
Dynamics of Open Source Movements�

Susan Atheyyand Glenn Ellisonz

January 2006

Abstract

This paper considers a dynamic model of the evolution of open source software
projects, focusing on the evolution of quality, contributing programmers, and users
who contribute customer support to other users. Our model has a public good problem
that is partially mitigated by altruism. Programmers who have used features from open
source software in the past are motivated to publish their own improvements, and the
anticipation of these altruistic feelings may even lead them to choose to use open source
rather than a commercial alternative that provides higher direct value. We consider two
variants of the model, one in which programmer altruism is derived from the instrinsic
quality improvement of the code, the other in which programmer altruism is related
to the bene�ts end users derive from using the new code. In our model, end users
require customer support to adopt open source, and this is provided by other users who
received support themselves in the past. We show that to avoid a zero-quality steady
state, projects require an initial critical mass of features and individuals willing to
provide customer service. We derive additional comparative statics on the dynamics of
this system. Finally, we analyze competition by commercial �rms with OSS projects,
showing that for many (but not all) parameter values, far-sighted commercial �rms
reduce their prices in order to slow the growth of OSS projects or even cause OSS
projects to change trajectories towards the zero-quality steady-state.

�We are grateful to the Toulouse Network for Information Technology for �nancial support, and we thank
participants in the 2005 Toulouse Network conference, in particular Josh Lerner and Jean Tirole, for helpful
comments.

yHolbrook Working Professor of Economics, Department of Economics, Stanford University, Stanford,
CA 94305. http://www.stanford.edu/~athey/, email: athey@stanford.edu.

zProfessor of Economics, Department of Economics, Massachusetts Institute of Technology, E52-380A,
50 Memorial Drive, Cambridge, MA 02138. http://econ-www.mit.edu/faculty/index.htm?prof_id=gellison,
email: gellison@mit.edu.

1

1 Introduction

Open source software (OSS) has become a huge phenomenon, and it has recently gained

attention in the economics literature (e.g. Lerner and Tirole (2005b)), the management

literature (e.g. Shah (2006)), and the popular and trade press (e.g. Raymond (2001)).

Although OSS has many varieties, common themes are that code is freely available, and

contributions to the code are made by a di¤use set of mostly unpaid programmers working

as volunteers. There are some well-known success stories in OSS, including Linux, which

as of late 2005 had about 30% of the market for server operating systems, Apache, which

dominates the market for internet servers, as well as PERL and PHP, which are market

leaders in scripting software. Commercial �rms often have complex relationships with OSS.

Clearly, the competitors to OSS (notably Microsoft) are impacted by OSS, and competing

with OSS products may be di¤erent than competing with traditional �rms. OSS is also

attracting a lot of investment by traditional �rms; for example, IBM invested over $1 billion

in open source initiatives in 2004.

Although much attention has been paid to the biggest projects, OSS is actually a much

broader phenomenon. As of January, 2006, SourceForge.net claimed to host over 100,000

OSS projects and to have over a million registered users. A number of interesting questions

arise about this population. Some OSS projects are long-lived, while others have a fairly

short life-span. Some have grown quickly, while others stay small. The OSS projects di¤er

in many dimensions. Of course, there is a wide range of products in terms of technical

complexity, function, and scope. Other di¤erences include: the size and composition of

consumer base for products (end-users or developers/programmers), the mix of users and

developers involved in the project, the governance structure, and participation by and

funding from for-pro�t enterprises.

The goals of this paper are twofold. First, we seek to understand the dynamics of OSS

projects�that is, changes in the size and composition of OSS projects over time�where the

projects are considered in isolation. Second, we wish to analyze strategic pricing by a �rm

that faces an OSS competitor, when the OSS competitor is taken to be non-strategic. The

results of our analysis can be used to answer questions such as: What is the role of the

founders and early participants in an OSS project in terms of ensuring future growth? Is

an initial critical mass of developers and end-users important in helping a project grow?

Can strategic pricing by a commercial �rm prevent OSS projects from attaining critical

mass, or otherwise slow the growth of an OSS project?

2

Of course, the dynamics of OSS projects will depend on the motivations of the individ-

uals who choose whether to use the product, contribute to the development and debugging

of OSS, and provide customer support for other users. This paper takes these motivations

as a behavioral primitive, rather than providing microfoundations derived, for example,

on career concerns. The preferences we specify are consistent with much of the informal

discussion of OSS (e.g. Lakhani and Wolf (2003), Shah (2004, 2006)).

In particular, we assume contributors are motivated by both their own needs and by

a form of reciprocal altruism akin to that in Akerlof (1982) and Rabin (1993). Altruistic

feelings arise when a programmer uses the product (something that is more likely when

the quality is high), and it decays when the OSS fails to meets the need of a programmer.

Without altruism, a programmer might develop a new feature but will not publish it and

make it available to other users. The quality of the OSS develops over time, as programmers

join the project and choose whether to contribute to it. Growth is then self-perpetuating,

as high quality potentially generates more altruism; on the other hand, continual regenera-

tion of the software is necessary as the quality naturally and exogenously depreciates over

time. In our baseline model, contributors are the only players, and we consider how the

dynamics and steady state qualities of OSS projects vary with factors such as the impor-

tance of altruism relative to the e¤ort costs of publication and programming, as well as the

depreciation rates of altruism and software features.

