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Abstract 

User-Generated Content (UGC) is changing the way consumers shop for goods. Based on a unique 
dataset of hotel reservations over a 3-month period from Travelocity.com, we estimate the demand for 
hotels using a random coefficient structural model. We obtain user-generated data from three sources: (i) 
text of hotel reviews from two well-known travel search engines, Travelocity.com and Tripadvisor.com, (ii) 
social geo-tags from Geonames.org identifying the different location-based attributes of hotels, and (iii) 
user-contributed opinions on the most important hotel characteristics by accessing a wide consumer 
demographic using Amazon Mechanical Turk. These data sources are merged with satellite images of the 
different hotel locations to create one comprehensive dataset summarizing the location and service 
characteristics of the hotels in our sample. We use text analysis techniques to measure the quality of 
available reviews. Using these analyses, we quantify how the extent of subjectivity, readability, complexity 
and other stylistic features of user-generated reviews are associated with hotel room sales. Finally, based on 
the hybrid model we estimate the weight that consumers place on different location and service-related 
features of hotels.  

We extend the basic model to examine interaction effects between travel purpose, price, and hotel 
characteristics. Business travelers are the least price sensitive while tourists are the most price sensitive. 
Business travelers have the highest marginal valuation for hotels located closer to a highway and having 
easy access to public transportation. In contrast, romance travelers have the highest marginal valuation for 
hotels located closer to a beach and those with a high service rating.  

As the ultimate goal of this research, we use the generated estimates from our model in order to build a 
better ranking system for hotel search. Specifically, we leverage the econometric analysis and compute the 
average utility gain that a consumer gets by staying in a particular hotel. We propose to rank the hotels, in 
response to a search query, using this utility gain, which is a measure of ―value‖ that a consumer gets from 
this transaction. By doing so, one can provide customers with the ―best-value" hotels early on, thereby 
improving the quality of online hotel search compared to existing systems. Several field experiments in six 
major cities (New York, Los Angeles, San Francisco, Orlando, New Orleans, and Salt Lake City), using 
15,600 ranking comparisons from Amazon Mechanical Turk, suggest that our ranking system is superior to 
existing systems. 
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1.   Introduction 

Consumers today use a variety of information sources in order to learn more about their potential 

purchases. It is now widely acknowledged that local search for hotel accommodations are a component of 

general Web searches that are increasing in popularity as more and more users search for prices and reserve 

their trips online. In travel search, a variety of resources are available that provide information to potential 

travelers about the hotels in their destination. Customers try to identify hotels that satisfy particular criteria, 

such as service amenities, location attributes, and so on. Once they identify the candidate hotels, customers 

would typically look at the price and determine if the ―real value‖ of that hotel matches the corresponding 

price. Hence, locating a hotel with the specific desired characteristics, but without compromising on the 

value, becomes an important question.  

Most online travel search engines only provide rudimentary ranking facilities, typically using a single 

ranking criterion, such as distance from the city center, star ratings, and price per night. This approach has 

quite a few shortcomings. First, it ignores the multidimensional preferences of consumers, in that a 

customer’s ideal choice may consist of several hotel-specific attributes. Second, it does not take into 

account the heterogeneous preferences of consumers towards hotel characteristics. Given a user query, the 

ranking mechanisms tend to assume that people's preferences towards the set of hotel characteristics are 

homogeneous. This leads them to provide an identical ranking recommendation for all customers, 

regardless of their age, income or purchase context. Third, it largely ignores characteristics related to the 

location of the hotel, for instance, in terms of proximity to the beach, or proximity to a downtown shopping 

area. These location-based features represent important characteristics that can influence the desirability of 

a particular hotel. 

 In this paper, we propose to build a system that ranks each hotel according to the expected utility gain 

across the consumer population. The advantage of this system is that it uses consumer utility theory to 

design a scalar utility score with which to rank hotels while incorporating all of the observed dimensions of 

hotel quality. Currently, there are no established measures that quantify the economic impact of various 

internal (service) and external (location) characteristics on hotel demand. However, search engines do have 

access to a lot of user-generated information not only on their own site but across other social media sites 

as well. Such social media data can be useful for estimating the weights that consumers place on different 

hotel characteristics.  

We use a unique dataset of hotel reservations from Travelocity.com. The dataset contains complete 

information on transactions conducted over a 3-month period from 11/2008 to 1/2009 for 1497 hotels in the 

United States (US). We have data on user-generated content from three sources: (i) user-generated hotel 

reviews from two well-known travel search engines, Travelocity.com and Tripadvisor.com, (ii) social-geo 

tags generated by users identifying different geographic attributes of hotels from Geonames.org, and (iii) 

user-contributed opinions on the most important hotel characteristics using on-demand surveys and social 
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annotations from users on Amazon Mechanical Turk (AMT).
2
 Moreover, since some location-based 

characteristics, such as proximity to the beach, are not directly measurable based on UGC, we use image 

classification techniques to infer such features from the satellite images of the area. These different data 

sources are then merged to create one comprehensive dataset summarizing the location and service 

characteristics of all the hotels. Our empirical modeling and analyses enables us to compute the ―average 

utility gain‖ from a particular hotel based on the estimation of price elasticities and average utilities. 

Thereafter, we aim to generate hotel rankings that are superior to existing ranking techniques seen in travel 

search engines.  

Our work involves four steps: 

i. Identify the important hotel location and service characteristics that influence hotel demand and 

collect that data. 

ii. Estimate how these hotel characteristics influence demand and quantify their marginal effects using 

a structural model. 

iii. Impute the expected utility from each hotel based on demand estimation and generate rankings 

based on them 

iv. Validate our ranking system by conducting field experiments using AMT. 

 

More specifically, in the first step, we determine the particular hotel characteristics that are most 

valued by customers, and thus, influence the aggregate demand of the hotels. Beyond the directly 

observable characteristics, such as the ―number of stars,‖ provided by most third-party travel websites, 

many users also tend to value location characteristics, such as proximity to the beach, or proximity to 

downtown shopping areas. In our work, we incorporate satellite image classification techniques and use 

both human and computer intelligence (in the form of social geo-tagging and text mining of reviews) to 

infer these location features. In the second step, we use demand estimation techniques (BLP 1995, Berry 

and Pakes 2007, Song 2010) and estimate the economic value associated with various location and service 

characteristics. This enables us to quantitatively analyze how each feature influences demand and estimate 

its importance relative to the other features. In the third step, after inferring to the economic significance of 

the location and service-based hotel characteristics, we incorporate them into designing a hotel ranking 

system based on the expected utility gain from a given hotel. By doing so, we can provide customers with 

the ―best-value" hotels early on, thereby improving the quality of online hotel search compared to existing 

systems. In the final step, we validate our proposed ranking system by conducting field experiments with 

                                                           
2
―Social annotation‖ is an annotation associated with a web resource (e.g., a web page, an online image, etc.). On a 

social annotation system (e.g., the Amazon Mechanical Turk tool in our case), a user can add, modify or remove 

information from the web resource without modifying the resource itself. The annotations can be thought of as a layer 

on top of the existing resource, and this annotation layer is usually visible to other users who share the same 

annotation system. In such cases, the web annotation tool is a type of social software tool. 

