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Abstract

How should the owner of a durable good rent it to agents who desire to use it for
different lengths of time? This question is important for many network industries:
there are short run and long run users of gaz pipelines, and airports must choose
between giving a particular slot to a regular airline or to keep it open for irregular
charter flights. In order to examine this question, we build an infinite horizon sta-
tionary model where a monopoly seller rents a good. At each period, a number of
potential buyers appear, with different lengths of demand. We study and compare
the mechanisms that would be used by a profit maximizing and by a social wel-
fare maximizing seller. We show that, in some precise sense of the term, a profit
maximizing seller will favor long term renters.

JEL codes: C73, D44, D82, L96
Keywords: Auctions, Durable good, Dynamic games, Mechanism design, Reser-
vation



Owners of infrastructure must often choose between providing access to con-
sumers who desire to use it for different lengths of time. In this paper, we study
this problem in a dynamic context and compare the strategies that would be used
by a profit maximizing monopolist and a social welfare maximizing regulator.

We became interested in the problem while studying access to the Internet in-
frastructure. McKie-Mason and Varian have proposed to use Vickrey auctions,
which they call “smart markets”, to solve congestion problems in this network
(McKie-Mason and Varian 1995, 1996, 1997). These auctions allocate resources
efficiently and induce participants to reveal their true willingness to pay.1 How-
ever, if some sellers want to use the network for an extended period of time, smart
markets loose their efficiency inducing property, as we have shown in Crémer and
Hariton (1999). Indeed, smart markets allocate access independently at each pe-
riod of time: an agent who wishes to use the network for two consecutive periods
must participate in two separate auctions. If he wins the first, he has no guarantee
that he will have access during the second period. This problem is important for
applications such as Internet video conferences where some users need a good
quality connection over an extended period of time.

Similar problems arise in most network industries. Following the liberaliza-
tion process in Europe,2 vertically integrated industries such as railroad, electric-
ity or gaz are progressively separated in independent undertakings: a network
owner and service providers. The manager of the rail tracks must arbitrate be-
tween freight, which has irregular demand, and passenger trains, which have reg-
ular schedule and want a commitment that they will be allowed to use a specific
time slot for several months. In the gaz and electricity industries, the manager of
the transportation network must decide how much capacity to guarantee to a user,
knowing that this might prevent him from accepting the request of a future user,
who may have a higher willingness to pay.

Other transportation industries face similar concerns. For instance, an air-
port must arbitrate between leaving a landing slot available for (irregular) charter
flights or committing it to an airline which wants to use it every day for regular
flights. There exists a vast literature on congestion pricing in transportation in-

1In a few words, the proposed implementation of “smart markets” consists of allocating ac-
cess freely in non-congested periods and, at each period of congestion, through standard Vickrey
auctions. Customers attach a value to each packet of their messages. If the router faces conges-
tion, packets with the highest valuations are selected up to the capacity. These packets are routed
through the node of the network and their sender are required to pay the valuation attached to the
first rejected packet.

2Several directives have modified the development of network industries in the
European Community, such as directives 2001/12/EC, 2001/13/EC and 2001/14/EC
for the rail sector [europa.eu.int/comm/transport/rail/legislation/legi en.htm – see eu-
ropa.eu.int/scadplus/leg/en/lvb/l24057.htm for a summary] or directive 96/92 for the electricity
market [europa.eu.int/comm/energy/en/elec single market/index en.html].
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dustries (see Arnott, de Palma and Lindsey 1999 for an extensive bibliography).
Following the seminal paper of Vickrey (1969), the attention has been mainly
focused on agents with heterogeneous reservation prices; as far as we know, no
paper has considered consumers with different lengths of use.

In order to study this problem, we consider a durable good which can be used
by only one agent at the time. In each period when the good is not used, potential
users vie for the right to use it; they are defined by two characteristics: their
willingness to pay and the length of time during which they want to use the good
(which we will call the length of demand or horizon). The owner of the asset
must choose one of the users, or decide to leave the good unused in the hope of
finding a “better” user in the future. We simplify the problem by assuming only
the willingness to pay is private information; the lengths of demand are known by
the seller. information.

We show that, at equilibrium, the auctioneer expects a per period benefit B.
Each bidder with valuation v who competes to get the good for the i next periods
has a net value for the auctioneer of v−

(
1+δ+ . . .+δi−1)B where δ is the dis-

count rate. Introducing asymmetry of information with respect to the willingness
to pay v adds the usual “informational rent” term that has to be deduced from
v, which in turn modifies the equilibrium value of B, but leaves unchanged the
qualitative nature of the allocation procedure. According to this procedure, the
per period benefit B corresponds to a rental rate that the seller asks bidders to pay
for each period of the rental of the good over the first one. This rental rate also
plays an important role in the comparison by the auctioneer between short term
and long term bidders, which we study in some detail. In particular, we show that
a profit maximizing seller distorts the allocation in favor of the bidders with the
longer demands (theorem 6).