This simple model yields some interesting baseline predictions. First, there is always a

steady state with zero quality and no altruistic programmers. However, so long as the �ow

of opportunities to add software and develop altruism are large relative to the depreciation

of altruism and features, there is also a positive steady state. The dynamics of our simple

model are somewhat di¤erent from what one might expect from informal discussions of open

source software as being dependent on �network externalities.� Starting from any initial

condition with some features implemented in the software, the system converges to this the

higher steady state. So in this baseline model, initial conditions and founder behavior have

little to do with the long-run success of the project. However, the system requires both

altruistic individuals and quality to grow; if a formerly commercial product becomes OSS,

and there is no stock of altruistic programmers at the beginning, the quality of the product

may fall for quite awhile until enough programmers join the community and gain altruism

so that features are regenerated faster than they depreciate.

We turn next to consider competition between a commercial software �rm and an OSS

project. In particular, we consider optimal pricing by a single competitor to an OSS project.

3

We assume that the dynamics of OSS projects are determined by individual programmers

acting independently as in the baseline model (rather than directed by a forward-looking,

strategic leader). The optimal strategy of the commercial �rm is given by the solution to a

dynamic programming problem, which makes our model of competing with OSS somewhat

di¤erent from that standard analyses of strategic interactions between competing �rms.

As long as the importance of altruism is not above a critical level, the commercial �rm

strategically prices below its static best response in an e¤ort to slow the growth of the

OSS project. However, some counter-intuitive results can emerge when altruism is very

important and the altruistic programmer population is large. In particular, the commercial

�rm may price above the static optimum to speed the inevitable growth in open-source

quality.

Clearly, the simple model misses some important features of OSS, such as the user

base, and its predictions are in con�ict with observations about the importance of initial

conditions in getting an OSS project o¤ the ground. Thus motivated, our next step is to

extend the model to account for customer service. We introduce end users who do not

contribute to the code, but who need customer support in order to use the code. We

assume that these users are altruistic with some probability, so that they provide help if

they received it themselves. We then extend the model further by allowing contributors to

care about the number of users who will use the code in the near future. Customer support

issues then become an important constraint on the growth of an OSS project, and it may

be important that an initial set of committed programmers provide customer support early

on until a large enough set of altruistic users is established to sustain customer support in

the future. Otherwise, the project may collapse, as the lack of users inhibits the motivation

of programmers to provide features, and the lack of features leads to a slow arrival rate of

new customers who might provide customer service to the next generation of users.

Since initial growth is very important in the presence of customer support issues, a

commercial competitor to an OSS project may have even greater incentives to price low in

the early stages of an OSS project�s lifecycle, in order to erode the project�s user base and

prevent it from reaching a critical growth level.

We conclude by describing several directions for future research.

A number of prior authors have written formal economic models of open source soft-

ware. Lerner and Tirole (2002) model the incentives of open source contributors. They

consider immediate and delayed bene�ts of contributing. Immediate bene�ts include mon-

etary compensation (for contributors paid by other employers, or rarely, those employed

4

by the OSS project), own-use bene�ts, and the opportunity cost of time; long-term bene-

�ts include ego grati�cation from peer recognition and the more standard career concerns,

since contributors may signal their ability to a wide community through OSS participation.

Lerner and Tirole (2005a) consider the implications of career concern issues on the design

of OSS licenses, and how the choice of licenses varies with characteristics of the project.

They �nd suggestive evidence in favor of their theory using data from SourceForge.net.

Johnson (2004) compares the incentives for reporting errors within OSS and commercial

products, hypothesizing that commercial projects create incentives for programmers to

collude and suppress information about errors, since reporting errors may damage the

reputation and career of the responsible programmer. He argues that the large number of

individuals who can see and work with OSS code makes that type of collusion di¢ cult to

sustain in OSS projects.

Kuan (2001) considers a model of the OSS production function, where users contribute

to the public good of the quality of the product. There are two types of users. Programmers

contribute code up to the point that marginal e¤ort in contributing equals the marginal cost

of improving code (there are no costs of publishing after code is created), while users use an

analogous calculation to determine their e¤ort at reporting bugs. She provides empirical

evidence comparing bugs for OSS and commercial products.

Johnson (2003) also analyzes OSS as a public good. The paper argues that a number of

stylized facts about OSS can be understood by analyzing OSS through this lens, including

things such as underprovision of documentation. More broadly, a wider user/developer base

increases the quality of a project.

Like Kuan (2001) and Johnson (2003), our model incorporates the public good aspect of

contributions to OSS. Programmers do not necessarily internalize the full bene�ts of pub-

lishing and sharing their code when they choose whether to write code, rather they consider

the private bene�ts from using the code. However, we include altruism as a motive for pub-

lishing code, and we assume that generally, altruism is su¢ cient to outweigh publication

costs, and may be large enough to induce some code to be written (in anticipation of future

publication). In addition, our extended model of user-provided customer support also has

a public goods problem, and again altruism serves as a partial but not full counterbalance

to that.

Gaudeul (2004) takes a static or short-run approach to analyzing competition between

OSS projects and commercial �rms, focusing on the di¤erent types of features that may

be developed by the two types of organizations in equilibrium. In OSS projects, a lack of

5

coordination leads to feature duplication or omission, and programmers do not develop a

user-friendly interface. In contrast, the commercial �rm may not �nd it worthwhile to pay

programmers to implement all features. In equilibrium, the products are di¤erentiated, and

the OSS attracts customers who are either low-income or low-value, or else sophisticated

developers who do not need a user-friendly interface.

Casadesus-Masanell and Ghemawat (forthcoming) present the only paper we are aware

of that analyzes dynamic competition between OSS and commercial software. Their model

takes as given that an OSS product exists and can commit to a price of zero for the product.