 

http://en.wikipedia.org/wiki/Annotation
http://en.wikipedia.org/wiki/Web_page
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users on the popular on-demand social annotation site, AMT across six different cities. Our key results are 

as follows.  

i. Five location-based characteristics have a positive impact on hotel demand: ―number of external 

amenities,‖ ―presence near a beach‖, ―presence near public transportation,‖ ―presence near a highway,‖ 

and ―presence near a Downtown.‖ Two location-based characteristics have a negative impact on hotel 

demand: ―Annual crime rate,‖ and ―presence near a lake/river.‖ The textual content and style of 

reviews also demonstrate a statistically significant association with demand. Reviews that are less 

complex, have words with fewer syllables, and with fewer spelling errors have a positive influence on 

demand. Reviews with higher number of characters and written using simple language are also 

positively associated with demand. These results suggest that consumers can form an image about the 

quality of a hotel by judging the quality of the user-generated reviews. Consumers prefer hotels with 

reviews that contain objective information (such as factual descriptions of hotels) relative to subjective 

information, indicating that they do not trust completely hotel-provided descriptions and prefer 

confirmation from third-parties. Consumers also prefer to stay in hotels with reviews written in a 

―consistent objective style‖ rather than staying in a hotel where the user reviews discuss more 

subjective aspects of the accommodation. 

ii. We extend the basic model to examine interaction effects between travel purpose, price, and hotel 

characteristics. Our results show that consumer preferences for location and service characteristics are 

influenced by price and travel purpose. For instance, business travelers are the least price sensitive 

while tourists are the most price sensitive. In addition, business travelers have the highest marginal 

valuation for hotels located closer to a highway and having easy access to public transportation. In 

contrast, romance travelers have the highest marginal valuation for hotels located closer to a beach and 

those with a high service rating.  

iii. A comparison of  the model that conditions on the UGC variables with a model that does not  shows 

that the model with UGC variables outperformed the latter in both in- and out-of-sample analyses. We 

conduct additional model fit comparisons and find that the model’s predictive power drops the most 

when excluding all the location variables, followed by the service variables and then the UGC 

variables.  

iv. We also conduct several counterfactual experiments which shed light on how price cuts affects demand 

in different location environments and how they affect substitution patterns across competing hotels. 

Upon comparing locations with Beach and highway (which represents the typical west/south coast 

setting), and  locations with Downtown, transportation and external amenities (which represents the 

typical big city setting), we find that a price cut leads to a lower increase in demand in a big city setting 

than that in coastline setting. That is, consumers tend to react much less sensitively to hotel price 

changes in a typical ―big city.‖ In addition, we find that the closest substitutes for 4-star hotels are 5-
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star hotels; the closest substitutes for 3-star hotels are 4-star and 2-star hotels; the closest substitutes for 

2-star hotels are 1-star hotels.   

 

Our key contributions can be summarized as follows. First, we demonstrate the value of using 

multiple and diverse user-generated data sources towards examining the economic value of different 

location and service characteristics of hotels using a structural model of demand estimation. Customers 

today make their decisions in an environment with the plethora of available data. It is possible that some 

consumers check the characteristics of the hotel using tourist guides and mapping applications, or consult 

online review sites to determine the quality of the hotel and its amenities. In order to replicate this decision-

making environment, we construct an exhaustive dataset, collecting as much information as possible about 

the hotels in our data, using a variety of data sources, and a variety of methodologies such as text mining, 

on-demand annotations, and image classification. We demonstrate the significance of different sources of 

data by conduct model fit comparisons between models that condition for one set of variables vs. others. 

Second, our empirical estimates enable us to propose a new ranking system for hotel search based on 

the computation of expected utility gain from each hotel. The proposed new ranking system for hotels ranks 

the hotels based on the computation of expected utility gain, which measures the ―value‖ that a consumer 

gets from the transaction. The key notion is that in response to a consumer search query, the system would 

recommend and rank those hotels higher that provide a higher ―value for money‖ by taking into account 

consumers’ multi-dimensional preferences.  

Finally, to evaluate the quality of our ranking technique, we conducted a user study toward which we 

designed and executed several field experiments on AMT across six different markets in the US. Using 

more than 15,000 user responses for comparing different rankings, we show that our proposed ranking 

performs significantly better than several baseline-ranking systems that are being currently used by travel 

search engines. A post-experimental survey revealed users strongly preferred the diversity of the retrieved 

results, given that our list consisted of a mix of hotels cutting across several price and quality ranges. This 

indicates that customers prefer a list of hotels that each specializes in a variety of characteristics, rather than 

a variety of hotels that each specializes in only one characteristic. Besides providing consumers with direct 

economic gains, such a ranking system can lead to non-trivial reduction in consumer search costs. 

Furthermore, by directing the customers to hotels that are better matches for their interests, this can lead to 

increased usage of travel search engines. 

 The rest of the paper is organized as follows. Section 2 discusses related work and places our work in 

the context of prior literature. Section 3 discusses the work related to the data preparation, including the 

methods used to identify important hotel characteristics, the steps undertaken to conduct the surveys on 

AMT to elicit user opinions, and the text mining techniques used to parse user-generated reviews. In 

Sections 4 and 5, we provide an overview of our econometric approach, and discuss empirical results, 
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respectively. In Section 6, we discuss how one can apply our approach to design a real-world application, 

such as a ranking system for hotel search. In Section 7, we conclude.  

 

2.   Prior Literature 

 Our paper draws from multiple streams of work. A key challenge is to bridge the gap between the 

textual and qualitative nature of review content and the quantitative nature of discrete choice models. With 

the rapid growth and popularity of the user-generated content on the Web, a new area of research applying 

text mining technique to product reviews has emerged. The first stream of this research has focused on the 

sentiment analysis of product reviews (Hu & Liu 2004, Pang & Lee 2004, Das & Chen 2007). This 

stimulated additional research on identifying product features in which consumers expressed their opinions 

(Hu & Liu 2004, Scaffidi et al. 2007, Snyder & Barzilay 2007). The automated extraction of product 

attributes has also received attention in the recent marketing literature (Lee & Bradlow 2007). 

The hypothesis that product reviews affect product sales has received strong support in prior empirical 

studies (for example, Godes and Mayzlin 2004, Chevalier and Mayzlin 2006, Liu 2006, Dellarocas et al. 

2007, Duan et al. 2008, Forman et al. 2008, Moe 2009). However, these studies focus only on numeric 

review ratings (e.g., the valence and volume of reviews) in their empirical analysis. Only a handful of 

empirical studies have formally tested whether the textual information embedded in online user-generated 

content can have an economic impact (Ghose et al. 2006, Eliashberg et al. 2007, Archak et al. 2008, Ghose 

and Ipeirotis 2010). However, these studies do not focus on estimating the impact of user-generated 

reviews in influencing sales beyond the effect of numeric review ratings. In addition, researchers using only 

numeric ratings have to deal with issues like self-selection bias (Li and Hitt 2008) and bimodal distribution 

of reviews (Hu et al. 2008). More importantly, the matching of consumers to hotels in numerical rating 

systems is not random. A consumer only rates the hotel that she frequents (i.e. the one that maximizes her 

utility). Consequently, the average star rating for each hotel need not reflect the population average utility. 

Due to the above drawbacks, the average numerical star rating assigned to a product may not convey a lot 

of information to a prospective buyer. Therefore, a key objective of this paper is to analyze the extent to 

which textual content and linguistic style of user-generated reviews can help us understand consumer 

choice of hotels. 

Our work is related to models of demand estimation. One model that has made a significant 

contribution to the field is the random coefficient logit model, or BLP 1995 (Berry et al. 1995). Due to the 

limitations of the product-level ―taste shock‖ in logit models, a new model based on pure product 

characteristics has been proposed recently (Berry and Pakes 2007). The pure characteristic model 

(hereafter, PCM) differs from the BLP model in the sense that it does not contain the product-level ―taste 

shock.‖ It describes the consumer heterogeneity, purely based on their different tastes towards individual 

product characteristics, without considerations on the tastes of certain products as a whole (i.e., brand 

preference). However in reality, the product-level idiosyncratic ―tastes‖ of different consumers do exist in 
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many markets. As pointed out in Song (2010), whether or not one should introduce the product-level ―taste 

shock‖ should depend on the context of the market. Keeping in mind the two levels of consumer 

heterogeneity introduced by (1) different travel categories (i.e., family trip, romance, or business trip) and 

(2) different hotel characteristics, we propose a random coefficient hybrid structural model to identify the 

latent weight distribution that consumers assign to each hotel characteristic. The outcome of our analysis 

enables us to compute the expected utility gain from each hotel and rank them accordingly on a travel 

search engine.  