Our framework has some relationship with the sequential auctions literature,
where an auctionner sells sequentially different units of the same good, or different
goods (Milgrom and Weber (1982), Weber (1983) and Maskin and Riley (1989)).
Our framework introduces a major difference: if the auctioneer rents the good for
more than one period, this prevents some futuer buyers from purchasing it. There
is therefore competition between bidders that appear in different periods.

Our problem is also close to the multi-unit auctions studied by Branco (1995,
1996): In the multi-unit literature, an auctioneer with two goods to sell must com-
pare separate offers for each of the two goods to offers for the bundle of both of
them. There is a certain analogy to the model of the present paper, if we consider
the rental of the good in different periods as different goods. Again, the type of
competition is different as in our model the buyers of good 2 are not yet present
when good 1 or the bundle are sold.

The paper is organized as follows. Section 2 describes the basic model and
solves the problem when the bidders’ willingness to pay is known to the auction-

2



eer and section 3 studies the allocation procedure with asymmetric information.
Section 4 compares the treatment of long run and short run buyers by a social wel-
fare maximizing planner and a profit maximizing monopolist. Section 5 focuses
on the distortion of the monopolist’s allocation procedure auctioneer with respect
to the social planner’s policy. Section 6 concludes. All proofs are collected in the
appendix.

1 The model

1.1 Demand
In each period t = 0, . . . ,+∞, where the good is free, a set I of agents compete
to obtain the right to use it. The “names” of these agents are the lengths of their
demands, so that agent i ∈ I requires the good for i periods. Implicit in this nota-
tion is the assumption that the different bidders have different lengths of demand.
This assumption lightens considerably the notation, and does not change our eco-
nomically interesting results. We call I be the longest length of demand, so that
I⊂ {1, . . . , I}. For simplicity we will also denote by I the cardinality of the set I,
that is the number of bidders. For instance if I = {2,5,6}, in each period where
the good is free, there are bidders of lengths of demand 2, 5 and 6. We have I = 6
and, by abuse of notation, I = 3.

The value that agent i attaches to the good, hereafter also called his type or
his valuation, is vi ∈ [vi,vi] with vi > 0. Agent i wants the good for exactly i
consecutive periods starting in the period in which he arrives on the market. In
particular, his willingness to pay for less than i periods is zero, and if he arrives in
period t his willingness to pay for the use of the good in periods t + 1 to t + i is
also zero.

All agents, the buyers and the seller, have the same common knowledge dis-
count factor δ. When selling the good to agent i in period t, with i > 1, the seller
commits to sell it for i periods and not to renegotiate the allocation while the buyer
is using it.3

1.2 Objective functions and informational constraints
A risk neutral seller allocates the use of the good, and we assume that there is
no cost to doing so. We will distinguished two possible objective functions for
the seller: maximizing profits or maximizing social welfare. We will also make

3We take this as an hypothesis, but it could easily be endogeneized as part of the optimal
policies, by assuming that there is a high enough set up cost for each buyer when he begins to use
the good.
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two different informational assumptions: either the seller has full information and
knows the types of the buyers, or he does not know them. This yields four models;
three of them yield the same allocations, and it is only when the seller tries to
maximize profits and does not know the types of the agents that we find distortions
compared to the social optimum.

Denote π the infinite stream of expected benefits at any period t where the
good is not committed. We will consider two different kinds of owners of the
asset: a firm and a regulator. A “firm” maximizes profits and its “period utility”
in a period where the good can be sold is equal to the total expected payment it
receives

π = ∑i∈I Evi [ti (vi)] .

A “regulator”, or “social planner”, maximizes social welfare. Her period utility
when the good can be sold is

π = ∑i∈I Evi [viqi (vi)] .

The mechanism used by the seller can be described by the functions {pi, ti}i∈I
where pi(vi,v−i) is the probability that agent i of type vi is given the object and
ti (vi) is his payment4. His expected probability of obtaining the good is qi (vi)≡
Ev−i [pi (v)].

2 Maximizing social welfare with symmetric infor-
mation

In this section, we begin by assuming that the seller can observe the types of the
bidders when they appear, although, of course, she does not know the types of
future bidders. We also assume that she maximizes social welfare.

The auctioneer cares about future expected welfare, and she takes into ac-
count the fact that by selling to agent i, the good will be available for use by
another agent only in i periods. Therefore using Belman’s principle of optimal-
ity, the maximal social welfare under symmetric information is the solution of the
equation

π = V (π),

where V (π) is the value of the problem P1

max
{pi(.),ti(.)}i∈I

∑
i∈I

{
Evi [ti (vi)]+Ev

[
pi (v)δ

i
π
]}

+

(
1−∑

i∈I
Ev [pi (v)]

)
δπ (1)

4In principle, the payment could depend on the types or announced types of the other agents,
but there is no loss of generality in assuming this possibility away.
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subject to the constraints5

Ui (vi) = qi (vi)vi− ti (vi) > 0∀vi, for all i,
(IRi)

pi (v) ∈ [0,1] for all v, and all i,
(Pi)

∑
i∈I

pi (v) 6 1 for all v,

(P0)

The individual rationality constraint (IRi) translates the fact that the principal can-
not force the agent to partic

2.1 Optimal allocations
Maximizing profits induces the auctioneer to extract as much as possible from
agents, making the individual rationality constraint (IRi) binding

∀i,∀vi, Ui (vi) = 0 ⇔ ti (vi) = viqi (vi) .

