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Abstract. Any seller choosing between auctioning online and live
faces a tradeoff: lower transaction costs online against more rents
left with the bidders. We model this tradeoff, and apply the theory
to auctions of art. The crucial variable in determining whether the
seller does better online is not the expected price but the extent of
valuation uncertainty.

Online auction sales topped $50 billion in 2001. Cut flowers, seafood,
classic cars, jewelry, coins, antiques, and art are now auctioned online
as well as in traditional live sales. In what follows we model the seller’s
choice of sale venue, online versus live, and apply the theory to auctions
of art, where prices and valuation uncertainties are the biggest of all.
Are there limits to what can be sold online? Industry wisdom says

the internet is not suitable for selling highly valuable items, because
potential buyers will resist bidding large sums for goods they have
not seen. Counterexamples exist, however. The town of Bridgeville,
California was auctioned on eBay for $1.8 million. According to a news
report, “Most of the 249 bidders made their offers based solely on digital
photographs and descriptions of the town on a Web site.”1 A Ferrari
sold on eBay Motors for $330,000; a 1909 baseball card sold on eBay
for $1.3 million; and an original of the Declaration of Independence
sold on Sothebys.com for $8.1 million.
There are two main differences between online and live auctions.

First, less information is available for bidders in online auctions. In a
live auction, bidders inspect the item at the preview exhibition and (in
the case of art auctions) can ask questions of the auction-house experts
present. In an online auction, bidders get only what information is
posted on a web page. The fuzziness of pictures on a computer screen
means an online bidder’s information is limited.
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Second, transaction costs are higher in live auctions. Online, the
seller’s costs are those of running a web site. In live auctions, the
auctioneer pays the costs of mounting the pre-sale exhibition and in
running the theatrical performance that makes up a live auction. The
seller must wait until a suitable auction is scheduled, bringing costs of
delay. Bidders have negligible transaction costs online, whereas to bid
live they incur travel and other participation costs.
In the auctions of tuna at Tokyo’s Tsukiji market, where a single fish

goes for up to $15,000, buyers spend half an hour examining the tuna to
assess their suitability for sashimi and sushi. This adds up to hundreds
of person-hours of transaction costs in these live auctions. In online
seafood auctions in Europe, by contrast, the auctioneer uses a letter-
grade system to stipulate the freshness of the fish, economizing on the
bidders’ time, possibly at the cost of inferior information. When Dutch
flower auctions went online, prices fell–arguably because the internet
bidders found it hard to assess the flowers’ quality.2

Any seller choosing between auctioning online and live, then, faces
a tradeoff. On the one hand, the costs to the seller and the bidders
of participating are lower online. On the other hand, online bidders,
worrying more about the winner’s curse, bid lower. We will model the
tradeoff of lower transaction costs online against more rents left with
the bidders.
The internet has made markets more efficient by making it easier for

buyers to learn what is available where for how much. The lowering
of these search frictions has made pricing more competitive, as vari-
ous empirical studies have found (Baye, Morgan, and Scholten, 2001,
Brown and Goolsbee, 2002, Brynjolfsson and Smith, 2000, Clay, Kr-
ishnan, and Wolff, 2001, Ellison and Ellison, 2001). There is one set of
frictions that the internet has not reduced, however: those of verifying
quality. Such frictions mean, we will argue, that online prices tend to
be less competitive.
The winning bidder does better in an online auction than in a live

one, in our model, despite being more uncertain about the artwork’s
value (because competitors also bid lower). The gains can be mutual:
in certain cases the seller, too, does better online.
What are the limits of online auctions? The common belief among

online sellers seems to be that it is the item’s expected price that de-
termines whether selling online works better for the seller; high-value

2On the Tsukiji fish auctions, see McMillan (2002, p. 65); on the online Euro-
pean fish auctions, www.pefa.com/pefaportal/en/index.htm; on the Dutch flower
auctions, Koppius, Van Heck, and Wolters (2002).
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items should be sold live. Our theory suggests, to the contrary, that
the crucial variable is not the expected price but the extent of valua-
tion uncertainty. Valuable items can be successfully auctioned online
if their variance of value is low.

1. Art Auctions

In 2000, Sotheby’s revamped its time-honored auction mechanism,
when it started selling online via Sothebys.com. Any online seller of
heterogeneous goods faces questions of quality. The success of eBay, for
example, is in part due to its seller-reputation mechanism, reassuring
bidders by tracking previous buyers’ experiences (Baron, 2001, Houser
and Wooders, 2000, Lucking-Reiley, Bryan, Prasad, and Reeves, 2000,
McDonald and Slawson, 2000, Resnick and Zeckhauser, 2001). More
than anything else that is sold online, art is prone to vast uncertainties
about authenticity and merit. Art therefore tests the scope of online
sales.
Sotheby’s live auctions have four steps: consignment, cataloguing,

exhibition, and sale. After a prospective seller contacts Sotheby’s, its
experts check the item’s authenticity and appraise its value. The owner
then consigns the item to Sotheby’s, which puts it in an upcoming auc-
tion. Sotheby’s auctions have a theme, such as “20th Century Works
of Art” or “Egyptian, Classical, and Western Asiatic Antiques,” so
the sale waits until there is an auction that it fits. The auction cat-
alogue, available about one month ahead of the auction, contains a
description of the item, its history, reference notes, and an upper- and
lower-bound estimated selling price. A few days before the auction,
Sotheby’s mounts an exhibition of the items to be sold. The exhibi-
tion is open the public and Sotheby’s specialists are on hand to answer
questions.3 Finally there is the auction itself, run with open ascending
bidding. Any major sale is a social event for the glitterati. Space in the
auction room is scarce so it is rationed (Watson, 1992, p. 11), desirable
seats being assigned to clients who have spent heavily in the past.
Sotheby’s online auctions have a checkered history. Sothebys.com

began operations in January 2000 as a joint venture between Sotheby’s

3It is a case of buyer beware. A catalogue states, “Neither we nor the Con-
signor make any warranties or representations of the correctness of the catalogue or
other description of physical condition size, quantity, rarity, importance, medium,
provenance, exhibitions, literature or historical relevance of the property and no
statement anywhere, whether oral or written, shall be deemed such a warranty or
representation. Prospective bidders should inspect the property before bidding to
determine its condition, size or whether or not it has been repaired or restored”
(Sotheby’s, 1988).
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and Amazon.com. This alliance was dissolved after nine months. (The
end came five days after Sotheby’s pleaded guilty to colluding with
Christie’s to fix fees in their live auctions.) Sotheby’s operated the
online auctions its own from October 2000 to June 2002. During this
time it sold goods worth over $100 million in a period when the art
market in general was depressed, but lost money because of the web
site’s high set-up costs.4 Then Sotheby’s formed a joint venture with
eBay. The joint venture replaced eBay Premiere, eBay’s own site for
high-end auctions, while Sotheby’s online business moved to eBay’s
web site, allowing Sotheby’s to cut staff and expenditures in its online
division.
The online auctions differ from the live auctions in several respects.