Finally, our paper is related to the work in online recommender systems. By generating a novel 

ranking approach for hotels, we aim to improve the recommendation strategy for travel search engines and 

provide customers with the ―best-value" hotels early on in the search process. In the marketing literature, 

several model-based recommendation systems have been proposed to predict preferences for recommended 

items (Ansari et al. 2000, Ying et al. 2005, Bodapati 2008). A more recent trend along this line is Adaptive 

Personalization Systems (Ansari and Mela 2003, Rust and Chung 2006, Chung et al. 2009). 

 

3.   Data Description 

Our dataset consisted of observations from 1479 hotels in the US. We collected data from various 

sources to conduct our study. We had 3 months of hotel transaction data from Travelocity.com from 

November 1 2008 to January 31 2009, which contained the average transaction price per room per night 

and the total number of rooms sold per transaction.  

Next, we discuss the data preparation work that is required. Our work leveraged three types of user-

generated content data: 

 On-demand user-contributed opinions through Amazon Mechanical Turk 

 Location description based on user-generated geo-tagging and image classification 

 Service description based on user-generated product reviews 

We first discuss how we leverage Amazon Mechanical Turk to collect information on user preferences 

for different hotel characteristics. Their responses suggest that these characteristics can be lumped into two 

groups:  location and service characteristics. Once we identify the set of consumer preferences, we use 

other kinds of user-generated content to infer the external location characteristics, the internal service 

characteristics, and the textual characteristics of hotel reviews that can influence consumer purchases. For a 

better understanding of the variables in our setting, we present the data sources, definitions, and summary 

statistics of all variables in Tables 1 and 2. 

 

3.1   Identification of Hotel Characteristics using Amazon Mechanical Turk (AMT) 

Our analysis first requires knowledge of those aspects of a hotel that are most important to consumers. 

These factors determine the aggregate prices of the hotels. For our research, we wanted to avoid imposing 
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ourselves the features that we need to consider. Rather, we decided to rely on a survey of potential hotel 

customers and ask them about the hotel aspects that are important for their purchasing decisions. 

We do this through an online survey of users. In order to reach a wide demographic, we decided to 

rely on the crowd-sourcing marketplace of  Amazon Mechanical Turk (AMT, hereafter). AMT is an online 

marketplace, used to automate the execution of micro-tasks that require human intervention (i.e., cannot be 

fully automated using data mining tools). Task requesters post simple micro-tasks, known as hits (human 

intelligence tasks), in the marketplace. The marketplace provides proper control over the task execution, 

such as validation of the submitted answers, or the ability to assign the same task to several different 

workers. It also ensures the proper randomization of the assignments of tasks to workers within a single 

task type. Each user receives a small monetary compensation for completing the task.  

For our purposes, our main goal was to have a diversity of consumer opinions. Therefore, before  

using AMT for our survey, we wanted to ensure that the participants are representative of the overall 

Internet population. Towards this goal, we constructed a survey, asking AMT workers to give us 

information about their place of origin and residence, gender, age, education attainment, income, marital 

status, household size, and number of children. We also asked them about the time that they spend every 

week on AMT, the amount of work that they complete, the payment they receive, and their reasons for 

participating on AMT. To ensure that the results were not accidental, we conducted the survey multiple 

times, once every month. The results of the surveys were consistent over time, indicating that our findings 

are robust. 

The results of the survey indicated that, contrary to popular perception, most of the workers are based 

in the United States. Typically, 70%-80% of the workers mark the United States as the country of 

residence. Overall, the population of the workers matched quite nicely the overall population of Internet 

users. More than 60% of the workers had university education, and more than 15% of them had graduate 

degrees, indicating that the AMT survey participants are more educated than the average Internet user in 

the US. We also noticed that the age of the workers vary widely but with an overrepresentation of young 

ages (21-30). Since the participants are comparatively younger compared to the overall Internet population, 

their income levels were lower, and they had smaller families. Overall, despite some differences, we see 

that the AMT population is generally representative of the overall US Internet population and more 

representative than surveys conducted using only locally available participants. 
3
 

We also asked the AMT workers about their previous experiences with visits to and hotel reservations 

from Travelocity.com. We found that 92.5% of workers specified that they have visited the website of 

Travelocity before, and 55% specified that they have made hotel reservations through it. 

                                                           
3
In Appendix E, we provide the exact analysis of the survey and a comparison of the demographics, with the 

demographics of US Internet users, according to the data provided by ComScore. To compensate for the differences in 

the population, we also stratified the responses from the sample based on demographics, and placed appropriate 

weights on the responses in order for the results to match the composition of the US Internet user population. 
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Based on these findings, we use AMT workers as the population to survey to find what hotel 

characteristics are important for consumers when they make their purchase decisions. As part of our survey, 

we asked 100 anonymous AMT users the following open-ended question: what are the hotel characteristics 

that you consider important when choosing a hotel? We grouped and coded the results of the given answers 

(Table 1 summarizes the identified features) and identified two broad categories of hotel characteristics: 

1. Location-based hotel characteristics (such as ―Near a beach,‖ ―Near a waterfront (lake/river),‖ 

―Near public transportation,‖ and ―Near downtown‖) 

2. Service-based hotel characteristics (such as ―Hotel class,‖ ―Quality of service,‖ ―Number of 

internal amenities‖) 

Next, we describe how we use consumer-generated content to collect information about the variables 

that are either too difficult to collect otherwise (e.g., density of shops around the hotel), or are likely to be 

very subjective (e.g., ―quality of service‖). 

 

3.2   Extraction of Location Characteristics using Social Geotagging and Image Processing 

For the location-based characteristics, we combine user-generated content with automatic techniques, 

to be able to scale our data collection and generate data sets that are comprehensive at the national and even 

international level (i.e., tens or even hundreds of thousands of hotels). A first, automatic approach is to use 

a service like the Microsoft Virtual Earth Interactive SDK, which enables us to compute location 

characteristics like ―Near restaurants and shops‖ for a given hotel location on a map. Using the automatic 

API from the Microsoft, we can automatically perform such local search queries.  

However, the presence of a characteristic like ―Near a beach,‖ or ―Near downtown‖ cannot be 

retrieved by existing mapping services. To measure such characteristics, we use a combination of user-

generated geo-tagging and automatic classification of satellite images of areas near each hotel in our 

dataset.  

Social GeoTagging and AMT-based tagging: The concept of geo-tagging has been popularized 

lately by photo sharing websites, in which users annotate their photos with the exact longitude and latitude 

of the location. The concept has been extended and is now used in ―wiki‖-style websites, where users 

annotate maps with various types of annotations such as ―bridge,‖ ―lake,‖ ―park‖ and other similar tags. In 

our study, we extracted the location characteristics ―Near public transportation,‖ ―Near a beach‖ and ―Near 

the downtown‖ via the site Geonames.org. For the characteristics ―Near a lake/river‖ and ―Near the 

interstate highway,‖ we extracted the features using on-demand annotations from a set of workers from 

AMT. Such geo-tagging and on-demand annotations enable us to generate a richer description of the 

location around each hotel, using features that are not directly available through existing mapping services..  

Image Classification: However, no matter how comprehensive the tagging is, there can be locations 

that are not yet tagged by users. Therefore, we need ways to leverage the tag database, and allow for the 
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automatic tagging of areas that lack tags. For this, we use automatic image classification techniques of 

satellite images to tag location features that can influence hotel demand. Consider, for example, the case 

where we are trying to automatically identify whether a hotel is located ―Near a beach,‖ or ―Near 

downtown.‖ Towards this, we extracted hybrid satellite images (sized 256 × 256 pixels) using the Visual 

Earth Tile System 
4
, for each of the (thousands) of hotel venues located in the US, with four different zoom 

levels for each. These 4 x 1497 images were used to extract information about the surroundings of the 

hotel, through image classification and human inspection using AMT. 

