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Summary: I model strategic interaction amongst search engines that compete to serve
consumer needs. Search engines generate revenue from advertisers, but also provide
free organic search results. I demonstrate that, in an attempt to win market share, the
search engines compete not only against each other, but also against themselves: pro-
viding high-quality free links that compete for clicks with their own advertisements—
thus cannibalising their advertising revenues. In particular, I find that in equilibrium
consumers always (at least weakly) prefer to click on at least one non-paid-for link
before clicking on a revenue generating advertisement link so that some consumers
never click an advertisement. I also show that reductions in the strength of competi-
tion in the search industry can facilitate a transition to new equilibria with lower link
quality, which may be an important consideration for regulators.
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I INTRODUCTION

In this paper I build a simple model of the competitive environment within which
search engines operate and, in particular, examine the interplay between paid-
for advertisements (or A-links) and free non-advertisement search results (organic
links, or O-links) when there are consumers that search optimally.

A search engine ostensibly competes for A-link clicks, and thus has an incentive
to provide a high quality of service in order to win market share. Intuitively, by
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providing high quality O-links, a search engine attracts consumers to visit its site
first. This is beneficial if the same consumers, in an attempt to minimise search
costs, stay to also click on advertisements, rather than continuing their search
elsewhere. However, there exists a countervailing effect since search engines face
competition for A-link clicks not only from links at rival search engines, but also
from their own O-links. Thus, the market is characterised by a kind of revenue can-
nibalisation that results in a delicate trade-off between the complementary effects
of O-links (the incentive to compete for market share) and the desire to minimise
the extent to which revenues are cannibalised.

The extent of equilibrium cannibalisation is variable. Sometimes, global free-link
quality can get ‘too good’ so that consumers find it profitable to switch search en-
gines and continue clicking free links on another site, rather than clicking adver-
tisements. In this case, there is a natural ceiling to how good the free links can
get in equilibrium. In other cases, search engines set their quality to the maxi-
mum possible so that competition is, in some sense, maximal. The cannibalisation
effect also engenders a class of equilibrium in which quality is comparatively low,
even when the provision of quality is costless. What all oligopoly equilibria have
in common is that the quality of non-paid-for links is at least as good as that of
advertisements, so that consumers (at least weakly) prefer to click on a non-paid
for link first. If the market exists as a monopoly then the ‘competition for mar-
ket share’ effect disappears and revenue cannibalisation compels the monopolist
search engine to set a low quality.

I also analyse competition when consumers have heterogeneous visit costs for each
search engine. This gives each search engine a degree of monopoly power over
those consumers located nearby which weakens the competition effect relative to
that of revenue cannibalisation so that equilibrium qualities are often lower. Nev-
ertheless, I find that the result that organic links are at least as good as their
advertising counterparts in equilibrium is robust to this relaxation of the model’s
assumptions.

I.1 Literature

Gandal (2001) conducts an empirical study of competition within the Internet search
engine market. Two results are of particular interest for the current work: firstly,
Gandal finds that (on average) consumers use more than one search engine, so that
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consumers are demonstrably willing to switch between engines in order to find
what they are looking for. Secondly, it is shown that the relevance of search results
is by far the most important determinant of search engine ranking (by number of
searches conducted). This suggests that search engines have a strong incentive to
compete on result quality. Taken together with the obvious importance of search
engines in modern society, these results motivate and justify the model developed
below.

Most closely related to this work is the paper of White (2008), who obtains results
similar in spirit to those presented here using a monopolist search engine that of-
fers both advertisement and non-advertisement links. The non-advertising links
reduce consumers’ search costs and induce more consumers to search—increasing
the demand faced by advertising merchants—but simultaneously provide competi-
tion for those consumers’ business, thus reducing price in the final goods market.
This competition amongst the sellers reduces the amount that they are willing to
pay for advertisements. The search engine trades-off these two factors to maximise
the profits it is able to generate when charging a fixed fee to advertisers.

Telang, Rajan, and Mukhopadhyay (2004), and Pollock (2008) have theoretical
models of the search industry with competing search engines. Telang, Rajan, and
Mukhopadhyay (2004) model entry in the Internet search industry and attempt
to explain the existence of low quality firms when consumers pay a price of zero.
Pollock (2008) demonstrates a tendency for concentration in the internet search
industry and then explores a number of welfare and regulation issues with a mo-
nopolist search provider. In both papers, search engine revenues are treated in a
reduced form fashion. In this paper, by contrast, I explicitly allow the consumer to
choose the type of link that he clicks, which makes the value of a visit endogenous to
the search engine’s choice of quality. This introduces a number of new equilibrium
considerations which lead to the cannibalisation discussed above.

There is also a large literature on the relationship between advertising and other
media content—for a summary see Bagwell (2007) section 10. Examples include
Anderson and Coate (2005), who analyse the provision of programs and advertise-
ments by radio and television broadcasters, and Gabszewicz, Laussel, and Sonnac
(2001), who study advertising in the newspaper press. In both cases, much as for
search engines, advertisements are provided alongside additional content that is
attractive to consumers but does not generate revenue directly. The Internet search
advertising market differs, however, in the fact that organic search results compete
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directly for clicks with the revenue generating advertisements on the same site.

This work also has links to other branches of the literature. In particular, Varian
(2007); Edelman, Ostrovsky, and Schwarz (2007); and Athey and Ellison (2007)
model the ‘position’ auction framework that search engines typically use to sell
advertisements, whilst Caillaud and Jullien (2001, 2003); and Rochet and Tirole
(2003), amongst others model price competition in two-sided markets of which In-
ternet search is often used as an archetypal example.

The remainder of this paper is organised as follows: In section II, I establish a
duopoly model of search engine competition in an environment with a mass of
identical consumers and then, in section III, proceed to characterise equilibrium
behaviour within this model. I generalise the duopoly model to the monopoly and
oligopoly cases in section IV and, In section V, I relax the assumption of consumer
homogeneity and analyse competition when consumers have heterogeneous costs
for visiting each search engine. Section VI concludes.

II SIMPLE MODEL

A mass 1 continuum of homogeneous risk-neutral consumers in this model have a
particular need or desire that they seek to satisfy by searching the Internet. Each
time a consumer visits a search engine they must pay a visit cost, S > 0. When
the search results are returned, the consumer may click on them as he or she
pleases, but must pay a further cost, s > 0, for each link that is clicked. If a clicked
link matches the consumer’s need then the consumer receives a surplus, which I
normalise to 1. In the case of internet search, the switching cost, S, may be small.
However, I demonstrate below that it is that size of this switching cost relative to
the cost of clicking a further link at the current site that is of greatest importance.

Two search engines, g and y, provide search results to consumers at a marginal cost
of zero. A search at a given search engine returns two results: one organic (non-
advertising) search result (O-link), and one advertising search result (A-link). Let
Ai and Oi respectively denote the A-link and O-link at site i. The search engines
simultaneously choose an algorithm which results in a quality for their O-links,
denoted by pi ∈ [0, pmax] , i = g, y. This quality is the probability that the O-link
at site i is able to satisfy a given consumer’s need. I assume that satisfaction
is statistically independent across consumers. I wish to focus attention on the
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pure incentives for quality choice in search competition, rather than on the broader
competition in R&D which, although frantic, occurs over longer time scales. In
particular, I wish to clearly identify the extent to which limitation of result quality
is due to the cannibalisation effect. I thus assume that a commonly, and freely
accessible search technology already exists, and permits qualities up to pmax, which
can be thought of as the maximum technologically feasible algorithm quality.