First, Sotheby’s is the consignor in only a fraction of Sothebys.com
auctions. It has formed partnerships with about 5,000 “internet asso-
ciates,” independent dealers who offer goods for sale at Sothebys.com.
The associates authenticate their own goods and make their own ap-
praisals. Second, rather than large auction events with specific themes
at discrete times, miscellaneous items are continuously on offer via the
web site. (At any time the site lists around 13,000 items for sale.)
Third, there is no printed catalogue and no exhibition; the descrip-
tions are solely online. Fourth, the auction is run by eBay’s rules; in
particular, each auction has a fixed end-time (and so there is the possi-
bility of last-second bidding, analyzed in eBay auctions by Bajari and
Hortacsu, 2002, and Ockenfels and Roth, 2002). Unlike eBay’s regu-
lar auctions but like Sotheby’s live auctions, however, the online art
auctions come with expert appraisals.
Sotheby’s main cost of running online auctions is in producing the

web-site descriptions. This costs no more, presumably, than print-
ing the catalogue for a live auction. The other live-auction costs are
avoided. For bidders, participation is easier online. The live bidders’
transaction costs go beyond travel and other pecuniary costs. Sotheby’s
London and New York salerooms have an elitist ambiance, said to be
daunting to newcomers. “This world has been too intimidating and rar-
ified,” said Sotheby’s president Diana D. Brooks when Sothebys.com
was starting up. “We want our site to be a friendly place to the po-
tentially millions of people who’ve never bought art before.”5

An online bidder sees pictures of the item for sale, a paragraph of
biography of the artist, a statement of the work’s condition, and a

4Sotheby’s incurred costs of $60 million in the first two years of its online oper-
ation, mostly in set-up costs (Wall Street Journal, January 31, 2002, p. B4).

5Economist, January 27, 2000.
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lower and upper estimate. Figures 1 and 2 exemplifiy how much–or
how little–information the bidders get. (To see more such examples,
go to www.sothebys.com and click on a few of the items for sale.)
The owner of a piece of art has a choice, then between selling it in a

live auction and online. Is the internet right for selling art? Sotheby’s

move to online auctions was greeted skeptically. Christie’s, Sotheby’s
rival in the global art-market duopoly, has deliberately stayed away
from online auctions. An unconvinced art dealer remarked, “What we
sell is something that needs to be looked at and discussed.” The chief
executive of the US traditional art auctioneer Butterfields, Geoff Iddi-
son, said, “Buyers expect to touch the works of art in person.”6 Next
we develop a model that both sharpens and modifies the observation
that buyers prefer to see the art before bidding.

2. The Model and Equilibrium

The decision makers: The seller is defined by a unit endowment of
an asset with zero valuation and risk neutral preferences. A bidder
i is defined by a scalar signal xi and risk-neutral preferences with an
expost payoff function s − p where s is the common value, and p is
the payment. (Risk aversion would reinforce the argument.) Define
x = (x1, ..., xn). The seller and the bidders share a common prior on s
and x.
We model an online auction as a standard ascending auction—that is,

frictionless—and a live auction as having endogeneous entry of bidders
and in which the seller and the buyers incur transaction costs.
The decision process: First, nature decides a realization of s. Neither

the seller nor the bidders learns the realization of s. Second, the seller
decides whether to sell the asset in online market or in offline market.
Third, if the seller decides to sell the asset in online market. Then:

• The seller reveals information on the asset on the webpage. The
seller reveals information truthfully because of its guarantee7

and eBay’s feedback rating system.
• Bidder i obtains the signal xoni from the distribution F on.
• Bidders compete in an ascending auction. The seller put the
reserve price ron ∈ R.

6The first quote is from a London oriental art dealer, Giuseppe Eskenazi: Econ-
omist, January 27, 2000. Iddison quote: San Jose Mercury News, Aug. 2, 2002.
7"Each seller guarantees that the authorship, period, culture or origin of the lot

is as set out in the Guaranteed sections of the View item page in the description
of the lot." and this guarantee is valid for three years for the bidder who purchases
the asset. http://pages.sothebys.ebay.com/help/rulesandsafety/guarantee.html
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Fourth, if the seller decides to sell the asset in a live auction:
• The seller pays a cost cs ∈ (0, C) to hold a live auction.
• The seller provides information on the asset in the auction cat-
alogue. The information revelation is truthful8.

• Each potential bidder decides sequentially9 whether to enter the
auction. At the time of the choice, each potential bidder reads
the catalogue. Each bidder learns the number of bidders who
have already entered the auction10

• If potential bidder i decides to enter, bidder i pays cost cb ∈
(0, C) for some C ∈ R++. In an actual auction process, the
bidders have to arrange the visit to the preview in New York
before inspecting the asset.

• Each bidder attends the preview and estimates the signal xoffi

from the distribution F off . Bidders learn the signal after the
entry decision.

• Bidders compete in an ascending auction with a reserve price
roff .

The distributional assumptions: Each of Xoff
i and Xon

i belongs to a
mean-dispersion family with a mean zero base random variable Z with
a distribution function FZ and continuously differentiable density fZ

and with mean and dispersion parameters (µ, σoff ) and (µ, σon). (For
example, if X is normal, the base random variable is N(0, 1).) The
assumption implies

F on(x) = FZ(
x− µ

σon
), F off(x) = FZ(

x− µ

σoff
)

Intuitively, a member of mean—dispersion family is obtained by a shift
in mean µ and dispersion σ of the base distribution. Many distribu-
tions, such as Gaussian, Poisson, uniform, lognormal, and extremum
value distribution, satisfies this condition.

