
Presentation for the Workshop on Open Source Software
And Intellectual Property in the Software Industry

Held at IDEI, University of Toulouse, 20th January 2005

Free/Libre & Open Source Software Development and

 ‘the Economy of Regard’

By

Jean-Michel Dalle
Jean-Michel.Dalle@upmc.fr

Paul A. David

pad@stanford.edu

Rishab Aiyer Ghosh
rishab@dxm.org

 Frank A.Wolak

wolak@stanford.edu

OUTLINE
1. Human motives, incentives and non-market resource

allocation mechanisms
1.1 “Rationales” vs. “motivation-at-the-margin”
1.2 The “economy of regard” and C-mode development
1.3 Norms and behavioral guidelines in C-mode projects

2. F/LOSS participation and code-signing behaviors
2.1 FLOSS Survey testimony about code-signing
2.2 The Linux kernel and its sub-projects (“modules”)
2.3 The distribution of participation and credited code

3. An econometric model
3.1 Specification and estimation results
3.2 Interpretations

4. Discussion: implications and speculations

What is so very interesting for economists
about the F/LOSS development process ?

• Collective, distributed mode of creating
(producing) an information-good: software

• Extensive voluntary participation by communities
of skilled and neophyte software developers

• Novel use of IPR to distribute/publish software
under “public domain-like” conditions

• Essential dependence of the production mode
upon the “anti-proprietary” distribution regime

• Critical role of computer-mediated
communications (CMC) for this production
system

• Self-documenting nature of the process
permits microlevel studies of ‘collective
invention’

Human motives, incentives and non-market
resource allocation mechanisms

• The curious obsession among economists: what is
motivating the voluntary efforts of F/LOSS developers?

• A multiplicity of candidate “motives” for human behavior
• Conscious vs unconscious motives

• Instrumental vs intrinsic satisfactions

• Pecuniary vs non-pecuniary rewards

• Heterogeneity in the profiles of developers’ “reasons” for
being involved

• Individuals acquire “reasons” through action; motives
may be “learned” in social interactions and so aren’t stable

• “Rationales” vs. “motivations-at-the-margin”

Distribution of FLOSS Survey (2002) respondents among the main
motivational groups identified by principal components analysis

Motivational profiles of the FLOSS (2002) Survey respondents undergo
change: continuation reasons evolve away from initial joining reasons

FLOSS-US
The Free/Libre/ Open Source Software Survey for 2003

To go immediately to the questionnaire, click here:

A Web Survey of Software Developers
conducted by the Stanford University (SIEPR) research project on

Economic Organization and Viability of Open Source Software
With funding support from the National Science Foundation.

Visit: http://siepr.stanford.edu/programs/OpenSoftware
_David/OS_Project_Funded_Announcmt.htm

The FLOSS-US Survey: First Report (September
2003) is available at:

http://www.stanford.edu/group/floss-
us/report/FLOSS-US-Report.pdf

The relative representation of regions outside Western
Europe in the SIEPR/NSF FLOSS-US (2003) Survey is c.
49%, compared with 30% in the EC FLOSS (2002) Survey

Still, ideological and self-improvement motives are salient
among initial motivations of FLOSS-US (2003) developers

…and 56.8% of FLOSS-US respondents cite not having direct
or derived earnings benefits from their activities.

But, FLOSS-US developers’ explain their project choices in
terms different from the reasons given for contributing...

The importance of “the personal utility of the software” among the
reasons given by FLOSS-US (2003) respondents for their current
project choices reflects the predominance of small, I-mode projects.

Of 1473 respondents listing a “current project”, 64.8% described it as
“unknown” or “slightly known’: 33.0% launched it alone;

: 46.8% launched it with others.
Of 1306 respondents listing their “first projects”, 61.7% described it as
“unknown” or “slightly known”; 35.4% launched it with others.

Of 238 “newbies” (those starting a “first ¤t” project in 2001-03),
87.9% described it as unknown or slightly known; 42.4% launched it
alone; 51.3% launched it with others.

For respondents reporting the proportion of code they contributed to their
“current project,” the upper-tail of the distribution is:

Proportions of code All 1055 Respondents 238 “Newbies
> 0.75 44 % 54%
> 0.95 31 % 44%

Of 1451 respondents reporting code contributed to current projects,
58.9 % said > 0.75 of their submitted code was included in the project’s
release version.

