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Abstract

This paper introduces a model of Bayesian learning in second price auctions in which

bidders belief to face a stationary distribution of competitors’ bids over time. This reflects a

situation which is typical for internet auctions like eBay. Learning in second price auctions is

complicated by the fact that bidders cannot directly observe the statistic of interest, namely

the highest bid of the competitors, but only the transaction price, which is the second highest

bid. The paper shows that the latter can be used to update the beliefs about the location

parameter of the distribution of the highest bid when relying on asymptotic distributions for

the extremes. Panel estimations with data from eBay auctions show that learning provides

an explanation for the observed bidding patterns.

1 Introduction

When looking at eBay data it strikes that bidders increase their bid with each trial in a new

auction for the same object. Static auction models cannot explain this behavior. While the

sequential auction literature (see e.g. Weber (2000)) can rationalize increasing individual bids,
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the assumptions which drive this behavior provide no good description for the eBay market.

Sailer (2005) introduces a model of search which captures the eBay specific form of competition

better. This paper shows that learning is a possible explanation for bidders’ increasing bids in

such an environment.

Why are standard sequential auction models not applicable to eBay? These models have a

finite horizon, determined by the ex ante known number of products to be sold, and the number

of bidders is always bigger than the available products. The reason why a bidder increases his

bid over time is intimately related to this scarcity of supply: Each time he looses, his remaining

winning chances decrease, and he, thus, bids more aggressively. In eBay’s product categories

for off-the-shelf products like computers, consumer electronics, or DVDs supply is rarely scarce

in this form. While at a certain point in time the bidder sees only a limited number of open

auctions, he knows, new ones will open soon. Likewise, new bidders permanently enter while

others leave. The framework in Sailer (2005) allows for an infinite horizon and entry of new

bidders. Instead of being restricted by a limited supply, bidders here refrain from bidding too

low on account of positive bidding costs. Under these circumstances it is optimal for a bidder to

bid his valuation less his continuation value - the same as in a sequential auction model. Given

that the expected future relation between supply and demand remains stable the continuation

value though does not change over time and the bidder places the same ‘reservation bid’ in each

auction.

Increasing bids can arise in this environment when bidders engage in learning. Bidders

probably are aware that products can be acquired at eBay cheaper than elsewhere. By exactly

how much cheaper might be less clear to many of them when bidding for the first time. The

price a bidder pays in a second price auction like eBay is determined by the highest bid of the

competitors. A key simplifying assumption in Sailer (2005) is that bidders belief to play against

an invariant distribution of competitors’ bids over time.1 If this is so, the bidder can use past

observed bids to update his prior beliefs about this distribution. After each auction the bidder

then re-assesses his future expected return which changes his continuation value which in turn

affects the bidding strategy in the next auction. How exactly the uncertainty resolves over the

1Stationarity makes sense in a mature market combined with an environment where entry of new bidders,

individual participation decisions, and stochastic components in valuations introduce so much noise that learning

about the characteristics of any specific competitor after observing him in one auctions provides minor payoff.
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course of a bidders’ participation in the eBay game and in which way bidders can incorporate

new information into their bidding strategy will be explored in the following.

Burdett and Vishwanath (1988) show how to introduce learning in a search model. In their

model the job seeker in the labor market is uncertain about (the location parameter of) the

job offer distribution. With each offer he receives, he updates his prior in a Bayesian way;

consecutive decisions are based on the posterior distribution. The corresponding distribution in

a second price auction is the distribution of the highest bid of the competitors which determines

a bidder’s winning odds and the price he pays. The main technical challenge is that bidders

in these auctions normally do not observe the highest bid of their competitors and thus cannot

use this information to update their beliefs. They only observe the transaction price, which is

equal to the second highest bid of the competitors (+ 1 increment), and maybe some or all lower

ordered bids. I will show in the following that a function of the transaction price provides a

sufficient statistic for updating the distribution of the highest bid when relying on asymptotic

distributions of order statistics. Moreover, starting from a prior knowledge of the distribution

of the highest bid of the competitors, the bidder can update his beliefs each time he participates

in an auction in a simple way, that is, using conjugate priors.

The statistical literature on asymptotic distributions of order statistics, also referred to as

extreme value distributions, dates back to the beginnings of the last century. A seminal work is

Gumbel (1958). It has been applied in so diverse fields as survival analysis in biology, reliability

studies in engineering, or to measure any kind of extremal event, such as floods or wind speeds.

The only application to economics, to my knowledge, is in finance where it is used to model the

tails of the distribution of stock returns. The paper shows how to make use of the framework

in a dynamic auction environment. In standard auctions the number of bidders is normally not

big enough to justify the application of asymptotic distributions. This is different for internet

auctions such as eBay; here the potential number of bidders, that is, those that consider bidding

in any given auction, is for many product categories rather large.

As opposed to eBay.com, at eBay.de auctions cannot be searched for anymore as soon as

they are closed. By this policy eBay makes it more difficult for a bidder to inform himself about

his competitors’ bids before participating in an auction. It can therefore be expected that part

of the learning process a bidder undergoes can actually be observed in the bidding data. I will
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use a data set of all auctions and the corresponding bids for a specific palm pilot, which was

collected from eBay.de during a seven month period, to see whether bidders combine their prior

knowledge with the new information, obtained in those auctions where they participated in, in

the way predicted by the model.

The model builds on the classic theoretical decision making literature which gives clear advice

on how people should behave under uncertainty. Researchers have questioned whether people

actually follow this advice. There is some evidence in the experimental literature that people

are applying Bayesian rules to resolve uncertainty (see e.g. El-Gamal and Grether (1995)). The

paper adds to this literature, using field data, by showing that bidders at eBay incorporate new

information into their strategies in a Bayesian way.

The next section states a model of updating in second price auctions where a large number

of potential bidders are present and bidders are unable to follow a specific bidder or a specific

sample of bidders over time. This model reflects a situation which is typical for internet auctions.

Section 3 discusses the impact of learning on the optimal bidding strategies. The application to

eBay and estimation results are given in section 4. The last section concludes.

