of competition, following Armstrong (2006),
has been that of a two-sided Hotelling (1929) setup giving rise to linear demand. Several
benefits come from relaxing this assumption, including compatibility with the approach
taken in the empirical industrial organization literature, which we discuss in Section 8.3,
reduced vulnerability to the forms of criticism given in Werden, Froeb, and Scheffman
(2004) to using such models as bases for arguments in antitrust cases. Furthermore, Jaffe
and Weyl (2010a) have recently shown that with more than two firms, it is impossible for
a discrete choice model to generate linear demand.

This paper’s framework does not restrict the number of firms that can compete nor
does it require them to be symmetric, making the model more realistic. In addition, not
requiring symmetry among platforms protects against the possibility of making unusual-
seeming findings that may be driven by this assumption (see, for instance, Amir and
Lambson (2000) as well as the criticism in BLP of the substitution patterns in the logit
model). This is particularly true in models of competing platforms, in which equilibria
can be sensitive to “tipping”, as discussed in Sun and Tse (2007). Moreover, our model
is amenable to merger analysis, which cannot be performed using models in the style
of Armstrong (2006), due to their setup with two platforms and non-market-expanding
demand.10

Our approach gives consumers free reign over their consumption choices, as they can
select any bundle of platforms they find optimal. Existing models in which consumers
“multi-home” (Caillaud and Jullien, 2003; Rochet and Tirole, 2003; Rysman, 2004; Arm-
strong, 2006; Doğanoglu and Wright, 2006; Armstrong and Wright, 2007), consider cases
with just two platforms and/or exogenously impose single-homing on one side of the mar-
ket. In the one-sided discrete choice literature, works such as Hendel (1999) and Gentzkow
(2007) have moved towards incorporating such flexibility into consumers’ choice set, and
our approach follows in this spirit.

9In Bedre-Defolie and Calvano (2009) and White (2009), consumers are heterogenous in both dimensions,
but they do not learn their interaction benefits until after they have selected a platform.

10The aforementioned survey, Rysman (2009), speaks of the lack of such a framework, ”Naturally, if we
were to analyze the merger between two platform firms, we would need to account for complex two-sided
issues that arise” (p. 137).
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The restrictions that have so far been present in the theory of platform competition
have made carrying out empirical studies of such industries more difficult, forcing authors
to adapt to the circumstances of their studies in somewhat constrained ways. For instance,
in Cantillon and Yin (2008), the authors lack a model to predict platforms’ equilibrium
prices and instead take them as exogenous, while Argentesi and Filistrucchi (2007) and
Wilbur (2008) use a reduced form inverse demand functions to model one side of the
market. Our model, we hope, can serve as a basis for applied studies and can thus help
to solve such difficulties.

While our model generalizes in the dimensions listed above, it retains two important
assumptions that are typical of models in the literature on multi-sided platforms. First, we
employ what Economides (1996) refers to as the “macro approach” to modeling networks,
taking as exogenous the interaction among the consumers on different sides, once they
join platforms and assuming consumer payoffs from joining a set of platforms depends
only on the number of consumers participating and the payment to the platform(s). This
approach brings useful generality when the interventions one considers are unlikely to
affect the microstructure of interactions. However, if one’s focus is on policies aimed at
microstructure, an explicit model of such is crucial, as in Nocke et al. (2007), Hagiu (2009b),
White (2009) and Weyl and Tirole (2010).

Second, we assume all consumers on a given side are homogenous in the externalities
they cause. That is, a consumer from one group cares about how many consumers of
another group join each platform, but not which consumers these are. This restrictive and
unrealistic assumption has been relaxed in a few specific contexts (Chandra and Collard-
Wexler, 2009; Hagiu, 2009a; Rochet, 2010; Gomes, 2009; Athey et al., 2010), but work in
progress by Veiga and Weyl (2010) provides the first general approach to incorporating
heterogeneous externalities. They show that heterogeneity of externalities matter in pric-
ing to the extent that valuation of participation on the other side covaries (on the margin)
with the value of externalities brought by a consumer.11

Other issues that we do not consider include dynamics and price discrimination within
sides. Anderson and Coate (2005), Hagiu (2006), Sun and Tse (2007), Lee (2010) all include
consideration of the former, while Gomes (2009), Doğanoglu and Wright (2010) and Hagiu
and Lee (forthcoming) deal with the latter.

11We are optimistic that such an extension can be incorporated without great difficulty into our framework,
but given the early stage of this research on heterogenous externalities, we do not include it in the current
version of this paper.
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3 The Model

There is a set, M = {1, ..., m}, of “two-sided platforms”, with elements indexed by j. These
firms serve two separate groups of “consumers” or “users”, of measure 1, said to be on
opposite “sides of the market”, A and B, indexed by I. For concreteness, consider as
examples

• payment card issuers, whose two groups of consumers are shoppers that carry the
card and use it to make purchases and merchants that accept the card

• publishers of newspapers that sell their final product to readers and that sell space
in their pages to advertisers

• jobs-listing websites, catering to both job seekers and employers.

Consumers on each side of the market can choose to “join” any combination of platforms,
i.e., they pick an element in the power set of the set of platforms, ℘ (M ). We denote
the particular subset or “bundle” of platforms that consumer i on side I chooses by
M I

i ∈ ℘(M ). We sometimes refer to the non-empty elements of ℘(M ) in an order, from 1
to 2m

− 1, which can be arbitrarily chosen but which, once established, we refer to as the
bundle labeling.

The unifying and distinguishing feature of the types of firms we might refer to as
“platforms” is the presence of some form of externality across their different groups of
consumers. To capture such externalities, or “cross-network effects”, we assume that the
payoff to a consumer on side I from joining a given set of platforms depends, in some
way, on the number of consumers of the opposite side of the market, J ≡ −I, that join
each of the platforms in this bundle.12 Intuitively, one may think of the number of side
J consumers participating on each platform in a bundle as, from the standpoint of a
consumer on side I, a characteristic of that bundle, partially determining its perceived
quality. We now introduce a statistic that keeps track of these characteristics.

Definition 1. A Coarse Allocation, N ≡
(
NA,NB

)
∈ [0, 1]2m, specifies the total measure or

“number” of consumers participating on each side of each platform. We denote a generic element
by NI,j.

Demand. Consumers have quasi-linear utility, and their optimization problem takes
the form of a discrete choice over bundles of platforms. We write the payoff to user i on

12As we discuss in Section 2.2, we do not explicitly model the “interaction” that may take place among
users on opposite sides.
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side I from joining bundle of platforms X as

vI
(
X ,NJ ,θI

i

)
−

∑
j∈X

PI,j,

where θI
i
∈ ΘI denotes consumer i on side I’s “type”. The set of side I types, ΘI = RLI ,

2m
− 1 ≤ LI ∈ N, does not impose any particular restrictions on the dimensions in

which consumers can be heterogenous.13 The function vI : ℘(M ) × [0, 1]m
× ΘI → R is

thus a map to a consumer’s willingness to pay from each possible consumption choice,
the characteristics of the available goods and the user’s individual characteristics. PI,j

denotes the total price a user on sideImust pay to join platform j, the details of which we
discuss below, when defining platforms’ strategies. Assumption 1 further characterizes
the demand system.

Assumption 1. The functions vI, I = A,B, jointly with their domains, have the following
properties:

1. Smoothness: vI is C2 in all dimensions of its second and third arguments.

2. Gross Substitutes: For all NJ ∈ [0, 1], if platform j is in a side I consumer’s optimal
bundle and the price of some other platform in this bundle increases, then j remains in the
consumer’s optimal bundle.

This is the weakest condition known in the literature that assures the existence of an equi-
librium price vector in the one-sided analogue to our model. In the context of our model, we
believe this assumption to be very realistic.14

3. Full Support: For all NJ ∈ [0, 1] and utility profiles uI ∈ R2m
−1 over all bundles satisfying

gross substitutes, ∃θ ∈ ΘI such that vI(·,NJ ,θ) takes on the value uI.

4. No Externalities to Outsiders: if j < X then vI
(
X ,NJ ,θ

)
is independent of NJ ,j.

This is an intuitive assumption reflecting the idea that consumers on opposite sides of the
market do not “interact”, unless they join at least one common platform. This affords a clean

13For example, the natural extension of the primary preferences discussed in W10 (see section I.B.) would
include, for each bundle of platforms, a membership benefit, or dummy variable, and, for each platform
within a given bundle, an interaction coefficient multiplying the number of side J consumers on that
platform.

14We are confident that this assumption can be relaxed and have sketched an argument of how to do so.
However, this is an active issue in general equilibrium and matching theory that is largely orthogonal to our
focus in this paper. On this issue, see Kelso and Crawford (1982), Gul and Stacchetti (1999) and Hatfield,
Kominers, Nichifor, Ostrovsky, and Westkamp (2010).
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interpretation of our results, although somewhat modified versions of them can be derived
without this assumption.15

5. Normalization: for all θ ∈ ΘI , vI
(
∅,NJ ,θ

)
= 0. For all consumers the “outside option”

gives a payoff normalized to zero.

Let fI : ΘI
→ R be the probability density function of user types on side I = A,B,

satisfying
∫

ΘI
fI(θ)dθ = 1. We assume that each function fI is C1 and has full support.

Supply. Platform j’s profits are given by

Πj ≡ PA,jNA,j + PB,jNB,j − Cj
(
NA,j,NB,j

)
,

where Cj
(
NA,j,NB,j

)
denotes platform j’s costs as a function of the number of users on

each side and is assumed to be C2 in both arguments.
Timing. Platforms move first, simultaneously. Then, having observed the platforms’

moves, all consumers simultaneously choose which platforms to join.
Strategies. As we mention in the introduction, we employ an allocation approach to

solve the game. Two features of this approach that we regard to be particularly appealing
are, first, that it allows for consideration of a very large strategy space for platforms, and,
second, that while doing so, it does not require explicitly keeping track of platforms’
potentially very complicated pricing functions or solving an optimization problem using
calculus of variations. In Section 4, we explain this approach in detail and relate it to
previous work.

We thus allow for each platform to charge a tariff to consumers on side I that is a
function of the entire coarse allocation on side J . A (pure) strategy for platform j, σj ≡(
σA,j

(
NB

)
, σB,j

(
NA

))
, is a pair of such functions. Previous work on platform competition

of which we are aware all restricts the prices that a given platform charges its consumers
on one side to be, at most, a function of the number of opposite-side consumers that it
serves. Moreover, typically (see, e.g., Armstrong (2006)) these prices are assumed to be
affine in this argument. When using our approach to solve the game, however, imposing
such restrictions does not buy us anything. Moreover, in practice, platforms may have an
incentive to charge quite sophisticated, market-dependent tariffs.16

Formally, σI,j : [0, 1]m
→ R. In order to ensure differentiability of each platform’s

residual profits, we assume that all platforms’ price functions, σI,j, are C2. While this as-
15In this regard, our model contrasts with that of Segal (1999), which studies the effects of positive versus

negative “externalities on nontraders”.
16For instance, the prices that television networks charge for ads shown during a given program frequently

depend on that program’s success versus other programs in drawing an audience. “Penetration pricing”, and
other practices that are observed in network industries seem to reflect such complexity of pricing strategies.
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sumption facilitates our approach, it will become clear that, under Insulated Equilibrium,
platforms never have an incentive to deviate to charging tariffs that violate this assump-
tion. Let Σ denote the set of all pairs of C2 functions, and let Σm denote the mth cartesian
power of this set. We denote the profile of strategies of the entire set of platforms by
σ ∈ Σm. A profile of platform strategies is a function, σ : [0, 1]2m

→ R2m, which we assume
can be written σ (N) ≡

(
σA

(
NB

)
,σB

(
NA

))
. Under this notation, σI

(
NJ

)
: [0, 1]m

→ Rm

maps from the coarse allocation on sideJ to the vector of prices charged by all platforms
on side I.

