The Economics of Internet Search

Hal R. Varian January 20, 2007

Search engine use

- Search engines are very popular
 - 84% of Internet users have used a search engine
 - 56% of Internet users use search engines on a given day
- They are also highly profitable
 - Revenue comes from selling ads related to queries

Search engine ads

Ads are highly effective due to high relevance

- But even so, advertising still requires scale
 - 3% of ads might get clicks, 3% of those might convert
 - So only 1 out a thousand who see an ad actually buy
 - Hence, price per impression or click will not be large
 - But this performance is good compared to conventional advertising! CPM (cost per thousand impressions.)
 - TV ~ \$10 CPM = 1 cent per person per impression
- On the supply side:
 - High fixed costs for infrastructure, low marginal costs for serving

Summary of industry economies

- Entry costs (at a profitable scale) are large due to fixed costs
- User switching costs are low
 - 56% of search engine users use more than one
- Advertisers follow the eyeballs
 - Place ads wherever there are sufficient users, no exclusivity
- Hence market is structure is likely to be
 - A few large search engines in each language/country group
 - Highly contestable market for users
 - No demand-side network effects that drive towards a single supplier so multiple players can co-exist

What services do search engines provide?

- Google as yenta (matchmaker)
 - Matches up those seeking info to those having info
 - Matches up buyers with sellers
 - Two sided market: advertisers want to meet buyers, Google shows content to attract potentiall buyers, charges advertisers for introduction (like other advertiser-supported media)
- How do you make valuable matches?
 - Information science: information retrieval
 - Economics: assignment problem

Brief history of information retrieval

- Started in 1970s, basically matching terms in query to those in document
- Was pretty mature by 1990s
- DARPA started Text Retrieval Conference at urging of FBI, CIA, NSA, etc.
 - Offered training set of query-document pairs with indicator of relevance
 - Offered challenge set of queries and documents
 - Roughly 30 research teams participated

Example of IR algorithm

- Prob(document relevant) = some function of characteristics of document and query
 - E.g., logistic regression $log(p_i/(1-p_i)) = X_i \beta$
- Explanatory variables
 - Terms in common
 - Query length
 - Collection size
 - Frequency of occurrence of term in document
 - Frequency of occurrence of term in collection
 - Rarity of term in collection

The advent of the web

- By mid-1990s algorithms were very mature
- Then the Web came along
 - IR researchers were slow to react
 - CS researchers were quick to react; NSF DL project
- Link structure of Web became new explanatory variable
 - PageRank = measure of how many important sites link to a given site
 - Also "anchor text" is very helpful
 - Improved relevance of search results significantly

Google development

- Brin and Page tried to sell their algorithm to Yahoo for \$1 million (they wouldn't buy) – assumed search was a commodity
- Formed Google with no real idea of how they would make money
- Put a lot of effort into improving algorithm
- Everybody else was convinced search had been commodified ...and there was no way to make money on it

Business model

- GoTo Ad Auction Pasadena
 - GoTo's model was to auction search result placement
 - Changed name to Overture, auctioned ads
 - Google liked the idea of an ad auction and set out to improve on Overture's model in Fall 2001

Original Overture model

- Rank ads by bids
- Highest bidders get more prominent (higher up) slots
- High bidder pays what he bid (1st price auction)

Google auction

Rank ads by bid x expected clicks

- Want ad with highest expected revenue in best position (price per click x number of clicks)
- Each bidder pays price determined by bidder below him
 - Price = minimum price necessary to retain position
 - Motivated by engineering, not economics
- Overture (now owned by Yahoo)
 - Adopted 2nd price model about same time
 - Currently moving to using expected revenue for ranking

Google and game theory

- It is fairly straightforward to calculate Nash equilibrium of Google auction
 - Basic principle: in equilibrium each bidder prefers the position he is in to any other position
 - Gives set of inequalities that characterize equilibrium
 - Inequalities can be inverted to give values as a function of bids...
 - If you are in psn 3, were willing to pay price to get there, not willing to pay price to get to psn 2

Implications of analysis

- Basic result: incremental cost per click has to be increasing in the click through rate.
- Why? If incremental cost per click ever decreased, then someone bought expensive clicks and passed up cheap ones.
- Necessary and "sufficient" condition
- Similar to classic competitive pricing rule
 - Price = marginal cost
 - Marginal cost has to be increasing

Simple example

- Suppose all advertisers have same value for click v
 - Case 1: Undersold auctions. There are more slots on page than bidders.
 - Case 2: Oversold auctions. There are more bidders than slots on page.
- Minimum price paid
 - Case 1: The reserve price is r = 5 cents.
 - Case 2: Last bidder pays price determined by 1st excluded bidder.

Undersold pages

 Bidder in each slot must be indifferent to being in last slot

$$(v-p_s)x_s = (v-r)x_m$$

Or

$$p_s x_s = r x_m + v(x_s - x_m)$$

Payment for slot s = payment for last position + value of incremental clicks

Example of undersold case

- Two slots
 - $x_1 = 100$ clicks
 - $x_2 = 80$ clicks
 - v=.50
 - r=.05
- Solve equation
 - $p_1 100 = .05 \times 80 + .50 \times 20$
 - $p_1 = 14$ cents, $p_2=r=5$ cents
 - Revenue = .14 x 100 + .05 x 80 = \$18

Oversold pages

Each bidder has to be indifferent between being in his slot and not being shown:

• So
$$(v - p_s)x_s = 0$$

 $p_s = v$

- For previous 2-slot example, with 3 bidders, p_s=50 cents and revenue = .50 x 180 = \$90
- Revenue takes big jump when advertisers have to compete for slots!
- Similar to Klemperer's example of Dutch mobile phone license auction

Why online business are different...

 Online businesses (Amazon, eBay, Google...) can continually experiment

kaizen = "continuous improvement"

- Hard to do *controlled experiments* with product design for traditional industries
 - Manufacturing iPhone took 2 ½ years
- Very easy to do online
 - Leads to very rapid (and subtle) improvement
 - Learning-by-doing leads to significant competitive advantage for incumbents if they take advantage of it

Conclusion

- Marketing as the new finance
 - Data + computers + models
- Real time data allows for continuous improvement
- Market prices reflect value of ads (incremental price per click)
- Quantitative methods really work
- We are just at the beginning...