8An offline auction catalogue states, " We guarantee the authenticity of Author-
ship of each lots contained in this catalogue... ’Authorship’, locations the identity
of the creator, the period, culture, source of origin of property, as the case may be,
as set forth in the Bold Type Heading of such catalogue entry."(Sotheby’s (1988))
9Levin and Smith (1994) modelled simultaneous entry. There are no essential

differences between two formulations since both analysis are driven by bidder’s zero
profit conditions. Other models include French and McCormick (1984), Hausch and
Li (1993), McAfee, Quan, and Vincent (2002), and Ye (2001).
10This information which might be available from the conversations with

Sotheby’s specialists when the potential bidders try to arrange a visit to the preview.
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The signal (Xj
1 , ...,X

j
N ), j =on, off is independent. Further, we

assume the sensitivity of expected value to signal does not vary exces-
sively with the level of the signal: that is, S and Xj, j =on, off are
such that there exists m > 0,M <∞ such that for all x,

(2.1) m ≤ ∂

∂xi
E[s|X = x] ≤M

(Recall affiliation already implies that E[s|X = x] is nondecreasing
in each arguments.) For example, if m = M, a $1 increase in the
signal will increase the bidder’s expected value by the same amount
regardless of the level of the signal. We assume both of Xoff

i , and
Xon

i satisfy increasing the hazard rate condition
11.

Note that, if Yi,n is the ith highest realization out of n iid samples,
then,

E(Y off
i,n ) = µoff + σoffE(Y z

i,n), E(Y
on
i,n ) = µon + σonE(Y z

i,n).

For example, see David (1981, p. 129).
The crucial parameter in our model, k, represents the extent to which

bidders are better informed about the asset’s value in a live auction
than an online one. The live auction, we assume, provides a more
precise signal: σoff = kσon for some 0 < k < 1. Here k measures the
lower dispersion in live auctions compared with online; k = 0 implies
complete elimination of dispersion and k = 1 implies zero reduction of
dispersion.
The first result identifies the equilibrium of the model.
Lemma 1: In online markets without reserve prices, each bidder’s

ex ante payoff is,

πonB =

Z
Hon(xi, N)(1− F on(xi))dxi

where

Hon(xi) ≡
Z
X−i

∂vi(x, x−i)
∂x

|x=xif(x−i|xj ≤ xi, j 6= i)dx−i,

vi(x) = E[s|X = x].

The seller’s ex ante pected payoff is

πonS = Es−N

Z
Hon(xi, N)(1− F on(xi))dxi.

11The hazard rate of the random variable x is h(x) = f(x)/(1− F (x)).
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In a live auction, the seller sets the reserve price equal to zero, and
each bidder’s ex ante payoff is zero. The seller’s expected payoff is

πoffS = Es− noffcb − cs

= Es− noff
Z

Hoff (xi, n
off)(1− F off (xi))dxi − cs.

where the number of bidders noff is determined endogenously byZ
Hoff(xi, n

off )(1− F off(xi))dx = cb.

Recall the concept of marginal revenue introduced by Bulow and
Roberts (1989) and Bulow and Klemperer (1996). In our setting, it is

MRi(xi) =
−1
f(xi)

d

dxi
[vi(xi,x−i)(1− F (xi))].

We here suppress dependence on n unless needed. By our assump-
tion, a bidder’s marginal revenue is monotone increasing in own signal.
Thus the seller sells the asset to the bidder with the highest signal.
Since we assume independent signals, the revenue equivalence theorem
(Bulow and Klemperer (1996)) holds, so our results for online auctions
apply not only for ascending auctions, but also other standard auction
formats such as first price auctions and second price auctions.
In a live auction, the number of bidders is determined so that the

ex ante profit is equal to zero. Otherwise, potential bidders will keep
entering in the auction, and since bidder’s expected profit is strictly de-
creasing in the number of bidders, the number of bidders is determined
(ignoring integer constraints) by the zero profit condition.
The tradeoff between online and live auctions is as follows. In a live

auction, the number of bidders, noff , can be less than the number of
bidders in an online auction, N . This will imply less competition. On
the other hand, in the live auction, the information available to the
bidders, Xoff , is more precise than in the online auction, Xon.
Next, we provide three comparative-statics results on payoffs. These

results serve as a preliminary for the analysis in the next section and
are of some theoretical interest by themselves. We first examine online
auctions (i.e., standard auctions) in terms of dispersion parameters.
Proposition 1: In an online auction, for any σ1 and σ2 such that

σ1 ≤ (m/M)σ2, the bidder’s expected profit is lower and the seller’s
expected profit is higher in an auction with σ1.
An intuition is as follows: as σ falls, the bidders have a more precise

estimate of the asset, so they bid more aggressively. As a result, the
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seller’s expected profit rises and the bidder’s expected profit decreases.
A more quantitative intuition is that, the bidder’s expected profit is
s function of the difference between the expected value of the highest
signal and the second highest signal. This difference is, by the formula
(EY1,n − EY2,n) = σ(EZ1,n − EZ2,n), monotone decreasing in σ.
This approach will provide a quantitative estimate of the change in

the expected profit as a function of dispersion. In contrast, previous
results such as Milgrom and Weber (1982b), Persico (1999), and Athey
and Levin (2001) are order-based.
Next, we examine online auctions in terms of mean parameters.
Proposition 2: In an online auction, the seller’s expected profit

and the bidder’s expected profit are independent of µ.
An intuition is that bidder’s expected profit is determined by the

relative competition with other bidders. As a result, the mean shift
common to all bidders will not affect in the bidder’s payoff. Thus, the
seller benefits totally from the increase in the mean parameter.
Next, we examine live auctions (that is, auctions with endogenous

entry).
Proposition 3: In a live auction, for any σ1 and σ2 such that

σ1 ≤ (m/M)σ2, the number of bidders will be monotone increasing and
the seller’s profit will be monotone decreasing in σ. The number of
bidders and the seller’s expected profit are independent of µ.
The argument for the dispersion parameter is straightforward: when

the signal is less accurate, bidders bid more aggressively, so a bidder’s ex
ante profit increases. Anticipating this, more bidders enter the auction.
The added bidders do not, however, increase the seller’s revenue: the
zero-profit condition means the seller’s payoff is equal to the value of
the asset minus the bidder’s entry costs. The argument for the mean
parameter is similar. Since the bidder’s ex ante expected payoff is
independent of the mean parameter, so is the number of bidders.