Note that 72% of SourceForge groups in 2003 had only 1 participant.

Shifting the focus from “motives” to
“motivations-at-the-margin”

Conventional economic analysis is far more usefully engaged where,
instead of providing an answer to the question “Why is this done?” the
subject of the conversation is changed to “In what circumstances is this
done?” and “When is rather more (rather than less) of this done?”

This finesse, substituting analysis of what might be referred to as
“motivation at the margin,” makes better use of the insights that the
economist’s métier can provide about the way specific incentives and
constraint affect the incremental allocation of resources.

Consideration of “motivations at the margin” is more germane to
understanding the coordination of F/LOSS development work performed in
C-mode, i.e., by communities engaged on large and complex projects,
rather than small, I-mode projects.

Some basic microeconomic questions about
the F/LOSS production mode :

• How are the human resource inputs mobilized
in C-mode?

• What kinds of inputs are supplied by
participants in C-Mode?

• How are these inputs allocated and
coordinated within projects? (I.e., among
tasks of a particular kind ,esp. coding, bug-
fixing).

• What factors motivate participants to devote
effort to particular sub-projects within a large
and complex software system, e.g. Linux?

QQ: Can surveys of developer motives help us answer
these questions? What can be learned by analysis of
the code structure and authorship at the project level?

Allocation mechanisms between the market and
the gift: the “economy of regard” (Offer, 1997) --

distinct from the classical conceptualization of the “gift
economy”

and positioned the intermediate space of non-market
social systems

involves voluntary, partially personalized (quasi-
anonymous) transactions that

are indirectly reciprocated

subject to individual discretion in timing and magnitude.

Remark: Characterizing F/LOSS production in C(ommunity)-mode --
as contrasted with I(ndependent)-mode (a la Dalle and David 2003)
situates these social organizations within the broader array of
epistemic communities and institutionalized communities of practice
that belong to “the economy of regard”.

OUTLINE

2. F/LOSS within-project participation decisions
and developers’ self-identification (code-signing)

2.1 Behavioral foundations for participants inC-
mode projects

2.2 FLOSS Survey responses re: code-signing

2.3 The Linux kernel and its sub-projects
(“modules”): developer contributions &
technical dependencies

2.4 The distribution of participation and credited
code

Behavioral foundations for C-mode software development

Hypothesized value norms in the “economy of regard” governing resource
allocation in a large project – Dalle & David’s (2003) caricature of
Raymond’s ‘Homesteading the noosphere’ (1999):

(a) Launching a new project is usually more valued than contributing to an
existing project to which some contributions already have been made.

(b) Contribution to early releases typically are more valued than later versions.

(c) There is a hierarchy of “peer regard” attaching to the originally, and technica
significance of elements in the code of a complex project:

 i.e., contributing to the Linux kernel is (potentially) valued more highly than
 Linux implementation of an existing and widely used applications
 program; and the latter dominates writing an obscure driver for a new printer.

Behavioral foundations for C-mode software development
Hypothesized value norms in the “economy of regard” governing resource
allocation in a large project -- continued:

 (d) The hierarchy of peer-regard corresponds with (and possibly reflects)
 differences in the tree-like structure of meso-level technical dependences
 among the “modules”of a large project:

i.e., there is a lexicographic ordering of valuations for contributions,
such that work on modules on which many other modules “call” are
more highly rewarded than work on modules that “call” many others.

 (e) New sub-projects are created in relation to existing ones, adding a
 new functionality, with corresponding diminution of peer-regard:

 e.g., initiating a new module located one level higher in the ‘tree’gains
 less peer esteem than does starting new nodes on the “lower branches”.

Source: Cross-tabulation from FLOSS Survey (2002) data, prepared by R. Glott. June 2004.

Developers who are active (reporting participation in) many
projects appear to attach greater importance to marking source
code as theirs—in projects where that is permitted

Developers who report larger weekly inputs of time on F/LOSS
projects also tend to attach greater importance to marking
source code as theirs

Source: Cross-tabulation from FLOSS Survey (2002) data, prepared by R. Glott. June 2004.