 To automatically tag satellite images, we first needed to train our classification model. As a ―training 

set,‖ we used information from two sources: (i) locations tagged by users on a social tagging site such as 

Geonames.org or (ii) locations annotated by users on AMT. We built the image classifiers as follows: First, 

we randomly selected a set of 121 hotels and requested five AMT users to label each example according to 

its corresponding satellite images from four different zoom levels. The labelers answered whether there is a 

beach in the image, or whether the image is that of a downtown area. We applied a simple majority voting 

method to make the final decision from the multi-labels of the example. Second, we trained an SVM 

classifier on this dataset and used the trained SVM classifier to classify the images that corresponded to the 

remaining hotels. Prior work has shown that non-parametric classifiers, such as Neural Networks, Decision 

Trees, and Support Vector Machines (SVM) provide better results than parametric classifiers in complex 

landscapes (Lu and Weng 2007). Therefore, we tested various non-parametric classification techniques. 

These include (i) Decision Trees, which are widely used for training and classification of remotely sensed 

image data (due to their ability to generate human interpretable decision rules and its speed in training and 

classification), and (ii) Support Vector Machines (SVM), that are highly accurate and perform well for a 

wide variety of classification tasks (Fukuda and Hirosawa 2001).  

We conducted a small study to examine the performance of the classifier out-of-sample data. We 

classified the out of sample images using AMT; our results illustrated that our SVM classifier had an 

accuracy of 91.2% for the ―beach‖ image classification and 80.7% for the ―downtown‖ image 

classification. We also used the C4.5 algorithm for the classification, and noticed an accuracy increase for 

―Near a beach‖ and a decrease for ―Near downtown.‖ The main reason for this is that ―beach" images often 

contain a ―sand strip," together with an ―ocean margin" well distributed in density. This typically provides 

more stable and distinct textural information for the ―beach" images, thus making them easier to 

distinguish.  

 

 

 

 

                                                           
4
 http://msdn2.microsoft.com/en-us/library/bb259689.aspx 
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3.4   Extraction of Service Characteristics using Consumer Reviews 

We used two broad characteristics in the category of service-based characteristics: hotel class and 

number of internal amenities. ―Hotel class‖ is an internationally accepted standard ranging from 1-5 stars, 

representing low to high hotel grades. ―Number of internal amenities‖ is the aggregation of hotel internal 

amenities, such as ―bedroom quality‖ (1 bedroom, 2 bedroom etc), ―hotel staff,‖ ―food quality,‖ ―bathroom 

amenities‖ and ―parking facility.‖ We extracted this information from the Tripadvisor.com website using 

fully automated parsing.
5
 Since hotel amenities are not listed explicitly on the Tripadvisor.com website, we 

retrieved them by following the link provided on the hotel web page, which directs the user to one of its 

cooperating partner websites (i.e., Travelocity.com, Orbitz.com, Expedia.com, Priceline.com, or 

Hotels.com). 

 

3.5   Extraction of Textual Quality of Reviews 

We collected customer reviews from Travelocity.com. In order to consider the indirect influence of 

―word-of-mouth,‖ we also collected reviews from a neutral, third party site - the Tripadvisor.com website, 

which is the world’s largest online travel community. We collected all available online reviews and 

reviewers’ information up to January 31, 2009 (the last date of transactions in our database).  

Consistent with prior work, we use the total number of reviews and the numeric reviewer rating to 

control for word-of-mouth effects. In addition, given that the actual quality of reviews plays an important 

role in affecting product sales, we looked into two text style features: ―subjectivity‖ and ―readability.‖ Both 

of them can influence consumers’ purchase decisions (Ghose and Ipeirotis 2010). To capture the review 

textual style comprehensively, we used a multiple-item method for subjectivity and readability. We 

included two sub-features for subjectivity and five sub-features for readability, each of which measures the 

review text style. 

We observed that there are two types of reviews, from the stylistic point of view. There are reviews 

that list ―objective" information, listing the characteristics of the hotel, and giving an alternate description 

that confirms (or rejects) the description given by the hotel. The other types of reviews are those with 

―subjective," sentimental information, in which the reviewers give a very personal description of the hotel, 

and give information that, typically, does not appear in the official description of the hotel.  

We distinguished the extent of ―subjective assessments‖ in the reviews by deriving a review-level 

numerical score for the degree of subjectivity. More specifically, we used the methods from Ghose and 

                                                           
5
―Fully automated parsing‖ refers to the approach used to collect information from a website. Technically, we built a 

―crawler‖ that first saves to the local computer all the information from the web pages on that website. Then the 

crawler parses the saved web page files one at a time in an automated fashion using a pre-coded computer program on 

the local machine.  

 



12 

 

 

 

Ipeirotis (2010) who build on the methods in Pang and Lee (2004). In particular, objective information is 

considered the information that also appears in the hotel-provided description, and subjective is everything 

else. To infer the probability of review subjectivity, we trained a classifier by using as ―objective‖ 

documents the hotel-generated descriptions from the websites of Travelocity and TripAdvisor. We then 

randomly retrieved 1000 reviews to construct the ―subjective‖ examples of the training set.
6
 After 

constructing the classifiers, we used the resulting classification models in the remaining, unseen reviews. 

Instead of classifying each review as subjective or objective, we instead classified each sentence in each 

review as either ―objective" or ―subjective," keeping the probability of being subjective for each sentence. 

By doing so, we were able to acquire a subjectivity confidence score for each sentence in a review, hence 

deriving the mean and standard deviation of this score as the subjectivity measurements for that review. 

These numerical scores are able to distinguish how likely a review contains subjective assessments as 

opposed to objective descriptions.  

We also look into the impact of ―Readability,‖ which is a proxy for the difficulty faced by people 

when reading online reviews. Past research has shown that easy-reading text improves comprehension, 

retention, and reading speed, and that the average reading level of the US adult population is at the eighth 

grade level (White 2003). Specifically, for each hotel, we collected all existing reviews to examine the 

average number of characters per review, average number of syllables per review, average number of 

spelling errors per review, and the average length of the sentence as a ―Complexity‖ measurement (total 

number of characters divided by the total number of sentences). To avoid idiosyncratic errors peculiar to a 

specific readability metric, we computed a set of metrics for each review. Specifically, we computed the 

following: Automated Readability Index, Coleman-Liau Index, Flesch Reading Ease, Flesch-Kincaid Grade 

Level, Gunning and SMOG. For brevity, we only show results with SMOG Index in the paper although all 

the other readability measures yield similar results. 

Furthermore, previous studies have shown that the social identity information of reviewers in an 

online community shapes community members' judgment of the products. In other words, the prevalence of 

reviewer disclosure of identity information is associated with changes in product sales (Forman et al. 2008). 

Therefore, consistent with prior work, we include the characteristic that captures the level of reviewers’ 

disclosure of their identity information – ―real name or location.‖ More specifically, this binary 

characteristic describes whether or not a reviewer had revealed her real name or location information on the 

reviewer profile page of Travelocity and Tripadvisor.  

In sum, there are 5 broad types of characteristics in this category: (i) total number of reviews, (ii) 

overall review rating, (iii) review subjectivity (mean and variance), (iv) review readability (the number of 

                                                           
6
We conducted the training process by using a 4-gram Dynamic Language Model classifier provided by the lingpipe 

toolkit. ―Lingpipe‖ is a tool kit provided online for processing text using computational linguistics (More information 

can be found at http://alias-i.com/lingpipe/). 

http://alias-i.com/lingpipe/
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characters, syllables, and spelling errors, complexity and SMOG Index), and (v) the disclosure identity 

information by the reviewer. 

 

4    Model 

In this section, we will discuss how we develop our random coefficient structural model and describe 

how we apply it to empirically estimate the distribution of consumer preferences towards different hotel 

characteristics in our setting. 