3. Live versus Online

Our main result shows that the choice between selling live and online
markets depends upon three paramaters: µ, the item’s expected value,
σ, the estimate variance, and k, the extent to which this variance is
lower live than online.
Proposition 4: There exists k∗ < 1 such that for all k ≤ k∗, there

exist σ∗, µ∗ such that for all σ ≥ σ∗ and µ ≥ µ∗, the seller’s expected
profit from selling live is higher than that from selling online.
For an asset with a given mean and variance, therefore, an online

auction generates a higher return for the seller if k is close enough
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to one, meaning the online bidders’ information is not too far inferior
to the live bidders’ information. The intuition is that, if the asset
has high valuation risk, then the benefit from information revelation
is higher in a live auction. Further, in this case, the difference in the
number of bidders between the live and the online auction is smaller.
Thus the seller prefers the live auction. Another way of saying this
is that the transaction cost is lower relative to the value of the asset.
In a live auction, the seller has to pay not only her own transaction
costs but also, indirectly, the bidders’ participation costs (French and
McCormick, 1984; McAfee and McMillan, 1987). If the expected price
from a live auction does not cover these transaction costs, then the
seller will not sell live.
It is the nature of the item for sale that determines k : there is more

to be learned from seeing, say, an oil painting live rather than on a
computer screen reproduction than, say, a print. Thus the useful inter-
pretation of Proposition 4 is that, for categories of assets with a given k
parameter, online sales are justified for assets whose mean and variance
of value are not too high. High-value items can be sold online if k is
close enough to one.
To see the role of the parameter k, consider how art differs from

financial assets. In the sale of a piece of art, the preview reduces the
valuation risk (k < 1). By contrast, staring at a 10,000 yen note will
not tell you anything about the risk of holding yen. As a result, there
is no merit in trading financial assets live, given the transaction costs
saving from online trading.
The force of the parameter k suggests that the limits of online auc-

tions differ for different categories of assets. The reproduction on a
computer screen of an oil painting, for example, loses much of the
quality of the picture: the texture of the oil paint and the subtleties of
the colors. For oil paintings therefore, k is likely to be close to zero,
so online bidders would bid cautiously to avoid the winner’s curse, and
live auctions would tend to yield better returns for the seller. With
assets like coins and stamps, arguably, something closer to full infor-
mation could be conveyed to online bidders, so k is close to one and
the limits of online auctions are reached later; an expensive asset with
a small valuation risk can be successfully sold online if its k is not far
below one. An example is the auction of an original of the Declaration
of Independence for a record $8.14 million at Sothebys.com in 2000: a
printed document arguably has a k close to one.
We now provide two simple numerical examples to explain our argu-

ment. Suppose the seller has an asset and wonders whether to sell it
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online or liv. There are three bidders interested in the asset and each
bidder values the asset as an mean common value model

P
xi/3.

Example 1 : The seller estimates that the bidders will have signals
distributed uniformly on [2,000, 18,000], based on the information the
seller provides in the Internet. Alternatively, the seller could hold a
live auction. In the live auction, the bidders need to pay $100 to
attend the preview. The seller expects that information will be 75%
more accurate in the sense that bidders will have signals distributed
uniformly on [8,000, 12,000]. Should the seller hold a live auction ?
Solution: First, we compute the seller and bidder profit from live

auctions. Consider a symmetric equilibrium where each bidder drops
out at the price equal to be value of the asset given the signal of the
bidders who have already dropped out, and assuming all other remain-
ing bidders having the same signal with that bidder. In expectation,
bidder 1 has the signal $14,000, bidder 2 has $10,000, and bidder 3 has
$6,000. Bidder 3 will drop out at $6000 (this simplification is not with-
out loss of generality due to the linear structure of the model.) Bidder 3
will drop out at $6,000. Bidder 2 will drop out at (6,000+10,000*2)/3
= $8,667. The seller’s expected price is $8,666 and bidder’s ex ante
expected profit is (10,000-8,667)/3 = $433.
Second, we compute the profits from a live auction. Suppose all

three bidders choose to enter the auction. In expectation, bidder
1 has the signal of $11,000, bidder 2 $10,000, and bidder 3 $9,000.
Bidder 3 should drop out at $9,000. Then bidder 2 drops out at
(9,000+10,000*2)/3 = $9,666 dollars. The seller’s revenue is $9,666.
The bidder’s ex ante expected payoff is 334/3 = $111. Given that,
each of three bidders will enter the auction, since the ex ante expected
profit of $111 is higher than the entry cost of $100.
Third, we compute the seller’s decision. In an online auction, the

expected price is $8,667. In a live auction, the expected price is 9,667-
100 = $9,556. Thus the seller will hold a live auction.
Example 2 : The seller estimates that the bidder will have signals

distributed uniformly on [9,200, 10,800], based on the information on
the Internet. The seller can reduce the dispersion 75% to [9,800, 10,200]
in a live auction. Should the seller hold a live auction?
Solution: First, we compute the equilibrium payoffs. On average,

bidder 1 will have $10400, bidder 2 $10000 and bidder 3 $9600. Bidder 2
will drop out at (9,600+20,000)/3 = $9,867. Thus the seller’s expected
price is $9,867 and the bidder’s ex ante profit is 133/3 = $43.
Second, we compute payoffs from a live auction [9,800, 10,200]. On

