# THE EFFECT OF BESTSELLER RANK ON DEMAND Evidence from the App Market

Octavian Carare

University of Maryland

IDEI Toulouse - January 13, 2011

# OUTLINE

**1** RESEARCH OBJECTIVES

### **2** LITERATURE



- **4** ESTIMATION: CHALLENGES AND STRATEGIES
- **5** IMPLEMENTATION

### 6 RESULTS

- ROBUSTNESS & BEHAVIORAL MECHANISMS
- **8** CONCLUSIONS

# OUTLINE

**1** RESEARCH OBJECTIVES

# 2 LITERATURE

- 3 DATA
- ESTIMATION: CHALLENGES AND STRATEGIES
- 5 IMPLEMENTATION

# 6 RESULTS

ROBUSTNESS & BEHAVIORAL MECHANISMS

Sac

8 CONCLUSIONS

# **RESEARCH OBJECTIVES**

- Measure the effect of bestseller rank information on demand
- Use rank data
- Ensure robustness

- Experience goods: qualities are ex-ante uncertain
- Best selling products are conspicuously displayed (itunes, Amazon, etc.)
- Bestseller rank may be used to predict quality: affects willingness to pay
- Bestselling products are more visible: they are more likely to be chosen by consumers
- How does tomorrow's willingness to pay for a product change with today's bestseller rank of that product?

# **RESEARCH OBJECTIVES**

- Measure the effect of bestseller rank information on demand
- Use rank data

### Ensure robustness

- Practical difficulty: only daily bestseller rank is known (not the actual market shares)
- Can bestseller ranks be used to estimate a discrete-choice model of demand?

< 🗆 🕨

▲ @ ▶ ▲ @ ▶ ▲ @ ▶

Sac

# **RESEARCH OBJECTIVES**

- Measure the effect of bestseller rank information on demand
- Use rank data
- Ensure robustness

- I estimate today's demand system with yesterday's bestseller rank as a RHS variable
- Results may not reflect a causal effect of rank information on demand (e.g., autocorrelated demand shocks, or missing variables like product ratings)
- How to show that the relationship between ranks and demands is not spurious?

## OUTLINE

RESEARCH OBJECTIVES

### 2 LITERATURE

3 DATA

- ESTIMATION: CHALLENGES AND STRATEGIES
- 5 IMPLEMENTATION

### 6 RESULTS

**BOBUSTNESS & BEHAVIORAL MECHANISMS** 

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ ...

3

Sac

8 CONCLUSIONS

### LITERATURE

# **NON-ADDITIVITY** RESEARCH Demand is not "additive": fads, Morgenstern (1948), Liebenstein fashions, etc. (1950)Learning from the actions of Summarize past purchases, but the NY Times bestseller list may also convey quality causes an increase in sales

# LITERATURE

| NON-ADDITIVITY                  | RESEARCH                                     |  |  |
|---------------------------------|----------------------------------------------|--|--|
| Demand is not "additive": fads, | Morgenstern (1948), Liebenstein              |  |  |
| fashions, etc.                  | (1950)                                       |  |  |
| OBSERVATIONAL LEARNING          | RESEARCH                                     |  |  |
| Learning from the actions of    | Cai, Chen, Fang ( <i>AER</i> 2009)           |  |  |
| others                          | Salganik, Dodd, Watts ( <i>Science</i> 2006) |  |  |
| BESTSELLER LISTS                | RESEARCH                                     |  |  |
| Summarize past purchases, but   | Sorensen ( <i>JIndEc</i> 2007): making       |  |  |
| may also convey quality         | the <i>NY Times</i> bestseller list          |  |  |
| information                     | causes an increase in sales                  |  |  |

# LITERATURE

| NON-ADDITIVITY                                                   | RESEARCH                                                                                          |  |  |
|------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Demand is not "additive": fads,                                  | Morgenstern (1948), Liebenstein                                                                   |  |  |
| fashions, etc.                                                   | (1950)                                                                                            |  |  |
| OBSERVATIONAL LEARNING<br>Learning from the actions of<br>others | RESEARCH<br>Cai, Chen, Fang ( <i>AER</i> 2009)<br>Salganik, Dodd, Watts ( <i>Science</i><br>2006) |  |  |
| BESTSELLER LISTS                                                 | RESEARCH                                                                                          |  |  |
| Summarize past purchases, but                                    | Sorensen ( <i>JIndEc</i> 2007): making                                                            |  |  |
| may also convey quality                                          | the <i>NY Times</i> bestseller list                                                               |  |  |
| information                                                      | causes an increase in sales                                                                       |  |  |