LICKS Project: Overview of Linux kernel code-base

14.912.218.8Percent of code “un-credited”*

2,263616158Number of identified authors*

133.8521.054.54 Bytes of code (millions)

3,157,543527,773121,987Physical lines of code*

Ver.2.5.25Ver.2.0.30Ver. 1.0Linux kernel

48,0067,8081,748Number of defined functions*

12,4512,155593Number of files

1686030Number of “packages”*

Jul-02Apr-97Mar-94Approximate release date

*See Ghosh and David (2003): “packages” defined for LICKS;”authors” identified by CODD
algorithm from email signature; “un-credited” bytes (KBOC): CODD found no signature.

Developer contribution % across all 3 versions

0

5

10

15

20

25

1 111 221 331 441 551 661 771 881 991 1101 1211 1321 1431 1541 1651 1761 1871 1981 2091 2201 2311

developer ID

%
 c

on
tr

ib
ut

io
n

linux 1.0
linux 2.0.30
linux 2.5.25

Linux "package: (module) sizes across versions

0

5000000

10000000

15000000

20000000

25000000

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141 148 155 162 169 176

project ID

by
te

s

linux 2.5.25
linux 2.0.30
linux 1.0

1 arch_alpha
2 arch_arm
3 arch_cris
4 arch_i386
5 arch_ia64
6 arch_m68k
7 arch_mips
8 arch_mips64
9 arch_parisc
10 arch_ppc
11 arch_ppc64
12 arch_s390
13 arch_s390x
14 arch_sh
15 arch_sparc
16 arch_sparc64
17 arch_x86_64
18 boot
19 Documentation
20 drivers_acorn
21 drivers_acpi
22 drivers_atm
23 drivers_base
24 drivers_block
25 drivers_bluetooth
26 drivers_cdrom
27 drivers_char
28 drivers_dio
29 drivers_fc4
30 drivers_FPU-emu
31 drivers_hotplug
32 drivers_i2c
33 drivers_ide
34 drivers_ieee1394
35 drivers_input
36 drivers_isdn
37 drivers_macintosh
38 drivers_md
39 drivers_media
drivers_message
drivers_misc

42 drivers_mtd
43 drivers_net
44 drivers_nubus
45 drivers_parport
46 drivers_pci
47 drivers_pcmcia
48 drivers_pnp
49 drivers_s390
50 drivers_sbus
51 drivers_scsi
52 drivers_sgi
53 drivers_sound
54 drivers_tc
55 drivers_telephony
56 fs
57 fs_adfs
58 fs_affs
59 fs_autofs
60 fs_autofs4
61 fs_bfs
62 fs_coda
63 fs_cramfs
64 fs_devfs
65 fs_devpts
66 fs_driverfs
67 fs_efs
68 fs_exportfs
69 fs_ext
70 fs_ext2
71 fs_ext3
72 fs_fat
73 fs_freexvfs
74 fs_hfs
75 fs_hpfs
76 fs_intermezo
77 fs_isofs
78 fs_jbd
79 fs_jffs
80 fs_jffs2
81 fs_jfs
82 fs_lockd

83 fs_minix
84 fs_msdos
85 fs_ncpfs
86 fs_nfs
87 fs_nfsd
88 fs_nls
89 fs_ntfs
90 fs_openpromfs
91 fs_partitions
92 fs_proc
93 fs_qnx4
94 fs_ramfs
95 fs_reiserfs
96 fs_romfs
97 fs_smbfs
98 fs_sysv
99 fs_udf
100 fs_ufs
101 fs_umsdos
102 fs_vfat
103 fs_xiafs
104 ibcs
105 include_asm
106 include_asmalpa
107 include_asm-ar
108 include_asm-cris
109 include_asm-generic
110 include_asm-i386
111 include_asm-ia64
112 include_asm-m68k
113 include_asm-mips
114 include_asm-mips64
115 include_asm-parisc
116 include_asm-ppc
117 include_asm-ppc64
118 include_asm-s390
119 include_asm-s390x
120 include_asm-sh
121 include_asm-sparc
122 include_asm-sparc64
123 include_asm-x86_64

124 include_linux
125 include_math-emu
126 include_net
127 include_pcmcia
128 include_scsi
129 include_sound
130 include_video
131 Infraestructure
132 init
133 ipc
134 kernel
135 lib
136 mm
137 net
138 net_802
139 net_8021q
140 net_appletalk
141 net_atm
142 net_ax25
143 net_bluetooth
144 net_bridge
145 net_core
146 net_decnet
147 net_econet
148 net_ethernet
149 net_inet
150 net_ipv4
151 net_ipv6
152 net_ipvx
153 net_ipx
154 net_irda
155 net_khttpd
156 net_lapb
157 net_llc
158 net_netlink
159 net_netrom
160 net_packet
161 net_rose
162 net_sched
163 net_sunrpc
164 net_unix