The objective function becomes

π = max
{pi(.)}i∈I

[
∑
i∈I

{
Ev
[[

vi−δ
(
1−δ

i−1)
π
]

pi (v)
]
+δπ

}]
.

A regulator has the same objective function. The solution of problem P1 is de-
scribed by the following lemma, which is proved in the appendix.

Lemma 1. {p∗i (.) , t∗i (.)}i is a solution of the maximization problem P1 if and
only if p∗i is solution of the following problem

W (π)≡ max
{pi(.)}i∈I

[
∑
i∈I

Ev
[[

vi−δ
(
1−δ

i−1)
π
]

pi (v)
]]

+δπ (2)

subject to {
∀i,∀v, pi (v) ∈ [0,1] , (Pi)
∀v, ∑i∈I pi (v) 6 1 (P0) ,

and
∀i,∀vi, t∗i (vi) = Ev−i [vi p∗i (v)] .
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-

maxp1(.) Ev [v1 p1 (v)]

max{pi(.)}i∈I ∑i∈I Ev [vi pi (v)]

6

π

(1−δ)π

W (π)−δπ

π∗

Figure 1: Optimal stationary profit with perfect information (when 1 ∈ I)

For a given π, the maximand is a simple sum of known coefficients multiplied
by the probability that the mechanism designer has to choose. Therefore, for
a given π, the buyer for whom vi− δ

(
1−δi−1)π is the highest obtains the good

with probability 1. To determine π∗, we will use the following lemma, also proved
in the appendix.

Lemma 2. The expected per period benefit [W (π)−δπ] is decreasing and convex,
with W (0) > 0.

As shown in figure 1, lemma 2 implies that [W (π)−δπ] crosses once the
strictly increasing function (1−δ)π, for π = π∗. We have proved the following
proposition.

Proposition 1. Under perfect information, the mechanism set by a profit maxi-
mizing seller or a social planner allocates the good to (one of) the agents with
the highest positive [vi−δ

(
1−δi−1)π∗]. If in any period [vi−δ

(
1−δi−1)π∗] is

strictly negative for all i, then the good is not sold in this period.

In the case n2 = 1, ni = 0 for all i 6= 2, valuation uniformly distributed on
[0,1], we find that the optimal mechanism leaves the good free if v2 is less than a
function which is well approximated by .27×δ.

In the following subsection, we analyze some of the properties of these allo-
cations. implementation through second prize auctions.
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2.2 The rental rate
When there is no asymmetry of information, profit maximizing and efficient mech-
anisms are identical. Remember that π∗ is the discounted social welfare associated
with the infinite repeated allocation of the good, starting from a period in which
the good is available. Then, when she has to choose one user, i.e. in a period when
the good is available, proposition 1 tells the auctioneer either to allocate the good
to (one of) the bidders with the highest

vi +δ
i
π
∗

if this quantity is greater than δπ∗ and not to allocate the good otherwise.
Now, choosing the buyer with the greatest vi + δiπ∗ is equivalent to choosing

the one with the highest

ṽi ≡ vi− [π∗]+δ
i
π
∗

= vi−
(
1+δ+ . . .+δ

i−1)(1−δ)π
∗. (3)

Thus, the seller rents the good at a price of (1−δ)π∗, and chooses the bidder
whose willingness to pay yields the highest benefit above the discounted sum of
the rental rate over the whole duration of the agent’s need. Note that it is not the
profit per period which is taken into account by the allocation rule.

The condition
vi +δ

i
π
∗ ≥ δπ

∗ (4)

is equivalent to
ṽi ≥−(1−δ)π

∗.

This expression can easily be interpreted. By not renting the good, the auctioneer
incurs a cost (a loss of benefits) of (1−δ)π∗, the one period rental rate. The
surplus obtained by renting the good to agent i must be greater than this loss. If
there is an agent 1 ( i.e., if 1 ∈ I), for that agent (4) is equivalent to v1 ≥ 0, and
the good is rented in every state of nature, which, of course is not true if 1 /∈ I).