The Effect of Bestseller Rank on Demand Data

# OUTLINE

RESEARCH OBJECTIVES

## 2 LITERATURE



- ESTIMATION: CHALLENGES AND STRATEGIES
- 5 IMPLEMENTATION

# 6 RESULTS

**BOBUSTNESS & BEHAVIORAL MECHANISMS** 

<□> <@> <⊇> <⊇> <⊇> <

Sac

8 CONCLUSIONS

The Effect of Bestseller Rank on Demand Data

### Data

### App Store

• Paid apps data

- Went online in July 2008
- Sold billions of apps for the iphone and the ipod touch platforms (more recently, also for the iPad).
- Yesterday's bestsellers are conspicuously displayed on the download interfaces
- Daily data collected between January 1 and June 16 2009

(□) (□) (□) (□) (□)

Sac

The Effect of Bestseller Rank on Demand Data

### Data

### • App Store

• Paid apps data

- Data contain about 14,000 rank-app-day tuples from the top 100 paid apps by unit sales
- Price is observed in the data; price changes are commonplace

▲□▶ ▲@▶ ▲ ≧▶ ▲

Sac

The Effect of Bestseller Rank on Demand Data

# SUMMARY STATISTICS

| Variable    | Description              | Count  | Mean   | Stdev  | Median |
|-------------|--------------------------|--------|--------|--------|--------|
| ID          | Unique app ID number     | 452    |        |        |        |
| Rank        | App rank on top 100 list | 13,996 | 47.86  | 28.35  | 47     |
| L(Rank)     | Lagged rank              | 13,996 | 46.76  | 27.50  | 46     |
| $L_2(Rank)$ | Second lag               | 13,996 | 46.07  | 26.96  | 45     |
| $L_3(Rank)$ | Third lag                | 13,996 | 46.09  | 27.06  | 45     |
| Price       | Price in US Dollars      | 13,996 | 2.72   | 2.25   | 1.99   |
| Age         | Days since first release | 13,996 | 109.40 | 83.15  | 85     |
| VAge        | Age of current version   | 13,996 | 92.63  | 75.85  | 66     |
| Size        | App size (mega bytes)    | 13,996 | 17.20  | 29.11  | 7.8    |
| NewVer      | New Version Dummy        | 13,996 | 0.0162 | 0.1263 | 0      |

**TABLE:** Summary Statistics

The Effect of Bestseller Rank on Demand Data

# SALES-RANK CORRESPONDENCE FOR JOEL COMM



### FIGURE: Sales-Rank Relationship for Available Sales Data

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ = 될 · · · 이 Q (?)

# OUTLINE

- RESEARCH OBJECTIVES
- 2 LITERATURE
- 3 DATA
- **4** ESTIMATION: CHALLENGES AND STRATEGIES
- 5 IMPLEMENTATION
- 6 RESULTS
- ROBUSTNESS & BEHAVIORAL MECHANISMS

<□> <@> <⊇> <⊇> <⊇> <

Sac

8 CONCLUSIONS

# CHALLENGES AND STRATEGIES

### CHALLENGE

Bestseller rank data: intertemporal volume comparisons are not possible. Today's rank 20 app may have more sales than tomorrow's rank 10 app.

#### CHALLENGE

Data issues: autocorrelation, missing variables

### STRATEGY

- Assume unit sales Pareto distributed (need not be iid)
- Observe that log-differences of successive order statistics of Pareto RVs, scaled using rank, are iid exponential

#### Strategy

- Instrumental Variables estimation
- Are there any good instruments for previous-day ranks?

nac

# CHALLENGES AND STRATEGIES

### CHALLENGE

Bestseller rank data: intertemporal volume comparisons are not possible. Today's rank 20 app may have more sales than tomorrow's rank 10 app.