 

4.1   Random Coefficient Model Setup 

        Our model is motivated directly by the model in Song (2010), where the author proposed a hybrid 

discrete choice model of differentiated product demand. While Song (2010) had one random coefficient on 

price, we have multiple random coefficients on prices as well as hotel characteristics. Note that this hybrid 

model is a combination of the BLP (1995) and the PCM (2007) approaches. It resembles the random 

coefficient logit demand model in describing a brand choice (BLP 1995) and the pure characteristics 

demand model in describing a within-brand product choice (PCM 2007). In other words, this is basically a 

discrete choice model of differentiated product demand in which product groups are horizontally 

differentiated while products within a given group are vertically differentiated conditional on product 

characteristics. These two types of differentiation are distinguished by a group-level ―taste shock,‖ which is 

assumed to be distributed i.i.d. with a Type I extreme-value distribution. This taste shock represents each 

consumer’s specific preference towards a product group that is not captured by observed or unobserved 

product characteristics. Song (2010) refers to a product group that contains vertically differentiated 

products a ―brand.‖ This hybrid model identifies preference for product characteristics in a similar way as 

the PCM. The main difference that the hybrid model compares products of each brand on the quality ladder 

separately, while the PCM compares all products on it at the same time. Hence, the quality space is much 

less crowded in the hybrid model.
7
 

In our context, a hotel ―travel category‖ represents a ―brand‖ and the hotels within each ―travel 

category‖ represent ―products.‖ In particular, the market share function of hotel j
k
 within travel category k 

can be written as the product of the probability that travel category k is chosen and the probability that hotel 

j
k
 is chosen given that travel category k is chosen. The former probability is similar to the choice probability 

in BLP, and the latter to that of the PCM..  

                                                           
7
This hybrid model provides more efficient substitution patterns according to its basic assumptions and model 

foundations. As Song (2010) describes, it distinguishes two types of cross substitutions: the within-travel category 

substitution and the between-travel category substitution. The former is confined to hotels within the same travel 

category and has the same substitution pattern as in the PCM. The latter determines the substitution pattern for hotels 

in different travel categories and has a similar pattern as in BLP but with a distinct difference. That is, impact of a 

change (in price or availability) on other travel categories is confined to hotels of similar quality. As a result, a hotel 

will have fewer substitutes in our model than in the BLP model.  
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We define a consumer’s decision-making behavior as follows. A consumer needs to locate the 

hotel whose location and service characteristics best matches her travel purpose. For instance, if a 

consumer wants to go on a romantic trip with a partner, she would be interested in the set of hotels that are 

located close to a beach, downtown with amenities like nightclubs, restaurants, etc. She is also aware that 

hotels specializing in the ―romance‖ category are more likely to satisfy such location and service needs. 

Each hotel can belong to one of the following eight types of ``travel categories:‖ Family Trip, Business 

Trip, Romantic Trip, Tourist Trip, Trip with Kids, Trip with Seniors, Pet Friendly, and Disability Friendly.
8
 

To capture the heterogeneity in consumers’ travel purpose, we introduce an idiosyncratic ―taste shock‖ at 

the travel category level. This is similar to the product-level ―taste shock‖ in the BLP (1995) model.  

      Each travel category has a hotel that maximizes a consumer’s utility in that category. We refer to this as 

the ―best‖ hotel in that category. To find the ―best‖ hotel within each travel category, we use the pure 

characteristic model (PCM) proposed by Berry and Pakes (2007). The PCM approach is able to capture the 

vertical differentiation amongst hotels within the same travel category. A rational consumer chooses a 

travel category if and only if her utility from the best hotel in that category exceeds her utility from the best 

hotel in any other travel category. Thus, in our model, the utility for consumer i from choosing hotel j with 

category type k in market t can be represented as illustrated in Equation (1): 

                                                 ,k

k k i i k k itij t j t j t j t
u X P                                                      (1) 

 Where: i represents a consumer,  represents hotel j with travel category type k ( ), and t 

represents a hotel market. In this model,   and  are random coefficients that capture consumers’ 

heterogeneous tastes towards different observed hotel characteristics, X, and towards the average price per 

night, P, respectively.  represents hotel characteristics unobservable to the econometrician.  with a 

superscript k represents a travel category-level ―taste shock.‖ Note that in our model the travel category- 

level shock is independently and identically distributed across consumers and travel categories, consistent 

with Song (2010).
9
  

We define a ―market‖ as the combination of ―city-week.‖ Correspondingly, the market share for each 

hotel is calculated based on the revenues for that hotel in that city in that week divided by the total revenue 

                                                           
8
Each travel category is defined and chosen according to the information gleaned from the website of TripAdvisor. 

TripAdvisor allows reviewers to specify their main trip purpose (travel category) while posting a review. We have 

data on all the hotel reviews posted by users for a given hotel right from the time the first review was posted till the 

last date of our transaction dataset (February 2009). A hotel is classified into a specific travel category based on the 

most frequently mentioned travel purpose by the reviewers for that hotel. Hence, each hotel belongs exclusively to a 

travel category. 
9
Besides our model which incorporates a travel category level taste shock, there are at least three other plausible 

modeling approaches in this context: (i) a model with only a hotel-level taste shock, resembling the BLP (1995) 

approach, (ii) a model with both travel-category and hotel-level taste shocks, with travel category at the top hierarchy, 

resembling the nested logit model, and (iii)  a model with no taste shocks either at the travel category or hotel level, 

resembling the PCM (2007) approach. We have estimated all these models and found that our hybrid model provides 

the best performance in both precision and deviation. Details are provided in Section 5.3. 

kj 1 7k

i i
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from all hotels in that city in that week. We also tried alternate definitions of market size. For example, we 

applied similar ideas as in Song (2007), by increasing or decreasing the total revenue for each market by 

20%. We found that in our data different market sizes yield qualitatively the same results.  

Our main dataset comes from two major sources: Travelocity-generated transaction data and 

TripAdvisor review data. The dataset we used in our analysis is the set of hotels at the intersection of the 

two sources. This means that the hotel choice set for each market includes those hotels that not only have a 

transaction generated via Travelocity, but also have available information on user-generated reviews on 

TripAdvisor. Since not every hotel that has a Travelocity-generated transaction is listed on the TripAdvisor 

website, we define our ―outside good‖ as the set of hotels that are listed in the original Travelocity 

transaction data, but not listed on the TripAdvisor website. 

Due to the computational complexity and data restriction, estimating a unique set of weights for each 

consumer is intractable. To make this model tractable, we made some further assumptions about  and  

One is to assume that these weights are normally distributed among consumers, i.e., ~ ( | , )i i i  

and ~ ( | , )i i i
. Our goal is then to estimate the means ( , ) and the standard deviations ( i ,

i ) of these two distributions. The means correspond to the set of coefficients on hotel characteristics and 

on hotel price, which measures the average weight placed by the consumers. The standard deviations 

provide a measure of the extent of consumer heterogeneity in those weights.  

Furthermore, we notice that these heterogeneities result from particular demographic attributes of 

consumers. For example, the variance in the price coefficient is very likely a result of differences in 

incomes among the consumers. Therefore, we make additional assumptions about the standard deviations: 

~i I iI , where  represents the income whose distribution can be learned from the consumer 

demographics; ~i v iv , where  represents some random factor that will influence people’s 

preferences towards individual hotel characteristics.  

Therefore, we have the following two forms for the consumer-specific coefficients 
i
 and 

i
: 

i I iI        and      .i v iv  

We then rewrite our model as follows: 

                                                                                          (2.1) 

Where: ,k k k kj t j t j t j t
X P  represents the mean utility of hotel j with category type k in 

market t.  and  are the parameters to be estimated.  