2.3 Comparative statics
We now show that if the distribution of agent types becomes unambiguously
more favorable, then the optimal allocation mechanism changes in a way, to be
made precise later, which favors short run buyers. Let us call F̃i (vi) and Fi (vi)
two cumulative distributions such that F̃i first degree stochastically dominates
Fi: F̃i (vi) 6 Fi (vi) for all vi with strict inequality for some values. Whatever π,
vi−δ

(
1−δi−1)π is increasing in vi, and therefore

Evi∼F̃i

[
vi−δ

(
1−δ

i−1)
π
]
> Evi∼Fi

[
vi−δ

(
1−δ

i−1)
π
]

.
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Thus, the valuation the regulator attaches to bidder i is in average higher with the
cumulative distribution F̃i. Clearly, a shift from Fi to F̃i improves the welfare of the
auctioneer, and we must have W̃ (π) > W (π) for all π, where we denote by a ˜ the
quantities corresponding to the distribution F̃i. From figure 1, it is straightforward
that π̃∗ > π∗.6

We are now ready to prove the following proposition.

Proposition 2. Assume that when the distribution function of the type of agent i
buyers is Fi, and when the vector of types of other agents is v−k, agent k of type vk
gets the good with probability zero, either because it is not allocated or because it
is allocated to an agent in a smaller demand length. Then, when the distribution
of the valuation of class i buyers is F̃i, which first degree stochastically dominates
Fi, in the same state of nature, agent k obtains the good with probability zero.

Note that the proposition puts no constraint on the relationship between i and k.
Its proof is straightforward. First, vk 6 δ

(
1−δk−1)π∗ implies vk 6 δ

(
1−δk−1) π̃∗,

which implies that if the good is not allocated to agent k with Fi, it is not with F̃i.
Second,

vk−δ

(
1−δ

k−1
)

π
∗ 6 vr−δ

(
1−δ

r−1)
π
∗

for some elements vr of v−k with r < k implies

vk−δ

(
1−δ

k−1
)

π̃
∗ 6 vr−δ

(
1−δ

r−1)
π̃
∗

which concludes the proof.

Corollary 1. If in a state of nature v the good is not allocated when the distri-
bution function of the type of agent i is Fi, then it is not when the distribution is
F̃i.

For a given state of nature v, moving from Fi to F̃i lowers the overall probability
to allocate de good because the seller, who expects a higher per period benefit, is
more reluctant to rent the good to these same bidders v.

3 Asymmetric information
We now assume that there is asymmetry of information: the seller does not know
the type of the bidders (howeverwe assume that he knows the lengths of demand7).

6Formally: (1−δ) π̃∗ = W̃ (π̃∗)−δπ̃∗ > W (π̃∗)−δπ̃∗, and because (1−δ)π is increasing in π

while W (π)−δπ is decreasing, the result is straightforward.
7There are some circumstances under which the seller can obtain revelation of the length of

demand as no cost. Consider for instance the case of a video conference. It may be possible to
observe when it finishes, and the buyer might have no interest in renting for too short a time, if the
conference has no value if it is cut short.
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It is relatively straightforward to show that the presence of asymmetric informa-
tion does not change the optimal mechanism for the regulator, who tries to max-
imize social welfare. We will therefore assume, unless stated explicitly, that the
seller is a profit maximizing firm.

There are very few changes that need to be made to the model of section 2 in
order to adapt the model. First, we interpret the vis in the definition of the mech-
anism as the announced types of the sellers, as opposed to their types. Second,
relying on the revelation principle, we add to the model an incentive compatibility
constraint per bidder,

∀vi,∀i, vi = argmaxṽi {qi (ṽi)vi− ti (ṽi)} (ICi)

Then, the optimal π is solution of

π = R(π)

where R(π) is the value of the following problem P2, which is obtained by adding
to problem P1 the incentive compatibility constraints.

U(π)= max
{pi(.),ti(.)}i∈I

[
∑
i∈I

{
Evi [Xi (vi)]+Ev

[
pi (v)δ

i
π
]}

+

(
1−∑

i∈I
Ev [pi (v)]

)
δπ

]
.

3.1 Allocation mechanisms
How will the presence of asymmetric information change the conclusions of the
last section? Using Myerson’s (1981) methodology, the set of individual ratio-
nality and incentive compatibility constraints of problem P2 can be rewritten as
described in the following lemma.

Lemma 3. A mechanism is incentive compatible and individually rational if and
only if

∀i,∀vi,∀si, (vi− si) [qi (vi)−qi (si)] > 0 (5)

∀i,∀vi, Ui (vi) = Ui (vi)+
∫ vi

vi

qi (x)dx (6)

∀i, Ui (vi) > 0 (7)

(6)
Using lemma 3, problem P2 can be rewritten as described in the following

lemma, whose proof can be found in the appendix.

9



Lemma 4. {p∗∗i (.) , t∗∗i (.)}i is a solution of the maximization program P2 if and
only if p∗∗i is the solution of the system of equations{

V (π)≡max{pi(.)}i∈I

[
∑i∈I Ev

[[
ti (vi)−δ

(
1−δi−1)π

]
pi (v)

]]
+δπ

V (π) = π
(8)

subject to  ∀i,∀vi,∀si, (vi− si) [qi (vi)−qi (si)] > 0 (IC
′
i)

∀i,∀v, pi (v) ∈ [0,1] (Pi)
∀v, ∑i∈I pi (v) 6 1 (P0)

and

∀i,∀vi, t∗∗i (vi) = Ev−i

[
vi p∗∗i (v)−

∫ vi

vi

p∗∗i (x,v−i)dx
]

. (9)

As in the perfect information case, for a given π, the maximization problem
ends up to be a simple sum of known coefficients multiplied by the probability
that the mechanism designer has to choose. Thus, the object is allocated to agent
with the highest positive coefficient and the following lemma proves the existence
of a solution.