2 Benchmark Model

Setup. Assume an infinite number of homogenous products which are offered to n potential

buyers in sequence, one in each period t. Whenever one buyer leaves the market for good, a new

one enters. The products are sold via independent Vickrey auction. Bidder i is interested in

one product only which he values at vit = vi + εit. vit is private information. While vi remains

constant over time, εit is drawn anew before the start of each auction from a common density

function fε with mean zero and variance σε.2 The bidder can bid in as many auction as he

wishes. Bidding though comes at a cost c which is common to all bidders. In each period the

bidder has to decide about participation, δit ∈ {0, 1}, and about a bidding policy, bit. Policies

are chosen such as to maximize the intertemporal utility given by the sum of the expected period

returns.

2This form for the valuations is chosen in view of the empirical part. εit there reflects the time-varying part

in the individual valuations which cannot be attributed to observables such as product characteristics.
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Beliefs. To simplify the analysis and to focus the view on the learning aspect, I assume that

the bidder believes to face the same distribution of competitors’ bids in each auction. Sailer

(2005) provides a detailed discussion of this assumption. When deriving the bids distribution

from the underlying distribution of valuations it basically means two things: First, it excludes

that a bidder learns about the personal characteristics - here the time-constant part vj - of any

specific competitor j by past observations. Second, the vj ’s and εjt’s of all of the n−1 competitors

are believed to come from time-invariant distributions, that is entry and exit happen in a way

so that these distributions remain stationary. When concentrating on Markov equilibria, the

only variable which affects bidding strategies is then the private valuation of a bidder, or more

formally: bjt = b(vjt).3 The bid of each potential competitor is therefore distributed according

to some density fb with corresponding distribution Fb which is composed of the densities of v

and ε and is consequently believed not to change across auctions.

What really matters for the bidder is the highest bid of the actual participants in an auction

since this determines his winning odds and the price he pays. The optimal Markovian partic-

ipation decision of each potential competitor is given by δjt = δ(vjt) = δ(b−1(bjt)). Since c is

the same for all bidders, there exists a common thresholds b for the bids: While bidders with

optimal bids above b participate, all the others wait for one of the next auctions where their

draw of ε is higher.4 Bidder i can thus compute his winning odds either as the probability of

being higher than the highest bid out of the actual competitors, who draw their bids from the

parent bid distribution truncated at the participation threshold, or as the probability of being

higher than the highest out of all potential competitors, who draw their bids from the full parent

bid distribution Fb. The latter viewpoint will be maintained in the following. Let bh ≡ bn−1:n−1

denote the highest bid out of a sample of n − 1 from the parent Fb. The distribution of this

order statistic is then given by F h
b ≡ (Fb)n−1.

Learning. While the model stipulates, the bidder cannot trace a specific competitor or

a specific sample of competitors by observing bids and participation decisions, it allows for

the possibility that the bidder is uncertain about the underlying primitives, namely the bid

3To be fully correct, competitor j’s strategy also depends on his information set since he also engages in

learning. However, by the same reasoning, it is unrealistic that bidder i can assess how learning on the side of the

competitors changes the distribution of bids he faces and he thus believes that it does not affect stationarity.

4For a formal proof see Sailer (2005), Lemma ??.
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distribution from which the bids of his competitors are randomly drawn in each auction and

that he can learn about it by observing realizations of this distribution. By assumption, only

participants in an auction can observe these realizations.5 Learning is assumed to happen in a

Bayesian way, that is, the bidder incorporates new relevant information into his prior beliefs and

future decisions rely on the posterior distribution (see e.g. DeGroot (1970)). More specifically,

the distribution of the unknown variable bh is known up to a parameter θ; the bidder does not

know the value of this parameter but can specify a prior probability distribution over it. With

each observation, that is, after each auction he participated in, he can update this prior with all

relevant information he obtained. The result is a posterior distribution of the parameter θ and

a new predictive distribution for bh.

The Bidders’ Problem. Taking account of the auction environment and incorporating the

learning aspect yields the following expected per period profit function for a participating bidder

in period t:

Et−1 [1{bit > bht}(vi + εit − bht)]− c (1)

The decision to participate, first of all, involves paying the bidding cost c. If the bidder wins,

which is the case when his bid is higher than the highest of his competitors, he gets his valuation

and pays the price determined by the highest bid of his competitors.6 The time subscript on the

expectation operator indicates that the bidder can incorporate all information that has realized

up to period t− 1 in his expectation over the unknown variable bht. A non-participating bidder

obtains zero in that period.

Since there is an infinite number of consecutive auctions, the bidder can try again in the next

auction whenever he looses. In recursive form, bidder i’s intertemporal optimization problem is

5Letting also non-participants to an auction learn as soon as they have entered the marketplace would change

the problem insofar as the continuation value when the bidder decides not to participate would also be a function

of the updated parameters (see equation (2)). See also argumentation in the empirical part.

6In the following I will ignore the minimal increment since it is usually very small in comparison with the price

to be paid.
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thus given by:

Wi(εi, θi) =





max
{

max
bi≥0

E [1{bi > bh} (vi + εi − bh)− c + 1{bi ≤ bh}W e
i (θ′i) |θ] , W e

i (θi)
}

before winning

0 after winning

(2)

where W e
i (θi) ≡

∫
Wi(εi, θi)fε(ε)dε denotes the expected continuation value. Equation (2) states,

whenever the bidder participates and does not win, his return is the updated continuation value

W e
i (θ′i) minus the bidding costs. When the bidder decides not to participate in that auction, he

gets the continuation value W e
i (θi) which does not include any updating of the parameter. In

case the bidder wins, his continuation value becomes zero and he leaves the market. I will drop

the case Wi(·) = 0 as well as the subscript i in the following for notational ease.