average, bidder 1 has $10,100, bidder 2 $10,000 and bidder 3 $9,900.
Bidder 3 will drop out at (9,900+10,000*2)/3 = $9,966. The seller’s
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expected price is $9,966 and the ex ante profit of the bidder is 34/3
=$11. Given this profit, the third bidder will not enter. Then will
two bidders enter? The price is $9,933, and the expected profit of each
bidder is 67/2 = $34. Thus the second bidder will not enter. Only
one bidder will enter, and may bid a price of ε (depending on the
formulation of bargaining between the seller and the bidder).
Third, we derive the seller’s choice. The seller’s price from the online

auction is $9.867 and � from the live auction. Thus the seller sells
online.
These examples show that dispersion of the estimates has a major

effect on the seller’s profit in common-value auctions. If the dispersion
is large, the seller may hold a live auction, even given the participation
costs. If the dispersion is small, it may not pay to hold a live auction.
Finally we look at differences in sale rates (that is, the percentage of

items that pass the reserve price and are sold):
Proposition 5: The sale rate is higher in live auctions than in

online auctions.
The intuition is that, in an online auction, since it is a standard

ascending auction, the seller sets nontrivial reserve price to increase
the sale price, thus creating a positive probability of no sale. In a live
auction, by contrast, since the seller’s profit is equal to social welfare net
of transaction costs, the seller sets a zero reserve price and always sells
the asset. (We could modify the model to generate the more realistic
result that the sale rate is less than 100 percent in live auctions by
supposing the seller has a positive value for the item unsold. The seller’s
value might, for example, be given as a draw from the distribution
F offminus, perhaps, some constant to represent the seller’s need for
liquidity. In such a model the sale rate would be less than 100 percent
live, but still lower online because of the reserve-price effect.)
An alternative explanation is about the cost of resale. Holding an-

other auction is costly for offline auctions but costless for online mar-
kets. As a result, the seller should be eager to trade the asset more in
a live auction.
Can a seller design an auction to combine the benefits of live and on-

line auctions? An alternative auction form, in between live and online
auctions, is offered by both Sotheby’s and Christie’s: in live auctions,
bidders may participate from a distance, by telephone, fax, or internet.
The auction-house web sites offer the catalogues for live auctions and
allow advance bids, which an auction-house employee will submit dur-
ing the course of the live auction. There is even a provision in some live
auctions for real-time online bidding. Christie’s offers live streaming
videos, so that people can bid in live auctions from their computers.
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From the seller’s point of view, however, this in-between alternative
offers none of the saving in transaction costs of true online bidding.
Even from a bidder’s point of view, our analysis implies, this is strictly
inferior. Bidders would do better participating either directly in a
live auction or in a true online auction. Distant bidders, who have
not incurred the transaction costs entailed in seeing the piece of art
for themselves, are competing against the live bidders, who have seen
it. Less-informed bidders, in common-value auctions in general, are
handicapped when competing against better-informed ones, and end up
with little or no net gain (Engelbrecht-Wiggans, Milgrom, and Weber,
1983). When the artwork is of high value, they will be outbid by the
better-informed live bidders; when it is of low value, they might win the
auction but overpay. Online bidders in a live auction are in a no-win
situation. They can overcome this disadvantage by either inspecting
the item themselves at the presale exhibition or hiring an agent to do
the inspection; but this means incurring the same transaction costs as
the live bidders.

4. Art Auction Data

We now examine data from online and live art auctions in light of our
theory. We collected data from the Sotheby’s and eBay websites using
Perl programs. The live-auction data are from Sotheby’s New York
sales between June 1 and June 30, 2002 (representing 1,890 auctioned
items, with 1,213 successful sales and a total of $23,572,639 raised).
The online auctions are transactions on the Sotheby’s site on eBay
between June 26 and July 23, 2002 (representing 1,300 auctioned items,
with 517 successful sales and a total of $68,2845 raised).
Prices are much lower online than live. The mean selling price in

the live auctions is $18,801 and in the online auctions $1,483. The
highest live-auction price in our sample is a George Graham timepiece,
at $1,219,500; the highest online price is a Frank Lloyd Wright copper
weed holder (that is, a vase) at $83,750. The lowest live-auction price
is a Cartier watch, at $358; the lowest online price is a drawing by a
British artist, Nicole Hornby, at $11.50. Histograms of sales prices are
given in Chart 1. Notice how skewed the distributions are: in both
online and live auctions the vast majority of items sold are of relatively
low value.
The types of items auctioned are compared in Table 1. For the live

auctions, this categorization is based on the auction titles. For the
online auctions, we use eBay’s categorization.
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Live Online
Jewelry 635 73
Paintings and sculpture 621 113
Clocks and watches 562 41
Antiques and furniture 286 233
Books, prints 283 37
Silver and ceramics 0 259
Photos, stamps, coins 0 272
Collectibles 0 356

Table1: Number of auctions by category

A higher percentage of successful sales in live auctions than on-
line is predicted by our theory. The data are in accord with this. Over-
all, the sale rate is 64.1% in live auctions and 39.7% in online markets.
Table 2 shows the breakdown of sale rates by category. These sale
rates are roughly consistent with data from elsewhere. For example,
eBay’s online art auctions in 2000 (in the Great Collections auctions,
eBay’s predecessor to its Sotheby’s joint venture), the sale rate was 48%
(Tully, 2000). At Christies London live auctions in 1995 and 1996, the
sale rate was in the 70% to 80% range for paintings of various kinds,
61% for photographs, 88% for clocks, and 86% for jewelry (Ashenfelter
and Graddy, 2003).

Live Online
Paintings & prints 83% 44%
Watches & clocks 82% 63%

Jewelry 54% n.a.
Furniture n.a. 66%
Coins n.a. 80%
Silver n.a. 80%
Books 57% n.a.

Table2: Sale rates compared (n.a. means no data
available)

In auctions run under eBay’s rules, because of the fixed end-
time, bidders usually submit bids very close to the closing time (Roth
and Ockenfels, 2002). In our online-auction data, the mean timing of
a bid is made 78% through the period of auction; the median is at
the 96% point, and the 75th percentile is at the 99.7% point. In other
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words, half of the bids, typically, are placed during the last 4% of the
time of the auction, and 25% in the last 0.3 percent of the auction
period. (See Chart 2.) Last-minute bidding, therefore, is prevalent
not only in lower-value eBay auctions but also in the art and antiques
auctions on Sothebys.com.
Are the auctioneer’s presale estimates done honestly or strategically?