The A-link also has a quality, q. I make the assumption that the same link appears
in the A-link slot at both search engines, so that both search engines also share the
same q.2 I assume that the A-link and O-link point to websites each drawn from
separate pools of firms so that the two are always different.

I assume that the consumers are able to observe the match probabilities pg, py, and
q. When the A-link at a search engine is clicked, that search engine receives a
per-click price, which I denote by b. The search engine receives nothing when its
O-link is clicked.

Let µm denote the match probability of the mth link that a consumer clicks, and
denote by Cm the total number of times that the consumer has paid the visit cost,
S, by the time that he has clicked on the mth link.3 The consumer’s expected utility
from clicking M links is of the form

(1) U =
M∑

m=1

[(
m−1∏
k=1

(1− µk)

)
µm (1− CmS −ms)

]
+[(

M∏
k=1

(1− µk)

)
(−CMS −Ms)

]
.

To summarise: search engines move first and simultaneously select a quality pi.
Consumers observe pg, py, q, S and s, and select whether, and in which order to click
each link. The game ends when all consumers have either had their need met or
do not wish to click any further links.

2This assumption could, for example, be justified by observing that, with a single A-link at each
site, advertiser-firms bidding per-click prices in a position auction have a dominant strategy to bid
up to their value—which is given by the expected profit per click. When multiple search engines sell
a single slot simultaneously, it remains a dominant strategy for each firm to bid up to its valuation
in each auction. If there is no systematic difference in consumption habits of the users of each
search engine then the result should be the same firm winning each auction.

3Thus, C1 = 1. If the consumer clicks the first two links at the same site then C2 = 1, otherwise
C2 = 2. C3 ∈ {2, 3}.



Greg Taylor Competing Search Engines 6

III EQUILIBRIUM BEHAVIOUR IN THE SIMPLE MODEL

III.1 Optimal Consumer Behaviour

The problem faced by each consumer in this model is to determine whether to click
on each link and in which order to do so. A strategy for a consumer specifies these
actions as a function of the choices of pg and py, as well as the model parameters S,
s, and q. Since the consumers are aware that both sites will display the same A-link
in equilibrium, they only ever click the A-link at one of the two sites. Once a con-
sumer’s need is met, that consumer always stops clicking on links. Note that since
all consumers are assumed homogeneous they will agree on a preference ordering
over the set of possible strategies.

If q < s then no consumer ever clicks an A-link and search engines, which make
zero profits, are indifferent across all choices of p. When s ≤ q < S + s, consumers
click on an A-link if and only if max {pg, py} ≥ S + s (which will always be true in
equilibrium), in which case the below analysis remains fundamentally unchanged.
Throughout the remainder of this and the following section, I assume that q ∈
(S + s, 1), so that consumers are always willing to click on A-links.4

Given the form of (1), it is possible to characterise the best response strategy for a
consumer to each possible {pg, py, q}, and this is done in strategy 1. First, let

e ≡


g if pg > py and pg ≥ s

y if pg < py and py ≥ s

g w.p. α, y w.p. 1− α if pg = py or max{pg, py} < s,

−e = {g, y} − {e}.

Strategy 1 Suppose that q ≥ S + s. A consumer’s best response strategy maps the
link qualities {pg, py, q} into a click order {a1, a2, a3} as follows. Begin by clicking a1

thus:

a1 =


Oe if pe > q

Ae if pe < q

Ae w.p. λe, Oe w.p. 1− λe if pe = q,

4In order to simplify the exposition, I am also ruling out the trivial case in which q = 1. Briefly,
q = 1 gives rise to a continuum of uninteresting equilibria in which, search engines choose an
arbitrary p ∈ [0, 1), and consumers click an A-link at an arbitrarily chosen search engine resulting
in immediate satisfaction.
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If the consumer’s need was met by a1 then stop clicking (i.e. a2 = a3 = ∅), otherwise
click a2 as follows:

a2 =



Ae if a1 = Oe and p−e < γ

O−e if a1 = Oe and p−e > γ

Ae w.p. φe, O−e w.p. 1− φe if a1 = Oe and p−e = γ

Oe if a1 = Ae and pe ≥ s

∅ if pe < s

If the consumer’s need was met by a1 or a2 then stop clicking (i.e. a3 = ∅), otherwise
click a3 as follows:

a3 =


O−e if {a1, a2} = {Oe, Ae}, and p−e ≥ S + s

A−e if a2 = O−e

∅ if p−e < S + s.

Any best response strategy for the consumer must take the form of strategy 1 with
some choice of α, φg, φy, λg, λy ∈ [0, 1].5 Since all consumers’ behaviour must be
described by strategy 1 in equilibrium, the probability parameters may, without
loss of generality, be interpreted as proportions of the population undertaking any
given action.

Action a2 makes reference to a parameter, γ. When pg, py > q, this value repre-
sents the threshold for min {pg, py} above which consumers prefer to switch from
one search engine to the other—clicking the O-link at both—before finally clicking
the A-link at the second site he visits. In contrast, if min {pg, py} < γ then the con-
sumer prefers to click both the O-link and A-link at the first site he visits before
switching over to the second site. I shall refer to these behaviours respectively as
‘switching’ and ‘sticking’.

Calculation of the parameter γ is as follows: Suppose, for concreteness that q <

pg ≤ py. Consumers find it optimal to click on Oy first. The total expected utility
that each consumer gets from ‘switching’ to next click on Og is

(2) U = py(1− S − s) + (1− py)pg(1− 2S − 2s)+

(1− py)(1− pg)q(1− 2S − 3s) + (1− py)(1− pg)(1− q)(−2S − 3s).

5For the sake of notational (and, occasionally, algebraic) simplicity, I have assumed that
α, φg, φy, λg, and λy are constant. In principle, these variables could be functions of pg and py—
permitting such a functional relationship has no substantive effect on the results presented below.
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Similarly, the utility from ‘sticking’ is

(3) U = py(1− S − s) + (1− py)q(1− S − 2s)+

(1− py)(1− q)pg(1− 2S − 3s) + (1− py)(1− q)(1− pg)(−2S − 3s).

Setting (2) and (3) equal to one another, and calculating γ as the pg that yields
indifference gives:

pg =
S + s

s
q ≡ γ.

This simply says that the utility per unit of expenditure for clicking Og and Ay

should be equal. An increase in pg to some p′g ∈ (γ, py) makes clicking {Oy, Og, Ag}
strictly more attractive than {Oy, Ay, Og}, and so consumers switch. Conversely,
a reduction in pg leaves consumers preferring to stick. A symmetric argument
applies to the case of py < pg.

III.2 Equilibrium Characterisation

I now proceed to characterise the equilibria of this game, focusing on equilibria
that are in pure strategies for the search engines. I refer to such equilibria as SE-
pure. The first result establishes that, when search engines are constrained to use
particularly poor algorithms, quality competition will generally be maximal.

Lemma 1 If pmax < q then at least one i ∈ {g, y} sets pi = pmax in equilibrium. If,
in addition, α ∈ (0, 1) then pg = py = pmax is the unique equilibrium search engine
behaviour.

The proof for this and other results can be found in Appendix A.

Note that cannibalisation is not in effect for values of p less than q since all con-
sumers then prefer to click the A-link first. Thus, there is no offsetting force for the
‘competition for market share’ incentive, which is why the intensity of competition
described in lemma 1 obtains. For the remainder of the paper, I shall make the
assumption that pmax ≥ q. Moreover, since allowing general values for α provides
no significant further insights, I shall henceforth assume that search engines are
treated symmetrically (at least in aggregate) in the sense that α = 1/2. I next show
that all SE-pure equilibria are necessarily symmetric in search engine strategies.
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Lemma 2 All SE-pure equilibria have pg = py.