Consumer demand for products is characterized by network externalities. The paper shows

that the commercial product can avoid being pushed out of the market by forward-looking

pricing policies, whereby the commercial �rm always prices low enough to ensure itself a

large enough installed base to ensure continued existence. Our approach is complementary

to theirs, in that we allow for much richer dynamics in the OSS product, and we model

the forces behind these dynamics. We do not, however, incorporate exogenous network

externalities in the product market�instead, the size of the installed base a¤ects the quality

and viability of the OSS product through the creation, improvement and maintenance of

the product itself. There are no network externalities for the commercial product in our

model.

2 A Baseline Model

This section introduces our baseline model, where we focus only on software contributors

(henceforth �programmers�). Consider a population of software programmers of unit mass.

At Poisson random times each programmer is confronted a need drawn from a set of needs

N = [0; 1]. Assume that the arrival times and the needs themselves are independent across

programmers. Let � be the parameter of the need arrival process.

At each time t the open source software package meets some subset St � N of the needs.

Write qt for the Lebesgue measure of St. We�ll refer to qt as the quality of the software.

The quality is a key outcome variable for the OSS project, and so we will be interested

in how it evolves over time. In our baseline model, quality does not directly a¤ect the set

of programmers who consider using the product, although (as we see below) it indirectly

a¤ects the provision of new code through the encouragement of altruistic behavior.

Software programmers maximize lifetime discounted utility. Assume that an increment

to utility is received whenever a need arises. The increment depends on the action taken

by the programmer. Our assumptions about these increments are intended to capture

6

reciprocal altruism. Speci�cally, assume that the increment to programmer i�s utility when

he faces need nit at t is:

Bit if the need is met using the open source software (possible if nit 2 St);
Bit � E if the need is met by programming;

Bit � E �K + ait
if the need is met by programming and the programmer then adds

the code to the open source project (possible if nit 62 St);
B0 if the need is instead met with an outside good.

The bene�t Bit of meeting the need with open source software is assumed to be a

random variable revealed to the programmer when he must decide on an action. The

programming and sharing costs, E and K are assumed to be strictly positive. The altruism

parameter ait 2 f0; ag is stochastic and varies across programmers and over time. Assume
that Probfait = ajait�dt = 0g = � if programmer i meets his need using open source

software at t. In intervals in which programmer i does not meet a need by open source

altruism decays at a Posson random time, i.e. it follows a continuous time Markov process

with Probfait+dt = 0jait = ag = �dt and Probfait+dt = ajait = 0g = 0.
The set of needs that can be met with the open source software grows when agents share

code they have written. Assume that each feature of the software exogenously disappears

at Poisson rate �. The motivation is that features become obsolete due to changes in

interacting hardware and software.

We assume that agents can only observe aggregate behavior when they make their

decisions. They understand the primitive parameters of the model, and they observe St

(and thus qt); as well as the realizations of random variables corresponding to their own

outcomes. Whenever they are called on to take an action they myopically maximize the

payo¤ their payo¤ from the current action.1

3 Developer Behavior and Community Dynamics

In this section we analyze the model described in Section 2.

1Given that agents only observe aggregates when making their decision the assumption of myopic play
is similar to assuming that players play a sequential equilibrium of the dynamic game. The one di¤erence is
that a patient programmer would in some situations use open source software even though this is suboptimal
in the short run, because he knows that will change his future utility function and allow him to receive the
bene�ts that altruists receive when they behave altruistically. We do not think that this sophisticated
behavior seems realistic.

7

3.1 Programmer Behavior

We begin with some fairly straightforward observations about programmer behavior in the

baseline model. We organize the discussion by listing the observations as propositions.

Proposition 1 If a < K then no features are ever added to the open source software.

Software quality decays at an exponential rate, qt = q0e��t.

Proposition 2 Programmers use open source if it can meet their needs and Bit > B0.

This is an immediate consequence of the assumptions. Meeting the need by program-

ming is dominated because E > 0. The �program-and-contribute�option is only available

if the feature is not already in the open source package.

Proposition 3 Suppose that an programmer�s need cannot be met by the open source soft-

ware, that is, nit 62 St. Then
(a) If a < K then the programmer develops the feature if Bit > B0 + E.

(b) If a > K then the programmer develops the feature and contributes it to the code base

if Bit > B0 + E � (a�K).

A few comments about this proposition are in order. First, there is clearly a public

goods problem. In the absence of altruism, programmers will develop features accounting

only for their own private bene�ts, and they will never share their code after developing it

(we have left out direct private bene�ts to publication, such as gaining future support and

improvements for desired features, for simplicity). Second, altruism mitigates the public

goods problem, and in fact there may be too much or too little development relative to the

social optimum, depending on the magnitude of a. Altruism leads to strictly more features

being developed if a > K: Programmers anticipate the utility they will gain from sharing

the code (net of publication costs), and this o¤sets somewhat the private cost of e¤ort.

Indeed, agents may develop features where Bit < B0 (no private bene�ts) if altruism is

important enough.

To simplify the discussion in the remainder of the paper, we make the following assump-

tion:

Assumption 1 Assume a > K.

It then follows immediately that:

8

Corollary 1 Under Assumption 1 the equilibrium strategies are

s�i (nit; ait) =

8>>>><>>>>:
use open source if nit 2 St and Bit > B0;
program and contribute if nit 62 St; ait = a; and Bit > B0 + E � (a�K);
program if nit 62 St; ait = 0; and Bit > B0 + E;
use outside good if nit 62 St and Bit < B0 + E �minf0; a�Kg

or nit 2 St and Bit < B0:

3.2 Dynamics

The status of the software and its future evolution is described by two state variables: the

quality qt of the software and the mass bt of software programmers with ait = a, i.e. the

fraction who are currently altruistic.