The existing evidence for live auctions is mixed. Ashenfelter (1989)
found that auction houses are generally truthful, in that the mean
of the high and low estimate is well correlated with the winning bid.
Beggs and Graddy (1997) and Bauwens and Ginsburgh (2000), how-
ever, found a tendency to systematically underestimate for some kinds
of goods and overestimate for others. Mei and Moses (2002) offered evi-
dence that estimates are strategically manipulated, expensive paintings
showing an upward bias.
The main result of our theory is that the decision to sell online rather

than live reflects the dispersion of bidder value estimates but not their
mean. It also reflects the extent to which the dispersion is reduced if
the bidders can see the item live. We run a simple regression to test
this proposition. We use the auctioneer’s presale announcement of high
and low price estimates to get a measure of the mean and dispersion.
We take the mean of these two numbers to represent the mean of the
estimate distribution, and the difference between them to represent the
dispersion. Histograms of estimate means and dispersions, online and
live, are given in Charts 3 and 4.
The highest mean estimate in our live auction data is a Pierre Fred-

erich Ingold timepiece, at $375,000 (it was sold); the highest in our
online data is a Marilyn Monroe wedding gown, at $60,000 (unsold).
The lowest mean estimate in our live auctions is a 1995 Cartier watch,
at $600 (sold); the lowest in our online data is a Lee Tanner photograph
of John Coltrane, at $15 (unsold).
The highest estimate dispersion in live auctions is the same Ingold

timepiece, at $250,000; the highest online also is the same item, the
Marilyn Monroe wedding gown, at $20,000. The lowest estimate dis-
persion in the live auctions is a Fouga wristwatch, at $100 (sold); online,
the lowest is the same Tanner photograph, at $10.
These cases suggest that the pre-auction estimate dispersion does

indeed reflect the degree of valuation uncertainty. A watch or photo is
not unique, so the history of prices of identical or similar items can be
used to assess its value. Moreover, its value can be reasonably judged
from a written description plus a web-page reproduction. The value of
a deceased actress’s wedding dress, by contrast is harder to assess. It is
unique, so its future resale value is highly uncertain. Moreover, it may
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be hard to judge its quality from a web-page photograph: is it still in
a good condition? Seeing it live may give a bidder significantly more
precise information.
These cases further suggest, as we would expect, that items with a

higher value show a higher dispersion of value estimates. This is the
case in our data. The correlation between the mean of the high and low
estimates and their difference is 0.9. The result of a probit regression
of the choice of online or live auction regressed on both mean and
dispersion of estimates is given in Table 3. Despite the strong positive
correlation between the two independent varioable, each is significantly
different from zero. Both the mean and the dispersion of estmates
matter. Items with a high variance of value or a high mean value are
likely to be sold live rather than online.

Off Coefficient Standard Error z P>|z|
EstAvg 0.0000686 0.0000135 5.09 0
EstDiff 0.0000336 0.00000461 7.3 0
Const -0.493068 0.0325403 -15.15 0

Obs 3180
LR 1207.75

Prob>chi2 0
PseudoR2 0.2801

Table3: Regression of online vs. liveauction

5. Simulation

In this section, we start the estimation of transaction costs and in-
formation revelation by formulating qualitative response models.

5.1. A qualitative response model. We consider the decision of the
seller regarding whether to sell the asset in online auctions or in live
auctions. We assume that the seller’s utility associated with the choice
of the auction is the expected profit πoffS and πonS plus an additive error
term �off and �on. The data is the upper and the lower bound of the
estimate x = [x, x]. The parameters we are interested in are transaction
costs cs and cb, and efficiency improvement k. Let θ = (c, k). Let Uoff

and Uon be the seller’s expected utility: Uoff = πoffS (x, θ) + �off and
Uon = πonS (x) + �on.
The basic assumption is that the seller sells the asset in a live auction

if Uoff ≥ Uon. Thus defining Off = 1 if the seller sells the asset in a
live auction, we have
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P (Off = 1) = P (Uoff ≥ Uon) = F (πoffS (x, x)− πonS (x, x, θ))

where F is the distribution function of �off − �on. The log likelihood
function is

logL =
nX
i=1

Offi logF (π
on
S (x)− πoffS (x, θ))

+
nX
i=1

(1−Offi) log(1− F (πonS (x)− πoffS (x, θ))).

The maximum likelihood estimator
ˆ

θ is defined by ∂ logL
∂θ
|
θ=

ˆ
θ
= 0.

5.2. A simulation. The following simulation is based on very rough
assumptions.
First, in this draft, we use a very simple parametrization. Z=uniform

[−0.5, 0.5], X = µ+ σZ, ui(s, x) =
P

xi/n where n is the number of
bidders.
Second, compute the functional form of the discrete choice model

give above. In online auction12, since H(w,m) = F (w)n−1,

πB =
1

n
(EY1,n −EY2,n) =

σ

n
(EY Z

1,n −EY Z
2,n) =

σ

n(n+ 1)

πS = µ− nπB = µ− σ

(n+ 1)
.

Note the simple comparative statics result: the seller’s expected payoff
is decreasing in the dispersion and increasing in the number of bidders.
Given the smoothness, the consistency and asymptotic normality of
maximum likelihood estimator is standard (Amemiya (1985), Section
9.2.2.) The number of bidders is determined by kσ/n(n + 1) = cb.
For simplicity, we approximate13 the solution of this equation by n =
(kσ/cb)

0.5 to make a model linear in parameters. We set the number of
bidders in the online market be 2. Note 1860/1300=1.43 was an mean
number of bidders for online auctions. Thus we obtain

12We do not consider reserve prices in this estimation and simulation. It is easy
to compute Bulow and Klemperer (1996) bounds.
13The next version of the draft will give estimateion based on analytical solution

of this equation. Meanwhile, for reasonably large k, the differences between the
solution of x2 = k and x2 + x = k is small, for k = 10, the solution is 3.16228 and
2.70156.
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πonS (x)− πoffS (x, θ) = c0.5b k0.5σ0.5 + cs − σ

3
.