Now, in lemma 3, I foreshadow what is to come with a result demonstrating that
search engines have a strong incentive to provide O-links that compete fiercely
against their own A-links.

Lemma 3 There is no SE-pure equilibrium in which min {pg, py} < q.

The intuition here is similar to that for lemma 1: There is no cannibalisation incen-
tive for quality limitation so long as consumers prefer to click an A-link first, which
is true whenever O-link qualities are less than q. Thus, so long as both search en-
gines offer a p < q, there is no disincentive to increasing p in order to capture
market share. When pmax > q, lemma 3 implies that the lowest {pg, py} pair that
could ever be consistent with an SE-pure equilibrium is pg = py = q. In equilibrium
1, I demonstrate that this is indeed an equilibrium, albeit under a restricted set of
circumstances.

Equilibrium 1 The search engine strategy pg = py = q, and the consumer strat-
egy detailed in strategy 1, form a subgame perfect equilibrium of the above game
whenever

(4) q ≥ 1

1 + λi

∀ i.

The higher is min{λg, λy}, the lower is the minimum value of q consistent with the
above equilibrium. For λg = λy = 1, the equilibrium in proposition 1 is sustained
by any q ≥ 1/2—if q < 1/2 then there are no {λg, λy} such that neither g nor y

wishes to deviate. The more natural assumption is λg = λy = 1/2, in which case
the condition for the proposed equilibrium to exist is q ≥ 2/3.6

In equilibrium, search engines do not wish to reduce O-link quality since their com-
petitor then captures the entire market.7 Each search engine can, in fact, capture
the entire market for themselves with a (potentially small) increase in quality to

6Were S + s > q for a large enough proportion of consumers then the existence condition for
equilibrium 1 would become more demanding: search engines would have an additional incentive
to increase quality in order to induce such consumers to search.

7Switching costs in the Internet Search industry are low so that, as Gandal (2001) has shown,
consumers are likely to switch to the highest quality search engine, even when the quality difference
is small.
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some q + ε. This, though, carries a cost: at the higher quality, consumers are in-
duced to click the deviator’s O-link first so that only those left unsatisfied by the
O-link ever click on the A-link. When consumers play in such a way that 4 is satis-
fied, the loss in clicks that this cannibalisation effect generates outweighs the gain
in market share so that the search engine prefers not to deviate.

If q is low, so that 4 can not be satisfied, then any SE-pure equilibrium must have
pg, py > q. The result of the next equilibrium makes this statement more stark.
Under certain conditions on the parameters of the model, there is an equilibrium
in which the intensity of competition is maximal in the sense that both pg and py

are set to pmax. This result is formalised in equilibrium 2.

Equilibrium 2 If γ > pmax then the search engine strategy pg = py = pmax, and the
consumer strategy detailed in strategy 1, form a subgame perfect equilibrium of the
above game.

The condition for existence of equilibrium 2, viz. γ > pmax, is more likely satis-
fied if S is large relative to s: a search engine’s power over its captive audience
increases when sticking to click more links is much cheaper than continuing the
search elsewhere—and hence so does the incentive to compete for visitors. More
specifically, equilibrium 2 comes about because, when min {pg, py} ∈ [0, γ), the con-
sumer always prefers to play ‘stick’ rather than ‘switch’. If both search engines
choose some p < pmax then there is an incentive for each engine to offer a slightly
higher p than its rival in order to capture all of the A-link clicks. In this manner,
large portions of search engine profits are dissipated. This result is clearly remi-
niscent of Bertrand price competition. When pmax = 1, equilibrium 2 implies zero
profits for search engines. In fact, it turns out that if pmax = 1, pg = py = 1 is always
an equilibrium.8

In equilibrium 2, search engines have an incentive to increase their p to the great-
est extent possible. This is true whenever pg, py < γ. In contrast, if min{pg, py} > γ,
the consumer always switches and there is thus an incentive for each search en-
gine to offer a p that is lower than that of its rival. It might seem natural, then, to
look for an equilibrium in which pg = py = γ. This is the business of equilibrium 3.

8By assumption, q < 1. Thus, with pg = py = 1, the consumer clicks one of Og or Oy, and
is immediately satisfied. A-links are never clicked, and search engine profits are thus zero. A
deviation by i, namely setting pi < p−i = 1, results in the consumer clicking on O−i first with
probability one and thus i’s profits remain at zero. Thus i has no profitable deviation.
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Equilibrium 3 If γ ≤ pmax then the search engine strategy pg = py = γ, and the
consumer strategy detailed in strategy 1, with

(5)
φi

1− φ−i

≤ 1− γ ∀i.

form a subgame perfect equilibrium of the above game.

Intuitively, equilibrium 3 works as follows: any reduction in O-link quality by a
search engine is unprofitable because consumers do not have sufficient incentive
to visit until its rival’s links have been exhausted. Positive deviations are also
unprofitable for the search engines since O-links are then ‘too good’—when (5) is
satisfied, consumers that are attracted by a high p are too likely to switch sites
and continue clicking O-links, rather than stick around to try the A-link at the
deviator’s site.

In summary, the simple model has produced three classes of SE-pure equilibrium,
with up to two existing at any one time. Firstly, if γ ≥ pmax then there exists an
equilibrium of the form pg = py = pmax. When γ < pmax, this equilibrium can no
longer be sustained, and is replaced by a pg = py = γ equilibrium with appropri-
ate choice of φ by the consumer. Precisely one of these two classes of equilibria
is guaranteed to exist. In addition, if q ≥ 1/2 then there exists a second equi-
librium in which search engines set pg = py = q and the consumer chooses λ to
satisfy (4). Note that when there exist two equilibria, the consumers would prefer
to steer search engines into the higher quality equilibrium by setting a low λ. This
type of coordination, though, is likely to be difficult when there are many ‘small’
consumers.

IV MARKET STRUCTURE

In this section, I generalise the simple model to the oligopoly and monopoly search
provider cases, and perform comparative statics analysis on the existence condi-
tions for equilibria under these circumstances.
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IV.1 n-Search Engine Oligopoly

With n search engines, optimal consumer behaviour is somewhat analogous to the
duopoly case. In order to simplify the notation, I drop the search engine subscripts
for λ and φ. Moreover, I assume that, whenever the consumer is indifferent be-
tween visiting two or more search engines, he visits each with equal probability, so
that the consumer treats search engines symmetrically. The best response of the
consumer is, then, given in strategy 2 below.

Strategy 2 Label the search engines so that p1 ≥ p2 ≥ . . . ≥ pn. A consumer’s
best response strategy maps the link qualities {p1, p2, . . . , pn, q} into a click order
{a1, a2, . . . , an+1} as follows. Begin by clicking a1 thus:

a1 =


NA1 if p1 > q

A1 if p1 < q

A1 w.p. λ, NA1 w.p. 1− λ if p1 = q,

Now, for 1 ≤ i ≤ n, if the consumer’s need was met by ai then stop clicking (i.e.
ai+1 = . . . = an+1 = ∅), otherwise click ai+1 as follows:

ai+1 =



Ai if ai = Oi and pi+1 < γ, or if ai = Oi and i = N

NAi+1 if ai = Oi and pi+1 > γ

Ai w.p. φ, NAi+1 w.p. 1− φ if ai = Oi and pi+1 = γ

Oi if ai 6= Oi and pi ≥ s

∅ if pi < s.