Updating in Second Price Auctions. So far nothing has been said about what information

the bidder could use for updating. Even if learning is directly over the distribution of the highest

bid, it is not straightforward since the information the bidder is primarily interested in, bht, is

not observable in a second price auction. Is there alternative information which the bidder could

use instead to improve his prior over the parameter of the distribution of bh? What the bidder

can observe is the full bidding history below the transaction price. He therefore could use some

or all of the lower ordered bids. Since these are drawn from the same parent as bh, there exists

a relation between these bids. In the following, I explore whether and how this relation can be

exploited for Bayesian updating in the above dynamic optimization problem.

Given the bid information, the bidder has in principle two options. First, he can use all

or part of the available lower bids to update the parent distribution. From the parent he then

derives the distribution of the order statistic he is interested in. Updating a distribution from

the sort of incomplete data encountered here, that is, data that lacks the highest bid and those

that fall below the participation thresholds, is though far from easy; incorporating this into

a recursive dynamic programming problem seems to be doomed to failure. Directly learning

about a parameter of the relevant order statistic distribution appears more straightforward at

first glance; given that in general distributions of order statistics are merely functions of the

underlying parents, the same parameters would, though, have to be updated unless specific

functional forms for the distributions are assumed. The problem of the latter approach is that
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a convenient form for the distribution of any order statistic, e.g. the normal (see Burdett and

Vishwanath (1988)), might lead to an implausible parent. Further, the related distribution of any

other order statistic that is used for updating would not necessarily have the same or any other

convenient functional form. The computational problems would thus not change. I will show in

the following that if one is willing to rely on asymptotic distributions, analytical results can be

obtained in a dynamic programming problem without making ad hoc distributional assumptions

for the parent. Before continuing, a digression on the asymptotics of order statistics distributions

is in order.

Asymptotic Order Statistics Distributions. Since Gumbel (1958), if not before, it is known

that if the highest order statistic bh = bn:n of any parent has, upon suitable standardization, a

limiting distribution as n →∞, this will be one of either Gumbel (double exponential), Weibull,

or Frechet type. Gumbel, often also referred to as the extreme value distribution, is by far the

most common type. Its density is given by:

g(zh) = e−e−zh e−zh with zh = (bh − θ)τ. (3)

θ and τ denote the location and scale parameters which are used for standardization.7 While

for normal distributions convergence has been found to be excessively slow (n > 100), for most

other distributions already much smaller sample sizes lead to good approximations.

It has further been shown that not only the highest but also all lower order statistics (k-th

extremes, b(k) ≡ bn−k+1:n and b(1) = bh) have asymptotic densities given by:8

g(k)(z(k)) = kk([k − 1]!)−1e−ke
−z(k)

e−kz(k) with z(k) = (b(k) − θ)τ (4)

It should be noted that all limiting densities have the same normalizing constants.

Another result, which will prove helpful, is that the joint density of the top k extremes

asymptotically converges to:

g1,...,k(z(1), ..., z(k)) = G(z(k))Π
k
i=1

g(z(k))
G(z(k))

, (5)

7The variable z = (bh − θ)τ has mode 0, median ln(ln(2)), mean γ, and variance π2/6. The optimal choice of

the standardizing parameters θ and τ depends on the sample size, n.

8I only report the Gumbel form. Also here three limiting types are possible where the other two are similar

to Weibull and Frechet distributions.
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where g(·) is defined as in (3) and G(·) denotes the corresponding cdf. (These and the preceding

results as well as further discussion can be found in David and Nagaraja (2003, Ch. 10) and Kotz

and Nadarajah (2002).) In the following, a tilde depicts the density of the bid corresponding to

g: g̃(b; θ, τ) = τg((b− θ)τ). Combining these results the joint density of bh and b(2) is given by:

g̃1,2(bh, b(2); θ, τ) = τ2 g((bh − θ)τ)g((b(2) − θ)τ)
G((bh − θ)τ)

= τ2e−(bh−θ)τg((b(2) − θ)τ)). (6)

As mentioned above, uncertainty will be defined as uncertainty about a parameter of the

distribution of bh. Let this be the location parameter θ. The bidder has a subjective prior over

this parameter which is distributed according to ξprior(θ). With each participation the bidder

incorporates new information in a Bayesian way. If the information he uses is the k-th order

statistic, the posterior distribution, that is, the distribution of the parameter conditional on the

observation b(k), is computed from:9

ξpost (θ|b(k)) =
g̃(k)(b(k)|θ)ξprior(θ)∫
g̃(k)(b(k)|θ)ξprior(θ)dθ

If the prior and the posterior distribution belong to the same family, that is, they differ only

by the value of a finite parameter vector, we say that ξ and g(k) constitute a conjugate family.

Using conjugate priors facilitates the updating procedure since at each step only the parameters

of ξ change as a function of the observed information but not the distribution itself.

When the scale parameter τ is known, all of the asymptotic extreme value distributions

belong to the exponential family. For members of the exponential family there always exists a

sufficient statistic of fixed dimension (see e.g. DeGroot (1970, Ch.9)). This statistic is given

by t(b(k), N) =
∑N

i=1 e−τb(k),i ,10 where N denotes the number of independent observations of

the same k-th order statistic which are used for updating, and the vector b(k) collects all the

observations. On the other hand, if such a statistic exists then there also exists a conjugate

family for this distribution:

Lemma 1. A conjugate family for the Gumbel distribution is given by:

ξ(k)(θ; r, C) =
τ

(
kreθτ

)kC
e−kreθτ

Γ (kC)
, (7)

9So far I used the notation f(x; θ) to denote the density of x for each θ ∈ Θ. To highlight that θ now is the

value of a random variable I will in the following denote f(x|θ) as the density conditional on a specific realization

of θ.

10A consistent estimator for θ given τ is given by bθ = −τ−1ln
`

1
N

PN
i=1 e−bhτ

´
(see Kotz and Nadarajah (2002)).
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where x = eθτ is distributed according to a gamma distribution with shape parameter kC (C ≥
1)11 and scale parameter 1/(kr).12 C and r are the parameters of this distribution which are

updated with each new observation as follows:

r′k = rk + t(bn−k+1, 1) and C ′ = C + 1. (8)

τ , the scale parameter of the Gumbel distribution, is known and thus not part of the updating

process. k is the order of the statistic that is used for updating.