Consumers react to platforms’ announcement of price functions. Thus, a pure strategy
for consumer i on side I, is a functional,17 which we denote by M I

i [σ], where M I

i : Σm
→

℘ (M ). To denote a Side Strategy Profile, for the set of consumers on side I, we define
the correspondence M I

(
θI , [σ]

)
. To avoid having to distinguish between economically

equivalent outcomes where sets of consumers of measure zero can select different bundles
of platforms among which they are indifferent, we impose Assumption 2.

Assumption 2. Strategy profiles adopted by consumers satisfy the following properties:

1. Purity: In every subgame, each consumer takes some action with probability 1.

2. Symmetry: All agents sharing a common type adopt the same strategy.

3. Tie-breaking: When indifferent, all agents choose to join the set of platforms that comes first
in the established bundle labeling.

It follows from the Purity and Symmetry components of Assumption 2 that M I is a
functional, where M I : ΘI × Σm

→ ℘(M ) identifies all side I consumers’ behavior in
response to all σ ∈ Σm. We denote the Marketwide consumer strategy profile by M̂ (θ, [σ]),
where M̂ :

{
ΘA ×ΘB

}
× Σm

→ ℘(M ).
Above, we defined a coarse allocation to be the number of consumers participating

on each platform, on each side of the market. We can now derive this statistic as a
function of the strategy profiles of consumers and platforms. To do so, we define the
functional N :

{
M̂

}
×Σm

→ [0, 1]2m, mapping from marketwide consumer strategy profile

and platform strategy profile to coarse allocation. N
[
M̂ ,σ

]
has generic elements

NI,j
[
M̂ ,σ

]
=

∫
{
θI∈ΘI:j∈M̂ (θI ,[σ])

} fI (θ) dθ.

17By “functional”, we mean a function that takes a function as at least one of its input-arguments.
Hereafter, we surround arguments of functionals with square brackets when the entire function is to be
taken as the input. E.g., z

[
f
]

indicates that z depends on the entire shape of the function f . In contrast,
when the input to a function is a function evaluated at a particular point, we surround the argument with
ordinary parentheses. E.g., Z

(
f (x)

)
indicates that Z depends on the value f (·) takes when evaluated at x.
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4 Allocation =⇒ Price

In this section, we prove Theorem 1, which provides the foundation for what we call
the allocation approach to analyzing the game. We refer to this approach as such because,
despite the fact that we assume platforms’ conduct vis-à-vis one another, on each side of the
market, to be Bertrand (Nash-in-prices), we represent their profit maximization problem
as a choice of quantity or allocation on each side of the market.18 We now explain the
motivation for doing this.

bJ

Figure 1: A hypothetical case with multiple equilibria
in the second stage, for a given profile of platform
strategies, σ.

Consider the Consumer Game
that takes place in the second
stage, after platforms have an-
nounced their strategies. It is
well known19 that such games
can have multiple Nash Equilib-
ria, since the optimal bundle for
consumers on one side of the mar-
ket can depend on the actions of
consumers on the other side. (See
Figure 1.) This implies that, in or-
der to evaluate platforms’ prof-
its as functions of their strate-
gies, one must have some criteria
for selecting which Nash Equilib-
rium prevails in the subsequent
Consumer Game.

The need for such criteria potentially adds significant technical complication, and it is
not at all obvious how to begin asking which criteria are the most apt. Even if this issue
were resolved and “demand” was defined as a function of platforms’ strategies, there
would be the additional difficulty that platforms’ profits are functionals whose inputs
are price functions. Consequently, solving for platforms’ optimal strategies would be a
potentially intractable problem.

Fortunately, thanks to the result of Theorem 1, we can safely ignore these issues. This
result says that, for any coarse allocation that may arise as a Nash Equilibrium among
consumers in the last stage of the game, there is a unique vector of total platform prices

18Indeed, the merits of such a representation are the same regardless of platforms’ “intra-side” conduct.
19We cite papers that discuss this at the beginning of Section 2.2.
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that is consistent with – i.e. that can support as a Nash Equilibrium – this coarse allocation.
The crucial implication of this is that platform profits can be written as functions of the
coarse allocation, and the game can be fully analyzed in this simpler manner.

This result allows for the generalization to oligopoly of the allocation approach, which
W10 employs in the simpler setting of a monopoly platform. Note that the technique
we use here is quite similar to those used by Myerson (1981) and Riley and Samuelson
(1981) to analyze properties of optimal auctions. In particular, it makes use of restrictions
implied by the equilibrium behavior on the part of consumers (bidders) in order to steer
clear of extraneous aspects of the pricing mechanisms used by platforms (auctioneers).

We now formally describe the second stage of the game, in order to arrive at this
result. Let a Consumer Game be defined as a subgame that takes place once the platforms’
strategy profile σ has been determined. Taking σ as a parameter, let P̂I,X

(
NJ

[
MJ ;σ

])
≡∑

j∈X σI,j
(
NJ

[
MJ ;σ

])
denote the sum of prices charged to a consumer on side I, joining

the set of platforms X ∈ ℘(M ). Let UIi denote the net payoff to a consumer of type θI
i

,
joining this bundle, where

UIi
(
X ,NJ ;σ

)
≡ vI

(
X ,NJ

[
MJ ;σ

]
,θI

i

)
− P̂I,X

(
NJ

[
MJ ;σ

])
.

Finally, let M I∗ : ΘI × [0, 1]m
× Σm

→ ℘(M ) denote the Best Response Correspondence for
side I, where M I∗

(
θI

i
,NJ ;σ

)
∈ arg maxX ∈℘(M ) UIi

(
X ,NJ ;σ

)
, ∀θI

i
∈ ΘI. Note that by

the Tie-breaking component of Assumption 2, M I∗ is a function. We can now state our
solution concept for a Consumer Game.

Definition 2. In Consumer Game, σ, a marketwide consumer strategy profile, M̂ , forms a
Consumer Nash Equilibrium (CNE) if the associated side strategy profiles,

{
M I

}
I=A,B

, satisfy

M I

(
θI ; [σ]

)
= M I∗

(
θI ,NJ

[
MJ ,σ

]
; [σ]

)
, ∀θI ∈ ΘI.

To proceed to Theorem 1, we first define Gross Consumer Surplus on sideI, as a function
of side I consumers’ best response strategy profile and the coarse allocation on side J .
We denote this by VI :

{
M I

}
× [0, 1]m

→ R, where

VI
([

M I∗
]
,NJ

)
≡

∑
X ∈℘(M )

∫
θI :M I∗(θI ,NJ )=X

vI
(
X ,NJ ,θ

)
f (θ) dθ. (2)

The right-hand side of expression (2) is the sum over bundles of platforms of side I
consumers’ gross payoffs, given that they are best-responding both to platform prices and
to the allocation of consumers on side J .

Since, in a CNE, consumers maximize their utility given the prevailing prices, it must
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be the case that allocation of bundles to consumers is Pareto optimal, given the quantity
constraints imposed by the induced sideI coarse allocation. Since consumers have quasi-
linear utility, a Pareto optimal allocation also maximizes the sum of consumer utility,
subject to the same quantity constraints. Therefore, we can write Gross Consumer Surplus
as a function, VI : (0, 1)2m

→ R, of the side I coarse allocation, given by the solution to
the following constrained maximization problem

VI
(
ÑI ,NJ

)
≡ max

M I∈

{
M I:NI[M I]=ÑI

} ∑
X ∈℘(M )

∫
θI :M I(θI)=X

vI
(
X ,NJ ,θ

)
f (θ) dθ. (3)

Lemma 1 establishes the formal relationship between these objects.

Lemma 1 (Equilibrium ⇐⇒ Maximization). If M̂ forms a CNE of a Consumer Game, σ,
then the associated side strategy profiles

{
M I

}
I=A,B

satisfy

M I
∈ arg max

M I∈

{
M I:NI[M I]=ÑI

} ∑
X ∈℘(M )

∫
θI :M I(θI)=X

vI
(
X ,NJ

[
MJ

]
,θ

)
f (θ) dθ.

Conversely, for any allocation N ∈ (0, 1)2m there exists some M̂ ? and some Consumer Game σ in
which M̂ ? forms a CNE such that VI

([
M I∗

]
,NJ

)
= VI (N), for I = A,B.

Proof. See Appendix A.1. �

Lemma 2 shows that the gross surplus function is differentiable in the elements of
the coarse allocation; that is, the marginal utilities of consumption of the “representative
consumer” exist.

Lemma 2 (Differentiability). For any N ∈ (0, 1)2m, ∂VI

∂ÑI,j

∣∣∣∣
N

exists. We denote it by PI, j(N).

Proof. See Appendix A.2. �

We now use these results to show that every allocation implies exactly one price. A
price vector supporting the allocation exists because preferences exhibit gross substitutes
(Kelso and Crawford, 1982; Gul and Stacchetti, 1999). Only one such vector may exist
because of the rich heterogeneity of consumers: at any price vector there is an exactly
marginal consumer of zero mass whose utility it equated to the marginal gross surplus
from an additional unit of that good. Because this marginal gross surplus is unique, by
Lemma 2, any prices supporting a given allocation must be identical.
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Theorem 1 (Allocation =⇒ Price). If M̂ is a CNE of consumer game, σ, then σ
(
N

[
M̂

])
=

P
(
N

[
M̂

])
. Conversely, if a consumer game σ has σ

(
Ñ

)
= P

(
Ñ

)
for some Ñ ∈ (0, 1)2m then there

exists a CNE of σ, call it M̂ ∗, with N
[
M̂ ∗

]
= Ñ.

Proof. First take the forward direction. By Lemma 1 we know that σ
(
N

[
M̂

])
must be a

general equilibrium price vector for the economy with endowment N
[
M̂

]
. But by the

proof of Lemma 2 we know any such vector must be equated to P
(
Ñ

)
.

In the reverse direction, simply apply the construction from the proof of the reverse
direction of Lemma 1. �

5 Insulated Equilibrium

In this section, we consider the first stage of the game, in which platforms move. The
previous section suggests that it is natural to think of platforms’ problem as a choice
of allocation. We briefly expound upon this idea in abstract terms, before defining our
solution concept of Insulated Equilibrium.

An individual platform j, taking as given the strategies of other platforms, can identify
a set of coarse allocations that can feasibly occur as CNE in the subsequent Consumer
Game. Moreover, since each platform’s profits can be written as a direct function of the
CNE coarse allocation, platform j can identify the subset of feasible coarse allocations
that, for it, are profit-maximizing. For the sake of exposition, let us suppose that this
subset is single-valued and call its member Nj. Clearly, given the non-cooperative nature
of the game, platform j fares strictly better if it is able to implement Nj than it does if some
other coarse allocation arises. In light of this observation, the obvious issues are whether
and how platform j can “robustly” implement its desired coarse allocation.

Holding fixed the strategies of the other platforms, there is an infinite set of strategies
platform j can choose in order to implement Nj as one of the CNE in the subsequent
Consumer Game. However, an arbitrary strategy that weakly implements Nj can also
lead to other, less profitable allocations for platform j. This multiplicity of CNE arises
from the fact that a coordination game takes place between consumers on opposite sides
of the market. In the rest of this section, we show that by shaping its tariffs properly, a
platform can completely eliminate the coordination game among consumers on opposite
side of the market.
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5.1 Definition

We now formally define Residual Insulating Tariffs,20 which W10 introduces in the case of
a monopoly platform. In the context of competing platforms, they work in the following
way. In order to “pick” a coarse allocation on side J , a platform charges an insulating
tariff on side I and thus guarantees that, on the latter side, a particular coarse allocation
prevails.