Lemma 5. The expected per period benefit [V (π)−δπ] is decreasing and convex
in π, with V (0) > 0.

Thus the solution to the auctioneer allocation problem is given by the follow-
ing rule.8

Proposition 3. Under asymmetric information, a profit maximizing seller allo-
cates the good to (one of) the agents within the highest positive Ji (vi)− δ(1−
δi−1)π∗∗. If in any period Ji (vi)−δ(1−δi−1)π∗∗ is strictly negative for all i, she
does not sell the good in this period.

In the case n2 = 1, ni = 0 for all i 6= 2, valuation uniformly distributed on
[0,1], we find that the optimal mechanism leaves the good free if v2 is less than a
function which is well approximated by 0.5+0.086δ.

3.2 Another rental rate
Proposition 3, the seller chooses the buyer i who maximizes

Ji (vi)+δ
i
π
∗∗

8If the problem is not regular, i.e. Ji (vi) is not increasing for all vi and i, one can adapt this
result by “making it regular”, as done in Myerson (1981).
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as long as this quantity is positive. This is equivalent to choosing agent i so as to
maximize

˜̃vi ≡ Ji (vi)− [π∗∗]+δ
i
π
∗∗

= Ji (vi)−
(
1+δ+ . . .+δ

i−1)(1−δ)π
∗∗, (10)

as long as this quantity is at least equal to −(1−δ)π∗∗. The interpretation paral-
lels the interpretation of the efficient solution without asymmetry of information,
with the valuation replaced by the virtual valuation, which includes the cost of
extracting from the buyer information about its willingness to pay.

It may be worthwhile noting that, with asymmetry of information, the rental
rate is not deducted from the willingness to pay of the agent, but from his vir-
tual valuation. In particular, the formula is of the form [Ji (vi)−Rental] and not
[Ji (vi−Rental)]. Indeed, the bidder’s type, his willingness to pay, is not known
to the auctioneer who induces its truthful revelation by releasing some informa-
tional rents to each agent: the magnitude of this rent depends on his type. On
the contrary, the commitment cost induced by the all-or-nothing allocation rule is
related to bidder’s class, which is assumed to be publicly known. Thus, the virtual
valuation reflects only the cost of truthful revelation of types, and not class.

As usual in the presence of asymmetry of information, agents with low val-
uations may never get the good. If there exists some vmin

i such that Ji
(
vmin

i
)

=
δ
(
1−δi−1)π∗∗ > 0, then agents of classes i with vi < vmin

i are excluded from
the market. By excluding low valuation bidders, the auctioneer limits the rent of
other bidders. This phenomenon is stronger than in standard static auctions, where
virtual valuations are only constrained ro be positive.

4 Short vs Long term buyers
In this section, we examine the preferences of the planner between agents with
different time horizons. We begin by the perfect information case and then turn to
the asymmetric information case.

4.1 Perfect information
The per period willingness to pay of agent i of type vi is

vi

1+δ+ . . .+δi−1 .

Consider two agents, i and k, i < k, with the same willingness to pay. From
(3), the regulator is indifferent between renting the good to agents i and k if and

11



only if

vi− (1+δ+ . . .+δ
i−1)(1−δ)π

∗ = vk− (1+δ+ . . .+δ
k−1)(1−δ)π

∗

⇔ δ
i(1+δ+ . . .+δ

k−i−1) [v− (1−δ)π
∗] = 0.

This yields immediately the following proposition.

Proposition 4. If two agents have the same per period willingness to pay v, the
seller rents the good to the agent with the shortest length of demand if v < v∗,
where v∗ = (1−δ)π∗ is the per period rental rate of the good at the optimum.
If, on the contrary, v > v∗, the seller rents the good to the agent with the longest
length of demand.

It is possible to get a feeling for the critical value v∗ by deriving a lower bound
on the value of π∗. In order to do so, notice that the regulator could use the fol-
lowing suboptimal allocation policy: always pick the bidder i with the largest ex-
pected per period valuation, i.e. i∈ argmaxk∈I

[
Evk [vk]/

(
1+δ+ . . .+δk−1)]. By

doing so, the seller secures an expected per period benefits of Evi [vi]/
(
1+δ+ . . .+δi−1).