Strategy 2 again makes reference to γ. Suppose that the consumer is weighing the
click orders {. . . , NAi−1, NAi, Ai, NAi+1, . . .} and {. . . , NAi−1, Ai−1, NAi, NAi+1, . . .},
viz. the consumer is comparing the utility from clicking the A-link at the ith search
engine he visits, to that from doing so at the i− 1th site. The respective utilities are
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(6)
i−1∑
e=1

[
pe(1− eS − es)

e−1∏
k=1

(1− pk)

]
+

[
pi(1− iS − is)

i−1∏
k=1

(1− pk)

]
+[

q(1− iS − (i + 1)s)
i∏

k=1

(1− pk)

]
+

n∑
e=i+1

[
pe[1− eS − (e + 1)s](1− q)

e−1∏
k=1

(1− pk)

]
−[

[nS + (n + 1)s](1− q)
n∏

k=1

(1− pk)

]
,

and

(7)
i−1∑
e=1

[
pe(1− eS − es)

e−1∏
k=1

(1− pk)

]
+

[
q(1− (i− 1)S − is)

i−1∏
k=1

(1− pk)

]
+[

pi[1− iS − (i + 1)s](1− q)
i−1∏
k=1

(1− pk)

]
+

n∑
e=i+1

[
pe[1− eS − (e + 1)s](1− q)

e−1∏
k=1

(1− pk)

]
−[

[nS + (n + 1)s](1− q)
n∏

k=1

(1− pk)

]
.

The first, fourth and fifth terms in (6) and (7) are identical so that comparison of
the two amounts to comparing the second and third terms. It transpires that the
two expressions are equal precisely when pi = γ. Thus, when pi = γ, the consumer
is indifferent between the two considered click orders.

Given this consumer strategy, I am ready to examine equilibrium search engine be-
haviour when each search engine faces n−1 ≥ 1 competitors. It is fairly straightfor-
ward to transfer lemmas 2 and 3 to the n-search engine case. The proofs of lemmas
4 and 5 are easily adapted from those of lemmas 2 and 3, and are consequently
omitted.

Lemma 4 All SE-pure equilibria in the n-search engine version of the simple model
are symmetric in search engine strategies.

Lemma 5 There is no SE-pure equilibrium with pi < q for some i in the n-search
engine version of the simple model.

It again must be the case, then, that any SE-pure equilibrium has pi ≥ q ∀ i. The
existence of equilibrium 1 rests upon the requirement that the consumer clicks A-
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links first with a probability sufficient to ensure that no search engine can obtain
a big enough increase in (expected) A-link clicks from an increase in its p to make
such a deviation profitable. When there are n ≥ 2 search engines, the probability
with which each of the search engines is visited first is given by 1

n
. Recalculating

(4) using this probability reveals the following:

Equilibrium 4 The search engine strategy pi = q∀i, and the consumer strategy
detailed in strategy 2 form a subgame perfect equilibrium of the n-search engine
oligopoly game if

(8) q ≥ n− 1

n− 1 + λ
.

The proof is identical to that of equilibrium 1, with 1/n substituted in place of 1/2.
It is immediately apparent from (8) that the condition for existence of the ‘low p’
equilibrium becomes less demanding as the number of competing search engines
in the industry is reduced.

In contrast, it turns out that the condition for existence of the analogue of equilib-
rium 2 remains unchanged for any n > 1. This is formalised in equilibrium 5.

Equilibrium 5 When γ ≥ pmax, the search engine strategies p1 = p2 = . . . = pn =

pmax, and the consumer behaviour detailed in strategy 2 form a subgame perfect
equilibrium of the n-search engine oligopoly game.

What, then, of the case with γ < pmax? It has already been demonstrated that,
when pi = γ, the consumer is indifferent between clicking the A-link at the ith

search engine he visits and doing so at the i − 1th site. Moreover, if it is also
the case that pi+1 = γ then the consumer is indifferent between the click or-
ders {. . . , NAi−1, NAi, Ai, NAi+1, . . .} and {. . . , NAi, NAi+1, Ai+1, NAi+2, . . .}. Thus,
if pi = γ ∀i, it can be established by transitivity that the consumer is indifferent
between any two click orders which do not have him click on an A-link first.

Now, let us look for an equilibrium with pi = γ∀i. When i deviates by setting some
p′i > γ, he is visited first with probability 1. Thus, profits from deviation to some
p′i > γ are given by

(9) π′
i = (1− p′i)φb,
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which is maximised when p′i is arbitrarily close to γ. Suppose, instead, that i com-
plies with the suggested equilibrium. Profits then are given by9

(10) πi =

[
φ

n

n−1∑
k=1

(1− γ)k(1− φ)k−1

]
b +

[
1

n
(1− γ)n(1− φ)n−1

]
b.

Note that (9) approaches zero with φ, whilst the second term in (10) remains posi-
tive since γ < pmax implies γ < 1. Thus a p = γ equilibrium can always be sustained
by setting a low enough φ.

Proposition 6 There exists a φ̄ such that, for φ < φ̄, (9) is less than (10). Strategy
2 with any such φ sustains a sub-game perfect equilibrium in which pi = γ∀i.

IV.2 Monopoly Search Provider

I now extend the simple duopoly model of II to examine the equilibrium consider-
ations induced by a monopolist search engine. In the results above, competition
for visits prompts search engines to cannibalise their revenues from A-link clicks.
When this competition is taken away so is the incentive to provide O-links of a
high quality. Only the cannibalisation effect remains, and thus monopolists will
generally set a low quality.10

Proposition 7 With a monopoly search provider, any equilibrium must involve
some p ≤ q. If λ < 1 then p < q must hold for equilibrium to be sustained.

9The probability that site i is the kth site to be visited is 1/n. Conditional on being the kth site
(for k < n), i receives a profit of b if and only if all of the first k − 1 O-links, as well as i’s own O-link
fail to match the consumer’s need (each link failing with probability 1 − γ), and if the consumer
chooses to switch at the first k − 1 sites and stick at i’s site. This gives rise to the first term in (10).
The second term comes from the fact that if i is the nth site to be visited, and the consumer has
switched at the first n − 1 sites, then the consumer sticks at i with probability 1 since there are no
more search engines to switch to.

10If S + s > q for a large enough proportion of consumers then the monopolist may still wish to
set a p > q in order to induce those consumers to search.
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IV.3 Comment

One of the issues in the regulation of Internet search has been to fully understand
the effects of reduced competition in the industry. This is especially true since ad-
vertisers can easily substitute to other mediums, and the ability of search engines
to exercise any market power over them is thus limited. However, the above re-
sults demonstrate that reduced competition may also spill-over into the quality of
search services enjoyed by consumers: In the oligopoly case, firms may have an
incentive to consolidate or collude since this can create new equilibria with higher
total industry profits, but lower O-link quality. This is even more true if the con-
solidated firm is a monopolist—in which case the industry profits are maximised
and quality is particularly low. This may prove to be an important consideration if
the consumer’s search experience is part of the regulator’s objective.

V HETEROGENEOUS VISIT COSTS

The results from section III are stark, but the Bertrand-like assumption of all-
or-nothing profits is equally so. One question that naturally arises is whether or
not the above results remain valid when there is some degree of continuity to the
demand faced by each search engine. To this end, I invoke a standard Hotelling
(1929) linear city type model in which consumers have heterogeneous visit costs
distributed along a segment of the real line. As well as being of interest in its own
right, this serves as a robustness check for the model of section II.