4.2   Estimation 

We now discuss how we identify the values for the parameters. As mentioned in the previous 

subsection, our goal here is to estimate the mean and variance of  and . We apply methods similar to 

those used in Berry and Pakes (2007) and Song (2010). In general, with a given starting value of 

, we look for the mean utility , such that the model predicted market share is equal to the 

i i

iI

~ (0,1)iv N

,k

k k k v i I i k itij t j t j t j t
u X v I P

v I

i i

0 0

0 ( , )I v
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observed market share. From there, we form a GMM objective function using the moment conditions in 

that the mean of unobserved characteristics is uncorrelated with the instrumental variables. Based on this, 

we identified a new value of , which will be used as the starting point for the next round 

iteration. This procedure is repeated until the algorithm finds the optimal value of  that minimizes the 

GMM objective function. More specifically, we conduct the estimation in three stages. 

 

(i)  Calculating Market Shares 

In order to calculate the market share for a particular hotel, we need to know: (1) the size of a certain 

consumer segment, and (2) the probability of this hotel being chosen by that consumer segment. By 

multiplying the two, we are able to derive the overall market share. The mathematical details for the 

derivation are provided in Appendix D.  

 

(ii)  Solving Mean Utility  

With the market share being derived, we can then identify the mean utility by equating the 

estimated market share to the observed market share conditioning on a given . As we can see, 

this problem can be essentially reduced to a procedure of solving a system of nonlinear equations. In our 

case, there are 1

K k

k J nonlinear equations (where is the total number of hotels within travel category 

type k) and 1

K k

k J unknown variables ( being a 1

K k

k J dimension vector). To find a solution, we apply 

Newton-Raphson method suggested by Song (2010), where this method was shown to work well when the 

number of products per market is up to 20. To guarantee the robustness of the results when the number of 

products is larger than 20, we tried different initial values in the iteration. The final solution was consistent 

across different initial values. In practice, this approach locates the closest solution for our settings, while 

the iteration procedure provides a very close form to locate the roots rapidly and stably.  

(iii) Solving I  and v  

To account for the endogeneity of price, we use a GMM estimator and form an objective function by 

interacting the unobservable parameter,  , with a set of instrumental variables. By minimizing the GMM 

objective function, we determined the proper set of I and v . We use the new I and v as the starting 

points to recalculate the market share in Step (1) and solved for the new mean utility in Step (2). This entire 

procedure iterates until the algorithm finds the optimal combination of I , v  and . 
10

 

                                                           
10

For our model, the computational time for each call (i.e., the inner loop) to the GMM objective function to solve for 

the mean utility is around 8 minutes on average. The global parameter search (i.e., the outer loop) by minimizing the 

GMM objective function takes an average of 20 calls. The total computational time for the estimation is around 3 

hours. For the BLP model, the computational time for each call to the GMM objective function to solve for the mean 

utility is about 3 minutes on average. The global parameter search process takes about the same number of calls (i.e., 

20). The total computational time for the BLP estimation is around 40 minutes to 1 hour.  

1 1

1 ( , )I v

( , )I v

kJ
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In our case, we use average price of the ―same-star rating‖ hotels in the other markets as an instrument 

for price, similar to the approach of Hausman et al. (1994). We have tried four other sets of instruments. 

First we follow Villas-Boas and Winer (1999) and use lagged prices as instruments in conjunction with 

Google Trends data. The lagged price may not be an ideal instrument since it is possible to have common 

demand shocks that are correlated over time. Nevertheless, common demand shocks that are correlated 

through time are essentially trends. Our control for trends using search volume data thus should alleviate 

most, if not all, such concerns. Second, we have used employee wage data from BLS as a ―cost side‖ 

instrument using the category of ―Accommodation.‖ The assumption here, like in other papers that use such 

cost-side instruments is that hotel employee wages are correlated with hotel room prices but uncorrelated 

with factors that are reflected in the unobserved characteristics term (see for example, Chintagunta et al. 

2005). Third, we have also tried region dummies as proxies for the cost (e.g., the cost of transportation, 

labor, etc.) as suggested by Nevo (2001). Fourth, we have used BLP-style instruments. Specifically, we 

have used the average characteristics of the same-star rating hotel in the other markets. All these alternate 

estimations yielded very similar results. The corresponding estimation results using alternative instruments 

are provided in Table 3 columns 4-7. We did an F-test in the first stage for each of the four sets of 

instruments. In each case, the F-test value was well over 10, suggesting that our instruments are valid (i.e., 

the instruments are not weak). In addition, the Hansen’s J-Test could not reject the null hypothesis of valid 

overidentifying restrictions. 
11

 

4.3   Model Extension (1): Additional Text Features 

So far we have not fully exploited the information about hotel service characteristics from the data, 

which is embedded in the natural language text of the consumer reviews. For example, the ―helpfulness of 

the hotel staff‖ is a service feature that can be assessed by reading the actual consumer opinions. Towards 

extracting such information, we build on the work of Hu and Liu (2004), Popescu and Etzioni (2005), 

Archak et al. (2008), and use a POS (part-of-speech) tagger to identify frequently mentioned nouns and 

noun phrases, which we consider candidate hotel features. We then cluster these phrases, using WordNet 

(Fellbaum 1998) and then use a context-sensitive hierarchical agglomerative clustering algorithm (Manning 

and Schutze 1999) to cluster further the identified nouns and noun phrases into clusters of similar nouns 

and noun phrases. The resulting set of clusters corresponds to the set of identified product features 

                                                           
11

Dube, Fox and Su (2009) note that a theoretical advantage of Newton-type methods, is that they are quadratically 

convergent when the iterates are close to a local solution (e.g., Kelly 2003 and Nocedal and Wright 2006). To make 

sure our estimates are reliable, we employed 50 starting points in each run of the estimation. We routinely found that 

our algorithm were able to identify the same local minimum each time. Moreover, as suggested by Knittel and 

Metaxoglou (2008), we also tried several alternative optimization algorithms, including (i) direct-search algorithms: 

e.g., the Nelder-Mead simplex method; (ii) derivative-based algorithms: e.g., the Fletcher-Reeves conjugate gradient 

method and the vector Broyden-Fletcher-Goldfarb-Shanno (BFGS) method (which is a quasi-Newton method). We 

found that different algorithms were able to recover consistent structural parameters in our data.  
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mentioned in the reviews. For our analysis, we kept the top-5 most frequently mentioned features, which 

were hotel staff, food quality, bathroom, parking facilities, and bedroom quality.
12

 

In the next step, we extract all the evaluation phrases (adjectives and adverbs) that are being used to 

evaluate the individual service features (for example, for the feature ―hotel staff‖  we extract phrases like 

―helpful‖, ―smiling‖, ―rude‖, ―responsive‖, etc) . To measure the meaning of these evaluation phrases, we 

used Amazon Mechanical Turk to exogenously assign explicit polarity semantics to each word. To compute 

the scores, we used AMT to create our ontology, with the scores for each evaluation phrase. Our process 

for creating these ―external‖ scores was done using the methodology of Archak et al. (2008). We asked 

nine AMT workers to look at the pair of the evaluation phrase together with the product feature, and assign 

a grade from -3 (strongly negative) to +3 (strongly positive) to the evaluation. This resulted in a set of nine, 

independently submitted evaluation scores; we dropped the highest and lowest evaluation score, and used 

the average of the remaining seven evaluations as the externally imposed score for the corresponding 

evaluation-product phrase pair. As an example, when evaluating ―hotel staff‖, the AMT process resulted in 

―helpful‖ having value of 0.9, ―rude‖ to be -0.5, ―responsive‖ to be 0.5, and so on. We should stress that the 

scoring of the evaluation phrases is only necessary to be done once as the set of hotel features, and the 

corresponding semantic evaluation phrases are highly unlikely to change over time. 