Definition 3. Given a profile of strategies of other platforms, σ−j, platform j is said to charge a
Residual Insulating Tariff on side I if, ∀NJ , ÑJ ∈ [0, 1],

NI,j
[
M I∗

(
θI ,NJ , [σ]

)
,σ

]
= NI,j

[
M I∗

(
θI , ÑJ , [σ]

)
,σ

]
.

For a firm j to charge an insulating tariff on side I, it must choose a price function,
σI,j(NJ ), that, given the strategies of the other platforms, preserves the coarse allocation
on side I, regardless of the strategy profile adopted by side J consumers. To see how
such a function operates, consider the demand for platform j among side I consumers,
NI,j. It can be written

NI,j = NI,j
(
σI,j

(
NJ

)
,σI ,−j

(
NJ

)
,NJ

)
.

An insulating tariff, charged by firm j on side I is thus a function, σI,j(·), that takes
into account the shape of NI,j(·, ·, ·) and the shape of other firms’ side I price functions,
denoted by the vector σI ,−j(·), in order to ensure that the output of NI,j is constant. Lemma
3 establishes the existence and uniqueness of an insulating tariff for firm j on sideI, given
the side I price functions announced by other firms and the coarse allocation on the other
side of the market, NJ .

Lemma 3 (Existence and Uniqueness of a Residual Insulating Tariff). There exists a unique
function, PI,j

(
NJ ; Ñ,

[
σI ,−j

(
NJ

)])
, such that, ∀NJ , ∀Ñ ∈ (0, 1), ∀σI ,−j

NI,j
(
PI,j

(
NJ ; Ñ,

[
σI ,−j

(
NJ

)])
,σI ,−j

(
NJ

)
,NJ

)
= Ñ.

Moreover, PI,j is C2 in all dimensions of its first argument.

Proof. For existence, note that (i) NI,j (·, ·, ·) is continuous in its first argument, since it is
the integral of a smooth set, and (ii) ∀NJ , ∀σI ,−j, limPI,j→−∞ NI,j

(
PI,j,PI ,−j,NJ

)
= 1 (and

20Hereafter, when discussing them informally, we typically drop the term “residual” when speaking of
such tariffs.
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limPI,j→∞ NI,j
(
PI,j,PI ,−j,NJ

)
= 0), since ∀θI , ∀NJ , ∀σI ,−j,∃PI,j such that

max
X :j∈X

{
vI

(
X ,NJ ,θI

)
− P̂I,X

}
> (<) max

Y :j<Y

{
vI

(
Y ,NJ ,θI

)
− P̂I,Y

}
.

For uniqueness, note that NI,j (·, ·, ·) is nonincreasing in its first argument, since it is the
sum of a set of nonincreasing functions. To see that it is in fact strictly decreasing, note
that by our full support assumption, strictly positive density must always exist on the set
of marginal consumers for whom the above relationship holds with equality.

To show that PI,j is C2 in all dimensions of its first argument, we note that, in response
to a change in the value of an arbitrary element of NJ , NJ ,k, in order to be insulating PI,j

must be differentiable by the inverse function theorem and have derivative equal to∑
l,j

∂NI,j
∂PI,l

∂σI,l

∂NJ ,k + ∂NI,j
∂NJ ,k

−
∂NI,j
∂PI,j

so long as the denominator of this is bounded away from zero, which it is by our argument
above that demand is strictly declining in own-price. Furthermore, this expression is, itself,
differentiable in all elements of NJ by the smoothness assumptions we have imposed. �

We now introduce vocabulary to describe the case when all platforms charge insulating
tariffs.

Definition 4. An Insulating Tariff System (ITS) on sideI, PI
(
NJ ; ÑI

)
, is a profile of insulating

tariffs, parameterized by the coarse allocation it induces, ÑI . We say that PI is “anchored” at Ref-

erence Allocation ÑI . We denote a marketwide ITS by P
(
Ñ

)
≡

(
PA

(
NB; ÑA

)
,PB

(
NA; ÑB

))
.

Note that the ITS, at any anchor allocation, like residual insulating tarrifs, exists and
is unique directly from Theorem 1: it is exactly the unique set of price consistent with the
anchor allocation and the allocation at which it is evaluated. It is also C2 by the smoothness
of the demand system.

We can now define our solution concept. Insulated Equilibria are particular Subgame
Perfect Equilibria. We first define the latter in the context of our game and then we state
the definition of IE. Given a consumer strategy profile, M̂ , and a profile of strategies
adopted by other firms, σ−j, denote firm j’s profits by

Πj
[
σj,σ−j; M̂

]
≡

∑
I=A,B

σI,j
(
NJ ,j

[
M̂ ,σ

])
NI,j

[
M̂ ,σ

]
−Cj

(
NA,j

[
M̂ ,σ

]
,NB,j

[
M̂ ,σ

])
. (4)
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Definition 5. In a particular platform game, defined by M̂ , a platform strategy profile, σ, forms
a Platform Nash Equilibrium (PNE) if σj ∈ arg maxx∈Σ Πj

(
x,σ−j; M̂

)
, ∀j ∈M .

Definition 6. A set containing a profile of strategies for platforms and for consumers on each
side, {σ∗, {M I

}I=A,B}, forms a Subgame Perfect Equilibrium (SPE) if σ∗ forms a PNE given
{M I

}I=A,B and M I = M I∗

(
θI ,NJ

[
MJ , x

]
; [x]

)
, ∀θI ∈ ΘI, ∀x ∈ Σm.

We now state the definition of an Insulated Equilibrium.

Definition 7. Let {σ∗, M̂ ∗
} be an SPE with coarse allocation N∗ =

(
NA∗,NB∗

)
. The SPE

{σ∗, M̂ ∗
} is an Insulated Equilibrium (IE) if platforms’ strategy profile is the Insulating Tariff

System anchored at N∗, i.e. if σ∗ = P(Ñ∗).

In a Subgame Perfect Equilibrium, platforms select their strategies as if they had complete
certainty of the outcome of the continuation Consumer Game, even when the particular
consumer game that they induce has multiple Consumer Nash Equilibria. Thus, one must
speak of platforms’ profits as functions of both platforms’ strategies and of consumers’
strategies. Under Insulated Equilibrium, on the other hand, the particular strategy profile
adopted by consumers is of no consequence, since, when the platforms’ strategy profile
amounts to an Insulating Tariff System, in the subsequent Consumer Game, there is a
unique Consumer Nash Equilibrium.

5.2 A Special Property of Insulating Tariff Systems

One way to look at the Insulating Tariff System is in terms of a Representative Consumer
(RC).21 Suppose that on side I there is a single agent in charge of choosing quantities, or
“slots” on platforms, for his constituent consumers on side I to efficiently allocate among
themselves, and that the RC’s objective is to maximize the sum of constituents’ utility.
The RC’s objective function can thus be written as

VI
(
NI

RC
,NJ

)
− σI

(
NJ

)
·NI

RC
.

where “·” denotes the inner-product operator and where, as defined in (3), VI denotes
Gross Consumer Surplus on side I, which, here, can be interpreted as the gross payoff

to the representative consumer. Consider the following Representative Consumer Game,
defined by the strategy profile, σ, announced by platforms. On side I, the RC chooses
coarse allocation NI

RC
; activity among side J consumers occurs as before. We can now

state Theorem 2.
21See Anderson et al. (1992), particularly chapter 3, for foundations of the representative consumer

approach in a one-sided discrete choice setting.
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Theorem 2. In an RC game, σ, it is a strictly dominant strategy for the Representative Consumer
to select NI

RC
= NI ∗ if and only if the platforms’ side I strategy profile is the Insulating Tariff

System anchored at NI ∗. Formally, it holds that

VI
(
NI

∗

,NJ
)
− σI

(
NJ

)
·NI

∗

> VI
(
ÑI ,NJ

)
− σI

(
NJ

)
· ÑI , ∀NJ ,∀ÑI , NI

∗

⇔ σ =
(
PI

(
NJ ; NI

∗
)
,σJ

(
NI

))
.

Proof. First note that

VI
(
NI

RC
,NJ

)
− σI

(
NJ

)
·NI

RC
=

max
M I∈

{
M I:NI[M I,σ]=NI

RC

} ∑
X ∈℘(M )

∫
θI :M I(θI ,[σ])=X

(
vI

(
X ,NJ ,θ

)
− P̂I,X

(
NJ

))
f (θ) dθ

≤

∑
X ∈℘(M )

∫
θI :M I∗(θI ,NJ ;[σ])=X

(
vI(X ,NJ ,θ) − P̂I,X (NJ )

)
f (θ)dθ. (5)

where, by revealed preference, the inequality in (5) is strict if and only if
NI

RC
, NI

[
M I∗

(
θI ,NJ ; [σ]

)
,σ

]
as net surplus has a unique maximizer by its concavity

from gross substitues. Second, note that, NI
[
M I∗

(
θI ,NJ ; [σ]

)
,σ

]
= NI ∗, ∀NJ , if and

only if σI (·) = PI
(
·; NI ∗

)
, by the definition of the Insulating Tariff System. This establishes

our claim. �

5.3 Marginal Costs Are Identified Under Insulated Equilibrium

We propose Insulated Equilibrium as a refinement of Subgame Perfect Equilibrium. In
doing so, we claim, as motivation for this particular refinement, that platforms can rea-
sonably be expected to charge insulating tariffs. Independently, however, of the issue
of multiplicity of CNE, there is another, perhaps more damning problem with SPE as a
solution concept for our class of games, namely that it is largely vacuous. This issue of
multiplicity of Platform Equilibria, holding fixed consumers’ strategy profile, is discussed
by Armstrong (2006), in Proposition 3 and in the discussion thereafter. The basic issue,
which we refer to as Armstrong’s Paradox, follows from the multiplicity of supply function
equilibria in a deterministic setting, analyzed by Klemperer and Meyer (1989).

This can be understood by observing expression (4) of the profits of a platform j.
Suppose there is some allocation,

(
NA,j∗,NB,j∗

)
, that uniquely maximizes j’s profits, given

the strategies of the other platforms and given the consumers’ strategy profile. Then,
j’s equilibrium strategy, σj, must, in one way or another, include this set. However,
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the functions σI,j(·) are not pinned down when evaluated at non-equilibrium quantities,
NJ ,j , NJ ,j∗. Figure 2 illustrates this aspect of platforms’ best responses.

NJ , j*

Candidate strategies, ! I , j (·),

for  platform j  on side I

NJ , j

Price on side I   for platform j,

corresponding to N I , j*, given

other platforms' strategies Best responses

Not best responses

Figure 2: The best-response criterion does not tie down a platform’s strategy.

In particular, even with respect to those parts of the pricing functions directly relevant
to first-order incentives, the two full m × m Jacobian matrices of σI and σJ are free. In
order to satisfy the first-order equilibrium conditions at any point these need only satisfy
2m < 2m2 for m > 1 first-order conditions at the conjectured equilibrium point. As a result,
we conjecture that it is possible to construct a set of platform strategies that support, as
an SPE, any coarse allocation in which all platforms make positive profits.22 However,
regardless of whether this is precisely true, the set of SPEs is very large. One clear
manifestation of this problem is the fact that it is impossible, based solely on first-order
conditions, as is commonly done in standard one-sided markets (Rosse, 1970), to identify
firms’ marginal cost from a measurement of the demand system and an observation of
prices.

Thus, if a solution concept for this class of games is to have significant predictive
power, it must be stronger than SPE. Here we show that, under the IE solution concept,
the issue of multiplicity of equilibria is reduced to the point where it takes the same form
as in traditional “one-sided” models of imperfect competition typically used in industrial
organization. Theorem 3 states this from the perspective of the standard Rosse exercise:
under IE, just as in one-sided differentiated products Bertrand competition, marginal
production costs are identified by observing prices, quantities and the demand system.