Proof. See Appendix.

To build the expectation in (2) over bh we first have to integrate out the unknown parameter

θ. The resulting density of bh is parameterized by the parameters of the posterior distribution

ξ and is called the predictive distribution. The following lemma shows that under the Gumbel

assumption this density has a well known form as well:

Lemma 2. The predictive distribution of bh when bh is known to have a Gumbel distribution

with scale parameter τ is given by:

h(bh; r̄, C) =
1
r̄

(
r̄

r̄ + (kC)−1e−τbh

)kC+1

τe−τbh (9)

where x = e−τbh is distributed according to a Generalized Pareto distribution (GPD) with scaling

parameter r̄ = r/C and shape parameter 1/kC.13

Proof. See appendix.

The Bidder’s Problem Continued. The observation most commonly available in auction data

sets is the transaction price which corresponds to the second highest bid. The following analysis

thus concentrates on the case when this statistic is used for updating. The preceding results can

then be combined to restate the bidder’s problem as follows:

11This assumption guarantees that the predictive distribution has finite mean and variance for whatever statistic

is used for updating, including k = 1.

12The expected value of the gamma distribution is E(x) = C
r
, the expected value of θ is given by E(θ) =

Ψ(2C)−ln(2r)
τ

, where Ψ denotes the digamma function.

13The GPD is the limiting distribution for extreme exceedances. The threshold for x here is 0, that is this GPD

gives the exceedances of x above 0. For 1/2C = 0 the distribution is equivalent to the Gumbel distribution, for

1/2C > 0 the tails are heavier. For r̄ = 1 the distribution is also called Generalized Standard Pareto Distribution.
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Proposition 1. Assuming the number of potential participants in an auction is large enough to

apply the asymptotic results discussed in the previous paragraphs, the bidder’s problem when the

transaction price is used for updating is given by:

W (ε, r̄, C) = max
{

max
b≥0

∫ b

−∞
(v + ε− bh)h(bh; r̄, C)dbh − c

)
+

∫ ∞

b

∫ bh

−∞
W e(r̄′, C ′)·

· h(b(2); r̄, C)i(bh, b(2); r̄, C)db(2)h(bh; r̄, C)dbh,W e
i (r̄, C)

}

s.t. C ′ = C + 1, r̄′ = r̄
2C

2C + 1
+

1
2C + 1

e−τb(2) and r0, C0 given,

where

i(bh, b(2); r̄, C) =
2C + 1

2C

r̄

r̄ + (2C)−1e−τb(2)

(
r̄ + (2C)−1e−τbh

r̄

)2C+1

and h(·) as defined in Lemma 2.

Proof. See Appendix.

The advantage of this formulation as opposed to the problem stated in (2) is that it uses

analytic solutions for the distributions which are used for expectation building without signifi-

cantly restricting the parent distributions from which the bids are drawn. Further, it gives the

bidder clear advice how to incorporate new information in form of transaction prices into his

beliefs.

To be able to provide analytical results for the optimal strategies, the impact of the unknown

variable b(2) on the value function has to be disentangled from the impact of the other variables.

A first step forward is to separate the unknown bh into a function of the stochastically evolving

scaling parameter r̄ and a random variable whose realization is independent of r̄. From this

“standardized” version of the problem (see Appendix) the following guess for the value function

emanates which isolates the influence of the stochastic variable b(2):

W (ε, r̄, C) =
ln(r̄)

τ
+ α(ε, C). (10)

α(ε, C) ≡ W (ε, 1, C) denotes the part of the value function which evolves deterministically with

C.

Under this guess, it is possible to derive analytic forms for the optimal strategies. These

are given in Proposition 2. The proposition also states that the guess for the value function is

correct. All details of the computation are provided in the Appendix.
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Proposition 2.

(a) The value function can be written in the form:

W (ε, r̄, C) =
ln(r̄)

τ
+ α(ε, C) (11)

with α(ε, C) ≡ W (ε, 1, C), W e(r̄, C) = ln(r̄)
τ + αe(C), and αe(C) ≡ ∫

α(ε, C)dFε(ε).

(b) The bidder’s optimal bid is given by:

b∗ = b(ε, r̄, C) = v + ε− ln(r̄)
τ

− αe(C + 1)− l(ε, C). (12)

with

l(ε, C) ≡ 1
τ

(
1

2C + 1
+ ln

[
2C

2C + 1− e
1

2C+1
+τ(αe(C+1)−v−ε)

])
.

Proof. See Appendix.

The optimal bid, thus, also separates into a part which changes with the new prior for r̄ and

another part which deterministically evolves with C. This part consists of αe(C + 1) and an

additional component l(ε, C) which vanishes with C →∞.14

The first term of l(ε, C) clearly is positive. The sign of the second term is less obvious. If

αe(C + 1) > v + ε15 then the numerator is bigger than the denominator and the logarithmic

term in l(·) is positive. Due to the learning possibilities, the bidder would hence shade his bid.

When no learning happens anymore (C = ∞), the optimal bidding strategy collapses into

one where the bidder shades his valuation by his continuation value:

b∗C→∞ = v + ε− ln (r̄)
τ

− αe (∞) = v + ε−W e
i (r̄,∞). (13)

This is exactly the same solution as in the case where the bidder knows the competitors’ bid

distribution from the beginning and learning is thus not necessary (see Sailer (2005)).

14This is true as long as αe(C + 1) does not increase “too quickly” with C. In the next section I show by

numerical simulation that αe(C + 1) actually decreases in C for reasonable values of the parameters.

15The simulation exercise shows that this is true for reasonable values of the parameters.
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3 Impact of Learning on Optimal Bidding Strategies

Learning influences the bidder’s optimal bidding behavior in two ways: First, the prior over the

distribution of the location parameter changes with each new observation.

Proposition 3. The optimal bid increases with the observed transaction price; the bid increases

less the higher C.