Thus,

π
∗ > max

k∈I

[
Evk [vk](

1+δ+ . . .+δk−1
)
(1−δ)

]
= max

k∈I

[
Evk [vk]
1−δk

]
.

and the critical value v∗ has the following lower bound

v∗ > max
k∈I

[
Evk [vk]

1+δ+ . . .+δk−1

]
. (11)

Thus, if two agents have the same per period valuation v, which is smaller than the
maximum possible expected per period valuation of all types of agents, the seller
allocates the good to the agent with the shortest horizon. Loosely speaking, this
shows that the allocation mechanism tends to favor of short horizon agents, as in
general we expect valuations to be smaller than the right hand side of (11).

Let now turn to a more general case than the one studied in proposition 4.
Denote the per period willingness to pay of any agent i by

v̂i ≡
vi

1+δ+ . . .+δi−1 .

Then, following the previous analysis, the regulator compares agents i and k by
comparing ṽi and ṽk, that is

ṽi ≷ ṽk iff [v̂i− v∗] ≷
1−δk

1−δi [v̂k− v∗] .

With i < k, the fraction in the right-hand side of the inequality is greater than
1. Whenever v̂k > v̂i > v∗, the auctioneer favors the long run buyer k and, if
v̂k < v̂i < v∗ she prefers the short run buyer.
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4.2 Asymmetric information
With asymmetric information, the comparison between two potential buyers de-
pends not only on their horizon and their valuation, but also on the whole distribu-
tion of their types, which determines their virtual valuations. In order to provide a
“clean” discussion of the preferences of the auctioneer, we will therefore assume
not only that the agents have the same “per period valuation”, but also the same
“distribution of per period valuation”.

Definition 1. Two agents have the same distribution of per period valuation if
there exists a distribution function ˜̃F and an associated density function ˜̃f such
that

∀vi ∈ [vi,vi] , Fi (vi) = ˜̃F
(

vi

1+δ+ . . .+δi−1

)
(12)

and

∀vk ∈ [vk,vk] , Fk (vk) = ˜̃F
(

vk

1+δ+ . . .+δk−1

)
.

From (12), we obtain

Ji (vi) = vi−
(
1+δ+ . . .+δ

i−1) 1− ˜̃F
(

vi
1+δ+...+δi−1

)
˜̃f
(

vi
1+δ+...+δi−1

)
=
(
1+δ+ . . .+δ

i−1) ˜̃J
(

vi

1+δ+ . . .+δi−1

)
(13)

where
˜̃J (v)≡ v− 1− ˜̃F (v)

˜̃f (v)

is the virtual valuation computed from the distribution function ˜̃F and its associ-
ated density ˜̃f . If the virtual valuations of bidders i and k are increasing, so is
˜̃J.

Let vi = vk = v. The auctioneer is indifferent between allocating the good to
agents i and k if

(
1+δ+ . . .+δ

i−1)[ ˜̃J (v)− (1−δ)π
∗∗
]

=
(

1+δ+ . . .+δ
k−1
)[

˜̃J (v)− (1−δ)π
∗∗
]

, (14)
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that is v = v∗∗ where v∗∗ is defined9 by ˜̃J (v∗∗) = (1−δ)π∗∗. The following propo-
sition is then a straightforward consequence of equation (14).

Proposition 5. If two agents with the same distribution of per period valuation
have the same per period willingness to pay v, the seller prefers to rent the good
to the agent with the shortest length of demand if v < v∗∗. If v > v∗∗, she would
rather allocate it to the agent with the longest lenght of demand.

The intuition is similar to that of the case without asymmetric information.
The seller’s average per period revenue is ˜̃J (v∗∗). If the per period valuations of
both bidders is larger than v∗∗, then the firm gets an “extra benefit” for each period
of allocation, and allocates the good to the long term bidder. If, on the contrary,
both bidders’ per period willingness to pay is lower than v∗∗, then the regulator
incurs a “loss”. In order to limit this loss, the good is given to the shorter horizon
bidder.

Turning to the more general case where agents have different per period will-
ingness to pay, the seller prefers giving the good to buyer i than to buyer k if and
only if [

˜̃J (v̂i)− ˜̃J (v∗∗)
]

>
1−δk

1−δi

[
˜̃J (v̂k)− ˜̃J (v∗∗)

]
.

Assume k > i. If v̂k > v̂i > v∗∗, the seller prefers the long run buyer k and, if
v̂k < v̂i < v∗∗, the short run buyer i.

Thus, with asymmetry of information, the influence of the horizon of the
agents on the optimal allocation has the same general structure than in the effi-
cient case discussed earlier. For small per period valuations, short horizon buyers
will be preferred. For larger per period valuations, long horizon buyers will be
favored. However, it seems impossible to compare generally v∗∗ and v∗, even in
simple case where all the probability distribution functions satisfy properties such
as the one described by definition 1.

The next section compares the allocation strategies of the profit maximizing
seller and the social welfare maximizing regulator.