We make the standard continuum-of-agents assumption that the law of large num-

bers holds exactly. We let
b denote the �ow rate at which an programmer is con-

fronted with a need for which an open source solution would dominate the outside option:

b � �ProbfBit > B0g. Similarly, we let
q denote the �ow rate at which a programmer
is confronted with a need that he would be willing to meet by programming and then

contribute to the code if he were altruistic:
q � �ProbfBit > B0 + E � (a�K)g.

Proposition 4 The dynamics of the system are given by

_qt =
q(1� qt)bt � �qt
_bt = �
b(1� bt)qt � �bt

To gain some intuition for these dynamics, it is useful to begin by deriving the _b = 0

and _q = 0 curves. We begin by describing the _q = 0 curve. It is de�ned only for some values

of q because when q >
q=(�+
q) we have _q < 0 for any b 2 (0; 1). For q 2 [0;
q=(�+
q)]
we let b _q(q) denote the value of b at which _q = 0, that is, the function de�ned implicitly by

_q(q; b _q(q)) = 0;

so that

b _q(q) =
�q

q(1� q)
:

Thus, the function is proportional to the ratio of the rate of decay of altruism and the

arrival rate of programmer needs (�=
q) as well as the ratio of the fraction of features

currently incorporated to the fraction of features that need to be written (q=(1� q)): This
implies some properties of b _q(�) that will be useful for deriving steady states.

9

Proposition 5 The function b _q(�); which describes the curve along which quality is con-
stant, is convex and strictly increasing on (0;
q=(�+
q)). It satis�es b _q(0) = 0, b _q(
q=(�+

q)) = 1, and b
0
_q(q) = �=
q(1� q)2.

In words, b _q(�) is increasing if for higher values of quality, a higher mass of software
programmers must currently be altruistic in order for the quality of the software to remain

constant over time. This follows as a result of our assumptions that quality naturally

depreciates, and that new code is only published if a programmer develops the code and

feels enough altruism to outweigh the publication costs. But if a feature currently exists,

it won�t be developed in the current time period, and so it won�t be published. Thus,

to avoid depreciation of quality, a high fraction of the programmers who develop the few

remaining features must be altruistic and publish their code. Note that we could consider

other models of the potential for quality improvements that do not have this �crowding�

phenomenon; for example, in some settings, it might be that each new feature makes it

possible for many more features to �build on it�and expand the appeal of the product in

new directions.

The function b_b(�) is convex if the rate of change in the stock of altruism necessary to

compensate for an increase in quality in order to hold quality constant is higher for higher

levels of quality. This again follows directly from our assumptions about how potential

quality improvements relate to the current set of features of the product.

Now we turn to consider how the set of altruistic programmers must change with the

quality of the product in order to keep the fraction of altruistic programmers constant.

Observe that _b = 0 if and only if

�
bq = (�
bq + �)b:

For a given q, let b_b(q) denote the value of b at which
_b = 0, that is, the function de�ned

implicitly by

_b(q; b_b(q)) = 0:

Then,

b_b(q) =
�
bq

�
bq + �
:

Proposition 6 The function b_b(�) is concave and strictly increasing on (0; 1). It satis�es
b_b(0) = 0, b_b(1) 2 (0; 1), and b0_b(q) = ��
b=(�
bq + �)

2.

10

In words, b _q(�) is increasing if for higher values of quality, a higher fraction of software
programmers must currently be altruistic in order for the set of altruistic programmers to

remain constant over time.

The function is concave if this e¤ect is less pronouced at higher levels of quality. Note

that the system has _b > 0 when b < b_b(q) and
_b < 0 when b > b_b(q), so one can think of b

as evolving toward this curve.

The system is in steady state where b _q(�) and b_b(�) intersect. Note that the two curves
always intersect at b = q = 0. Hence, (0; 0) is always a steady state of the system.

The full behavior of the system follows fairly simply from the properties noted in the

two propositions. Essentially, there are only two possibilities as pictured in Figure 1 below,

which graphs the b_b and b _q curves in q-b space. The b_b curve is concave and the b _q is convex.

If the b _q curve is steeper at the origin, the two curves will have no intersections other than

at (0; 0), as in the panel on the left. If the b_b curve is steeper at the origin, then the fact

that the b_b curve intersects the right side of the square (i.e. b_b(1) 2 (0; 1)) and the b _q curve
intersects the top side of the square implies that there is an unique interior intersection.

The right panel illustrates such a system.

6�

?
-

?
�

q

b

_b = 0

_q = 0

spp pp p
p pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp pp p
p pp pp pp pp pp pp p
p pp pp p
p p
p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

6�

?
-

?
�

-6s
s

ppppppp p
p p
p p

p pp pp pp pp pp pp pp pp pp pp pp ppppppppppppppppppppp p
p p
p p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

p
p

q

b

_b = 0

_q = 0

Figure 1: Model Dynamics: the left panel has p = 0:5 and
b =
q = � = � = 1. The right
panel has p =
b =
q = 1 and� = � = 0:5.

Evaluating the derivatives of the two curves at the origin we have.

b0_b(0) =
�
b
�

b0_q(0) =
�

q

Proposition 7 If �
b
q < �� then the only steady-state of the system is q = b = 0.

If �
b
q > �� then the model also has a second steady-state with q and b positive.

11

The condition that �
b
q > �� has a very straightforward interpretation: the opportu-

nities to add software and feelings of altruism occur su¢ ciently often relative to the speed

at which altruism and features depreciate. Note that the depreciation of altruism and the

depreciation of features enter symmetrically.