Proof. ∂b∗
∂b(2)

= ∂b∗
∂r̄

∂r̄
∂b(2)

= 1
r̄C e−τb(2) and 1

r̄(C+1)e
−τb(2) − 1

r̄C e−τb(2) < 0.

In a second price auction any influence of the competitive environment can work only via

the continuation value. The higher the last observed transaction price was, the lower the prior

of r̄ and, thus, the lower the winning chances in the future. Lower future expected returns

decrease the continuation value. Since the bidding strategy involves shading the valuation by

the continuation value, the bidder will now shade less and the bid is thus higher. The effect

becomes less pronounced with each participation since the more observations the bidder has

already sampled the less influential is any new information.

The influence of the number of observations works via the same channel. The results are,

however, less clear cut. Differencing the optimal bid with respect to C gives:

b(ε, r̄, C + 1)− b(ε, r̄, C) = αe(C + 2)− αe(C + 1) +
1
τ

2
(2C + 1)(2C + 3)

+

+
1
τ

ln

[
2C2 + 3C − Ce

1
2C+3

+τ(αe(C+2)−v−ε)

2C2 + 3C − (C + 1)e
1

2C+1
+τ(αe(C+1)−v−ε) + 1

]
(14)

A sufficient condition for this difference to be positive is α (C + 2)−α (C + 1) < 1
τ

2
(2C+1)(2C+3) .

To be able to say more about the evolution of bids during the course of learning α thus has

to be characterized more closely. Combining the standardized form of the value function with

the value function guess provides a form for α (see proof of Prop. 2). Solving the integrals as

far as possible and rearranging gives a functional form which separates the total value into a

value from winning the object, which is similar to the one in the problem without learning, and
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a value from learning:

α(ε, C) = max
{∫ ∞

b0∗

(
v + ε +

ln(x)
τ

)
h0(x;C)dx

︸ ︷︷ ︸
Ex. value of winning (ERw(ε,C))

− c +
∫ b0∗

0
αe(C + 1)h0(x; , C)dx

+
4C+1

(2C+1)2C − ln
(

2C+1
2C

)

(2C)2C
−

ln
(

2C+b0∗
2C+1

)
+ 4C+1

(2C+1)2C

(2C + b0∗)2C

︸ ︷︷ ︸
Ex. value from learning (ERl(ε,C))

, αe(C)
}

(15)

with h0(x; C) =
(

2C
2C+x

)2C+1

and b0∗ = b0(ε, C) = 1
r̄e−τb∗ = 2C

(
e
−τ(αe(C+1)−v−ε)− 1

(2C+1) (2C + 1)− 1
)−1

.

There are thus two influences of an increase in C on the bidder’s value: Clearly, ERl(ε, C)

decreases in C and eventually vanishes. Diminishing returns from learning are also consistent

with intuition. The second influence comes via the predictive distribution h0(x; C) which the

bidder uses for determining his expected value of winning. With each new observation this

distribution becomes less dispersed. Differencing the expected value of winning with respect to

C and using integration by parts gives:

ERw(ε, C))− ERw(ε, C + 1)) =−
∫ b0(ε,C)

b0(ε,C+1)

(
v + ε +

ln(x)
τ

)
h(x; C + 1)dx+

+
(

v + ε +
ln(b0(ε, C))

τ

) (
H0(b0(ε, C);C + 1)−H0(b0(ε, C);C)

)

+
∫ ∞

b0(ε,C)

(
v + ε +

ln(x)
τ

)
(H0(x; C + 1)−H0(x; C)) dx (16)

The last two lines are positive since H0(x;C) < H0(x; C +1) for all x. This result shows that the

bidder prefers to play against a more dispersed distribution of competitors’ bids. On the other

hand, the bidder is free to choose the cutoff values b0∗ in each period (first line). By choosing a

lower bid in C + 1 than in C the bidder can counteract the negative effect. The overall effect is

ambiguous.

Given this uncertainty over how ERw(C) changes with C, it is not possible to determine

analytically how αe and thus the bids change with each new trial. I therefore compute the value

function numerically for values of the parameters which match the latter empirical analysis. The

following figure shows the results for αe and E[b∗ + ln(r̄)/τ ]. 16

16Since I do not want to pick out an arbitrary realization of ε, I here report the mean. Bids also increase for

all possible realization of ε.
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Figure 1: Simulation results for αe and E[b∗ + ln(r̄)/τ ]
(v = 400, c = 8, fε(ε) = N (0, 10), τ = 0.016, and C0 = 2. C is assumed to be close to infinity at C = 200)

For the given parameter values αe thus decreases and the optimal bid given any value of r̄

increases in C. The increases however quickly become smaller and eventually vanish.

Proposition 4. If αe(C) decreases in C the optimal bid increases in C. This is for example

true for v = 400, c = 8, fε(ε) = N (0, 10), τ = 0.016, and C0 = 2.

Proof. Follows from the preceding discussion and the simulation exercise.

4 Detecting Learning in eBay Data

A characterizing feature or Internet auctions is that in many product categories there are a

large number of buyers and sellers present, much like in a marketplace, which makes the search

framework of the benchmark model applicable.

eBay is in most countries the major auction platform. I collected data on a Personal Digital

Assistant (PDA or palm pilot), the Compaq Ipaq H3850, from eBay Germany over a 7 month

period in 2002. This data is in the following used to test the implications of the learning model.

Every 4 1/2 hours an auction for this product closed. The average price bidders paid for it was

477e . 3829 distinct bidders are observed in the sample who on average placed bids in 2 different

auctions. Many, however, bid many more times. (For a more detailed description of the data

set and the variables used in the latter estimation as well as a frequency distribution for the
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number of bids per bidder see Sailer (2005).).17

Does the eBay setting conform with the main assumptions of the benchmark model? First of

all, the auction rules at eBay are a mixture of an open ascending and a sealed bid second price

auction. The literature on eBay, though, argues that the Vickery assumption presents a good

approximation to the true rules since it is not optimal for a bidder to reveal private information

early on. The data confirms this; bidding activity is concentrated at the end of an auction.