More concretely, suppose that a mass 1 of consumers are uniformly distributed
along a line of unit length, with g located at point 0, and y at point 1. A consumer
located at point x must pay a cost Sg(x) = tx to visit g and Sy(x) = t(1 − x) to
visit y, where t ∈ (0, 1) is a parameter that scales costs. The model is otherwise as
above. One possible intuition for this model is the observation that some consumers
have a search engine bookmarked, set as their browser’s homepage, installed as a
browser tool bar, or else use a particular search engine provider for other services
such as email and calendaring—making the use of such a search engine relatively
less costly vis-à-vis its competitors.

Whereas, in section III, I maintained the condition that 1 > q > S+s, I now now use
the slightly stronger assumption that 1 > q > t+ s.11 Moreover, in order to simplify

11This is consistent with the consensus that switching costs in the Internet search industry are
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the analysis, I focus on the limiting case of s positive and tending to zero.12 In
the first instance, this rules out the potentially complicated switching behaviour
(which, in general, will now be location dependent). The assumption of small s also
admits the tractability of the analytic solutions that follow.

Given the structure of visit costs, consumers now determine which search engine
to visit first in consideration not only of pg and py, but also their own personal
location, x. In particular, the utility from any click order involving clicking both
links at g first is decreasing in x, whilst that from clicking both links at y first is
increasing in x. Thus, for some x∗, the best response for a consumer is to visit g first
whenever x ≤ x∗ (otherwise begin at y), and once there to click on the O-link first if
its quality exceeds that of the A-link, and vice-versa. As in section III, consumers
stop clicking if their need is satisfied, or if the quality of the O-link at the second
site is less than S. More formally, let

e(x) ≡

{
g if x ≤ x∗

y if x > x∗ ,−e(x) = {g, y} − {e(x)}.

Strategy 3 A consumer’s best response strategy, then, maps his position and the
qualities into a click order {a1, a2, a3} thus:

a1 =


Ae(x) if q > pe(x)

Oe(x) if q < pe(x)

Ae(x) with probability λe(x), NAe(x) with probability 1− λe(x) if q = pe(x),

a2 =


Ae(x) if a1 = NAe(x) and consumer’s need remains unmet
Oe(x) if a1 = Ae(x) and consumer’s need remains unmet
∅ if consumer’s need was met by a1,

and

a3 =

{
O−e(x) if p−e(x) ≥ S−e(x) and consumer’s need remains unmet
∅ if p−e(x) < S−e(x) or if consumer’s need was met by a1 or a2.

An immediate question is whether it is ever optimal for search engine i to choose
some pi < t—thus inducing some consumers to click only the two links at its rival.

low.
12This is equivalent to assuming that consumers prefer to click the higher quality of the two

links at a site first, but pay no cost to do so.
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In fact, in a result analogous to lemma 3, I am able to show that, when consumers
behave as defined in strategy 3, no pi < q is ever optimal for search engine i.

Proposition 8 When consumers play a best response, choosing some pi < q with
positive probability is never optimal for search engine i ∈ {g, y}.

Intuitively, increasing pi causes more consumers to visit i first. As long as pi re-
mains below q, the proportion of consumers visiting i who click Ai does not decrease
(there is no cannibalisation effect). Thus, when pi < q, i can always do better by
finding some p′i ∈ (pi, q), and the existence of such a p′i is assured since [0, q) has no
largest element.

Although proposition 8 exists in the same spirit as does proposition 3, the former is
a stronger result: In addition to ruling out equilibria with some pi < q, proposition
8 demonstrates that—conditional on the consumer behaving rationally—any pi < q

is strictly dominated.

Given that consumers will always be induced to click all three links (so long as their
need remains unsatisfied), one can use utility functions of the general form speci-
fied in 1 to identify the location of the consumer indifferent between first visiting g

and y as approaching

(11) x∗
I =

pg + q − pgq

pg + py + 2q − pgq − pyq

in the s → 0 limit, when pg, py ≥ t. The assumption that s is small is of immediate
assistance here, since it ensures that the above calculated indifference point is
valid irrespective of the relative size of q vis-à-vis pg and py, viz. (11) is valid for all
pg, py ∈ [t, 1].

Thus, for pg, py > t, given that consumers do not switch, and given that they click
on links at the first site in declining order of quality, g’s profits are given by

(12) πg = x∗
I(1− pg)b

when pg > q,

(13) πg = x∗
Ib
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when t ≤ pg < q, and

(14) πg = x∗
I [(1− λg)(1− pg)b + λgb]

when pg = q. The analogous profits for y are πy = (1 − x∗
I)(1 − py)b, πy = (1 − x∗

I)b,
and πy = (1− x∗

I) [(1− λy)(1− py)b + λyb] respectively.

From proposition 8, there can clearly be no equilibrium with some pi < q. I now
turn my attention to the possibility of equilibria with pg, py ≥ q, focusing again on
SE-pure equilibria. It is immediately apparent that any equilibrium with some
pi = q must have λi = 1, otherwise (13) is strictly greater than (14) for pg less than,
but sufficiently close to q (and likewise for y’s profit functions). I am now able to
establish the following equilibria:

Equilibrium 6 There exists a q = 0.0836 such that the search engine strategies
pg = py = q, and the consumer strategy detailed in strategy 3 with λi = 1∀i form a
sub-game perfect equilibrium of the heterogeneous visit costs game whenever q ≥ q.

Equilibrium 7 There exists a q̄ = 0.1042 such that, whenever q ≤ q̄, the search
engine strategies

(15) pg = py =
1− 3q

3− 3q
(> q),

and the consumer strategy detailed in strategy 3 form a sub-game perfect equilib-
rium of the heterogeneous visit costs game. Moreover, this is the only SE-pure equi-
librium with pg, py > q.

These two classes of equilibria are shown diagrammatically in figure 1. The dis-
continuity in g’s profits at pg = q originates from the fact that, when pg is increased
from pg = q − ε to p′g = q + ε (ε small), the entire mass of consumers who click
g’s A-link switch from clicking Ag first to clicking Og first so that g’s profits jump
discontinuously from (13) to (12). The profit function also has a kink at pg = p̂,
where

p̂ =
pyq − py − 2q + t(1− q) +

√
4(1− q)tq + (pyq − py − 2q + t(1− q))2

2(1− q)
.

For very low values of pg (< p̂), consumers close to g use the click order {Ag, Og, Oy},
whilst all others click both links at y but never visit g. When pg is increased slightly,
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pg

πg

q = pyp̂

(a) q ≥ q, pg = py = q, λg = λy = 1

pg

πg

q pyp̂

(b) q ≤ q̄, pg = py = (1− 3q)(3− 3q)−1 > q

FIGURE 1 Two classes of equilibria in the heterogeneous visit costs game.

the utility from the former click order increases, whilst that of the latter does not—
consumers who never click Og do not gain from an increase in its quality. It is thus
fairly easy for g to attract the marginal consumer, and the market share of g thus
increases rapidly in pg below p̂.

Once pg exceeds p̂, however, some consumers, having clicked both links at y, subse-
quently find it worth while to visit g and click Og. The relevant indifference point
for determining g’s demand is now the point at which the consumer is indifferent
between this behaviour and the click order {Ag, Og, Oy}. Demand, then, becomes
less responsive to changes in pg above p̂, since any increase in pg not only increases
the utility of visiting g first, but also that of the relevant alternative—namely start-
ing the search at y.

Further insight into the mechanics of these equilibria may be obtained by exam-
ining the reaction functions that give rise to them. Taking a first order condition
reveals the choice of pg that maximises (12) to be

(16) pg =
2q2 − 2q − py (q − 1)2 +

√
(q − 1)

(
p2

y(1− q)2 + q(1− q) + py (1 + q − 2q2)
)

(q − 1)2 .