Solving for the positive steady state state we �nd:

Proposition 8 If �
b
q > �� then the nonzero steady state of the model is

q� =
�
b
q � ��
�
b
q + ��
b

b� =
�
b
q � ��
�
b
q + �
q

From here, we see that the steady-size of the project (and of the altuistic community)

is increasing in �
b
q � ��, the gap between opporunities to add software and develop
altruism relative to the depreciation of features and altruism. We can also compare the

growth rate of quality to the growth rate of altruistic programmers, �nding that it depends

on the decay rates. In some extreme cases, we get clear answers: when the decay rate of

altruism is low (� � 0) we that the steady state fraction of altruistic programmers is 1

(b� � 1), while when the decay rate of features is close to zero (� � 0); we get a steady

state quality of 1 (q� � 1).
Simple inspection of the phase diagram for the system leads to the following conclusions.

Proposition 9 If �
b
q < �� then the steady state at (0; 0) is globally stable.

If �
b
q > �� then the system converges to the (q�; b�) steady-state from every initial

condition other than (q0; b0) = (0; 0).

This result implies that the dynamics of the system are deterministic and do not have

history-dependence. Any project that gets o¤ the ground with a few features or committed

(altruistic) programmers will eventually reach a steady state that is predetermined given

parameters. It can also be shown that projects tend to grow with quality and proportion

of altruistic programmers roughly proportional to the steady state values all along the way.

Finally, we observe that the system can exhibit some nonmonotone behavior if we start

from a skewed initial condition. For example, if some formerly commercial software is

made public and thereby starts with q large and b small, then q may drop for a long time

and become quite low before b catches up and allows quality to increase back toward the

steady-state level.

12

4 Competing with Open Source

An important question for public and business policy concerns how competition between

an OSS product and a commercial product di¤ers from competition between two commer-

cial products, or from monopoly pricing. Consider a single commercial software product

competing with a single OSS project. We can incorporate this into the model of Section

2 by assuming that the �outside option� that provides utility B0 is a choice between two

goods: the commercial software that provides utility v � p, where v is the customer value
of the commercial software and p is its price; and ignoring the need, which provides utility

0. For simplicity, we maintain the assumption that the commercial software can meet all

needs and that all consumers have the same value for the commercial software.

Our model abstracts from direct network e¤ects of the form analyzed by Casadesus-

Masanell and Ghemawat (forthcoming), described in the introduction. The only network

e¤ects in our model come through the provision of features by altruistic programmers, and

how that depends on the past actions of other programmers.

If v < p; the commercial �rm gets no demand. For v > p; the commercial �rm�s demand

comes from:

1. Programmers whose needs could be met by open source but have Bit � v � p;

2. Programmers whose needs cannot be met by open source, who are not altruistic, and

who have Bit � E � v � p; and

3. Programmers whose needs cannot be met by open source, who are altruistic, and who

have Bit � E + (a�K) � v � p.

Suppose that Bit has CDF G. Assume that the commercial has zero costs. Then, its �ow

pro�t function as a function of the quality of the OSS, the set of altruistic programmers

in the OSS, and the price p of the commercial product (assuming v < p)is�(p; q; b) =

p (qG(v � p) + (1� q)(1� b)G(v � p+ E) + (1� q)bG(v � p+ E � (a�K))) :

A basic observation on the form of this pro�t function is:

Proposition 10 Flow pro�ts are decreasing in the fraction b of programmers who are al-

truistic toward the open source project.

13

Flow pro�ts are decreasing in the quality q of the open source project if altruistic pro-

grammers are not too altruistic a � K � E, but otherwise will not be monotonically de-

creasing in q.

The reason why pro�ts can be increasing in q is that programmers do not get the

altruism bene�t if they add a feature to the open source project that is already there.

Hence, a package lacking a feature can be more attractive than a package with the feature.

When b is large, this e¤ect dominates.

4.1 Static pro�t maximization

Consider �rst the static pro�t maximization problem:

max
p:p�v

p (qG(v � p) + (1� q)(1� b)G(v � p+ E) + (1� q)bG(v � p+ E � (a�K))) : (1)

Note that it is of the form

max
p
p

0@ 3X
j=1

diG(v̂i � p)

1A ; (2)

with d1 + d2 + d3 = 1, where di is the fraction of total �rm consumers coming from

i 2 f1; 2; 3g; corresponding to the three groups of consumers described above, and v̂i is the
net bene�t to the consumer of type i from using the commercial product rather than the

OSS at zero price. The �rst-order condition for such a problem isX
j

djG(v̂j � p)� p
X

djg(v̂j � p) = 0;

which gives

p =

P
j djG(v̂j � p)P
j djg(v̂j � p)

=
Q(p)P

j djg(v̂j � p)
:

One case in which this expression takes a very simple form is if the distribution of Bit

is uniform on [0; v] for v > v + E. In this case, the solution reduces to

p =
X
j

dj v̂j=2;

yielding

p�(q; b) =
1

2
(v + (1� q)E � (1� q)b(a�K)) :

14

The maximum p� = (v + E)=2 occurs when q = b = 0. It has p� = v=2 independent of b

whenever q = 1. The price when q = 0 and b = 1 is (v �E � (a�K))=2. Note that if E is
large enough, these calculations could yield p > v which cannot be optimal; in such cases

the �rm chooses p = v:

Monopoly pricing in the absence of an OSS competitor is very simple in this example:

the �rm charges p = v: Unsurprisingly, the presence of a competitor reduces the optimal

price. For the uniform case, we see that how the static optimum changes with the quality

of the OSS depends on parameters:

@

@q
p�(q; b) = b(a�K)� E:

If programming e¤ort is small relative to altruism bene�ts (weighted by the number of

altruistic programmers), the commercial �rm actually increases its price in response to a

higher quality competitor. Otherwise (and always when a �K < E), we obtain the more

intuitive result that a higher quality OSS product leads to a lower best response price by

the commercial �rm. It is also straightforward to see that the more altruistic programmers

there are, the lower the optimal price of the commercial product.