An estimate of the potential number of bidders is obtained when adding to the actual bidders

in an auction those that bid in any previous auction without winning and show up later again in

another auction.18 The data reveals, on average around 140 bidders are looking for the Compaq

3850 in any given auction. Further, there are probably bidders who never show up in my sample

at all but are still considering to bid for the product. Using asymptotic results, thus, is justified

for this product category.

As opposed to eBay.com, at eBay.de it was not possible to search for past, closed auctions

at the time the data was collected. While the potential bidder can also use eBay’s function

“observe auctions” to learn about his competitors’ bids before starting to bid himself, he would

have to spend considerable time to figure out what the average transaction price is, given that

an average eBay auction lasts 5 days. This is costly. An alternative is to participate right away

with a low bid using an initial guess for the competitors’ bid distribution. As opposed to merely

observing, this strategy involves not only a cost but also a winning chance. If the bidder actually

learns from past observations in the way described by the model, there is thus a good chance

that this shows up in the data.

Bidding in the model is assumed to be costly. eBay does not charge the bidder any fee;

however, there is a cost in terms of the time spent in front of the computer and the connection

charges. Given this cost, the bidder has to take a participation decision in each auction. The

bidder participates if his draw of ε is so high that it leads to an optimal bid above b. The

question is whether, once the bidder has started bidding for a product, he would also observe

17Here, I use the full bidding data, if not otherwise mentioned, as opposed to Sailer (2005) where only those

bids submitted in the last 10% of the auction time entered the estimation. The reason is that low bids now might

actually represent optimal strategies. In the latter estimation I will present results for both, the full data set and

the data which only includes bids submitted in the last 10% of the time.

18See also the description of the participation vector IPS in the Appendix to Sailer (2005).
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the transaction prices in those auctions that he decided not to participate in? While in principal

he could, it is hard to judge which of the auctions he actually observed since there is no click

data available. In the following I will therefore restrict attention to those auctions in which the

bidder is observed with a bid.

Finally, the model assumed an infinite sequence of identical products. At eBay there are

hardly any two products that are exactly the same. This is also true for the Compaq 3850.

Many of them come with extras or are used, some have defects or a foreign operating system.

To account for the heterogeneity in the estimation, bidders’ valuations for products have to be

adjusted. I assume that bidder i’s valuation for a product is made up out of an individual part

vi, the weighted sum of its k=1,...,K product characteristics, x = (x1, . . . , xK), with weights

common to all bidders, and an individual and auction specific error term εit:

vit = vi + xtβ + εit.

From the model and the simulation exercise we know how bidders should react to new

information in form of past observed transaction prices and with each new trial. This behavior

will be captured by the following reduced form for the bid:

bit
∼= vi + xtβ + εit −W red

i (bo,it
(2) , Cit) (17)

where the vector bo,it
(2) collects all observations of transaction prices which bidder i has made up

to auction t, starting with the first one, and Cit is equivalent to the number of previous trials.

Since the influence of the number of trials and the past observations of transaction prices is

via the continuation value, which is used to shade the valuation, the learning component W red
i

enters the bid equation negatively. It is specified as follows:

W red
i = ai0 + a1Cit + a2C

2
it + bo,it

(2) γit, (18)

with γit = (γ1, . . . γti , . . . γCit). From the model we know that a1 and a2 should be negative

and positive, respectively, that is, the continuation value decreases with each new trial but in

a decreasing way over time. All the γ-coefficients should be negative since the future winning

chances decrease the higher the transaction price observations. Since the influence vanishes over

time, the coefficients should be smaller the higher the index.
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Data from eBay auctions does not represent a random sample from the parent bid distribution

due to missing winning bids and the participation decision. (See Sailer (2005) for a detailed

discussion.) The estimation results in Sailer (2005) show that estimates obtained by simple first

differences, however, provide good approximations to the true coefficients. I therefore estimate

the coefficients by OLS from:

bit − bi,t−1 = (xt − xt−1)β + a1 + a2

(
(Cit)2 − (Ci,t−1)2

)
+

(
bo,it

(2) − bo,it−1
(2)

)
γit + εit − εi,t−1.

(19)

Note that due to the differencing only the last observed transaction price actually enters this

equation.

The transaction prices also reflect the product features. The bidder has to account for this

heterogeneity. Given the bidder knows xtβ, the news in each observation of a transaction price

is the amount the second highest bid is above this common component. In Specification (1) I

ignore this fact and use the bids as observed. In Specification (2) the observed transaction prices

are first homogenized using coefficients from a simple OLS regression of product characteristics

onto bids: Each element in bo,it
(2) is replaced by bo,it

(2),ti
+ (xt − xti)βOLS .

Since it is possible to argue that only those bids submitted towards the end represent optimal

strategies, I repeat the estimation using only bids submitted in the last 10% of an auction

(Specification (3)). Past observations of transaction prices are still those that were observed in

all auctions a bidder participated in - also when his bid in that auction was submitted early on

- and are used as observed, that is, without prior homogenization.

Table 1 reports the results for the different specifications. First of all, there is a pronounced

negative time trend in the data. This is attributed to the high tech characteristic of the product

and also observed in shops outside eBay. The signs of the coefficients for product characteristics

are, besides the variable CAREPAQ, all significant and have the expected signs: The age, a

foreign operating system, and a defect have a negative impact on the bids while additional

extras lead to higher bids. The relative importance of the different extras matches their relative

prices outside eBay.
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Table 1: Estimates of the Learning Model Using a Linear Specification for the Bids.