A symmetric function obtains for y. Provided this function evaluates to some pg > q,
which is the case whenever

py >
q − 3q2

(1− q)(2q − 1)
,
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(16) represents the pg that maximises (12).13 Alternatively, g can choose pg = q, in
which case, profits are given by (14). Thus g’s complete reaction function is formed
by choosing between these two values of pg to maximise profits. Such composite
reaction functions are shown in figure 2 for various values of q, and for λg = λy = 1

(recall that λg = λy = 1 is necessary to sustain a pg = py = q equilibrium).

Firstly, there exists a q0 = 0.0573 such that for any q ≤ q0, g’s best response is to
select some pg > q, and play in accordance with (16)—irrespective of the value of
py. In equilibrium 7, it was shown that (15), which lies in the range [0, 1] whenever
q ≤ 1/3, is a fixed point of (16). Symmetry of the reaction functions ensures that
this is a point of intersection between the two.

Increasing pg above q has both a benefit and a cost for g. The benefit arises when
the higher p attracts more consumers to visit g first, so that x∗ increases. The
manifestation of the cost is that consumers are induced to click Og first, and thus
g’s A-link is clicked with probability 1 − pg, rather than with probability 1. When
q is increased, so is the smallest pg such that pg > q. Thus, each extra consumer
attracted by the higher pg clicks on the A-link with an ever decreasing probability.
As q becomes particularly high, the number of additional visitors necessary to com-
pensate g for this fall soon exceeds the actual increase in x∗ brought about by the
original increase in pg.

Thus, as q rises above q0, it becomes optimal for g to respond to low values of
py with pg = q, rather than to use (16), and likewise for y to play py = q when
pg is low. Moreover, as q is increased further, the size of the interval over which
search engines wish to play in this manner increases, so that, by the time q ≥ q,
pg = py = q is a mutual best response (provided that λg = λy = 1) giving rise to a
new equilibrium (see figure 2(c)). For yet higher values of q this effect is so strong
that the pg, py > q equilibrium is undermined (see figure 2(e)) so that pg = py = q is
the only remaining equilibrium behaviour for the search engines.

Reaction functions depend only on q, and are symmetric and (weakly) increasing
viz. pg and py are strategic complements. This implies that there are no asymmetric
equilibria.

Proposition 9 There are no SE-pure equilibria with asymmetric search engine
strategies in the heterogeneous visit costs game.

13If (16) yields a pg ≤ q then, since (12) is concave, profits are decreasing in pg everywhere above
q.
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pg = py > q equilibrium

RFy

RFg

pg

py
q

q

(a) q ≤ q0 = 0.0573

pg

py
q

q

pg = py > q equilibrium

RFy

RFg

(b) q0 < q < q

pg

py
q

q

pg = py > q equilibrium

pg = py = q

equilibrium

RFy

RFg

(c) q ≤ q < q̄

pg

py
q

q

pg = py > q equilibrium

pg = py = q

equilibrium

RFy

RFg

(d) q = q̄

pg

py
q

q

pg = py = q

equilibrium

RFy

RFg

(e) q > q̄

FIGURE 2 Reaction functions and equilibrium points with λg = λy = 1, for various
values of q.
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Taken together, proposition 8, proposition 9, and equilibrium 7 imply that equilib-
ria 6 and 7 are the only sub-game perfect SE-pure equilibria of the heterogeneous
visit costs game.

VI DISCUSSION

In this paper I have examined equilibrium behaviour in a simple model of the
Internet search market. My main finding is that if search engines compete on
result quality and consumers select search engines according to link relevance—
as evidenced by Gandal (2001), equilibrium quality competition is strong in the
sense that organic search results are at least as good as profit-yielding advertising
links. Search engines provide such high quality links in an attempt to attract
consumers who may stay to click on advertisements. It is in this fashion that
search engines ‘cannibalise’ their own revenue streams, since the organic links
that a search engine provides compete for clicks with its own advertisement links.
In fact, unless the expected quality of advertising links is high (in the sense of
equation (4)), and the number of competing firms small, the only equilibria in pure
strategies for the search engines involve non-advertising link qualities that strictly
exceed the quality of the advertising links. I have also found that reductions in
the strength of competition in the search industry may create new equilibria with
lower link quality, which may be an important consideration for regulators.

Introducing heterogeneity in visit costs moderates the incentive to compete for con-
sumer visits since search engines have a degree of monopoly power over consumers
located nearby. This notwithstanding, I again find that non-advertising links must
be at least as good as (and, for low advertising link quality, strictly better than)
their advertising counterparts in equilibrium.
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APPENDIX A OMITTED PROOFS

A.1 Proofs from Section III

Proof of Lemma 1. In equilibrium, the consumer uses a strategy of the form
given in strategy 1. For concreteness, suppose that pi ≤ p−i. If pi, p−i < pmax then
at least one search engine is visited with probability less than 1, and can profit by
setting p = pmax, which results in that search engine being visited and receiving an
A-link click with probability 1. Thus, equilibrium requires that at least one search
engine sets p = pmax with probability 1.

If pi < p−i = pmax and α ∈ (0, 1) then i makes zero profits, and can make positive
expected profits by deviating to pi = pmax. It follows that playing any pi < pmax with
positive probability is not consistent with equilibrium when α ∈ (0, 1).

Proof of Lemma 2. In equilibrium, the consumers’ strategies must have the
form of strategy 1. I now proceed by establishing a proof by contradiction. For
concreteness, suppose that pi > p−i. If pi ≤ q then −i makes zero profits, but can
make positive profits by setting p′−i > max{s, pi}. When pi ∈ (q, γ], i receives a profit
of (1 − pi)b—which is decreasing in pi—and therefore prefers to reduce pi slightly.
The same is true when pi > γ ≥ p−i. Finally, if pi > p−i > γ then the consumer
uses click order {Oi, O−i, A−i} and i’s profits are zero. There is thus a profitable
deviation for i which has it set p′i ∈ (γ, p−i).

Proof of Lemma 3. By lemma 2, all SE-pure equilibria are symmetric in search
engine strategies. Thus, min {pg, py} < q implies that pg = py = p < q. At least one
i ∈ {g, y} must, then have its A-link clicked with probability less than 1. It follows
that both g and y have a profitable deviation, namely to set some p′i ∈ (p, q).

Proof of Equilibrium 1. When pg = py = q, the consumer is indifferent about
which site he visits first, and also about which link he clicks first. Suppose that the
consumer visits each search engine first with probability 1/2 and, having visited
site i first, clicks on Ai first with probability λi. Search engine expected profits are
then

(A-17) πi =
1

2
(λi + (1− λi) (1− pi)) b,

Consider a deviation by search engine i to pi < p−i = q. The optimal behaviour for
the consumer now involves clicking on both A−i and O−i before visiting i to click on
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Oi. Search engine i’s profits are zero and the deviation is not profitable.

Suppose, instead, that i sets p′i > p−i = q. The optimal click-order for the consumer
is now {Oi, Ai, O−i}, which gives an expected profit for i of

(A-18) π′
i = (1− p′i) b.

Since (A-18) is decreasing in p′i, it suffices to consider the limiting case with p′i

arbitrarily close to q. For the deviation to be non-profitable, (A-17) must be greater
than (A-18), which gives (4) when q has been substituted in place of pi and p′i.