MODULES OF THE LINUX KERNEL (All 3 vers.): 164 out of total of 180

The persistence and generation of un-credited code
across versions of the Linux kernel

Modules present in Version 2.0.3 Version 2.5.25

No. with >20% of bytes uncredited: 11 24

No. with >20% of bytes uncredited in
2.5.25 that also were present in 2.0.3: 11

Mean % of bytes uncredited in the recurring
modules with >20% uncredited 45.6 48.0

OUTLINE

3. An econometric model

3.1 Specification and estimation results

3.2 Interpretations

THE MODEL OF CODE-SIGNING

Define the following three dependent variables:

y1t = log(uncredit/(numbytes - uncredit))
= logarithm of ratio of uncredited to credited bytes in the package
assuming both uncredited and credited bytes are positive

y2t = log(ndevelop)
= logarithm of total number of developers that worked on package
(only those cases that signed = 1 is the value of totdev observed,
which corresponds to log(ndevelop).

y3t = dummy variable that equals 1 if all of the bytes in package
t are credited (belong to physical lines of codes that were signed).

 Associated with each dependent variable is a set of regressors –
X1t, X2t, and X3t, respectively.

linux25 - loguncr vs. totalbytes

-8

-6

-4

-2

0

2

4

6

0 2000000 4000000 6000000 8000000 10000000 12000000 14000000 16000000 18000000

total bytes

ln
(u

nc
re

di
te

d:
cr

ed
ite

d
by

te
s)

linux 25 - uncredited % vs. dependency count measures

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180

sup or dep num

un
cr

ed
ite

d
%

supnum
depnum

THE MODEL OF CODE-SIGNING: SPECIFICATIONS

 Posit the following three structural equations:

 y1t = X1tN$1 + " y2t + ,1t (1)
y2t = X2tN$2 + ,2t (2)

 y3t = X3tN$3 + ,3t (3)
where

y3t = 1 if y3t* > 0, and y2t is observed and y1t is not observed;

y3t = 0 if y3t* # 0 and y2t is only known to exceed

 y2t
sign = log(ndevelop),

and y1t is observed.

ESTIMATING THE CODE-SIGNING MODEL
 Assume that ,t = (,1t, ,2t, ,3t)N is a mean zero normally distributed

random vector with covariance matrix S,

S =
11 12 13

12 22 23

13 23 1

ω ω ω
ω ω ω
ω ω

(4)

Define $ = ($1,$2,$3)

The log-likelihood for this model can be written as:
3

3 33

'

3 2 2 2
1

3 1 1 2 2 2 2 2
'

(, ,) ln (,('), |)

(1)ln (((' (')),('), | *)

ct

c

sign tt

XT

t t t
t

t t t t t
Xy

L y z y X x dxdz

y y X X z X x dxdz

β

β

β α φ β

φ β β α β

∞

= −∞ −∞

∞∞

Ω = − Ω

+ − − + − Ω

∑ ∫ ∫

∫ ∫
 (5)

where N(x,y,z | S) is density of a multivariate N(0, S) random variable,

and S* is the covariance matrix of the multivariate normal random variable.

 Maximum Likelihood Estimates for the Model of Code-signing

Variable

Parameter
Estimate

Standard
Error t-statistic

Equation 3
Constant 6.466 1.004 6.437

Log(numbytes) -0.527 0.080 -6.582
Equation 2

Constant -6.012 0.866 -6.946
supnum 0.00197 0.01234 0.159
depnum 0.01824 0.00720 2.533

supnum*depnum 6.79E-03 2.172E-02 0.312
Log(numbytes) 0.6352 0.0769 8.260

Linux_2.0 0.7295 0.1888 3.863
Equation 1

Constant -2.416 1.456 -1.659
supnum 0.00913 0.00385 2.373
depnum -0.04526 0.02423 -1.868

Log(total_developers) 0.31669 0.31597 1.002

Covariance Parameters
S11* 3.6323 0.8276 4.388
S22* 1.1386 0.2101 5.421

corr(,1t*,,2t*) 0.4442 0.2384 1.863
corr(,1t*,,3t*) -0.4931 0.2635 -1.871
corr(,2t*,,3t*) -0.8552 0.0507 -16.884

Linux_2.0 = 1 if module appeared in Linux version 2.0; = 0 if module did not appear in Linux 2.0

Interpreting the behavioral evidence from the Linux kernel

General remarks:

• Developers are heterogeneous with regard to their capability and

willingness to contribute: there are a group of major, core developers
(MCDs) whose large code contributions are especially salient during the
early life of the project, but whose relative contribution to the code
declines over the life of the project.