4.2 Dynamic pro�t maximization

The dynamic pro�t-maximization problem for the �rm is

max
p(q;b)

Z 1

t=0
�(p(qt; bt); qt; bt)e

�rtdt (3)

subject to

_q = �(1� q)b (1�G(v � p+ E � (a� s)))� �q
_b = p�q(1� b) (1�G(v � p))� �b;

where the latter two equations are the laws of motion for the OSS quality and the number

of altruistic programmers, given their choices between OSS and the commercial product.

Note that the programmers are not forward-looking in this model, but rather make myopic

choices based on the �ow bene�ts of programming, publishing, or using the commercial

product.

The dynamic problem is pretty straightforward when the altruism parameter is not too

large: a � K < E. In this case, �ow pro�ts are decreasing in both q and b. Lowering p

15

decreases both _q and _b. This plus the montonicity of the (q; b) system implies that the �rm

will always choose prices that are below the static pro�t-maximizing levels.

Note that d _qdp and
d_b
dp are both zero at (q; b) = (0; 0) and at (q; b) = (1; 1). This may imply

that the departure from static pro�t maximization goes to zero at both of these points. If

it does, the system should continue to have an interior steady state under dynamic pro�t

maximization when it has an interior steady state under static pro�t maximization (because

the (q; b) dynamics will still be upward in a neighborhood of (0; 0)).

The behavior of the system when a � K > E is less clear. In this case pro�ts are

increasing in q when b is large (recall the discussion from the last subsection). Choosing a

higher p increases _q (although it also increases _b). It is therefore possible that prices will

be distorted upward relative to the static solution. For example, if b0 = 1 and � = 0 then

bt = 1 for all t and so pro�ts are always increasing in q. This should lead to an upward

distortion in p.

What can we conclude about competition with an OSS product in the baseline model?

There are two e¤ects. First, from a static perspective, competition reduces prices, but

prices may be nonmonotone in the quality of the OSS. From a dynamic perspective, if the

altruism parameter is not too large, a forward-looking commercial �rm further reduces price

in order to slow the improvement of the OSS product. The size of this distortion varies with

the quality of the OSS product and the size of the altruistic programmer community. The

distortions, however, should not a¤ect the qualitative result that the OSS quality will evolve

toward a positive-quality steady state from any initial condition with nonzero quality.

If the altruism parameter is very large, the intuitive result about dynamic considerations

leading the commercial �rm to lower its prices may not hold everywhere, and there may be

states of the system (when there are many altruistic programmers, for example) that the

commercial �rm prices higher than in a static environment in order to induce consumers

to switch away from its product in the short run.

5 Models with Customer Support

Our baseline model neglected a feature of OSS that has received a lot of attention in the

descriptive literature about OSS (Shah (2004, 2006)). In particular, in many OSS projects

only a small fraction of the community actually contributes to the code base. More people

seem to help out by providing support service to new users, such as helping people learn

to install and use the software by answering questions posted to bulletin boards. Providing

this support is probably quite important for many products. Shah (2004, 2006) notes that

16

users providing this casual kind of support appear to have a shorter term period of active

involvement with the project. That is, many consumers adopt the software, receive help

from others, and then proceed to provide help to others for a period of time. In contrast,

experienced programmers do not spend time answering �basic�questions for �newbies.�

This type of phenomenon can have important implications for the dynamics of OSS,

since it suggests that a regular �ow of new users is important for maintaining customer ser-

vice. The behavior of users can be understood through the lens of altruism that depreciates

over time, and perhaps also due to the decline in intellectual satisfaction from answering

similar questions over a long period of time. Thus, we consider a model like that of the

previous section but with two populations: a unit mass of software programmers and a

mass m of �users�who potentially contribute by providing service rather than new code.

Suppose that when a �user�encounters a need he or she cannot meet the need by open

source unless the code has that feature and he or she gets help from another user. To

keep the speci�cation similar to the above model (but slightly simpler) we assume that

users� needs that would be met with open source (if this is possible) arise according to

a Poisson process with parameter
u, that users who meet their needs using open source

become altruistic with probability �u; and that their altruism decays according to a Poisson

process with parameter �u. Assume that the probability of being able to use the code is

qtf(mct), where ct is the fraction of users who are altruistic at t and f is some concave

function.2

There are several interesting options for extending our speci�cation of software pro-

grammer preferences. We proceed to analyze a couple of these.

5.1 Code-base altruism

One way to extend the model is to assume that software programmers do not need service,

and that they receive altruism bene�ts directly from increasing the code base (as opposed

to indirectly through providing bene�ts to other users). This might correspond more to

feelings of intellectual satisfaction or scienti�c achievement from contributing to a high-

quality product. In this case, the q and b dynamics of the model are identical to those in

the benchmark model, since users do not have an impact on programmers�objectives.

The fraction of users who are altruistic then evolves according to

_ct = �u
u(1� ct)qtf(mct)� �uct
2One might want to specify this f(ct) to re�ect that each user will only provide a �xed amount of

customer service that is independent of the size of the user population.

