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Problem

Aim: maximize revenue when selling to a social network

Setting:
Positive externalities:

a set St of buyers have purchased before time t
valuation vi(St) of buyer i depends on St

assume that vi(A) ≤ vi(B) for A ⊆ B

Myopic: buy as soon as valuation exceeds price vi(St) ≥ pi,t
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Three Problems

1 Optimal revenue: maximize total revenue

sup
π︸︷︷︸

policies

E(St )T
t=1|π,S0=∅︸ ︷︷ ︸

over buyer sequence

T∑
t=1︸︷︷︸

times

∑
i∈St\St−1︸ ︷︷ ︸
new buyers

pi,t︸︷︷︸
payments

over all policies π which set price pi,t for each buyer i given set St

The authors also restrict the class of policies as follows

2 Optimal seeding:
Initially, a seed set of buyers of given size is given the item for free
All other sales are at fixed price p∗

3 Optimal non-discriminatory selling:
A sequence of prices (pt)

T
t=1 is decided in advance
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Contributions

Thm 1. Optimal revenue is NP-hard.
Thm 2. Optimal seeding is NP-hard.

But a greedy method gives a constant factor approximation.
Thm 3. Optimal non-discriminatory selling can be solved by dynamic

programming.
The runtime is polynomial in the maximum possible price,
assuming prices are integers.
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Results

Seed’n’Sell: What if you do optimal seeding followed by
non-discriminatory selling?

Answer: Given enough price changes,

revenue[non-discriminatory selling] ≥ 0.88 revenue[seed’n’sell]

Good News:
Simulations suggest that “enough price changes” is a small number.
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Intriguing Questions
Relaxation

Vazirani (2001) shows that the linear programming relaxation of
vertex cover enables a 2-approximation.

1 You prove optimal revenue is hard by reduction from vertex
cover. So, when is there a constant factor approximation for the
full optimal revenue problem?

2 The strength of your numerical results is limited by the fact that
you cannot compare with an optimal solution to the full problem.
Perhaps you could use a relaxation to provide a tight upper
bound on the optimal revenue?
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Intriguing Questions
Dynamic Programming (DP)

3 Non-discriminatory policies are limited as they do not adapt (i.e.
the price schedule does not change given observations of St )
Could you get even better results by running the DP algorithm at
each time step to select pt given St?

4 The DP algorithm is only polynomial in pmax, the maximum
possible price, for integer prices
Could you reformulate this as a fully-polynomial time
approximation scheme (FPTAS)?
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