Note that in this model, we cannot separately estimate k and cb.
Third, we report the result of an estimation. For the probit model

of 3190 samples, assuming �off − �on˜N(0, 4002),
off Coefficient Standard Error z P>|z|
c
1/2
b k1/2 3.011 .7443 4.05 0.000
cs 222.2 22.80 9.74 0.000

A possible value of c is 90 for k = 0.1. There are 200~300 auctions
in one day for live auctions, so if each bidder bids for 10 assets, the
total bidding cost will be around $1000. The threshold value where
the bidder’s rent from selling online is equal to that from selling live is
$942.30.

6. Conclusion

The seller’s choice between online and live auctions involves a trade-
off between information generation, favoring a live auction, and trans-
action costs, favoring an online auction. Bidders do better online, even
though they are relatively uninformed about the item’s true value, be-
cause their competitors are equally uninformed and so, from fear of the
winner’s curse, the bidding competition is less fierce. Sellers, also, in
some cases do better online because of the saving in transaction costs.
The model could be extended in various ways: to incorporate more

general assumptions about bidders’ valuations (affiliation rather than
common value: Milgrom and Weber, 1962a); to derive endogenous par-
ticipation costs in the presence of bidder asymmetry; and to estimate
participation costs and information revelation rates.
Online auctions may not up to now have been used to their full

potential. If our model is correct, the use of online auctions in the first
few years of their existence may have been unduly cautious. Sellers
have been reluctant to opt for online auctions for high-value items.
According to our model, however, what determines whether the seller
does better selling live than online is not the expected price. What
matters is the dispersion of valuations, and the extent to which this
dispersion is reduced if bidders can see the item for themselves. A
high-value item can be successfully sold online if the bidders’ estimates
of that value are tightly bunched. It seems that online sellers do not
fully recognize this, and so the limits of online auctions may not yet
have been reached.
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7. Appendix: Proofs of the Propositions

7.1. Proof of Lemma 1. First, compute the expected profit of the
bidder and the seller in a standard ascending auction of the general
symmetric model with n bidders and a signal distribution f . In an as-
cending auction, there exists a symmetric monotone equilibrium where
each bidder drops out at a price equal to the expected value of the asset
given the signal of bidders who have already dropped out and assuming
that the bidders remaining in the auction have the same signal with
the bidder (Milgrom and Weber, 1982a). Compute an expected payoff
πB(xi) of a bidder i with a signal xi. By symmetry, πB is independent
of the identity of the bidder. Suppose bidder i with signal xi bids as if
her signal is yi. Let the expected profit be πB(xi, yi). Then

πB(xi, yi) =

Z
X−i
(v(xi, x−i)− v(y1,−i, x−i))f(x−i|y1,−i ≤ yi)dx−i

where v(x) = E[s|X = x].and y1,−i is the highest signal among bidders
other than i. This is because bidder i wins if and only if bidder i’s
claimed type yi is higher than the other bidders. If bidder i wins, the
value is E[s|X = x].

dπB(xi)

dxi
=

dπB(xi, xi)

dxi
=

Z
∂πB(w, y)

∂w
|y=wdw.

This is because, since v and f are smooth and bounded, we can apply
the envelope theorem. The bidder with the lowest type never wins, so
her expected profit is zero. Then,
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πB(xi) =

Z xi

−∞

Z
X−i

∂vi(w, x−i)
∂w

f(x−i|y1,−i ≤ w)dx−idw

=

Z xi

−∞
H(w, n)dw

(where H(w, n) ∼=
Z
X−i

∂vi(w, x−i)
∂w

f(x−i|y1,−i ≤ w)dx−i.)

Then the bidder’s ex ante payoff is:

πB =

Z Z xi

−∞
H(w, n)dwf(xi)dxi

= {
Z xi

−∞
H(w, n)dwF (xi) }+∞−∞ −

Z
Hi(xi, n)F (xi)dxi

=

Z
H(w, n)dw −

Z
Hi(xi, n)F (xi)dxi

=

Z
H(xi, n)dxi −

Z
Hi(xi, n)F (xi)dxi

=

Z
H(xi, n)(1− F (xi))dxi.

The first line is by taking the expectation of πB(xi) and changing the
order of integration. The second line is by integration by parts. The
third line is by integration by parts using the formula

R
ab = [ab]−R a0b

with a =
R
H(w)dxi and b = F (x). The seller’s ex ante profit is the

difference between the item’s expected value and the bidders’ expected
profits:

πS = Es− nπB

Second, we compute expected profits in an online auction without a
reserve price. From the previous formula, but with N bidders,

πonB =

Z
Hon(xi, N)(1− F on(xi))dxi.

πonS = Es−N

Z
Hon(xi, N)(1− F on(xi))dxi.

The number of bidders in the live auction is determined by the zero-
profit condition (with bidders entering until profits are competed away,
ignoring the integer constraint):
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πoffB =

Z
Hoff (xi, n

off)(1− F off (xi))dxi = cb

The seller’s ex ante expected live-auction profit is

πoffS = Es− noffcb − cs

= Es− noff
Z

Hoff (xi, n
off)(1− F off (xi))dxi − cs.

7.2. Proof of Proposition 1. First, we claim that it is suffice to show
that bidder’s expected profit is lower in an auction with σ1 than one
with σ2. This is because the seller’s expected profit is the difference
between the value of the asset and the bidders’ expected profit. (By
the assumption of absolute common value, the value of the asset is
independent of σ.)
Second, we compute the lower and upper bound of the bidder’s ex-

pected profit. Recall from Lemma 1, the bidder’s expected profit is

πB =

Z
H(xi, n)(1− F on(xi))dxi.

Thus, from the definition of H and the assumption (*), πB is bounded:

m

Z
F (xi)

n−1(1− F (xi))dxi ≤ πB ≤M

Z
F (xi)

n−1(1− F on(xi))dxi.