17

From our analysis of the baseline model, we know that (qt; bt)! (q�; b�) from any initial

condition other than (0; 0) provided that �
b
q��� > 0. When the latter condition holds,
the dynamics of c for large t are then approximately

_ct = �u
u(1� ct)q�f(mct)� �uct

= �u
u(q
�f(mct)� �uct)� q�f(mct)ct:

Proposition 11 If �u
uq�mf 0(0) < �u then in the limit use of the software goes to zero.

If �u
uq
�mf 0(0) > �u then use will not converge to zero if c0 > 0. In the special case

where f(x) = x=m, the fraction of users who are altruistic converges to c� = �u
uq
���u

�u
uq
� .

This result shows that service issues can lead an OSS project to be something that is

tailored for programmers, but does not meet the needs of ordinary users. Industry observers

have commented that OSS projects tend to be biased in this direction, and that commercial

products tend to cater more to less sophisticated users. The result highlights the important

role played by the slope of the �service function�f at 0 : it is important that the �rst few

users are able to e¤ectively support other users in order to prevent the collapse of service.

Clearly, if f 0(0) is large (e.g. if one user is able to answer all questions for incoming users),

collapse of the user base is not a concern. This suggests that when trying to get an OSS

project o¤ the ground in terms of user adoption, it may make a big di¤erence if a few

committed participants in an OSS project provide a lot of initial support.

Even when collapse of the user base is not a concern, when �u is large (so that user

altruism depreciates quickly), service issues can greatly limit the use of the product. Again,

this result is consistent with observations by industry observers that support is a critical

issue for OSS projects. However, by assumption, low support does not limit the development

of the project, just the rate of user adoption. We consider in the next section a perhaps

more realistic variant of the model, where programmer motivation depends on the size of

the user base.

5.2 User-motivated altruism

Surveys of OSS participants (e.g. Shah (2004, 2006)) indicate that programmers want to

have an impact with their contributions, much as academics do. They enjoy being part

of important projects, including projects that have a large user base. In particular, they

are motivated by the impact of their contributions to that endeavor, and programmers

tend to monitor discussions of features they have developed. This suggests that a model

18

should incorporate a relationship between altruism and the extent to which code is helpful

to casual users.

The �ow rate at which any feature will meet users�s needs is m
uf(mct). If we assume

that programmer�s have �myopic altruism�in the sense that the altruism bene�t depends

on the �ow rate of use of the feature at the time of development (rather than some in�nite

horizon discounted measure of total use), then the altruism bene�t from contributing a

feature at t is am
uf(mct).
3

A simple way to incorporate the idea that programmers are more likely to develop a

feature if the feature will be used more is to assume that Bit is always greater than B0+E

and that the publication cost K is a random variable distributed uniformly on [0; a].4 This

implies that the probability that an programmer decides to contribute a feature to the code

base is m
uf(mct).
5

The evolution of qt and bt is no longer separable from the evolution of ct.

Proposition 12 The dynamics of the system are given by

_qt =
q(1� qt)btm
uf(mct)� �qt
_bt = �
b(1� bt)qt � �bt

_ct = �u
u(1� ct)qtf(mct)� �uct

As above, it is always a steady state to have no activity.

Proposition 13 The system always has (0; 0; 0) as a steady state.

To analyze the stability of the zero activity steady state we linearize the dynamics in

a neighborhood of (0; 0; 0). Assuming that f has a �nite derivative at 0 the �rst order

approximation to the dynamics is

_qt � ��qt
_bt � �
bqt � �bt

_ct � ��uct

If we write this in matrix form as at (_q; _b; _c) = A(q; b; c), then the A matrix is negative

de�nite. This implies
3This also assumes as we�ve done implicitly throughout that the fact that others might invent the feature

anyway in the future also doesn�t a¤ect altruism bene�ts.
4The assumption on Bit implies that the active margin is between developing versus developing and

contributing. The expressions would be more complicated if lower �altruism� bene�ts led engineers to
switch to the outside good. The assumption also implies that
b =
q.

5This assumes that the expression for the altruism bene�t is always less than one.

19

Proposition 14 The steady state at (0; 0; 0) is locally asymptotically stable.

Note that the behavior of this model is qualitatively di¤erent from the model with �code-

based altruism.�To have any chance of succeeding, an open-source project will need to be

pushed to a su¢ cient level of development by some mechanism other than the altruism-fed

growth of our model. This suggests an important role for highly motivated and altruistic

�founding members� of an OSS project, and in particular, these members need to both

develop software and provide user support.

Proposition 15 For some parameters, the steady state at (0; 0; 0) will be a global attractor.

For other parameters the system will also have a steady state with q, b, and c positive.

To see that the zero-quality steady state can be unique, note that _q and _b in this model

are always less than they were in the baseline model. In that model, (qt; bt) always converged

to zero if �
b
q < ��. Hence, with that parameter restriction q and b will also converge to

zero in this model.

When this happens, c must also converge to zero.

To see that there can also be steady states in which the open source software is successful

note that for �c = 0 and c0 = 1 we have ct = 1 for all t. The system is then just like the

previous system with the substitutions
b0 =
b,
q0 �
qm
uf(m) and �0 � �. If we the
primitives of the model are such that �0
0b
0q > ��, the system will have a steady state

with q� and b� positive.

Note that the model of this section has more nuanced predictions about what makes for

a successful launch of an OSS project. For example, how high should (q; b; c) be in order

to get o¤ the ground. The example given above indicates that quality and programmer

altruism can be quite low if the customer base is high and altruism among customers does

not decay too much.