Since the consumer is indifferent about click order when pg = py = q, any {λg, λy}
constitute a best response so that the proposed strategies form an equilibrium.
Moreover, since strategy 1 details a best response for any search engine actions,
the equilibrium is subgame perfect.

Proof of Equilibrium 2. Values of pi greater than pmax are not possible. Consider
a deviation in which i sets pi < p−i = pmax. From strategy 1, pi < min{p−i, γ} implies
that the consumer never clicks Ai, and i’s profits are thus zero.

Noting that strategy 1 details a best response for any search engine actions com-
pletes the proof.

Proof of Equilibrium 3. With pg = py = γ > q, the expected profit for i is

πi =
1

2
[φi(1− pi) + (1− φ−i)(1− p−i)(1− pi)] b.

A deviation by i that has it set pi < p−i = γ leaves it with a profit of zero since the
consumer never clicks on Ai if pi < min {γ, p−i}. Suppose instead that i deviates
with p′i > p−i = γ. The expected pay-off for i becomes

π′
i = φi(1− p′i)b.

Since this payoff is decreasing in p′i, it suffices to consider the limiting case of p′i =

pi = γ. The deviation is not profitable so long as πi ≥ π′
i. Substituting γ for p′i, pi,

and p−i in this expression and rearranging yields (5). Thus neither search engine
has a profitable deviation so long as (5) holds. Given that the consumer is, by
definition, indifferent over all φg, φy ∈ [0, 1] when pg = py = γ, satisfaction of (5) is
consistent with equilibrium. Moreover, since strategy 1 details a best response for
any search engine actions, the proposal describes a subgame perfect equilibrium.
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A.2 Proofs from Section IV

Proof of Equilibrium 5. Expected profits from compliance with the equilibrium
are given by πi = (1/n)(1 − pmax)b ≥ 0. Values of p greater than pmax are not
possible. Consider a deviation in which i sets pi < pmax. From strategy 2, pi <

min{p1, . . . , pi−1, pi+1, . . . , pn, γ} implies that the consumer never clicks Ai, and i’s
profits are zero. Thus, i has no profitable deviation.

Noting that strategy 2 details a best response for any search engine actions com-
pletes the proof.

Proof of Proposition 7. The best response for a consumer is now to click the
O-link first if p > q, to click the A-link first with probability 1 if p < q, and to
click the A-link first with some probability λ if p = q. Given this behaviour, the
monopoly search engine’s best response is to select a p that ensures the A-link is
clicked first—this implies p < q (or p ≤ q if λ = 1).

A.3 Proofs from Section V

Proof of Proposition 8.

Suppose that pg < q. Since s is small, consumers click on Ag if and only if they visit
g first. Denote by x∗ the mass of all such consumers. If pg is a best response, then it
must be the case that x∗ > 0, since g can always induce nearby consumers to visit
it first by setting a pg close enough to py. Similarly, x∗ = 1 implies that py < pg, and
in this case a symmetric argument for y establishes that py is not a best response.

Consider, then, the interior case with 0 < x∗ < 1. Since pg < q, rational consumers
always click on Ag before they do Og. Thus g’s profits are given by the mass of
consumers that visit g first, x∗, multiplied by b. A consumer that clicks Ag first
must either use the click order {Ag, Og, Oy} or else use {Ag, Og, ∅}, which implies
utility functions

(A-19) U(Ag, Og, Oy) = q(1− tx− s) + (1− q)pg(1− tx− 2s)+

(1− q)(1− pg)py(1− t− 3s) + (1− q)(1− pg)(1− py)(−t− 3s),
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and

(A-20) U(Ag, Og, ∅) = q(1− tx− s)+

(1 − q)pg(1 − tx − 2s) + (1 − q)(1 − pg)(−t − 2s).

Any rational consumer who does not find it optimal to use either of the above two
click orders must visit y first. The possible click orders in use by such consumers
are {Ay, Oy, Og}; {Ay, Oy, ∅}; {Oy, Ay, Og}; and {Oy, Ay, ∅}. These are respectively
associated with the following utility functions.

(A-21) U(Ay, Oy, Og) = q(1− t(1− x)− s) + (1− q)py(1− t(1− x)− 2s)+

(1− q)(1− py)pg(1− t− 3s) + (1− q)(1− py)(1− pg)(−t− 3s),

(A-22) U(Ay, Oy, ∅) = q(1− t(1− x)− s)+

(1− q)py(1− t(1− x)− 2s) + (1− q)(1− py)(−t(1− x)− 2s).

(A-23) U(Oy, Ay, Og) = py(1− t(1− x)− s) + (1− py)q(1− t(1− x)− 2s)+

(1− py)(1− q)pg(1− t− 3s) + (1− py)(1− q)(1− pg)(−t− 3s),

and

(A-24) U(Oy, Ay, ∅) = py(1− t(1− x)− s)+

(1− py)q(1− t(1− x)− 2s) + (1− py)(1− q)(1− t(1− x)− 2s).

Now, given that the consumer’s cost for visiting g (y) is increasing (decreasing) in
x, the set of x for which consumers click Ag first must be a connected interval, and
must include point x = 0. Thus, every consumer with an x < x∗ must be visiting g

first, and every consumer for whom x > x∗ must be using some click order that has
him visit y first. By the continuity of x (and since utility varies continuously with
x), there must exist a marginal consumer at x∗ who is just indifferent between the
click orders in use by those consumers at x∗ + ε and x∗ − ε, with ε small. That is to
say, the maximum of (A-19) and (A-20) must be equal to the maximum of (A-21),
(A-22), (A-23), and (A-24) at x = x∗.

Consider a small increase in pg to p′g ∈ (pg, q). The derivatives of (A-19) and (A-
20) with respect to pg are positive, and are in every case both greater than those
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of (A-21), (A-22), (A-23), and (A-24). Thus, the increase in pg causes the marginal
consumer to strictly prefer some click order that has him click Ag first to all others:
the mass of consumers clicking Ag, (and hence g’s profits) is thus increased. By the
continuity of pg, there exists such a p′g for all pg < q. Choosing a pg < q with positive
probability is thus not optimal.

A symmetric argument holds for y.

Proof of equilibrium 6. The consumer’s strategy specifies a best response to
any combination of pg and py. It remains to show that the search engine strategies
are optimal responses to one another, given this subsequent consumer behaviour. I
show that there is no profitable deviation for g, and appeal to symmetry to complete
the argument for y.

With λg = 1, (14) collapses to (13). Since, by lemma ??, profit from any pg < q is
increasing in pg it suffices to consider deviations to some pg > q. Such a deviation
yields profits for g given by (12). Substituting py = q and calculating the first order
condition gives g’s reaction function:

(A-25) pg =
4q2 − 3q − q3 + Z

(q − 1)2
,

where

Z =
√

(q − 1)2q(2 + 3q − 4q2 + q3).

Now, substituting (A-25) into (12) yields g’s deviation profits thus:

(A-26) πg =
(2q − 3q2 + q3 − Z) (3q2 − q3 − q − 1 + Z)

Z(q − 1)2
b.

These are to be compared with the profits from compliance with the candidate
equilibrium, which are given by (14) with pg = py = q, and λg = 1, which gives

(A-27) πg =
b

2
.