### CHALLENGE

Data issues: autocorrelation, missing variables

### STRATEGY

- Assume unit sales Pareto distributed (need not be iid)
- Observe that log-differences of successive order statistics of Pareto RVs, scaled using rank, are iid exponential

### STRATEGY

- Instrumental Variables estimation
- Are there any good instruments for previous-day ranks?

nac

# APP SURVIVAL ON THE TOP 100 LIST



# OUTLINE

RESEARCH OBJECTIVES

# 2 LITERATURE



- ESTIMATION: CHALLENGES AND STRATEGIES
- **5** IMPLEMENTATION

# 6 RESULTS

**BOBUSTNESS & BEHAVIORAL MECHANISMS** 

Sac

8 CONCLUSIONS

# BUILDING AN ESTIMATING EQUATION

### • Mean Utility

- Random Utility
- Berry Inversion
- Differencing
- Simulation

**SPECIFICATION** 

Mean utility of app j at time t:

$$\delta_{jt} = X_{jt}\beta - \alpha \left( P_{jt} - M_{r(j,t-1)} \right)$$

*P* is price, r(j, t-1) is bestseller rank of app *j* at t-1, *M* is rank-specific value (in \$).  $X_{jt}$  are characteristics of app *j* at *t* like age and version age.

Sac

# BUILDING AN ESTIMATING EQUATION

- Mean Utility
- Random Utility
- Berry Inversion
- Differencing
- Simulation

### **SPECIFICATION**

$$u_{ijt} = \delta_{jt} + \epsilon_j + \varepsilon_{jt} + \xi_{ijt}$$

 $\xi_{ijt}$  is distributed iid Type-I EV. App fixed effects soak up unobserved product quality that may be correlated with price.

# BUILDING AN ESTIMATING EQUATION

- Mean Utility
- Random Utility
- Berry Inversion
- Differencing
- Simulation

Relationship between market shares and mean utilities for product with market share rank k (Berry, 1994):

$$\mathsf{n}\, \mathsf{s}_{kt} - \mathsf{ln}\, \mathsf{s}_{0t} = X_{kt}\beta - \alpha \left( \mathsf{P}_{kt} - \mathsf{M}_{r(k,t-1)} \right) + \epsilon_k + \epsilon_k$$

< 🗆 🕨

▲ @ ▶ < ≥ ▶</p>

Sac

# BUILDING AN ESTIMATING EQUATION

#### **SPECIFICATION**

- Mean Utility
- Random Utility
- Berry Inversion
- Differencing
- Simulation

 $\hat{X}_{kt}\beta - \alpha \left(\hat{P}_{kt} - M_{r(k,t-1)} + M_{r(k+1,t-1)}\right) \\ + \hat{\epsilon}_k + (\epsilon_{kt} - \epsilon_{k+1t})$ 

If unit sales are Pareto distributed,  $\ln s_{kt} - \ln s_{k+1,t}$  is iid exponential with constant (but unknown) mean. Mean is invariant: not a function of the parameters to be estimated.

# BUILDING AN ESTIMATING EQUATION

- Mean Utility
- Random Utility
- Berry Inversion
- Differencing
- Simulation

### **SPECIFICATION**

Generate iid exponential RVs to replace the unobserved LHS of the previous equation. Estimate parameters of interest using OLS for each draw of the LHS. Replicate the process many times.

### OUTLINE

- RESEARCH OBJECTIVES
- 2 LITERATURE
- 3 DATA
- ESTIMATION: CHALLENGES AND STRATEGIES
- 5 IMPLEMENTATION
- 6 RESULTS
- ROBUSTNESS & BEHAVIORAL MECHANISMS
- 8 CONCLUSIONS

# ESTIMATION RESULTS



▲□▶ <□▶ < Ξ▶ < Ξ▶ < Ξ▶ < Ξ</p>

# WHAT DO THE RESULTS TELL?

### DROPS

Estimates of *M* appear to drop around ranks 25 and 50

### POTENTIAL EXPLANATION

Ranks 25 and 50 are the last displayed on the two pages of the mobile App Store interface

#### Large *M*s

Estimated *Ms* for the top 5 apps are large relative to price; decline steeply

#### **NTERPRETATION**

- Popularity begets popularity
- Effect of popularity information much larger for top 25 apps than for other apps

#### 'ARAMETERS

- The *M*s are identified relative to *M*<sub>101</sub> (unranked app)
- Other parameters identified up to scale

#### **IDENTIFICATION**

# WHAT DO THE RESULTS TELL?

### DROPS

Estimates of *M* appear to drop around ranks 25 and 50

### POTENTIAL EXPLANATION

Ranks 25 and 50 are the last displayed on the two pages of the mobile App Store interface