(1) (2) (3)

TREND - .984 (.218) - .970 (.218) - .460 (.119)

AGE - .031 (.022) - .031 (.022) - .065 (.017)

AGE NS -9.224 (4.906) -9.289 (4.906) -11.377 (3.525)

DEFECT2 -39.886 (12.864) -39.711 (12.864) -31.869 (11.270)

OS ENG -10.515 (8.858) -10.492 (8.858) -18.469 (6.942)

OS FRENCH -202.630 (37.047) -202.510 (36.047) -77.345 (16.738)

EXTRAS 5.469 (3.270) 5.448 (3.270) 6.338 (2.663)

JACKET1 26.364 (16.786) 26.560 (16.786) 18.367 (8.655)

JACKET5 102.570 (22.189) 102.130 (22.190) 113.380 (25.612)

MEMORY .157 (.051) 0.156 (.051) .227 (.043)

HARDDISK 69.800 (16.674) 69.541 (16.674) 80.582 (22.346)

NAVIGATION 73.952 (21.968) 74.068 (22.968) 184.960 (29.883)

CAREPAQ - .699 (5.618) - .704 (5.618) 10.542 (4.946)

a1 -9.114 (5.315) -9.213 (5.315) -11.009 (4.189)

a2 0.614 (.493) .618 (.493) .966 (.415)

γ1 - .039 (.017) - .032 (.017) - .015 (.010)

γ2 - .010 (.012) - .007 (.012) .001 (.007)

γ3 - .001 (.013) .000 (.013) - .002 (.008)

OBS 2479 2479 858

R2 .129 .129 .407

adj R2 .123 .123 .395

White heteroscedasticity robust estimation. Standard errors in parenthesis.
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The coefficients which measure the influence of the past number of trials, a1 and a2, are

negative and positive, respectively, that is, they conform to the predictions of the model. Both

coefficients are significant at the 10% level in all specifications. As for the influence of the past

observations, reflected in the γ coefficients, the results are less pronounced. The maximum

number of observations of transaction prices taken by an individual, that is, the maximum

number of auctions he already participated in, is larger than 16. Since I do not have enough

observations, I cannot estimate all of these coefficients. Instead, I restrict attention to the first

3 observations a bidder took and see whether they fulfil the predictions of the theoretical model.

The coefficient for the first observation, γ1, is significantly negative in all specifications and,

thus, in line with the model. While mostly the influence of the second and third observation is

negative as well and smaller, the effects are insignificant. A reason for this insignificance might

be that part of the learning is not reflected in the data, that is, the bidder also learns when he

does not participate.

There is nearly no difference in the results between Specification (1) and (2). This is not

too astonishing since on average the influence of high and low value products cancels. There are

some small differences when using Specification (3). These could, however, also be attributed

to the considerably smaller sample size. The problem with first differences in the eBay setting

is that half of the bidders are lost since they only participate once. This is reflected in the

relatively low R2. This effect is even more pronounced when only using bids submitted in the

last 10% of the time. If the one time bidders are different from the other bidders (see Sailer

(2005)) this would bias the results.

5 Conclusion

Standard sequential auction models cannot rationalize increasing individual bids which are en-

countered at eBay. The paper showed that uncertainty over the competitors’ primitives can

provoke such bidding patterns. By augmenting the search model proposed in Sailer (2005) by a

Bayesian learning procedure it was not only shown that the bidder optimally increases his bids

over time but also how he will incorporate new information in form of past observations of trans-

action prices into his bidding strategy. Results from reduced form estimations gave evidence

that learning is a possible explanation for the observed bidding patterns.
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Besides showing that there is evidence of Bayesian updating in the eBay data, a main con-

tribution of this work is to show how to make use of asymptotic order statistic distributions in

an auction environment. Learning in second price auctions is complicated by the fact that the

bidder cannot directly observe the statistic of interest, namely the highest bid of his competi-

tors, but only the transaction price, which is the second highest bid. Using results from the

asymptotic distribution of extreme order statistics, it was shown that the transaction price can

also be used to update the beliefs over a parameter of the distribution of the highest bid.

While the empirical part allowed for bidder heterogeneity in form of different valuations,

all bidders started with the same priors. It would be interesting to see whether the results

are robust to heterogenous priors. Since such a specification would require a more structural

approach, this has to be deferred to future research. A structural approach would also be

desirable to see whether the results are robust to possible non-linearities.

Finally, the results hinge on the premise that the proposed model is the true model. While

increasing bids over time and with new observations of transaction prices intuitively make sense,

derivation of the optimal bidding strategy is far from easy. It would be interesting to see whether

other bidding strategies, including e.g. reasonable heuristics or behavioral strategies, would

explain the data better.

21



Appendix

6 Proofs

Proof of Lemma 1. The posterior distribution of the parameter, given that only one observation

is included at a time which is distributed Gumbel, is given by:

ξpost(θ|bn−k+1) =
g̃(k)(bn−k+1|θ)ξ(k)(θ; r, C)∫∞

−∞ g̃(k)(bn−k+1|θ)ξ(k)(θ; r, C)dθ

=
e−ke

−(b(k)−θ)τ

e−k(b(k)−θ)τeθτkCe−kreθk

∫∞
−∞ e−ke

−(b(k)−θ)τ

e−k(b(k)−θ)τeθτkCe−kreθkdθ

=
eθτk(C+1)e

−eθτ k
“
r+e

−b(k)τ
”

∫∞
−∞ eθτk(C+1)e

−eθτ k
“
r+e

−b(k)τ
”
dθ

.

It is easily shown that the denominator integrates to Γ (k(C + 1)) /
(
τ

(
k

(
r + e−b(k)τ

))k(C+1)
)

(Use equation 7 and the fact that distributions integrate to 1) and thus:

ξpost(θ|bn−k+1) =
τ

(
k(rk + t(bn−k+1, 1))eθτ

)k(C+1)
e−k(rk+t(bn−k+1,1))eθτ

Γ (k(C + 1))
. (20)

Letting r′k = rk + t(bn−k+1, 1) and C ′ = C + 1 we have ξpost(θ|bn−k+1) = ξ(k)(θ; r′, C ′).

Proof of Lemma 2. The predictive distribution is given by
∫
Θ g̃(bh|θ)ξ(2)(θ; r, C)dθ. Using the

Gumbel density of the bid and (7) gives:

h(bh; r̄, C) =
∫ ∞

−∞

τ2e−e−(bh−θ)τ−(bh−θ)τ
(
rk eθ τ

)k C
e−rk eθ τ

Γ (k C)
dθ.