5 Efficient vs Profit maximizing allocation mecha-
nisms

To compare both allocation procedures, in this section we compare the longest
horizon bidders with a strictly positive probability of being allocated the good,

9For simplicity, we assume that such a v∗∗ exists. It would not, for instance, if some other
bidder had such high valuations with probability one that the optimal mechanism never allocated
to good either to agent i or k.
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depending on the objective of the seller. We show that, in this sense, the profit
maximizing seller favors long run buyers – there is no “short termism” associated
with profit maximizing in our model.

More precisely, we will say that a seller “never allocates the good to buyer of
type i” if pi (vi) = 0 for all vi ∈ [vi,vi]. The longest horizon buyer is the bidder j,
such that p j(v j) 6= 0 for some v j and such that the seller never allocates the good
to a buyer of type i > j. Because the function pi is increasing, if j is the longest
horizon bidder of the firm, for any i > j, p∗∗i (vi) = 0, which implies

Ji (vi)−
(
1−δ

i)
π
∗∗ 6 Jk (vk)−

(
1−δ

k
)

π
∗∗

for some k < j. As Ji (vi) = vi and Jk (vk) = vk−1/ f k (vk) < vk, this implies10

vi−
(
1−δ

i)
π
∗∗ < vk−

(
1−δ

k
)

π
∗∗

i.e. vi− vk < δ
k
(

1−δ
i−k
)

π
∗∗ 6 δ

k
(

1−δ
i−k
)

π
∗.

Rewriting this last inequality yields ṽi < ṽk. Thus, bidder i is never allocated the
good by the regulator. This proves the following proposition.

Proposition 6. A profit maximizing firm distorts allocation decisions in favor of
bidders with longer horizon, that is the firm’s longest horizon buyer is larger than
the regulator’s one.

The profit maximizing seller has incentives to increase the level of competi-
tion, and therefore invites more buyers to participate to the auction.

6 Conclusion
This paper develops an analysis of the repeated allocation of access by a seller
who faces bidders with different lengths of demand, based on a new stationary
approach to the pricing of capacity on durable assets.

There are five main insights derived from the analysis this paper. First, the
problem cannot be avoided by simply comparing the rental rate that buyers with
different lengths of demand are willing to pay, and one has to explicilty take these
lenghts of demand in consideration. Typically, if two buyers have rather low val-
uations for the good, the optimal policies, chosen either by a firm or a regulator,
will favor the short run user; if they have valuations on the high side, the optimal

10Recall that the profit maximizing firm gets an expected profit noted π∗∗ and the social welfare
maximizing regulator gets social welfare π∗ such that π∗ > π∗∗.
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policies will favor the long run buyers. Second, one can use standard techniques to
compute the optimal allocation mechanism under asymetry of information. Third,
a profit maximizing firm will overall tend to favor long run bidders more than a
social welfare maximizer, in the sense that the set of bidders that have a strictly
positive probability of being awarded the good includes longer term bidders when
the seller tries to maximize profits. Similarly, the profit maximizing firm will be
more willing to reserve capacity for a buyer who is willing to wait.

We have constructed our model with a certain number of restrictive hypothesis
that could easily be lifted. We have assumed that at most one bidder of any de-
mand length appears at each period. It should be clear that this hypothesis could
be lifted easily. Similarly, it would be easy to change the model to allow for a
random number of bidders in each period.

Quite a number of interesting problems remain. In some circumstances there
could be asymmetry of information about the length of demand. There could also
be common shocks that affect all bidders. It would be interesting to compare how
the regulator and the firm would react to periods of high or low demand. Finally,
the presence of corrolated common value could create interesting signalling as-
pects, specially when several goods are for sale (or equivalently that the capacity
of the asset can be divided among several users).
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Appendix

Proof of lemma 1
This follows directly by substitution in the objective function, once one has no-
ticed that the individual rationality constraints are binding.
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Note that while the firm must set the transfers ti (vi) to t∗i (vi), because the in-
dividual rationality is binding, there is no need for the social planner to do so.
Indeed, the regulator has just to set transfer functions that satisfy individual ratio-
nality constraints. This is related to the linearity of the objective functions for the
regulator where each transfer ti (vi) appears both as a positive sum, collected by
the auctioneer, and as a negative turn, extracted from bidder i, in the social welfare
function. Both terms cancel. Eventually, {p∗i (v) , t∗i (vi)} is just one solution to the
problem of the auctioneer.

Proof of lemma 2
Let define

W̃ (π, p)≡∑
i∈I

Ev
[[

vi−δ
(
1−δ

i−1)
π
]

pi (v)
]

where p is the vector made of all pi. This function is clearly decreasing in π. The
convexity results from the fact that function W̃ is linear with respect to π. Simple
computations show that W̃ (απ1 +(1−α)π2, p) = αW̃ (π1, p)+(1−α)W̃ (π2, p)
for α between 0 and 1. Then, define p(v|π) the vector made of probability func-
tions that maximize W (π) for a given π. It must be the case that W (π)− δπ =
W̃ (π, p(v|π)) and that W (π)− δπ > W̃ (π, p(v|π∗)) for π∗ 6= π. Combining the
linearity of W̃ with respect to π and the relationship between W̃ (π, p), W (π) and
p(v|π) yields

W̃ (απ1 +(1−α)π2, p(v|απ1 +(1−α)π2))
= αW̃ (π1, p(v|απ1 +(1−α)π2))+(1−α)W̃ (π2, p(v|απ1 +(1−α)π2))
6 αW̃ (π1, p(v|π1))+(1−α)W̃ (π2, p(π2)) .