Theorem 3 (Under Insulated Equilibrium, Marginal Cost is Identified). Suppose
{
M̂ ∗,σ∗

}
is an IE with coarse allocation N∗, with generic elements NI,j∗. Then, the vector of platform

22We are working on a formal proof of this conjecture; the difficulty is showing that global optimality and
stability conditions are also satisfied.
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marginal costs is identified jointly by the vector of prices,
{
PI

}
I=A,B

, the coarse allocation, the

payoff functions
{
vI

}
I=A,B

and the distribution of types
{

fI
}
I=A,B

.

Proof. Since
{
M̂ ∗,σ∗

}
is an IE with coarse allocation N∗, the equilibrium profile of platform

strategies is σ∗ = P (N∗). Thus, platform j’s profit maximization problem can be written

max
{NA,j,NB,j}

∑
I=A,B

NI,j · PI,j
(
NI,j,NJ ,j

)
− Cj

(
NA,j,NB,j

)
, (6)

where
PI,j

(
NI,j,NJ ,j

)
= PI,j

(
NJ ; NI,j,

[
PI ,−j

(
NJ ,NI

∗
)])

and
NJ = NJ

(
PJ ,j

(
NI ; NJ ,j,

[
PJ ,−j

(
NI ; NJ

∗
)])
,PJ ,−j

(
NI ; NJ

∗
)
,NI

)
.

The values that maximize (6), NA,j∗ and NB,j∗, satisfy first-order condition

PI,j + NI,j∗
∂PI,j

∂NI,j
+ NJ ,j∗

∂PJ ,j

∂NI,j

= PI,j + NI,j∗
∂PI,j

∂NI,j
+ NJ ,j∗

∂PJ ,j

∂NI
·
∂NI

∂PI,j
∂PI,j

∂NI,j
=

∂Cj

∂NI,j
. (7)

All of these quantities are well-defined based on the demand and cost systems and the
observed allocation by Theorem 1, and thus a unique vector of marginal costs is consistent
with a given Insulated Equilibrium. �

Figure 3 illustrates the intuition behind Theorem 3.

NJ , j*

Best-response strategies, ! I , j (·),

for  platform j  on side I

NJ , j

Price on side I   for platform j,

corresponding to N I , j*, given

other platforms' strategies

Other "non-insulating"

strategies consistent

with best-response

PI , j NJ( )

Figure 3: The shape of the Insulating Tariff System is tied down by the demand system.
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6 Pricing Under Insulated Equilibrium

In the previous sections, we have shown how to solve for Insulated Equilibrium and
explained its motivation. The rest of the paper focuses on analyzing the economic pre-
dictions of our model, using this solution concept. In this section, we study the prices
that arise under Insulated Equilibrium and compare them with those that correspond to
a socially optimal allocation.

It is divided into three parts: in Sections 6.1 and 6.2, we continue in the general
environment that we have assumed thus far. In 6.1, we first consider the benchmark
of socially optimal pricing and then derive the Insulated Equilibrium pricing formula
previewed in equation (11). In 6.2, we examine, in detail, the components of the “two-
sided externality” term in this formula. Section 6.3 then specializes the model in several
different ways, illustrating the relationship of our results to existing literature and paying
special attention to the differing impacts of different forms of consumer heterogeneity.

6.1 General Pricing

Socially Optimal

The utilitarian social welfare corresponding to an allocation is equal to∑
I=A,B

VI
(
NI ,NJ

)
−

∑
j∈M

Cj
(
NA,j,NB,j

)
, (8)

where VI
(
NI ,NJ

)
denotes gross consumer surplus on side I, as defined in equation (3).

In Proposition 1 we state the pricing formula for maximizing this quantity. To do so, let
us denote by

vI,j
j
≡

∫
θI :j∈M I∗(θI)

∂vI(M I∗(θ),NJ ,θI)
∂NJ ,j f (θ) dθ

NI,j

the average valuation, among all of platform j’s side I consumers, for an additional side
J consumer to join platform j.

Proposition 1. At a socially optimal allocation, the total price charged to side I consumers to join
platform j satisfies

PI,j = Cj
I
−NJ ,jvJ ,j

j
. (9)

Proof. By Lemma 2, we have ∂VI
∂NI,j = PI,j. The other terms in (9) are straightforward. �

Equation (9) affords two complementary interpretations. The first, “Pigouvian” in-
terpretation is that social efficiency requires the consumers that join platform j to be
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those whose willingness to pay (holding fixed the set of other platforms in their optimal
bundle) exceeds the net social cost they impose by joining. This net social cost consists
of the “physical” cost incurred by the platform minus the externality they impose on
opposite-side consumers.

The second, “Spenceian” interpretation can best be appreciated by rearranging (9) as

Cj
I
− PI,j

NJ ,j
= vJ ,j

j
. (10)

In the one-sided model of Spence (1975), it is socially optimal for the firm choose its
quality level so that the marginal cost, per consumer, of an improvement in quality equals
the average valuation of all its consumers for such an improvement. Equation (10) says
precisely this, since it prescribes that the net social marginal cost, per sideJ consumer, of
providing such a quality increase23 be equated with this average valuation.

Under Insulated Equilibrium

We now state the Insulated Equilibrium pricing formula in Proposition 2.

Proposition 2. At an IE allocation, the total price platform j charges to side I consumers satisfies

PI,j = Cj
I

+ µI,j −NJ ,j
[−∂NJ

∂PJ

]−1 [
∂NJ

∂NI

]
j,·

·

[
−DI

·,j

]
. (11)

Proof. In view of equation (7), it remains for us to show that ∂PJ ,j
∂NI

=
([
−
∂NJ

∂PJ

]−1 [
∂NJ

∂NI

])
j,·

.

In an IE, platforms’ tariffs constitute an Insulating Tariff System. Thus, by definition, in
response to changes in the side I coarse allocation, prices on side J adjust so as to hold
the side J coarse allocation unchanged. Therefore, the Jacobian of the Insulating Tariff
System satisfies

0︸︷︷︸
m×m

=

[
∂NJ

∂NI

]
+

∂NJ

∂PJ


∂PJ

∂NI

 ⇔

∂PJ

∂NI

 =

−∂NJ

∂PJ

−1 [
∂NJ

∂NI

]
, (12)

and we have our result. �

Two forces govern the relationship between the optimal pricing formula of equation

23For simplicity of exposition, we refer to this change in platform j’s sideJ quality as an “increase”, even
though it could, in principle, be negative; in some applications such as ad-based media, we would expect it
to be so.

25



(10) and the equilibrium pricing rule of equation (11). The first is the classical market
power distortion, captured by µI,j

≡ −NI,j/
(
−
∂NI,j
∂PI,j

)
. As is well known from classical

industrial organization theory, this term decreases as competition intensifies, through an
increase in the number of platforms and/or an increase in their substitutability.

The second force is what we refer to as the Spence distortion. As discussed above, the
allocation that a platform chooses on side I determines the quality of the platform for
consumers on sideJ . In Spence’s model, the quality that a one-sided monopolist provides
to consumers is distorted because it depends on the willingness to pay for quality of its
marginal consumers, rather than the average of all its consumers. As established in
Proposition 1, the socially efficient quality level for a platform to provide to its side J
consumers depends on the average preferences of such consumers. Analogously to the
result in Spence’s model, the quality a platform chooses in equilibrium depends on the
appreciation for quality of its marginal side J consumers. We now examine, in more
detail, the precise sense in which this is true.

6.2 Decomposing the Two-Sided Externality Term

Under competition, platforms have multiple margins on each side of the market. In an
Insulated Equilibrium, the amount by which the presence of an additional sideI consumer
allows platform j to increase its revenue from its current set of side J consumers is

measured by NJ ,j
([
−
∂NJ

∂PJ

]−1 [
∂NJ

∂NI

])
j,·
·

[
−DI

·,j

]
, the “two-sided” or “cross-externality” term

in the pricing formula of Proposition 2. The middle and right-hand factors in this term
reflect the role of these various margins in determining the size of such an increase.

The right-hand factor in this term is the negative of the jth column of the side I
diversion ratio matrix. This vector measures the displacement of side I consumers from
other platforms to platform j that occurs when j lowers its price on side I and all other
platforms keep their side I prices fixed.24 This switching by side I consumers determines
the extent to which the characteristics of all platforms change, from the perspective of side
J consumers, in response to platform j’s lowering its price on side I.

The middle factor in this term is the jth row of the Jacobian of the side J Insulating
Tariff System. Each element in this vector measures the amount by which platform j
must change its price on side J , per unit of change in the number of side I consumers
participating on a particular platform, in order to hold fixed the level of its demand on side
J . It is thus clear why the size of the cross-externality term depends, on the rate at which
marginal consumers on side J are willing to trade off money for additional “interactions”

24Recall that we assume Bertrand conduct among firms within each side.
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or “quality”.
Since, in equilibrium, all platforms charge residual insulating tariffs, the amount by

which each platform’s side J price changes in response to a shift in the side I allocation
is somewhat subtle. These changes, however, are tied down by the underlying demand
system in a way that, after reflection, becomes quite intuitive. As W10 shows, in the
case of a monopoly platform, the side J insulating tariff responds to a change in side
I allocation by exactly compensating the platform’s average marginal consumer on side
J . In other words, it responds to a quality change by “overcompensating” a number of
previously excluded consumers equal to the number of previously included consumers
that it “undercompensates”, thus leaving its level of side J demand unchanged.

In the general case of our model, each platform’s insulating tariff behaves in precisely
the same way; only, when there’s competition, these notions of “compensation” must
be thought of as net of the price changes of other platforms. These compensation levels
turn out to be weighted averages, with different weights put on different margins, of the
average valuations of consumers within each margin for an additional interaction with
an opposite-side consumer. A fundamental issue, then, for understanding the effect of
changes in competition on prices and welfare in two-sided industries is understanding
the effects of such changes in the environment on the equilibrium weights that platforms
place on different margins. To investigate this, we first take formal inventory of these
marginal valuations and their weights, in the general case, and then make use of them in
Section 6.3, in which we consider examples with different competitive environments.

The Insulating Tariff System

We now derive the relationship between the Jacobian of the Insulating Tariff System, as
defined by equation (12), and the underlying demand system. Two sorts of quantities

comprise the matrix
[
−
∂NJ

∂PJ

]−1 [
∂NJ

∂NI

]
. One sort are densities of consumers that are on the

margin between two bundles of platforms. The other sort are the aforementioned quality
or interaction values–valuations for “interacting”, on a given platform, with an additional
consumer from the opposite side, averaged over sets of such marginal consumers. In order
to express these latter quantities, we first define the relevant sets of marginal consumers.

First, let Θ̃I
j
≡

{
θI ∈ ΘI : ∃X ,Y ∈ arg maxZ ∈℘(M )

{
vI

(
Z ,NJ ,θI

)
− P̂I,Z

}
s.t. j ∈X ,

j < Y
}

denote the entire set of consumers on side I that are indifferent between con-

suming some bundle of platforms, X , containing platform j, and consuming some

other bundle, Y , not containing platform j. Second, let Θ̃I j,k ≡
{
θI ∈ ΘI : ∃X ,Y ∈
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arg maxZ ∈℘(M )

{
vI(Z ,NJ ,θI ) − P̂I,Z

}
s.t. j ∈ X , j < Y , k ∈ Y , k < X

}
denote the set of

consumers on side I that are indifferent between consuming some bundle of platforms,
X , containing platform j and not containing platform k, and consuming some other bun-

dle Y , containing platform k and not containing platform j. The matrix
[
−
∂NI

∂PI

]
is simply

the negative of the Slutsky matrix of the side I demand system that arises, given the
coarse allocation on the opposite side, NJ . Let us denote the density of a set of marginal
consumers, Θ̃, by F

[
Θ̃

]
≡

∫
Θ̃

fI(Θ̂)dΘ̂, where θ̂ is an index of dimension LI − 1 tracing

out Θ̃. The elements of the Slutsky matrix are thus

∂NI,j

∂PI,k
=

 −F
[
Θ̃I
j

]
, if j = k

F
[
Θ̃I j,k

]
, if j , k

.

