
Discussion of:
The Law and Economics
of Reverse Engineering

Xavier Vives
INSEAD

xavier.vives@insead.edu

http://faculty.insead.edu/viv
es

Summary

• Reverse engineering is the process of
extracting know-how/knowledge from a
human-made artifact

• Traditional manufacturing:
_ RE to make directly competing stand-alone

product
_ Legal rule: RE is OK makes sense because

RE is costly/time consuming
(if RE too cheap/easy, like with plug-molding of

boat hulls, it should be restricted)

Information-based
industries

• Rules restricting RE adopted or
proposed:
_ Digital content is in the surface of the

product
_ Technical protections raise cost of RE
_ Examples:

• Semiconductor chip (SCPA, 1984)
• Software industry: can decompile program code

for interoperability reasons
• Technically protected digital content

• Challenge:
_ Design rules to balance incentives to

innovate of incumbent and entrants
_ Goal of intellectual property law: protect

incentives to innovate

RE of software and
the law

• Software distributed in object code
form

• RE permits obtaining approximation to
original source code

• From this information can develop
interoperable program
(very difficult to develop competing non-

identical program)
• Questions:

_ Do copies of programs made in the
decompilation process infringe
copyright/trade secrecy law?

_ Can contractual restrictions in software
licenses prevent RE?

Legal debate
• Intellectual property law: can decompile

& disassembly program code,
particularly for interoperability reasons
_ US: for ” legitimate” purposes (Sega v.

Accolade, 1992, Sony v. Connectix, 2000)
_ European Directive (1991): for

interoperability reasons
• Enforceability of contractual restrictions

is contentious:
_ Conflicting US caselaw
_ EU Directive: anti-decompilation clauses in

software contracts null and void
• Samuelson and Scotchmer:

_ RE for interoperability should be allowed
(on balance more beneficial than harmful effects)

The Economics of RE in
the software industry

• System: platform (A) + applications(B)
with interface to achieve
interoperability

• Application Programming Interfaces
(APIs):
To make a program interoperate with a

platform need precie details about how
platform sends and receive information

• Strategy: Open or closed interface?
_ IBM, Apple
_ MS in OS: de facto standard with ” embrace

and extend ” (integrating applications in
Windows, bundling, control of APIs)

_ Game systems: serial monopolies

RE in the software
industry

• RE in software industry involves entry
at applications level rather than
development of competing platform

• RE turns closed interface into open
interface at a cost

• Erodes commitment of incumbent to
closed system/tying/technical bundling

• Can think of degree of RE has choosing
a point between closed and open
systems

Tying and bundling

• Bundling:
_ Pure (credible with technical integration)
_ Mixed: bundle offered at a discount from

components

• Private incentives: bundling as
_ Generating efficiencies
_ Accommodating strategy

• Facilitating practice
• Price discrimination

_ Exclusionary strategy
• Vertical foreclosure
• Leveraging market power

Tying: welfare analysis
• Short-run:

– Decrease in prices: +
– Decrease in variety (because mix
and match not possible): typically
_

_ Price discrimination: + or _
• Dynamic

_ Efficiencies of product integration for
consumers, lowering costs: +

_ Exclusion of rivals (via pricing and/or
innovation): typically _

_ Decrease (increase) innov. of rivals (tying
firm): + or _

• Rule of thumb:
_ Efficiencies presumed if there is no

exclusion of rivals

Tying and innovation
• Tying decreases (increases) innovation

of rivals (tying firm)
_ Tying makes succesful entry prospects in

complementary components markets A and
B more uncertain and discourages
investment by entrants because they have
to succeed in both markets

(Carlton-Waldman (2000), Choi-Stefanidis (2001))

_ Incumbent when innovating in B
(applications) internalizes profit generated
for segment A (platform)

(Choi (1996, 2000), Farrell and Katz (2000))

• Welfare analysis ambiguous: what
matters is aggregate incentive for R&D

RE and innovation
• RE will

_ increase rivals‘ R&D in platform A and
applications B (easier to enter)

_ decrease incentives of incumbent in A and B

• Suppose closed interface yields too
little aggregate R&D incentive in B and
too much in A

• Can RE fine-tune incentives?
• Strike a balance between encouraging

entrants’ R&D in B without killing
incentive of incumbent in A

Prices
• Systems:

_ Closed interface (incompatible and
integrated systems)

_ Open interfaces (compatible and
unintegrated)

• Prices are lower with closed interface,
because of ” Cournot internalization
effect ” of bundling, but typically
welfare also, because of no mix and
match with heterogneous preferences
(Nalebuff 2000, Chiovenau (2002))

• Entry deterrence/exclusion
_ If incumbent bundles rivals have no

incentive to bundle with inelastic demand
(Nalebuff (2000)) but they do with elastic
demand (Chiovenau (2002))

(R) Social Calculus of Reverse
Engineering of Software for Purposes

of Interoperability

Social Welfare Criterion RE legal

Incentives to develop platform lower for incumbent
Aggregate?

 higher for entrants

Incentives to develop applications lower for incumbent
Aggregate?

 higher for entrants

System Price

Short run higher

Long run (tipping) lower

Duplicated costs lower ?

Evaluation

• Samuelson and Scotchmer:
_ Rule (can decompile & disassembly program

code for interoperability reasons) is
economically sound because it promotes
development of a wider range of software

• Questions:
_ Does it strike the right balance between

encouraging entrants’ R&D without killing
incentive of incumbent?

_ Does it make exclusionary strategies more
difficult?

• Answer: probably yes as long as it is
fine tuned appropriately and put in the
context of the other policy levers