4.4   Model Extension (2): Interactions with Travel Category 

As discussed previously, by modeling the standard deviations of 
i
 and 

i
 (i.e., consumer-specific 

coefficients towards price and towards hotel characteristics) to be a function of consumer income 

( ~i I iI ) and a function of the unobserved consumer characteristic ( ~i v iv ), respectively, our 

basic model is able to take into account the consumer heterogeneity originated from different income levels 

as well as from the unobserved consumer attributes. Furthermore, to capture richer effects from consumers’ 

heterogeneous tastes, demographics could potentially be added to the model in a more complex manner. 

This can be achieved in a similar fashion as in Nevo (2001), by enabling interactions between travel 

categories and product characteristics.  

More specifically, we extend our basic model by assuming that the standard deviations of i  and i  

are functions of additional consumer-level travel demographics. In our case, we focus on consumer travel 

                                                           
12

To select the top 5 features, we first processed all the reviews for each hotel, and extracted text features (i.e., terms) 

that appeared frequently in the reviews for each hotel. For example, for Hotel A the features extracted based on the 

reviews for Hotel A can be ―bed‖, ―bathroom‖ and ―pool‖; for Hotel B the features can be ―bed‖, ―bathroom‖ and 

―restaurant‖. Then, we selected the top 5 most frequently extracted features across all hotels. In our example, the 

features will be ―bed‖ and ―bathroom‖. The top 5 features that we selected in our study covered 80% of the hotels, 

which means that for 80% of the hotels the extracted text features contain these 5 features. While technically possible, 

we did not consider more textual features because the frequency in which the additional features are mentions drops 

significantly, and therefore we would not be able to have a robust measurement for these textually-inferred features 

for a very significant fraction of the hotels in our dataset.  
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purpose. Thus, we have the following two extended forms for the consumer-specific coefficients 
i
 and 

i

: 

i I i T iI T        and      ,i v i T iv T  

where 
iT  is an indicator vector with identity components representing consumer travel purpose: 

13
  

'        .i i i i i i i i iT Family Business Romance Tourist Kids Seniors Pets Disability
 

        For example, if consumer i is on a business trip, then the corresponding travel purpose vector is 

' [0 1 0 0 0 0 0 0].iT
 

        Based on this additional assumption, the overall extended model can be thereby rewritten as 

.k k k k k k

k

v i T i I i T i itij t j t j t j t j t j t
u X v X T I P T P                            (2.2) 

In the next section, we will discuss our empirical results from our basic and extended models. 

 

5.   Empirical Analysis and Results 

Note that a consumer who is searching for hotel reviews on Travelocity or Tripadvisor gets to see a 

different number of reviews on the pages of each website. While Travelocity.com displays the first five 

reviews on a page, Tripadvisor.com lists 10 reviews per page. To minimize the potential bias caused by 

webpage design, since some customers may only read the reviews on the first page, we decided to consider 

two more alternatives besides our main dataset: Dataset (II) with hotels that have at least five reviews, and 

Dataset (III) with hotels that have at least 10 reviews. Controlling for brand effect, the estimation results 

from these three datasets are illustrated in Table 3 columns 2-4. As described previously, we tried several 

different instruments by using lagged prices with Google Trends, various proxies for marginal costs as well 

as BLP-style instruments. The corresponding results are in Table 3 columns 5-8.
14

 

In subsection 5.2, we discuss our robustness tests: (1) using the same model based on different 

samples using alternative levels of online review data, and (2) using a different model based on the same 

datasets. Then, in Subsection 5.3, we further discuss the results on model validation by comparing our 

model with the current competitive ones. In subsection 5.4, we will provide some managerial implications 

by conducting counterfactual policy experiments. Finally, in subsection 5.5, we will briefly discuss the 

results from our extended model. 

 

 

                                                           
13

The empirical distribution of iT can be acquired from online consumer reviews and reviewers’ profiles. Our 

robustness test showed that consumers’ demographics derived from different online resources stay consistent (Jensen-

Shannon Divergence = 0.03). 
14

For normalization purpose, we used the logarithms of ―price,‖ ―characteristics,‖ ―syllables,‖ ―spelling errors,‖ 

―crime rate,‖ ―internal amenities,‖ ―external amenities‖ and ―review count (both TripAdvisor and Travelocity)‖ in all 

the analyses in this paper.  
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5.1   Results from the Basic Model 

        Location-based characteristics: There are five location-based characteristics, which have a positive 

impact on hotel demand: ―external amenities,‖ ―beach‖, ―public transportation,‖ ―highway,‖ and 

―downtown.‖ These characteristics strongly imply that the location and geographical convenience for a 

hotel can make a big difference in attracting consumers. Hotels providing easy access to public 

transportation (such as a subway or bus stations), highway exits, restaurants and shops, or easy access to a 

downtown area, can have a much higher demand. ―Beach,‖ also showed a positive impact on demand. It 

turns out that most beach-based hotels in our dataset were located in the south where the weather typically 

stays warm even in winter. Therefore, the desirability of a ―walkable‖ beachfront did not reduce even in the 

winter season (which is the time of our data). 
15

 

Two location-based characteristics have a negative impact on hotel demand: ―annual crime rate‖ and 

―lake/river.‖ The higher the average crime rate reported in a local area, the lower the desirability of 

consumers for staying in a hotel located in that area. This indicates that neighborhood safety plays an 

important role in the hotel industry. The second location-based characteristic that illustrates a negative 

impact is the presence of a water body like a lake or a river. This is interesting because one would expect 

people to choose a hotel near a lake or by a riverside. However, most waterfront-based hotels in our dataset 

were located in places where the weather becomes extremely cold in the winter months of November to 

January. Due to the low temperatures, it is likely that a lake or riverfront becomes less desirable for 

travelers.
16

 

To further examine the impact of lake, we collected weather data from the National Oceanic and 

Atmospheric Administration (NOAA) on the average temperature from 2008/11 to 2009/1 for all cities. 

Then, we defined 2 dummy variables: ―High Temp‖ which equals to 1 if the average temperature is higher 

than 50 degree, and ―Low Temp‖ which equals to 1 if the average temperature is lower than 40 degree.
17

 

We interact ―High Temp‖ and ―Low Temp‖ separately with ―Lake‖ in our model. The results showed that 

the interaction of ―Low Temp‖ with ―Lake‖ has a significantly negative effect. This supports our earlier 

argument. While not statistically significant (p value = 0.2), the interaction of ―High Temp‖ with ―Lake‖ 

showed a positive effect, weakly suggesting that warmer weather may help the lake area to attract more 

visitors. As a robustness check, we did the similar analysis for ―Beach‖ conditional on high and low 

temperatures. The results showed similar trend. Moreover, the coefficients are both statistically significant 

in the case of ―Beach.‖ The corresponding estimation results considering the interactions with the 

temperature are shown in column 9 in Table 3. 

                                                           
15

In addition, we also considered ―Airport‖ and ―Convention centers‖. The estimation results are consistent with our 

current results, but the coefficients for the two characteristics are statistically insignificant. 
16

In addition, some traveler reviews commented on the presence of mosquitoes in areas near a lake.  

17
We tried other combinations to classify High vs. Low temperatures (>=70 degrees as High and <=30 degree as Low 

(ii) >=60 degrees as High and <=20 degrees as Low) but they all yielded qualitatively similar results. 
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Service-based characteristics: Both ―class‖ and ―amenity count‖ has a positive impact on hotel 

demand. Hotels with a higher number of amenities and higher star-levels have higher demand, controlling 

for price. ―Reviewer rating‖ also has a positive association with hotel demand. With regard to the ―number 

of reviews,‖ we find a positive sign for its linear form while a negative sign for its quadratic form. This 

indicates that the economic impact from the customer reviews is increasing in the volume of reviews but at 

a decreasing rate, as one would expect.  