### Large *M*s

Estimated *M*s for the top 5 apps are large relative to price; decline steeply

### INTERPRETATION

- Popularity begets popularity
- Effect of popularity information much larger for top 25 apps than for other apps

#### 'ARAMETERS

- The *M*s are identified relative to *M*<sub>101</sub> (unranked app)
- Other parameters identified up to scale

### [DENTIFICATION]

# WHAT DO THE RESULTS TELL?

### DROPS

Estimates of *M* appear to drop around ranks 25 and 50

### POTENTIAL EXPLANATION

Ranks 25 and 50 are the last displayed on the two pages of the mobile App Store interface

### Large *M*s

Estimated *M*s for the top 5 apps are large relative to price; decline steeply

### INTERPRETATION

- Popularity begets popularity
- Effect of popularity information much larger for top 25 apps than for other apps

### PARAMETERS

- The *M*s are identified relative to *M*<sub>101</sub> (unranked app)
- Other parameters identified up to scale

### IDENTIFICATION

# OUTLINE

- RESEARCH OBJECTIVES
- 2 LITERATURE
- 3 DATA
- ESTIMATION: CHALLENGES AND STRATEGIES
- 5 IMPLEMENTATION
- 6 RESULTS
- ROBUSTNESS & BEHAVIORAL MECHANISMS

Sac

8 CONCLUSIONS

### ROBUSTNESS

### CHALLENGE

Central challenge: results may not reflect a *causal* effect of rank information on demand

#### SOLUTION

### Instrument past ranks

#### WHY?

- Demand shocks may be autocorrelated
- Missing variables (e.g., ratings) possibly correlated with ranks

#### Implementation

Instrumenting all 100 past rank dummies impractical. Instead, instrument reciprocal of the rank.

### ROBUSTNESS

### CHALLENGE

Central challenge: results may not reflect a *causal* effect of rank information on demand

### SOLUTION

Instrument past ranks

#### WHY?

- Demand shocks may be autocorrelated
- Missing variables (e.g., ratings) possibly correlated with ranks

### IMPLEMENTATION

Instrumenting all 100 past rank dummies impractical. Instead, instrument reciprocal of the rank.

# **INSTRUMENTS?**



### **ENDOGENOUS PRICE**

Even with app fixed effects, price changes may be triggered by changes in bestseller rank. Used higher-order rank lags as instruments for price. IV estimates close to OLS, indicating that autocorrelation does not significantly affect the results.

### BEHAVIORAL MECHANISMS

# Observational Learning & Saliency

### WHAT DO THESE MEAN?

- Consumers use bestseller rank to infer app quality: better rank implies better app (observational learning).
- Alternatively, they only learn that an app exists (*saliency*).

500

### MECHANISMS...

#### POLICY IMPLICATIONS

Different when observational learning or when saliency is the dominant mechanism .

# EMPIRICALLY ISOLATING THE TWO MECHANISMS

### ADDITIONAL REGRESSIONS

- Observational learning more likely for the paid apps than for free ones. Confirmed in data.
- Transitions from ranks
  26-25 and 25-24 inform
  about saliency &
  observational learning.
  Latter appears to dominate.

The Effect of Bestseller Rank on Demand Conclusions

# OUTLINE

- RESEARCH OBJECTIVES
- 2 LITERATURE
- 3 DATA
- ESTIMATION: CHALLENGES AND STRATEGIES
- 5 IMPLEMENTATION
- 6 RESULTS
- ROBUSTNESS & BEHAVIORAL MECHANISMS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

э

Sac

**8** CONCLUSIONS

The Effect of Bestseller Rank on Demand Conclusions



BESTSELLER RANK INFORMATION IS AN IMPORTANT DETERMINANT OF DEMAND. ON AVERAGE BESTSELLER RANK BEATS PRICE. OUTCOMES MAY BE INEFFICIENT, AS FOR INFORMATIONAL CASCADES.

LEARNING ABOUT QUALITY OR SALIENCY? ANALYSIS INDICATES THAT LEARNING IS THE MOST LIKELY EXPLANATION

Sac

CROWD-DRIVEN PRICING? WHY NOT! WORKS FOR MUSIC (AMIeStreet.com)