Thus,

W (απ1 +(1−α)π2)−δ [απ1 +(1−α)π2] 6 α [W (π1)−δπ1]+ (1−α) [W (π2)−δπ2]

and W (π)−δπ is convex.
Moreover, W (0)− 0 = max{pi(.)}i

[∑i∈I Ev [vi pi (v)]] must be positive if the
overall problem has any economic sense: the right-hand side represents social
welfare in a static optimal auction with perfect information.

Eventually, limπ→+∞ [W (π)−δπ] = maxp1(.)
[
Ev
[
v1 p1 (v)

]]
which must also

be positive and lower than W (0)−0.
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Proof of lemma 3
Constraints (ICi) are equivalent, for any agent i, all vi and ṽi, to

Ui (vi) > qi (ṽi)vi− ti (ṽi)
Ui (ṽi) > qi (vi) ṽi− ti (vi)

or

qi (vi)(vi− ṽi) > Ui (vi)−Ui (ṽi) > qi (ṽi)(vi− ṽi) (15)

Thus, equation (5) follows. This requires that the expected probability qi (vi)
must be non-decreasing as well as Ui (vi). Dividing (15) by (vi− ṽi) and taking
the limit as ṽi→ vi yields, almost everywhere and for all i

dU i (vi)
dvi

= qi (vi) > 0. (16)

Integrating (16) between vi and vi gives (6). Moreover, Ui (vi) being non-decreasing
and (IRi) induce (7).

Conversely, combining (6) and (5) yields (15) which is equivalent to (ICi).
Moreover, qi (vi) is non-decreasing, so combining (6) and (7) implies (IRi).

Proof of lemma 4
Lemma 3 sets that the maximization of both auctioneers can be written as max-
imizing (1) under constraints (5), (6), (7), (Pi) and (P0). According to (6), the
expected payment of a bidder can be written as

ti (vi) = qi (vi)vi−Ui (vi) = qi (vi)vi−
∫ vi

vi

qi (x)dx−Ui (vi)

Moreover, standard manipulation of the integral yields

Evi

[∫ vi

vi

qi (x)dx
]

=
∫ vi

vi

∫ vi

vi

qi (x) fi (vi)dxdvi =
∫ vi

vi

∫ vi

x
qi (x) fi (vi)dvidx

=
∫ vi

vi

qi (x) [1−Fi (x)]dx = Evi

[
qi (vi)

1−Fi (vi)
fi (vi)

]
,

For a profit maximizing seller, the objective is to maximize the bidders’ ex-
pected payments while preserving individual rationality, so that the optimal mech-
anism is characterized by Ui (vi) = 0 which gives equation (9). Then, expected
payment by agent i becomes

Evi [ti (vi)] = Evi

[(
vi−

1−Fi (vi)
fi (vi)

)
qi (vi)

]
. (17)
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Finally, current expected benefits can be rewritten

∑
i

Evi

[(
vi−

1−Fi (vi)
fi (vi)

−δ
(
1−δ

i−1)
π

)
qi (vi)

]
+δπ.

This is the expression given in (8) for a profit maximizing seller.
When dealing with efficiency, transfers are not taken into account in the ob-

jective function as far as they respect the incentive compatibility constraint. Thus,
the objective function of the social planner can be rewritten

∑
i

Evi

[[
vi−δ

(
1−δ

i−1)
π
]

qi (vi)
]
+δπ.

which corresponds to (8) with Y (vi) = vi.
Thus, the auctioneer’s problem is to maximize (8) under constraints (5), (6),

(7), (Pi) and (P0). What is left to be proved is that constraints (7) and (6) are all
satisfied by the proposed transfer function t∗∗i (vi). Simple computations show that
this is the case. Eventually, the proposed solution of program (8) is a solution to
program (1).

Note that, for the regulator, expression (17) about transfers holds but there
is no obligation to set Ui (vi) = 0. Nevertheless, the particular transfer function
t∗i (vi) is a (non-unique) solution to the maximization problem (1).

Proof of lemma 5
Define the following function

Ṽ (π, p)≡∑
i∈I

Ev
[[

Yi (vi)−δ
(
1−δ

i−1)
π
]

pi (v)
]

where Yi (vi) corresponds to Ji (vi) when maximizing profits or vi when taking care
about efficiency. Then, function Ṽ is clearly decreasing in π. The proof for con-
vexity then follows the same line as the proof of lemma 2 because function Ṽ is
also linear in π. The result in π = 0 is also a consequence for the problem param-
eters to be economically meaningful in presence of asymmetric information.
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