• Code-signing as a means of gaining recognition and ‘peer regard’ is likely

to be less instrumentally important for individuals who already have
attained salience and high reputational status within the developer
community. Recognized expertise, as well as the desire for ‘peer regard’
may play a role in the allocation of developers’ efforts among the various
modules in a project.

• The technical characteristics of the modules, particularly their

dependence and supportive position vis-à-vis other packages of code
within the project, are found to exert significant systematic effects upon
both the extent of developer participation in the module, and the
propensity for contributions to be signed.

Empirical results on participation in project-modules
The number of developers contributing to a module is an
increasing function of:

(a) the size of the package (in bytes);
(b) the number of other modules that depend upon (“call”)
the package, that being a measure of its technical
importance.

 The average amount of code contributed (per developer)
increases with the size of the package (in bytes). This can
be interpreted as reflecting either or both of the following
motivational conditions:
(i) Modules that are more complex and whose architecture requires

more code (because of their technical functionality) tend to be
particularly attractive for the MCDs –i.e., those who contribute above
average amounts of code.

(ii) Gaining peer attention requires disproportionately greater average
efforts from individual developers (gauged by the volume of code
contributed) when the package grows larger.

Empirical results on participation in project-modules
-- continued

 Holding constant size and technical characteristics, modules
in Vers. 2.5 that were of Vers. 2.0 “vintage” attract a larger
number of contributing developers.

 Holding constant the size and vintage of the module, a

higher absolute dependency value (depnum) positively
affects the number of developers that contribute to it.

Remark:
 The latter result is consistent with the view that the entry

standards (in terms of expertise and the magnitude of the
effort required for “commits”) tend to be set lower when
depnum is larger, permitting a larger number of participants to
contribute to the technically less critical modules.

Results on the probability of code being signed

From the Equation 1 estimates it is found the “log odds” –
the natural logarithm of the ratio between uncredited and
credited bytes in a package—

• varies positively with the support value (supnum) and
negatively with the dependency value (depnum) of the
module;

• is unaffected by the number of developers contributing to
a module.

Remark:

These findings may be read as consistent with the
interpretation advanced for the estimation results on the
effects of the technical dependency characteristics of the
modules upon the numbers of developers contributing in a
module of given (kilobyte) size.

Interpreting the results on the probability of
code being signed

The significant “effects” of the modules’ technical features on the proportion
of uncredited code may be interpreted as reflecting unobserved
heterogeneity in the participating developers, under the following
suppositions:

• MCDs are more concentrated among the contributors to the technically more
critical (high support value) packages. But as they are more likely already to have
gained the recognition of their peers (and the admiration of neophytes and
journeymen programmers), they are less strongly motivated to sign all the code
they contribute.

• The ritual of code-signing is followed more assiduously by those who have yet to
attain peer recognition and high status in the community. Such individuals form the
mass of participants, and they find it easier to make contributions to modules that
have higher dependency values – given the (less exacting) standards for “commits”
to those modules.

Remark: Supposing two forms of unobserved heterogeneity – i.e., in the motivations
of core and peripheral developers, and in the programming standards for modules
with different supp/dep values – leaves this interpretation less solidly grounded than
one would wish.

Discussion
Broad observations and implications
• Heterogeneity of F/LOSS projects may extend to the particular

nature of the ‘value norms’ attaching to tasks, making it difficult
to generalize from broad survey data (e.g., about importance of
code-signing to developers).

• Heterogeneity among the developers associated with a large
project at different points in its history, may limit the applicability
of the conceptualization of general and static norms
characterizing the relevant ‘economy of regard’.

Speculations on future work in this line
• Can contributions of CMDs be identified in earlier releases?
• Can one date the origins of extensive un-credited code?
• Can authorship distributions help explain the distribution of

unsigned code among modules?