Finding the values of q ∈ [0, 1] that equate (A-26) and (A-27) is equivalent to finding
the roots of the following cubic (see figure A-1):

8q3 − 25q2 + 14q − 1,
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FIGURE A-1 The q in the range 0 ≤ q ≤ 1 for which deviation yields profits equal
to those from compliance are given by the roots of the cubic 8q3 − 25q2 + 14q − 1.

which can be achieved using, for example, the method of Nickalls (1993). The two
solutions to this equation which lie within the [0, 1] interval are given by

(A-28) q =
25

24
− 17

12
sin

[
π

6
± 1

3
cos−1

(
3889

4913

)]
≈ {0.08356, 0.616981},

However, for any q > 1/3
(
3−

√
6
)
≈ 0.1835, (A-25) demands a value of pg < q.

Moreover, twice differentiating (12) with respect to pg yields the following (having
substituted py = q):

∂2πg

(∂pg)
2 =

2q (2 + q − 7q2 + 5q3 − 4q4)

(pg(q − 1) + (q − 3)q)3 b,

which is negative for 0 ≤ q ≤ 1. The final piece of the puzzle is to note that, for any
py, (12) is less than (13) when both are evaluated at pg = q. Taken together, these
facts imply that the second root in (A-28) can be ignored, and that, for q ≥ 0.08356,
deviation to some pg > q is not profitable. This argument is is summarised in figure
A-2.

Proof of Equilibrium 7. The consumer’s strategy specifies a best response to
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pg

πg

q = py

pg =
4q2

− 3q − q3 + Z

(q − 1)2
< q

Concavity implies that
(9) is decreasing above its
maximum, and hence above q

FIGURE A-2 For q > 1/3
(
3−

√
6
)
≈ 0.1835, (A-25) demands a value of pg < q.

any combination of pg and py. It remains to show that the search engine strategies
are optimal responses to one another, given this subsequent consumer behaviour. I
show that there is no profitable deviation for g, and appeal to symmetry to complete
the argument for y.

Suppose that the proposed equilibrium is valid. (1 − 3q)/(3 − 3q) is greater than
q for q < 1/3

(
3−

√
6
)
≈ 0.1835, so that the appropriate profit function for g is (12).

Taking the derivative of (12) with respect to pg, yields the quasi-reaction function

p∗g =
2q2 − 2q − py (q − 1)2 +

√
(q − 1)

(
p2

y(1− q)2 + q(1− q) + py (1 + q − 2q2)
)

(q − 1)2 ,

which is valid for pg > q. The corresponding function for y is symmetric. Differ-
entiating g’s quasi-reaction function with respect to py, and substituting py = 1

yields

∂p∗g
∂py

∣∣∣∣
py=1

=
3
√

2(1− q)− 4
√

(1− q)2

4
√

(1− q)2
,

which is constant (with a value of around 0.06066), and positive for q ∈ [0, 1). Now,
taking the second derivative of p∗g gives

∂2p∗g

(∂py)
2 = − (1− q)4

4 [(1− q)2 ((py)2(1− q)2 + q(1 + q) + py(1 + q − 2q2))]
3/2

< 0.
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Since the second derivative is negative, and the first derivative is positive at py = 1,
the first derivative of p∗g must be positive for all py ∈ [0, 1]. That the quasi-reaction
functions are symmetric, increasing and concave implies that there can be at most
two points of intersection, and that both of these must have py = pg.

Imposing py = pg for symmetry and solving the quasi-reaction function gives

(A-29) pg = py =
1− 3q

3− 3q
, .

and

pg = py =
q

q − 1
.

The second solution is non-positive for all 0 < q < 1. Since these are the only two
points of intersection of the two p > q quasi-reaction functions, the only possible
equilibrium behaviour in which pg, py > q is given by (A-29).

By construction, when py plays according to (A-29), no pg > q can yield a higher
profit for g than will compliance with (A-29). Moreover, by lemma ??, any deviation
to pg < q is unprofitable. It suffices, then, to show that the limit of (13) as pg → q

can not be higher than the profit from compliance with the proposed equilibrium.

Substituting (A-29) into (12) gives profits for compliance with the candidate equi-
librium thus:

(A-30) πg = πy =
1

3− 3q
b.

Substituting pg = q, and py = (1− 3q)/(3− 3q) into (13) gives an expression for the
maximal deviation profits:

(A-31) πg =
3q2 − 6q

3q2 − 6q − 1
b.

Equating (A-30) and (A-31) yields the cubic

−9q3 + 24q2 − 12q + 1 = 0,

which can, again, be solved using the method of Nickalls (1993). There are two
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∗
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FIGURE A-3 The q in the range 0 ≤ q ≤ 1 for which πy(p
∗
g(q), p

∗
y(p

∗
g(q)))− πy(p

∗
g(q), q)

is negative are given by roots of a polynomial.

roots that lie in the interval [0, 1], namely

8

9
− 4

9

√
7 sin

[
π

6
± 1

3
cos−1

(
241

112
√

7

)]
≈ {0.1042, 0.5228}.

For 0 < q ≤ 0.1042 profits from compliance exceed those from deviation; for 0.1042 <

q < 0.5228 deviation appears strictly profitable, and for 0.5228 ≤ q compliance is
again optimal. However, for q ≥ 1/3

(
3−

√
6
)
≈ 0.1835, (A-29) demands a pg ≤ q.

Thus, (A-29) constitutes a valid equilibrium strategy only when 0 < q ≤ 0.1042.

Proof of Proposition 9. By lemma ??, pe < q is never consistent with equi-
librium. By equilibrium 7, there are no asymmetric equilibria with pg, py > q. It
follows that, if there exists an asymmetric equilibrium, it must have pe = q, p−e > q.
Since a condition for any equilibrium with pe = q existing is λg = λy = 1, I suppose
that this is the behaviour used by consumers.

Now, inverting the logic of equilibrium 6, a condition for g wanting to choose some
pg > q, when py = q is that q ≤ 0.0836. Demonstrating that py = q being a best
response to this optimal pg requires some q > 0.0836 will thus suffice to complete
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the proof. Denote by p∗e(p−e) e’s best response in the range (q, pmax] to the specified
p−e, and define πe(pg, py) as e’s profits when g plays pg and y plays py. Thus, solving

∂πg(pg > q, q)

∂pg

= 0

for pg yields

p∗g(q) =
4q2 − 3q − q3 + Z

(q − 1)2
,

where

Z =
√

(q − 1)2q(2 + 3q − 4q2 + q3).

Substituting p∗g(q) into p∗y(pg) gives

p∗y(p
∗
g(q)) =

q − 2q2 + q3 + 8q2 − Z +
√

(1− q) (10q4 − 2q5 − 16q3 + Z − 4qZ + 2q2Z)

(1− q)2
.

Substituting py = p∗y(p
∗
g(q)), p

∗
g(q) into πy = (1 − x∗

I)(1 − py)b, and py = q, pg = p∗g(q)

into πy = (1− x∗
I)b gives expressions for πy(p

∗
g(q), p

∗
y(p

∗
g(q))) and πy(p

∗
g(q), q). Finding

the values of q ∈ [0, 1] for which the former is less than the latter can be achieved
by identifying roots of the following polynomial (see figure A-3)

−1 + 16q − 64q2 + 16q3 + 294q4 − 488q5 + 240q6 + 16q7 − 41q8 + 8q9 = 0.

In particular, there are two roots of πy(p
∗
g(q), p

∗
y(p

∗
g(q)))−πy(p

∗
g(q), q) for q in the inter-

val [0, 1], namely {0.0998, 0.5432}. Since πy(p
∗
g(q), p

∗
y(p

∗
g(q))) − πy(p

∗
g(q), q) is positive

when q < 0.0998, y strictly prefers to deviate to some py > q in this range.

As required, it is thus proven that py = q, pg > q cannot simultaneously be best
response strategies. A symmetric argument applies to the case of pg = q, py > q.
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