Now take the constants as far as possible out of the integral, change the variable of integration

from θ to x = eθτ , and use the fact that
∫∞
0 e−xa1xa2dx = Γ(a2)a2

a1a2a1
for any positive constants a1

and a2. It then follows that:

h(bh; r̄, C) = τ
(rk)kC

Γ(Ck)
e−τbh

Γ (kC) kC

(e−τbh + rk)kC+1

Rearranging finally gives:

h(bh; r̄, C) =τ (rk)kC kCe−τbh(e−τbh + rk)−(kC+1),

which is equivalent to a Generalized Pareto Distribution (GPD).
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Proof of Prop. 1. Using the transaction price for updating in (2) we obtain:

W (ε, θ) = max
{

max
b≥0

∫

Bh

1{b > bh}(v + ε− bh)
∫

Θ
l(bh, θ)dθdbh − c+

+
∫

Bh

1{b > bh}
∫

B(2)

1{b(2) < bh}W e(θ(b(2)))·

·
∫

Θ
l(bh, b(2), θ)dθdbhdb(2),W

e(θ)
}

where Bh and B(2) are the set of all possible values of the highest respectively second highest

bid and l(·, . . . , ·) denotes the relevant joint distribution of its arguments. Combining this with

Lemma 2 for the predictive distribution and using (6) for the joint distribution gives:

W (ε, r, C) = max
{

max
b≥0

∫ b

−∞
(v + ε− bh)h(bh; r, C)dbh − c+

+
∫ ∞

b

∫ bh

−∞
W e(r′, C ′)

∫

Θ
τ2e−(bh−θ)τg((b(2) − θ)τ))·

· ξ(θ; r, C)dθdbhdb(2),W
e(r, C)

}
.

Integrating τ2e−(bh−θ)τg((b(2) − θ)τ))ξ(θ; r, C) over θ finally gives

h(b(2); r, C)2C+1
2C

r̄

r̄+(2C)−1e
−τb(2)

(
r̄+(2C)−1e−τbh

r̄

)2C+1
h(bh; r, C).

Proof of Prop. 2.

I. Standardization.

Upon changing the variables of integration from bh to b0
h = e−τbh r̄−1 and from b(2) to b0

(2) =

e−τb(2) r̄−1 and rearranging we obtain:

W (ε, r̄, C) = max

{
max
b≥0

(
v + ε +

ln(r̄)
τ

)
(1−H0(b0; C)) +

1
τ

∫ ∞

b0
ln (x)h0(x; C)dx− c+

+
∫ b0

0

∫ ∞

x
W e

(
2C + y

2C + 1
r̄, C + 1

)
h0(y; C)i0(x, y; C)dyh0(x;C)dx,W e(r, C)

}
. (21)

with b0 = e−τbr̄−1, h0(x; C) =
(

2C
2C+x

)2C+1
with H0(x; C) = 1 −

(
2C

2C+x

)2C
, and i0(x, y; C) =

2C+1
2C+y

(
2C+x

2C

)2C+1
. In the following the expression h0(y; C)i0(x, y;C)h0(x; C) will be used in its

more concise form 2C+1
2C

(
2C

2C+y

)2C+2
.

The functions which are used for expectation building are now independent of the stochastic

updating parameter r̄. Analytical results for the optimal strategies can still not be obtained
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unless we know the form of the value function as separate functions of the stochastically changing

r̄ and the deterministically evolving C.

II. Value Function Guess.

Start with the following guess:

W (ε, r̄, C) =
ln(r̄)

τ
+ α(ε, C)

where α(ε, C) ≡ Wi(ε, 1, C) denotes the mean corrected form of the value function which only

depends on C.

Replacing W e(r̄′, C ′) in (21) by this guess and solving the integrals as far as possible gives:

W (ε, r̄, C) =max
{

max
b≥0

ln (r̄)
τ

+ (v + ε) (1−H0

(
b0; C

)
) +

1
τ

∫ ∞

b0
ln (x) h0(x; C)dx− c+

+
(

αe(C + 1) +
4C + 1

2C(2C + 1)τ
− 1

τ
ln

(
2C + 1

2C

))
H0

(
b0; C

)−

− 1
τ

ln
(

2C + b0

2C

)
(1−H0

(
b0; C

)
),W e(r, C)

}
.

Under the guess the value function thus separates additively into ln(r̄)
τ and some other part which

only depends on C and b0 and which has the form:

α(ε, C) = max
{

max
b≥0

∫ ∞

b0

(
v + ε +

ln(x)
τ

)
h0(x; C)dx− c +

∫ b0

0
αe(C + 1)h0(x; C)dx

+
∫ b0

0

∫ ∞

x

1
τ

ln
(

2C + y

2C + 1

)
2C + 1

2C

(
2C

2C + y

)2C+2

dydx, αe(C)
}

= max
{

max
b≥0

∫ ∞

b0

(
v + ε +

ln(x)
τ

)
h0(x; C)dx− c +

∫ b0

0
αe(C + 1)h0(x; C)dx

+
∫ b0

0

1
τ

(
ln

(
2C + x

2C + 1

)
+

1
2C + 1

)
h0(x;C)dx, αe(C)

}

where αe(C) =
∫

α(ε, C)dFε(ε). It thus remains to be shown that b0 is independent of r̄.

III. Optimal Bidding Strategy.

Taking derivatives with respect to b0 leads to the following FOC:

v + ε +
ln

(
b0∗)

τ
− 1

τ (2C + 1)
+ ln

(
2C + 1

2C + b0∗

)
τ−1 − αe (C + 1) = 0.

From here it can already be seen that b0∗ is independent of r̄. This completes the proof that

the guess for the value function was correct.
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Evaluating the FOC at b0 = e−τbr̄−1 and solving for b gives:

b∗ =
1
τ

ln
(
(2C + 1)e−

1
2C+1 eτ(v+ε−αe(C+1)) − 1

)
− ln(2Cr̄)

τ
.

Rearranging leads to equation (12).
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