We can also consider how a commercial product should compete against an OSS project

whose dynamics follow the �user-motivated altruism�model. There is potentially a much

larger scope for strategic pricing behavior by a far-sighted commercial �rm. In particular,

the commercial �rm may be able to price low enough to push the OSS into the basin of

attraction of the zero-quality steady state. The commercial �rm can consider poaching

ordinary users and providing high levels of support for those users, thus diminishing the

motivation of the developers of the OSS project. If the OSS project has a mix of program-

mers motivated by users and those motivated by the quality of the code, the commercial

20

�rm can push the OSS towards a programmer-oriented niche, thus protecting its market

with ordinary users.

6 Conclusion

In this paper, we have developed several simple models of the dynamics of OSS. We have

also explored the implications of these models for (i) successful initial launches of OSS

projects and (ii) competing with OSS projects.

In our base model OSS will always has a steady-state with zero activity even if it also

has a steady state with positive activity. Our model, however, is not like a standard network

externality model �the system converges to the higher steady state given any initial boost

no matter how small. We also found that, although the dynamics of OSS projects typically

vary with parameters and state variables in intuitive ways, it is possible that increasing the

quality of an OSS can have perverse e¤ects. We can also observe nonmonotone dynamics

with quality or the population of committed programmers initially decreasing and then

later increasing toward the steady state.

The fact that our base model does not have multiple stable equilibria may be a useful

insight into OSS movements, but we think of it more as pointing out that one must incor-

porate other elements into a model to explain why the way in which an OSS product is

launched could matter in the long run. Our analysis of user support is one such extension.

It illustrates that it may be di¢ cult to get an OSS o¤ the ground without a core group of

founders committed to providing customer support. If programmers are motivated by the

size of the user base, such considerations may make it impossible to get an OSS project

started, at least for some parameter values.

Commercial �rms competing with OSS projects can bene�t from strategic foresight.

Generally, a far-sighted commercial �rm should price lower than a short-sighted one, be-

cause keeping price low slows the quality growth of the OSS. Yet, following the intuition

given above, this many not hold at very high levels of quality. When user support is an im-

portant phenomenon, and when user altruism depreciates over time, strategic pricing by a

commercial �rm can eliminate the user base of an OSS project. If a primary motivation for

programmers is the size of the user base who will use additional features, strategic pricing

can potentially push an OSS into a zero-quality steady state.

Many avenues remain to be explored. Our models are very stylized. An important

feature absent from our model is forward-looking behavior by programmers and users.

Although probably some fraction of the real-world populations of these agents would satisfy

21

an assumption of myopic behavior to a �rst approximation, we have eliminated any role

for expectations about the future growth of an OSS project. Industry observers have

discussed the �FUD� tactic for competing with OSS: �Fear, Uncertainty, and Doubt.�

When adoption of a software product is costly and there are switching costs, customers will

naturally consider whether a product will be available and supported in the future. If a

commercial product can a¤ect these expectations, either through a reputation for aggressive

pricing or through other means, we would also expect that the dynamics of OSS will be

a¤ected. Programmers may also consider future bene�ts of their contributions, and they

may be more motivated to contribute to a project they expct to succeed in the future.

Another avenue for further research concerns the governance structure of OSS projects,

and how that interacts with incentives for altruism. Shah (2004, 2006) provides suggestive

evidence about the impact of alternative governance structures, and it should be possible

to extend our model in that direction.

22

References

[1] Akerlof, George A. (1982): �Labor Contracts as Partial Gift Exchange,� Quarterly
Journal of Economics, 97 (4), 543-569.

[2] Casadesus-Masanell, Ramon and Pankaj Ghemawat (forthcoming), �Dynamic Mixed
Duopoly: A Model Motivated by Linux vs. Windows.�Management Science.

[3] Johnson, Justin (2002): �Open Source Software: Private Provision of a Public Good,�
Journal of Economics and Management Strategy, 11 (4), 637-662.

[4] Johnson, Justin (2004): �Collaboration, Peer Review and Open Source Software,�
Mimeo, Cornell.

[5] Lakhani, Karim and Robert G. Wolf (2003): �Why Hackers Do What They Do: Under-
standing Motivation and E¤ort in Free/Open Shource Software Projects,�MIT Sloan
Working Paper No. 4425-03.

[6] Lerner, Joshua and Tirole, Jean (2002): �Some Simple Economics of Open Source,�
Journal of Industrial Economics, 50 (2), 197-234.

[7] Lerner, Joshua and Tirole, Jean (2005a): �The Scope of Open Source Licensing,�
Journal of Law, Economics, and Organizations, 21.

[8] Lerner, Joshua and Tirole, Jean (2005b): �The Economics of Technology Sharing:
Open Source and Beyond,�Journal of Economic Perspectives 19 (2), 99-120.

[9] Rabin, Matthew (1993): �Incorporating Fairness into Game Theory and Economics,�
American Economic Review, 83 (5), 1281-1302.

[10] Raymond, Eric S. (2001): The Cathedral and the Bazaar, O�Reilly.

[11] Shah, Sonali (2004): �Understanding the Nature of Participation & Coordination
in Open and Gated Source Software Development Communities.�Proceedings of the
Sixty-third Annual Meeting of the Academy of Management (CD), ISSN 1543-8643.

[12] Shah, Sonali (2006): �Motivation, Governance, and the Viability of Hybrid Forms in
Open Source Software Development.�Management Science.

[13] Tirole, Jean (1988): The Theory of Industrial Organization. Cambridge MA: MIT
Press.

23