Terms on the diagonal of this matrix capture the number of consumers a platform loses
when it increases its price by a small amount, and terms on the off-diagonal capture
the number of consumers that switch to a bundle containing platform j when another
platform, k, increases its price.

The Interaction Matrix,
[
∂NI

∂NJ

]
, mirrors the Slutsky matrix except that it is weighted by the

average over marginal consumers’ valuations for additional interaction, on a particular platform,
with consumers on the opposite side of the market. For a marginal set of consumers,
Θ̃, defined in terms of bundle of platforms, X , we denote the average, over Θ̃, of such
interaction values by vI,X

k

[
Θ̃

]
, where

vI,X
k

[
Θ̃

]
≡

∫
Θ̃

∂vI(X ,NJ ,Θ̃)
∂NJ ,k fI(θ)dθ

F
[
Θ̃

] .

The elements of the interaction matrix are thus

∂NI,j

∂NJ ,k
=

 vI,X
k

[
Θ̃I
j

]
· F

[
Θ̃I
j

]
, if j = k

−vI,Y
k

[
Θ̃I j,k

]
· F

[
Θ̃I j,k

]
, if j , k

.

Note, first, that the signs of the terms in this matrix correspond to the signs of marginal
consumers’ average “interaction valuations”. Thus, in the case where consumers have
positive interaction values, the signs of the terms in this matrix are the reverse of those in
the Slutsky matrix. Second, note that the first argument of ∂vI(·,NJ ,θI )

∂NJ ,k in the various terms
corresponds to the subset to which the platform on which there is a change in allocation
belongs. In the case of the set Θ̃I

j
, the change in coarse allocation being contemplated,
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∂NJ ,k, occurs on a platform that forms part of the bundle, X , of which platform j is a
member. In contrast, in the case of the set Θ̃I j,k, the change under consideration occurs
on a platform that is part of a bundle, Y , to which platform j does not belong.

6.3 Examples and Intuition

We now draw on the above discussion of the underlying demand system to consider
various special cases of IE pricing. We begin by stating Proposition 3, pertaining to the
case where consumers on one of the two sides of the market have independent demand
for each platform. Numerous articles in the literature, such as Rysman (2004), Anderson
and Coate (2005), Armstrong and Wright (2007), as well as Armstrong (2006) in the section
on multi-homing, have studied such scenarios and argued for their relevance in particular
contexts, such as the markets for advertisement in Yellow Page directories and broadcast
media.

Proposition 3 (Independent Demand). Suppose that demand on side J is independent across
platforms (i.e., consider the limit case as ∂NJ ,k

∂PJ ,j and ∂NJ ,k
∂NI,j approach zero, for k , j). Then, IE pricing

on side I collapses to the monopoly formula of W10, given by

PI,j = Cj
I

+ µj
I
−NJ ,jvI,X

j

[
Θ̃I
j

]
.

Proof. When demand on side J is independent across platforms, the inverse of the side
J Slutsky matrix is diagonal with jth entry that is the inverse of platform j’s marginal
mass of side J consumers. This leads to our result. �

The simplicity of this case comes from the fact that, on sideJ , each platform has only
a market expansion margin. As a result, each platform’s insulating tariff charged to side
J consumers need only vary as a function of its own allocation on side I. Consequently,
when platform j increases its allocation on sideI, it does not need to take into account any
response by other platforms in order to keep its own allocation on side J fixed, leaving
the pricing formula to be the same as that of a monopolist.

As we discuss in section 2.2, much of the literature on two-sided markets has proceeded
by considering extensions of Armstrong (2006)’s two-sided single-homing model, which
adopts a Hotelling setup. A key assumption of these models is that all consumers on a
given side have the same interaction values. Proposition 4 states the IE pricing formula
that emerges under this homogeneity assumption.
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Proposition 4 (Generalized Armstrong Pricing). When all sideJ consumers have a common,
constant valuation vJ for interacting with additional side I consumer, firm j’s IE price on side I
satisfies

PI,j = Cj
I

+ µj
I
−NJ ,jvJ .

Proof. When all side J consumers have the same interaction valuation, vJ , this term can
be factored out of the interaction matrix, leaving the inverse Slutsky and Slutsky matrices
to cancel each other out, so that the Jacobian of the Insulating Tariff System becomes vJI.
Thus the right hand side of expression 2 becomes

Cj
I

+ µj
I
−NJ ,jvJ [I]j,· ·

[
−DI

·,j

]
= Cj

I
+ µj

I
−NJ ,jvJ ,

because the jth entry of
[
−DI

·,j

]
is equal to one. �

As in the case of Proposition 3, when sideJ consumers have homogenous interaction
valuations, each platform’s insulating tariff depends only on its own side I allocation.25

However, the reason for this is different in this case, since, here, there can be arbitrary
substitution patterns among side J consumers among platforms. Instead, when all side
J consumers have the same interaction valuations and the side I allocation changes on
one platform, the adjustment of its own insulating tariff alone preserves the entire coarse
allocation on side J . This stems from the fact that, in this special case, insulating tariffs
provide full insurance to all consumers against variation in the opposite side allocation.

Two Platforms

We now suppose there are two platforms (m = 2) and first look at a pair of instructive
special cases before stating a general two platform pricing formula. Suppose that demand
on side I is independent across platforms. Then, expression (11), of platform j’s price on
side I becomes

PI,j = Cj
I

+ µI,j −NJ ,j
∂PJ ,j

∂NI,j
. (13)

In equation (13), the right-hand factor in the cross-externality term is the partial derivative
of firm j’s side J insulating tariff, with respect to its own coarse allocation. Further
suppose that the number of consumers on side J that multi-home is negligible. Under
these assumptions, on side J , there are three margins – one “cannibalization margin”
between firms 1 and 2 and one “market expansion margin” between each firm and ∅. This

25We thank Julian Wright for drawing our attention to this point.
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factor then simplifies to

∂PJ ,j

∂NI,j
=

(
(1 − κ) · vJ ,X

j

[
Θ̃J j,∅

]
+ κ · vJ ,X

j

[
Θ̃J j,k

])
, (14)

where

κ ≡ 1/

1 + F
[
Θ̃J j,∅

]  1

F
[
Θ̃J j,k

] +
1

F
[
Θ̃J k,∅

]
 .

The term ∂PJ ,j
∂NI,j is thus a weighted average of the average interaction values for an additional

interaction on platform j of sideJ consumers along its own two margins. This weighting,
governed by κ, depends on the relative measures of consumers on each of the three side
J margins.

When firm j’s market expansion margin is more crowded, then κ is small and firm j
behaves similarly to a monopoly. In particular, it is analogous to a monopoly in that it sets
its quality on sideJ to cater to consumers on the market expansion margin, on which the
consumers would likely be similar to those on the margin of a monopolist.

On the other hand, when the cannibalization margin is heavier, then κ is larger, and
platform j caters more to consumers on this margin. Consumers on the cannibalization
margin are quite different from those on the market expansion margin. Crucially, with
respect to the overall decision of whether or not to join some platform, they are infra-
marginal – and to all different degrees. As a result, it is natural to suppose that the average
interaction value of consumers on the cannibalization margin, vJ ,X

j

[
Θ̃J j,k

]
, will be closer

than the average interaction value of consumers on j’s expansion margin, vJ ,X
j

[
Θ̃J j,∅

]
,

to the average interaction value among all of platform j’s consumers on side J . As
Figure 4 illustrates, under circumstances such as those where the two platforms’ primary
dimension of differentiation, on side J , is horizontal in membership benefits, the former
group of consumers on the cannibalization margin constitutes a more representative sample
than the latter group of consumers on the market expansion margin.

This scenario thus represents a mechanism through which competition among plat-
forms can reduce the Spence distortion. This need not be the case, however. For instance,
when platforms are vertically differentiated from one another in a manner analogous to
that of Shaked and Sutton (1982), then an increase in competition can have the opposite
effect. We now sketch such an example.

To fix ideas, assume that demand system and platform cost functions lead to an equi-
librium allocation on side I such that NI,j > NI,k. Furthermore, suppose that consumers
on J differ significantly from one another in both the membership and interaction ben-

31



vJ ( j,NJ , j ,!J )vJ (k,NJ ,k ,!J ) PJ ,kPJ ,k

PJ , j PJ , j

vJ ( j,NJ , j ,!J )vJ ( j,NJ , j ,!J )

Figure 4: On the left, the thin diagonal line represents an “unpopulated” margin between
platforms j and k on side J and thus a low value of κ; on the right, the thick diagonal
line represents a “crowded” margin between platforms and thus a high value of κ.

efits they perceive but that these preferences are, for most consumers, very stable across
platforms. Formally, such preferences can be straightforwardly represented by the utility
function giving a payoff

BJi + bJi NI,j + ε{ j}i − PJ ,j

to consumer i on side J , when he joins the set containing only platform j, where εX
i is

a bundle-specific idiosyncratic term, BJi denotes consumer i’s membership value and bJi
denotes consumer i’s interaction value. As implied by the description above, suppose
that consumers’ values of εX are heavily concentrated around some value, normalized to
zero.

In this setup, provided appropriate cost functions, under Insulated Equilibrium, both
platform j and platform k attract a significant number of side J consumers. Platform
j charges its consumers a higher price than does platform k, while also allowing for
interaction with a larger number of side I consumers. Accordingly, (ignoring noise term,

εX ), we can define a threshold interaction value, b̃J
j,k ≡

PJ ,j−PJ ,k
NI,j−NI,k , which represents the

interaction value of all side J consumers that lie on the cannibalization margin between
platforms j and k.

Recall the first-order condition in expression (14), and note that as the mass of con-

sumers with an interaction value of b̃J
j,k increases, so does κ. As a result, if such an increase

were to occur, each platform would have an incentive to adjust its allocation on side I so
as to cater more to consumers on this cannibalization margin. In contrast to the previous
example, however, this exacerbates the Spence distortion on sideJ inflicted by each of the
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two platforms. As Figure 5 illustrates, this is because, on the one hand, (except for an
arbitrarily small measure) all of platform j’s side J consumers have interaction values

greater than b̃J
j,k, while all of platform k’s side J consumers have interaction values less

than b̃J
j,k.

bj,k
J!bj,k

J! bJ bJ

BJ BJ
BJ +bJ NJ , j ! PJ , j = 0 BJ +bJ NJ , j ! PJ , j = 0

BJ +bJ NJ ,k ! PJ ,k = 0BJ +bJ NJ ,k ! PJ ,k = 0

Figure 5: Platforms are vertically differentiated on side J . The thick blue line on the
right illustrates mechanism by which more intense competition leads to a larger Spence
distortion, since consumers on this margin have far from average interaction values.

Thus far in this section, we have “turned off” the competition among platforms on
side I by assuming that the cannibalization margin on this side is negligible. We now
activate this feature of the model and examine the general case of competition between
two platforms. We have

PI,j = Cj
I

+ µI,j −NJ ,j

(1−κ)·vJ ,X
j

[
Θ̃J j,∅

]
+κ


vJ ,X
j

[
Θ̃J j,k

]
+

ϕ︷                         ︸︸                         ︷
DI
k,j

(
vJ ,X
k

[
Θ̃J k,j

]
−vJ ,X
k

[
Θ̃J k,∅

])


 . (15)

Note, first, the term in (15), indicated by ϕ, that does not enter the prior first-order
condition, (14). This appears, since, when there is competition on side I and j changes
its quantity on this side, this affects the number of consumers that k serves as well. The
diversion ratio on sideI represents the significance of this sideI reallocation. This overall
reallocation of side I consumers influences the perceived quality by sideJ consumers of
not only platform j but also of platform k. As a result, in order to hold fixed its quantity
on side J , j must take into account the interaction values of k’s marginal consumers for
an additional interaction on that platform.