The distributions and densities of the order statistics are (David, 1981):

F1,n(x) = F (x)n

F2,n(x) = F (x)n + nF (x)n−1(1− F (x))

f2,n(x) = n(n− 1)(1− F (x))F (x)n−1f(x)

and therefore a bidder’s expected profit can be written as:
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Z
F (xi)

n−1(1− F (xi))dxi = (1/n)

Z
n(F (xi)

n−1 − F (xi)
n)dxi

= (1/n)

Z
(F2,n(xi)− F1,n(xi))dxi

= (1/n)

Z
xi(f1,n(xi)− f(x2,n(xi))dxi

=
1

n
(EY1,n −EY2,n)

=
σ

n
(EZ1,n −EZ2,n).

where the third equality uses integration by parts, the fouth is by
definition, and the last comes from the properties of mean-dispersion
families (where Z is the base random variable as defined above).
Third, we show that the bidder’s profit is lower in auctions with

dispersion parameter σ1. The upper bound of the bidder’s profit from
an auction with dispersion parameter σ1 is σ1M/n(EZ1,n−EZ2,n). The
lower bound is σ2m/n(EZ1,n − EZ2.n). Thus the bidder’s profit from
an auction with σ1 is lower if

σ1M/n(EZ1,n −EZ2,n) ≤ σ2m/n(EZ1,n − EZ2.n)

which implies

(7.1) σ1 < (m/M)σ2.

7.3. Proof of Proposition 2. From Lemma 1, the bidder’s ex ante
payoff is 1

n
(EY1,n − EY2,n) =

σ
n
(EZ1,n − EZ2,n), which is independent

of µ.

7.4. Proof of Proposition 3. First, we claim πB is monotone de-
creasing in n. The seller’s profit is the highest marginal revenue among
bidders. Then the addition of one bidder weakly increases the seller’s
profit. This implies that the total surplus for the bidders decreases.
Thus the bidder’s ex ante profit decreases.
Second, we claim that n is monotone increasing in σ.The number

of bidders n is determined by the zero profit condition: πB(n, σ) = c.
From the previous discussion, πB(n, σ) is monotone increasing in σ and
monotone decreasing in n. Thus n is monotone increasing in σ.
Third, we claim that the seller’s expected profit is monotone de-

creasing in σ. From Lemma 1, the seller’s expected payoff is the value
of the asset minus the total payment of entry costs. By the absolute



ONLINE VERSUS LIVE 25

common value assumption, the value of the asset is constant and the
total payment of entry cost is monotone decreasing in σ.
Fourth, consider the impact of the shift in µ for mean common value

model. This is a direct consequence of Proposition 2.

7.5. Proof of Proposition 4. First, we compute an upper bound of
the seller’s profit from online auctions with reserve prices. By Bulow
and Klemperer (1996), the seller’s expected profit from an auction with
n bidders with optimally a dynamically set reserve price is less than
the expected profit from n+ 1 bidders without a reserve price. Thus,

πonS = V − (N + 1)

Z
Hon(xi, N + 1)(1− F on(xi))dxi.

≤ V − (N + 1)m

Z
F on(xi)

N(1− F on(xi))dxi

= V −m(EY on
1,N+1 −EY on

2,N+1)

= V −mσ(EY Z
1,N+1 −EY Z

2,N+1).

Second, we compute a lower bound of the seller’s profit in a live
auction with N bidders. By the assumption (*), there exists M such
that ∂v(x)/∂xi ≤M . Then,

πoffS ≥ V − kσM(EY Z
1,N − EY Z

2,n)− (N + 1)cb − cs.

Third, assuming there are N bidders in the live auction, we compute
k0 and σ0 such that for k ≤ k0 and σ0 ≥ σ,a bidder’s rent is smaller in
live auctions. This holds if
V − kσM(EY Z

1,N − EY Z
2,n) − (N + 1)cb − cs ≥ V − mσ(EY Z

1,N+1 −
EY Z

2,N+1)

kσM(EY Z
1,N −EY Z

2,n) + (N + 1)cb + cs ≤ mσ(EY Z
1,N+1 −EY Z

2,N+1)

σ(m(EY Z
1,N+1 −EY Z

2,N+1)− kM(EY Z
1,N −EY Z

2,n)) ≥ (N + 1)cb + cs

Thus for

k ≤ m(EY Z
1,N+1 −EY Z

2,N+1)/M(EY
Z
1,N −EY Z

2,n)

if

σ ≥ [(N + 1)cb + cs]/[m(EY
Z
1,N+1 −EY Z

2,N+1)− kM(EY Z
1,N −EY Z

2,n)],
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the seller’s payoff is higher in live auctions.
Fourth, we compute the conditions where there will be at least N

bidders in the live auction. This occurs if the bidder’s ex ante payoff
with N bidders is higher than the entry cost:
πoffB ≥ m

R
F on(xi)

N(1−F on(xi))dxi =
m
N
kσ(EY Z

1,N+1−EY Z
2,N+1) ≥

cb, That is,

σ ≥ Ncb
mk(EY Z

1,N+1 −EY Z
2,N+1)

Fifth, we compute the condition when both conditions are satisfied.
For each k which satisfies k ≤ m(EY Z

1,N+1 − EY Z
2,N+1)/M(EY

Z
1,N −

EY Z
2,n), there exists

σ ≥ max[ Ncb
mk(EY Z

1,N+1 −EY Z
2,N+1)

,
(N + 1)cb + cs

m(EY Z
1,N+1 −EY Z

2,N+1)− kM(EY Z
1,N −EY Z

2,n)
]

where the seller’s profit is higher in a live auction. And if µ is high
enough so that expected value of the allocation V (µ) is higher than
cbN + cs,the seller will get a positive profit.

7.6. Proof of Proposition 5. First, compute the reserve price in an
online auction. In online auctions, by lemma 2 of Bulow and Klemperer
(1996), the seller’s take-it-or-leave-it price is the price which makes
marginal revenue equal to zero. Thus, if the bidder with the highest
marginal revenue is less than zero, the seller does not trade.
Second, compute the reserve price in a live auction. If the zero profit

condition is binding, the seller’s expected profit is equal to the expected
social surplus, thus the seller, who has the value zero for the asset, does
not trade. If zero profit condition is not binding, then each bidder’s
marginal revenue is strictly higher than that in an online auction, thus
the probability of exclusion is strictly lower.
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