In particular, the relevant quantity for this purpose is vJ ,X
k

[
Θ̃J k,j

]
− vJ ,X

k

[
Θ̃J k,∅

]
, the
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difference between the value for an additional interaction on platform k of the side J
consumers on k’s cannibalization margin and those consumers on the market expansion
margin. Thus, the extent to which j distorts the quality it provides to its side J con-
sumers depends not only on the divergence between the interaction values of its own
marginal versus average consumers but also on the distribution of such valuations among
consumers on other platforms. As competition on side I toughens through an increase in
DI
jk

, in determining its quality on sideJ , platform j puts more weight on the preferences
of consumers on the cannibalization margin. This can bring the platform’s incentives
closer to or further from the social planners’, according to the heterogeneity issues we
discuss above.

m Symmetric Platforms

As a final example, we consider a symmetric Insulated Equilibrium among m identical
platforms. Let FJk and vJk denote, respectively, the mass and average interaction value of
sideJ consumers on a given platform’s cannibalization margin, and let FJ

∅
and vJ

∅
denote

the mass and interaction value of J consumers on a given platform’s market expansion
margin. The side I first-order condition for platform j is given by

PI,j = Cj
I

+ µI,j −NJ ,j
(
(1 − κsym)vJ

∅
+ κsymvJ

k

)
, (16)

where

κsym
≡

(m−1)FJk
FJ
∅

+mFJk

1 −
FIk

FI
∅
+mFIk

.

Expression (16) reinforces the themes we discuss in the previous examples. As in expres-
sion (14), the extent to which the quality provided to consumers on sideJ depends on the
characteristics of consumers on the two types of margins and on the weight the platform
attributes to each of these margins. In particular, since κsym is increasing in FJk , the mass
of consumers on the side J cannibalization margins, such an increase in competition on
side J reduces the Spence distortion experienced by consumers on that side if and only
if the average interaction value of consumers on the cannibalization margin is closer than
that of the consumers on the market expansion margin to the average interaction value of
all consumers.
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7 Stability, Uniqueness and Existence

Our extensive discussion above of the first-order conditions characterizing an Insulated
Equilibrium are obviously only necessary and not sufficient for such an equilibrium to
prevail. To analyze the conditions for existence, stability and uniqueness of equilibrium
in such models, it has been recognized since at least the work of Samuelson (1941) that
the gradient of the vector of first-order derivatives is fundamental. We now define the
gradient matrix that is relevant for such analysis as well as for that of Section 8.1 on
mergers. In debt to Samuelson, and to distinguish it from the better-known and related
(but more restrictive) Hessian matrix of second partial derivatives of a single objective
function, we refer to this matrix as the Samuelsonian.

Let ψ represent the vector of first-order derivatives of profits with respect to quantity
which, in equation 11, are equated to 0. Given the allocation approach we have been
employing, it is most natural to take the gradient of ψwith respect to quantity, as we will
denote by ∇ψ. However when studying the stability of equilibria in our price-choosing
game, as well as the comparative statics of prices, this matrix must be transformed so as
to, effectively, represent gradients with respect to prices rather than quantities.

There are two steps to this transformation of ∇ψ into the Samuelsonian matrix. One
step involves changing the units of the matrix’s entries from quantity to price. To do this,
we pre-multiply ∇ψ by a matrix whose diagonal is made up of the diagonal terms of the
Slutsky matrix on each side of the market, ∂NI,j

∂PI,j , and whose off-diagonal terms are zeros.
We denote this unit-transforming matrix by TU.

The other step in this transformation modifies ∇ψ to match platforms’ conduct in
the game. Specifically, it allows for each entry in the Samuelsonian to correspond to a
change in a given price, holding fixed all other prices on the same side of the market, as dictated
by the game’s Bertrand conduct, and holding fixed quantities on the other side of the
market, as dictated by the Insulating Tariff System. To do this, we post-multiply ∇ψ by
a block matrix, whose diagonal blocks are negative diversion ratio matrices and whose
off-diagonal blocks are zeros. We denote this conduct-transforming matrix by TC, where

TC ≡

 −DA 0
0 −DB

 .
Letting S denote the Samuelsonian matrix, we thus have

S ≡ [TU]
[
∇ψ

]
[TC] .
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Some intuition for S comes from noting its relationship to the game’s (cost) pass-
through matrix (Weyl and Fabinger, 2009). To see this, suppose that there were a specific
tax levied against each platform, per consumer that it serves on each side of the market,
and let the vector of such taxes be denoted by t. The necessary condition for Insulated
Equilibrium can be written ψ = t. Implicitly differentiating this system of first-order
conditions with respect to each of the taxes then yields[

∂ψ

∂P

] [
∂P
∂t

]
= I2m ⇔

[
∇ψ

]
[TC]

[
∂P
∂t

]
= I2m,

where I2m denotes the 2m-dimensional identity matrix, and ∂P
∂t is the Jacobian matrix of

equilibrium price changes in response to changes in the specific taxes. Rearranging this
equation gives

∂P
∂t

= [S]−1 [TU] . (17)

Equation 17 thus shows that the Samuelsonian, transformed into units of quantity, is the
inverse of the game’s pass-through matrix.

The necessary conditions for equilibrium, discussed above, would also be sufficient,
provided that platforms’ objective functions are quasi-concave, given the residual inverse
demand defined by other platforms’ insulating tariffs. In terms of the Samuelsonian, a
common such condition (i.e. concavity of profits) is that the principal submatrix of S,
formed by the two rows corresponding to a particular platform j, be negative definite for
every price pair. Alternative such conditions typically involve the negative definiteness
of some (possibly price-dependent) positive-diagonal transformation of this submatrix.

If one were interested in a stronger notion of sufficiency, such as local stability, inde-
pendent of adjustment speed, in the sense of Enthoven and Arrow (1956), the matrix S
would have to be (local to the conjectured equilibrium) D-stable, a standard generalization
of negative definiteness to non-symmetric matrices. Furthermore, it is well-known that if
such conditions hold globally, equilibrium is unique (if it exists).

Existence of an insulated equilibrium also relies on conditions placed on the demand
system entirely analogous to those in standard markets. If the marginal externalities to
users on each side of the market are bounded uniformly regardless of the number of users
on the other side, the additional “marginal costs or benefits” to the platform arising from
two-sidedness are similarly bounded, as the latter is a simple linear transformation of the
former. Thus if Bertrand equilibrium exists in a sufficiently wide range of cases on each
side independently, so too will an Insulated Equilibrium: each allocation on side A will
lead to a Bertrand equilibrium allocation on sideB and this in turn will induce a Bertrand
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equilibrium allocation on sideA. A fixed point of this process must exist, given standard
fixed point theorems, as the allocations on each side are in the compact set [0, 1]m.

An analysis of conditions on the primitives of our model ensuring such standard
conditions on endogenous variables is beyond the scope of our analysis here and thus
we do not belabor these points common to all general standard industrial organization
models, but readily acknowledge their potential importance. In future work we may
consider these issues in greater detail.

8 Applications and Extensions

8.1 First-Order Merger Analysis

In this section, we extend the techniques of Jaffe and Weyl (2010b), hereafter “JW”, to
consider the effect on consumer surplus of a potential merger of platforms. The key to
this extension is that we must take into account not only the potential harms or benefits to
consumers from the changes in the (insulating) tariffs charged due to the merger, but also
the welfare effects of movements along these insulating tariffs caused by changes in the
degree of externalities generated due to the change in the rate of consumer participation
induced by these price changes. As JW argue, so long as the induced change in price
is small, the first effect may be measured using the standard Jevons (1871)-Hotelling
(1938) rule: −∆p · q. The second effect consists of two parts: the harms caused by the
increased prices charged for increased externalities and the benefits brought by these
increased externalities themselves. Because the former depend on the benefits derived
only by marginal users and the latter depend on the benefits delivered only to average
users, the difference between these closely resembles the Spence distortion. The total
local approximation may thus be written as a sum of Jevons-Hotelling effects and Spence
effects, multiplied by the number of consumers experiencing these:

(
VA
B
−

∂PA
∂NB

)
∂NB

∂PB
∆PB − ∆PA(

VB
A
−

∂PB
∂NA

)
∂NA

∂PA∆PA − ∆PB


T

·

 NA

NB

 , (18)

where ∆X denotes the (small) difference between the pre- and post-merger value of vector
X, under Insulated Equilibrium. The change in prices counted here is only the directly

induced change, that is change in the insulating tariff, not along it. The matrix VJ
I

is

diagonal and has generic diagonal element vI,j
j

, which, recall from Section 6, denote the
average valuation for an additional interaction among the set of all side I consumers on
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platform j. From our discussion in Section 6, it should not be surprising that the Jacobian

matrix of the insulating tariff ∂PI
∂NJ

plays a role, under oligopoly, that is analogous to that
of the average value of marginal consumers, under monopoly.

Calculating the appropriate extension of Farrell and Shapiro (2010) (FS)’s Upward
Pricing Pressure (UPP) to this context is relatively straightforward.26 The first term is exactly
as in FS, the value (in terms of profits, that is the mark-up) of sales of platform k diverted
as a result of one more slot on platform j being filled. The second, novel term arises
from the fact that, post-merger, platform j must now consider not only how increasing
its participation positively impacts the externalities for which it can charge consumers on
the other side of the market but also how it negatively impacts the externalities for which
the merger partner can charge on the other side. Without loss of generality, we assume the
merger occurs between platforms 1 and 2; in this case the UPP vector is given by

τI,j =

 DI
k,j

(
PI,k − Ck

I

)
+ NJ ,k

[
∂PJ ,k

∂NI

]
×

[
DI
·,j

]
, if j, k = 1, 2, k , j

0, if j , 1, 2
.

JW show that if sufficient technical conditions are satisfied (for example, the pre- and
post-merger equilibria must be stable in a strong sense) and the product of the pass-
through matrix and UPP, S−1 [TU] τ, is sufficiently small, then

∆P ≈
(
[TU]−1S − ∇Pτ

)−1
τ,

where all quantities are evaluated at the pre-merger allocation. This formula is perfectly
analogous to the one pertaining to the standard markets that JW consider, with the ex-
ception of what enters into the determination of τ. These local approximations of price
changes may then be inserted into expression (18), where all other terms in that expression
are also evaluated at the pre-merger allocation, to obtain a first-order approximation to the
full effect of the merger on consumer welfare. Note that we may also obtain independent
approximations of the effect of a merger on each side’s welfare by simply evaluating each
side independently, rather than summing over the two.

To summarize, we extend JW’s formula (quantities multiplied by pass-through, mul-
tiplied by the value of diverted sales) in two ways:

1. The value of diverted sales is extended to include the full opportunity cost of those
diverted sales in a two-sided setting. This value takes into account both the direct
mark-up that diverted sales bring on the side of the market in question and their

26Note that because we assume Bertrand conduct, we need consider only UPP and not JW’s generalization
of it, GePP, which allows more general conduct.
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impact on each of the merging platform’s ability to extract value from externalities,
as perceived by marginal consumers, on the opposite side of the market.

2. The effects of the predicted price changes are also accounted for via their impact
on participation and, consequently, on the externalities experienced by users on the
other side.

8.2 Generalizations

Many Sides of the Market

Thus far, for expository purposes, we have focused on market configurations with two
“sides” or groups of consumers. The model easily extends to accommodate an arbi-
trary number of sides. To see this, suppose there are S groups of consumers, indexed
by I = A,B,C, ..., and let the gross payoff of joining a bundle of platforms, X , to a
consumer of type θI on side I be vI

(
X ,N−I ,θI

)
, where vI : ℘ (M ) × [0, 1]m(S−1)

×ΘI →

R now depends on N−I ∈ [0, 1]m(S−1), the coarse allocation on the S − 1 other sides
of the market apart from side I. Also, let platform j’s strategy now be given by
σj ≡

(
σA,j

(
N−A

)
, σB,j

(
N−B

)
, σC,j

(
N−C

)
, ...

)
, where σI,j : [0, 1]m(S−1)

→ R maps from
N−I ∈ [0, 1]m(S−1) to a total price that side I consumers pay to join platform j.

It is straightforward to see that, when the model is extended in this way, none of the
arguments made thus far in the paper depend on the presence of only two sides. In
particular, the result of Theorem 1, that a CNE coarse allocation implies a price vector,
continues to hold. Thus, the simplest way to consider a platform’s profit maximization
problem continues to be as a choice of allocation, holding fixed the strategies of the other
platforms

max
{NA,j,NB,j,NC,j,...}

∑
I=A,B,C,...

NI,jPI,j
(
NI,j,N−I

)
− Cj

(
NA,j,NB,j,NC,j, ...

)
. (19)

Analogously to the results of Section 6.1, the prices that implement the socially optimal
allocation satisfy

PI,j = Cj
I
−

∑
J,I

NJ ,jvJ ,j
j
, (20)

and the platforms’ prices under Insulated Equilibrium satisfy

PI,j = Cj
I

+ µI,j −
∑
J,I

NJ ,j

−∂NJ

∂PJ

−1 [
∂NJ

∂NI

]
j,·

·

[
−DI

·,j

]
. (21)
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The only difference between these expressions and those discussed in Section 6 is that
here, since there are S sides of the market, the number of consumers on side I affects the
payoffs of consumers on all of the S − 1 other sides. Consequently, the prices charged to
sideI consumers under both the socially optimal allocation and the Insulated Equilibrium
allocation take into account the sum of such externalities, with the latter still subject to
both the market power and Spence distortions.

Within-Side Externalities

Until now, we have also assumed that consumers’ preferences over platforms are inde-
pendent of the number of consumers of the same group that join each platform. This section
extends the model to allow for such within-side network effects, which play a significant
role in many industries, such as the provision of mobile phone service and social net-
working websites. Note that, while our focus is indeed on competition among multi-sided
platforms, embedded in this generalization is the case, where S = 1, of competition among
one-sided network providers, as in the literature stemming from the seminal paper of Katz
and Shapiro (1985).

When joining a bundle of platforms, X , a consumer of type θI on side I receives
gross payoff vI

(
X ,N,θI

)
, where vI : ℘ (M )× [0, 1]mS

×ΘI → R depends on N, the entire
coarse allocation.

We extend platforms’ strategy space in the way that allows for the solution concept of
Insulated Equilibrium to be most naturally preserved. Let platform j’s strategy be given
by σj ≡

(
σA,j (N) , σB,j (N) , σC,j (N) , ...

)
, where σI,j : [0, 1]mS

→ R maps from N, the entire
coarse allocation of consumers, including on side I, to a total price.

When there are within-side network externalities, in order to speak of Insulating Tariffs,
it becomes convenient to introduce the notion of consumers’ beliefs, as discussed by Katz
and Shapiro (1985),27 about the strategies of other consumers on the same side. Suppose
that prior to choosing their actions, side I consumers form beliefs about one another’s
strategies, which, for our purposes, it is not restrictive to assume are common among all
consumers. Formally, let

....
NI denote the coarse allocation on side I that side I consumers

believe will prevail in the given consumer game. It is apparent that the best-response
strategy profile of side I consumers depends on

....
NI . Residual Insulating Tariffs, whose

definition we now restate, adapted to this context, pin down a unique value of
....
NI and

thus a unique value of NI that is consistent with Consumer Nash Equilibrium.

27The object that we refer to as “beliefs” is, in fact, called “expectations” by Katz and Shapiro (1985) but
is given the former name in more recent literature such as Caillaud and Jullien (2003).
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Definition 8. Given a profile of strategies of other platforms, σ−j, platform j is said to charge a

Residual Insulating Tariff on side I if ∀
....
NI ,

.̃...
NI ∈ [0, 1]m and ∀N−I , Ñ−I ∈ [0, 1]m(S−1)

NI,j
[
M I∗

(
θI ,

( ....
NI ,N−I

)
, [σ]

)
,σ

]
= NI,j

[
M I∗

(
θI ,

( .̃...
NI , Ñ−I

)
, [σ]

)
,σ

]
.

As before, all platforms announcing Residual Insulating Tariffs on all sides of the
market, gives rise to an Insulating Tariff System, P (N), anchored at a reference allocation.
Insulated Equilibrium thus continues to be defined as in Definition 7, and the shape of
the Insulating Tariff System, in response to variation in the own side coarse allocation is
pinned down by the equation

0 =

∂NI

∂PI


 ∂PI

∂
....
NI

 +

[
∂NI

∂
....
NI

]
⇔

 ∂PI

∂
....
NI

 =

−∂NI

∂PI

−1 [
∂NI

∂
....
NI

]
. (22)

When platforms’ tariffs satisfy equation (22), for any beliefs that side I consumers might
have, prices adjust to maintain a given CNE coarse allocation. Therefore, there is a unique
coarse allocation that consumers can consistently believe will occur in equilibrium.

Platform j’s profit maximization problem continues to be given by expression (19), and
the prices that arise under the socially optimal allocation and the Insulated Equilibrium
allocation are, respectively,

PI,j = Cj
I
−

∑
J=A,B,C...

NJ ,jvJ ,j
j

(23)

and

PI,j = Cj
I

+ µI,j −
∑

J=A,B,C...

NJ ,j

−∂NJ

∂PJ

−1 [
∂NJ

∂NI

]
j,·

·

[
−DI

·,j

]
. (24)

Notice that the only difference between equations (23) and (24), corresponding to the case
where there are within-side externalities, and equations (20) and (21), corresponding to
the case without such effects, is in the final term. When there are within-side externalities
and firm j changes the number of consumers it serves on side I, this affects the quality of
j as perceived by side I consumers in addition to consumers of all other sides.

8.3 Empirical Application of an Affine Discrete Choice Model

An important motivation for our work this is to help extend the tools for empirical research
in industrial organization developed during the past two decades to allow for consump-
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tion externalities. While an extensive treatment of how to apply these tools in our context
is beyond the scope of this paper, it is a particularly promising area for future research. In
view of this potential, here, we briefly speculate on the possible road ahead in this dimen-
sion. We draw attention to two points that seem particularly notable: first, the connection
between “characteristics space” representations and “random coefficients” models on the
one hand and the estimation of externalities and the “Spence distortion” in our setting,
and, second, the possibility, under the solution concept of Insulated Equilibrium, of jointly
estimating a demand system using both demand and supply equations.

Regarding the first point, there has been an increasing focus in the last two decades,
stimulated particularly by Berry (1994) and BLP, on using characteristics-based repre-
sentations of demand systems to reduce the dimensionality of demand estimation. In
our setting, such representations have an additional relative benefit compared to product-
based demand systems, since consumer valuations of network effects are of direct interest,
not merely indirectly useful for estimation of demand for products. Furthermore, the con-
current development of random rather than simple logit models, originally stimulated by
a desire to accommodate more realistic substitution patterns, is highly complementary
with applications of our framework. Only a random coefficient model allows for the het-
erogeneity among consumers in their valuation for network effects which generates the
possibility of Spence distortions.28 Since, as we have shown, the presence of network ex-
ternalities and particularly the Spence distortion are important forces that can exacerbate
or counteract the ill effects of market power, in a two-sided setting, there is an additional
argument in favor of the popular random coefficient, characteristic-based approach.

To see how such an approach could proceed, consider the simplest specification of de-
mand in our model. This is a combination of the model of the affine preference specification
of Rochet and Tirole (2006) with Armstrong (2006)’s assumption in Section 4 (standard
in the discrete choice demand estimation literature), that consumers must “single-home”
(purchase at most one product) and the standard characteristics assumption of Berry (1994)
that valuation of product characteristics is common across products (here platforms). In
particular, consumer i on side I’s utility from consuming singleton bundle jwould be

vI,ji = βIi NJ ,j + ηI,ji − α
I

i PI,j

where βIi represents the firm-homogeneous random coefficient of consumer i for network
externalities from side J , ηI,ji represents all non-network-generated value to i from plat-
form j including mean utility, idiosyncratic valuation of non-network characteristics and

28Note that this is true as well in one-sided models with endogenous characteristic choices.
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good-consumer idiosyncratic errors (typically assumed Type I Extreme Value distributed
for tractability) and αIi is the distaste for price (usually assumed to be income-related). The
Spence distortion would then be a function of the correlation across consumers between
βIi
αIi

and factors entering into
ηI,ji

αIi
and thus leading users to be marginal or infra-marginal.

A particularly natural such relationship is obviously income heterogeneity (heterogeneity
in αIi ), but others might be coefficients of the same (or opposite) sign in the regression of
βIi and ηI,ji on the same demographic characteristics or correlation between demographic
characteristics, with systematically related coefficient signs in these two regressions.

One difficulty in estimating βIi is the likely correlation of NJ ,j with unobserved plat-
form characteristics. In one-sided demand estimation, this issue is typically thought to
arises with respect to prices, and the customary (Nevo, 2000; Ackerberg, Benkard, Berry,
and Pakes, 2007) approach to dealing with it is to use instruments for price. The natural
extension of this approach to our context would be to use additional instruments for the
number of opposite-side consumers. It appears to us that the criteria for evaluating the
appropriateness of such instruments for opposite side participation should be similar to
those for price instruments on the other side of the market. If this is correct, the same in-
struments used for PJ ,j could be used for NJ ,j (as price affects demand) in the estimation
of the demand system on the other side of the market. Regardless, this seems like an
important area for further research.

The second point mentioned above is the possibility, under Insulated Equilibrium,
of jointly estimating a parameterized demand system, using both demand and supply
equations. An implication of Armstrong’s Paradox is that Subgame Perfect Equilibrium
does not yield platform first-order conditions that could be used for such purposes,
since they depend on platforms’ off-equilibrium beliefs. As Theorem 3 shows, however,
Under Insulated Equilibrium, the first-order condition is expressed only as a function
of market-level observables, marginal costs and the demand system. Thus, while the
pricing equations have an additional “two-sided” term, the only substantive requirement
for imposing these equations, compared to the one-sided case, is to make use of the
derivatives of each platform’s market share, not only with respect to own and other
platforms’ prices, but also with respect to opposite side participation. Evaluating such a
derivative is a substantively, and thus we suspect computationally, analogous exercise:
the price derivative effectively involves computing average value of αIi along the set of
marginal consumers while the participation derivative involves computing the average
value of βIi (both involve also computing the size/density of the marginal set).
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9 Conclusion

This paper aspires to make three contributions. First it develops, for the first time,
a model with generality comparable to that of standard static industrial organization
models, but incorporating the “multi-sided platforms” features of multiple goods and
consumption externalities. Second, it develops a conceptual approach, extending the
notion of the allocation approach to oligopoly and proposing the solution concept of
Insulated Equilibrium, that allow this broad model to be analyzed. Finally, it shows how
a natural extension of the logic of Spence (1975) can be used to understand both the
distortions created by oligopolistic market power and the capacity of competition to
remedy these.

While we believe this constitutes one important step forward in the literature on multi-
sided platforms, it is certainly no more than that: much remains to be done, both for us
and others. We therefore now briefly discuss both some extensions we plan to develop
going forward, as well as some of what we consider the most promising directions for
future research by others.

We hope to generalize and extend our analysis in a number of ways. First, given the
current limitations of the theory of general equilibrium with indivisible goods, we limited
our model to consumption patterns exhibiting gross substitutes. We do not believe this
is necessary and in particular suspect that a continuum of richly heterogeneous agents,
as we assume, may be sufficient to ensure the existence and uniqueness of a price vector
supporting a given allocation. If this conjecture is correct, it should be straightforward to
allow arbitrary substitution patterns in our model. On a similar technical level, a more
detailed analysis of conditions for existence, stability and uniqueness of IE would be
useful.

More substantive generalization would also be useful, most importantly dealing with
multi-homing and other sources of heterogeneity of externalities across users within a side
of the market. If third-degree price discrimination is possible to all groups bringing dif-
ferent externalities either exogenously or endogenously through their choice of platforms
(it may be less effective to advertise to a reader who has already seen the advertisement
in another paper), it is relatively straightforward to extend our model to allow such exter-
nality or bundle-contingent contracts by simply increasing the number of sides. However
we did not explicitly discuss this above because it is not very realistic in many settings.
More promising, therefore, is the prospect of combining into our model the analysis of
Veiga and Weyl (2010) which allows within-side heterogeneity while still permitting rich
preference heterogeneity.
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Finally, we would like to analyze a number of other substantive issues using the frame-
work. These include regulation, such as price and quantity controls that are relevant in, for
example, the analysis of network neutrality policies and a more general characterization
of the cases in which intensifying competition helps alleviate, or exacerbate, the Spence
distortion. Perhaps most importantly, we would like to build a workhorse parametric
version of the model in the spirit of BLP, as outlined in Section 8.3, that could be applied
in a range of empirical settings.

Beyond our work here, our paper suggests many natural directions for future research.
Most clearly, relaxing the assumptions (the “macroness” of the model, homogeneous
quality, no price discrimination) we discussed in Section 2 is important for the literature
to progress. Our solution concept also seems naturally connected to a number of other
problems in economics; elucidating these connections would help unify these areas. Most
clearly, White is currently constructing a model, with Germain Gaudin, that builds on
the techniques developed in this paper to study the effect of competition on the quality
provision by one-sided firms. Similarly by the Bulow and Roberts (1989) equivalence,
W10 is equivalent to Segal (1999)’s general model of contracting with externalities with
asymmetric information. Thus it seems natural that our model should be closely related
to common agency with multiple agents, externalities and asymmetric information. It
would therefore be interesting to consider whether Insulated Equilibrium has a natural
analogy to solution concepts invoked in that literature, or whether it offers a potential
alternative concept.

At a deeper theoretical level, it would be interesting to understand more clearly the
dynamic incentives of multi-sided platforms, in the spirit of Chen et al. (2009) and Cabral
(forthcoming), and whether these lead to price paths resembling Insulating Tariff Systems.
Also the intersection of profit maximization and matching market design (Roth, 2002) is
conspicuously limited but very promising; see Gomes (2009) for an exception proving the
rule.

On the applied side, we believe our paper offers a number of tools that make possi-
ble a range of interesting empirical analyses of multi-sided platforms, measuring market
power and Spence distortions and predicting counter-factual effects of policy interven-
tions, which we hope will develop in coming years. Making the theory of multi-sided
platforms useful to policy makers will also require enriching our model to consider is-
sues that are beyond the scope of this paper such as interconnection, vertical restraints,
bundling, predation and regulatory design. We are thus hopeful that the theory and
measurement of multi-sided platform industries will be increasingly put to use in helping
to clarify an important and often ideologically-driven set of industrial policy debates.
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Appendices

A Omitted Proofs

A.1 Proof of Lemma 1

Proof. First consider the forward direction, supposing the result failed. Note that if the
maximization condition fails, then there exists another marketwide consumer strategy

profile ̂̂
M yielding the same coarse allocation, at least as great gross consumer surplus

on each side and strictly greater gross consumer surplus on the other side. Consider an

arrangement in which each consumer made a payment of her gross utility under ̂̂
M and

received a payment of her gross utility under M̂ , then ̂̂
M is implemented and the net

revenue obtained is distributed equally among all consumers. Note that this is clearly a
Pareto improvement for consumers over the CNE as they receive the same utility before
the distribution of net revenue as before the change and the net revenue is strictly positive
and thus improves their utility.

However, in CNE consumers maximize their utility taking prices as given and thus
a CNE inducing coarse allocation N must be a general equilibrium of an economy with
endowment N. But by the first fundamental theorem of welfare economics, such an
equilibrium must be Pareto efficient, contradicting our premise and establishing the result.

In the reverse direction, note that by the Kelso and Crawford (1982); Gul and Stacchetti
(1999) theorems, for any allocation N an general equilibrium price vector P? exists. Let

M I∗
(
θI

)
≡ arg max

X ∈(M )
vI

(
X ,NJ ,θ

)
−

∑
j∈X

PI,j,

with Assumption 2 breaking any ties so this is a function not a correspondence. This is
by construction a CNE of the game where σ ≡ P?. Thus, by the forward direction of the
proof, it is an gross-surplus-maximizing strategy profile given the allocation N. �

A.2 Proof of Lemma 2.

Proof. Consider an allocation N. By Lemma 1 there exists some general equilibrium price
vector P? “supporting” this allocation in the sense that CNE strategies given these prices
(in the sense of the proof of Lemma 1 above and denoted by M̂ ?) induce this allocation.
We will show that ∂VI

∂ÑI,j

∣∣∣∣
N

exists and equals PI,j.
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Smoothness, Full Support and Gross Substitutes imply that, given NJ there is a smooth,
full support distribution over all gross utility profiles, UI , in G, where G is the subset
of R2m

−1 exhibiting gross substitutes. Denote this distribution by gI?(UI ) and denote the
measure of set under g by γ(Ω) where Ω ⊂ G.

Let Ω?
≡

{
U ∈ G : ∀X , {j},

∑
k∈X PI,k > UX

}
; this is the j-isolated set of consumers

who find all bundles other than the singleton j bundle less attractive than the null bundle.
Clearly a consumer in Ω? with U{j} weakly greater than PI,j consume the singleton j
bundle at the associated CNE and those with U{j} strictly below PI,j consume the null
bundle. Furthermore the marginal distribution over U{j} clearly has full support by the
same logic as above.

Let Ω?
+δ ≡

{
U ∈ Ω? : PI,j + δ > UX > PI,j

}
and similarly for Ω?

−δ. For any δ > 0, let

ε+(δ) ≡ γ
(
Ω?

+δ

)
and similarly for ε−. Note that this is well-defined by full support and

the fact that the distribution is non-atomic, and for the same reasons is a strictly positive,
strictly increasing function over its domain.

To establish the existence of ∂VI

∂ÑI,j

∣∣∣∣
N

and its equality to PI,j we bound all of the Dini

partial derivatives appropriate to demonstrate their equality to one another and to PI,j.
In particular, using the standard convention we will denote the Dini analog of ∂VI

∂ÑI,j

∣∣∣∣
N

by

∂VI

∂ÑI,j

∣∣∣∣+
N

upper from the right, ∂VI

∂ÑI,j

∣∣∣∣−
N

lower from the right, ∂VI

∂ÑI,j

∣∣∣∣
+,N

upper from the left and

finally ∂VI

∂ÑI,j

∣∣∣∣
−,N

lower from the left. Clearly to establish existence and equality it suffices

to show that both upper Dini derivatives are bounded above by PI,j and both lower Dini
derivatives are bounded below by PI,j. We will formally derive the bounds on the lower
right Dini derivatives, somewhat formally consider the upper right and then informally
describe the logic for the left Dini derivatives, as this logic is closely analogous.

First consider the lower right Dini derivative:

∂VI

∂ÑI,j

∣∣∣∣∣∣
−

N

≡ lim inf
ε→0+

VI
(
NI + 1jε,NJ

)
− VI

(
NI,NJ

)
ε

where 1j is a vector of all 0’s except that it has a 1 in the jth entry. To show this is bounded
below by PI,j it is sufficiently to demonstrate that for any δ > 0 it is possible to find a
sufficiently small ε > 0 such that

VI
(
NI + 1jε,NJ

)
> VI

(
NI,NJ

)
+ ε

(
PI,j − δ

)
Suppose we are challenged with some δ > 0; we claim this bound must hold if we select
any ε < ε− (δ). To see this note that one feasible assignment under

(
NI + 1jε,NJ

)
is one
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identical to M̂ ? except that all consumers in Ω?
−ε−1
−

(ε)
are assigned to consume { j}; note

that ε− is clearly invertible because it is strictly increasing. Call this assignment M̂ ?
−ε.

This is clearly feasible because, by construction, these consumers represent a mass ε.
Furthermore

VI
([

M̂ ?
−ε

]
,NJ

)
≥

(
PI,j − ε−1

−
(ε)

)
ε + VI

([
M̂ ?

]
,NJ

)
=

(
PI,j − ε−1

−
(ε)

)
ε + VI (N)

by construction. But given that this assignment is feasible, the optimal assignment must
do at least as well as it and given that ε−1

−
is strictly increasing our claim is established

given that if ε−1
−
< δ clearly ε

(
PI,j − δ

)
<

(
PI,j − ε−1

−
(ε)

)
ε.

Now consider the upper right Dini derivatives:

∂VI

∂ÑI,j

∣∣∣∣∣∣
−

N

≡ lim sup
ε→0+

VI
(
NI + 1jε,NJ

)
− VI

(
NI,NJ

)
ε

Suppose, contrary to what we want to demonstrate, that this were strictly greater than
PI,j. Then

∀ε > 0,∃ε < ε :
VI

(
NI + 1jε,NJ

)
− VI

(
NI,NJ

)
ε

>

∂VI

∂ÑI,j

∣∣∣∣−
N

+ PI,j

2

or

VI
(
NI + 1jε,NJ

)
− ε


∂VI

∂ÑI,j

∣∣∣∣−
N

+ PI, j

2

 > VI
(
NI,NJ

)
But note that we can construct an isolated set just as above at the allocation

(
NI + 1jε,NJ

)
and that by Gross Substitutes (which implies the law of demand) any general equilibrium
price vector at this allocation must have lower PI,j. Thus we could always achieve a
utility close to VI

(
NI + 1jε,NJ

)
under the allocation N by using the optimal assignment

at that allocation and removing a group of isolated near-marginal consumers. Thus a

contradiction can easily be established to ∂VI

∂ÑI,j

∣∣∣∣−
N
, PI,j.

Similar arguments may then be applied for the left lower and left upper Dini deriva-
tives. If the left upper were too large we could always have evicted from consumption
the near-marginal consumers in the isolated set and this would have been a less costly
way of removing consumers. If the left lower were too small then we could have added
more near-marginal types at the lower allocation in and have achieved a higher utility at
the original allocation that was posited. Thus all necessary bounds can be established to
show differentiability and equality of the the derivative to PI,j. �
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Anderson, Simon P., André de Palma, and Jacques-François Thisse (1992), Discrete Choice
Theory of Product Differentiation. MIT Press, Cambridge, Massachusetts.

Argentesi, Elena and Lapo Filistrucchi (2007), “Estimating Market Power in a Two-Sided
Market: The Case of Newspapers.” Journal of Applied Econometrics, 22, 1247–1266.

Armstrong, Mark (2006), “Competition in Two-Sided Markets.” The RAND Journal of
Economics, 37, 668–691.

Armstrong, Mark and Julian Wright (2007), “Two-sided Markets, Competitive Bottlenecks
and Exclusive Contracts.” Economic Theory, 32, 353–380.

Athey, Susan, Emilio Calvano, and Joshua Gans (2010), “Will the Internet Destroy News
Media?” Mimeo.
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