Textual quality of reviews: The textual quality and style of reviews demonstrated a statistically 

significant association with demand. All the readability and subjectivity characteristics had a statistically 

significant association with hotel demand. Among all the readability sub-features, ―complexity,‖ 

―syllables‖ and ―spelling errors‖ had a negative sign and, therefore, have a negative association with hotel 

room demand. This implies that reviews higher readability characteristics (short sentences and less 

complex words), and reviews with fewer spelling errors have a positive association with demand. On the 

other hand, the sign of the coefficients on ―characters‖ and ―SMOG index‖ is positive, implying that longer 

reviews that are easier to read have a positive association with demand.
18

 These results indicate that 

consumers can form an image about the quality of a hotel by judging the quality of the (user-generated) 

reviews. 

Both ―mean subjectivity‖ and ―subjectivity standard deviation‖ turned out to have a negative 

association with demand. This implies that consumers prefer reviews that contain objective information 

(such as factual descriptions of rooms) relative to subjective information. With respect to the ―subjectivity 

standard deviation,‖ our findings suggest that people prefer a ―consistent objective style‖ from online 

customer reviews compared to a mix of objective and subjective sentences. The last review-based 

characteristic was ―disclosure of reviewer identity.‖ This variable demonstrated a positive association with 

hotel demand. This result is consistent with previous work (Forman et al. 2008), which suggested that the 

identity information about reviewers in the online travel community can shape positively community 

members' judgment towards hotels. ―Price‖ has a negative sign, which is as expected. 

Quantitative Effects of location-, service- and review-based hotel characteristics: Besides the 

above qualitative implications, we also quantitatively assess the economic value of different hotel 

characteristics. More specifically, we examined the magnitude of marginal effects on hotel demand for the 

location-, service- and review-based hotel characteristics. The presence of a beach near the hotel increases 

demand by 14.59% on an average. In contrast, a location near a lake or river decreases demand by 10.47%. 

Meanwhile, easy access to transportations and highway exits increase demand by 18.44% and 10.23%, 

separately. Presence of a hotel near downtown increases demand by 8.35%. With regard to service-based 

characteristics, a 1-star improvement in hotel class leads to an increase in demand by 5.30% on average. 
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To alleviate any possible concerns with multi-collinearity between SMOG and Syllables, we re-estimate our model 

after excluding the SMOG index variable. There was no change in the qualitative nature of the results across the 

different datasets. 
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Moreover, the presence of one more internal or external amenity increases demand by 0.06% or 0.07%, 

respectively. Demand decreases by 0.33% if the local crime rate increases by one unit.  

With regard to the review-based characteristics, we found that the SMOG index (which represents the 

readability of the review text), has the highest marginal influence on demand on an average. A one level 

increase in SMOG index of reviews is associated with an increase in hotel demand by 7.42% on an 

average. A one unit increase in the number of characters is associated with an increase in hotel demand by 

0.11%, whereas a one unit increase in the number of spelling errors, syllables or in complexity is associated 

with a decrease in hotel demand by 1.36%, 0.27%, and 0.59%, respectively. In terms of review subjectivity, 

a 10 percent increase in the average subjectivity level is associated with a decrease in hotel demand by 

2.62%; a 10 percent increase in the standard deviation of subjectivity will reduce demand by 3.33%. 

Finally, a 10 percent increase in the reviewer identity-disclosure levels is associated with an increase in 

hotel demand by 1.42%. 

Note that the estimation results from the three datasets are highly consistent. In general, all the 

coefficients illustrate a statistical significance with a p-value equal to or below the 5% level across all three 

datasets. Moreover, a large majority of variables present a high significance with a p-value below the 0.1% 

level. 

5.2   Robustness Checks  

To assess the robustness of our estimation model and results, we report two additional groups of tests.  

 

(i) Robustness Test I: Use the same model based on alternative sample splits.  

We considered three alternative datasets: Dataset (IV) containing hotels with at least one review from 

Tripadvisor.com, Dataset (V) containing hotels with at least one review from Travelocity.com, and Dataset 

(VI) containing hotels with at least one review from both. The results are in Appendix A, Table A1. We 

found that the coefficients from the estimations are qualitatively very similar to our main results. Moreover, 

similar to those in the main results, most variables in the robustness tests also illustrate statistical 

significance at or below the 5% level or stronger. Thus, our estimation results, based on the hybrid random 

coefficient model, are quite consistent across different datasets.  

 

(ii) Robustness Test II: Use an alternative model based on the same datasets. 

         To examine the robustness of the results from our model, we conducted another group of tests using 

an alternative model that has been widely used in the industrial organization and marketing literature, the 

random coefficient logit model, or BLP (Berry et al. 1995). As mentioned in Section 4, the key difference 

between the BLP approach and our model is that BLP introduces a demand ―taste shock‖ at each product 

level (in our case, hotel), rather than at a group level (in our case, the travel category), as in our model. 

Consequently, the substitution space for BLP is different in the sense that BLP does not distinguish 



23 

 

 

 

between the two types of cross substitutions - the ―within-travel category‖ and ―between-travel category.‖ 

Rather, it would treat all hotels as possible substitutes. We added two sets of dummy variables, one for 

brand and the other for travel category. We conducted the same set of estimations based on Datasets (I) - 

(VI).  

The results are in columns 2-7 in Table A2 in Appendix A. In addition to an alternate specification 

with homogeneous coefficients on the travel category dummies, we further considered consumers’ 

heterogeneous preferences by assigning random coefficients to these dummies. The corresponding results 

are shown in the last column in Table A2 in Appendix A.  

We find that the estimation results from the BLP model are consistent with our main estimation results 

using the hybrid model. Specifically, the coefficients from the BLP estimation demonstrate three trends: (i) 

they have the same signs compared to our main results from the hybrid model, which means that the 

economic effects are consistent in direction, (ii) they exhibit lower levels of statistical significance, 

compared to our main results, and (iii) the magnitude of these coefficients is generally higher compared to 

our main results. These three trends are also very consistent with the findings in Song (2010). In the next 

subsection, our model validation results further confirm this finding.  

5.3   Model Comparison 

For model comparison purposes, we estimated three baseline models: the BLP model, the PCM model 

and the nested logit model with travel category at the top hierarchy. Based on the previous study by Steckel 

and Vanhonacker (1993), we randomly partitioned our main sample Dataset (I) into two parts: a subset with 

70% of the total observations as the ―estimation sample,‖ and a subset with 30% of the total observations as 

the ―holdout sample.‖ To minimize any potential bias from the partition procedure, we performed a 10-fold 

cross-validation. We conducted this validation process for our random coefficient model and the three 

baseline models. Furthermore, to examine the model’s ability to capture a deeper level of consumer 

heterogeneity, we compared an extended version of our model with an extended version of the BLP model 

when incorporating additional interaction effects (i.e., travel purpose interacted with price and hotel 

characteristics). Finally, to examine the significance of the UGC-based, the location-based and the service-

based hotel characteristics, we compared with the original model fit by using the same hybrid model but 

excluding the UGC, location, and service variables, separately. We have done the above work for both in-

sample and out-of-sample comparisons. The results are provided in Table B1 to B6  in Appendix B. 19  

                                                           
19

With regard to the unobserved characteristics required for out-of-sample prediction using the hybrid, BLP and PCM 

models, we applied the same method as suggested in Athey and Imbens (2007). We drew the unobserved 

characteristics for the ―holdout sample‖ randomly from the marginal distribution of unobserved characteristics 

estimated from the ―estimation sample‖. This method has also been used in the Marketing literature. See for example, 

Nair, Dube and Chintagunta (2005) who infer the structural error for the "hold out" sample from the marginal 

distribution of the structural error across different markets derived from the "estimation" sample. 
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The results showed that a model that conditions on UGC variables significantly improves the model 

predictive power. With respect to out-of-sample RMSE, the model fit improves by 31% when add the UGC 

variables. Similar trends in improvement in our model fit occur with respect to the other two metrics, MSE 

and MAD in both in-sample and out-of-sample analyses.  

Our out-of-sample results in Table B4 illustrate that our model improves by 11% in RMSE compared 

to the BLP model with no random coefficients on travel category dummies. This number becomes 53%, 

62%, and 8.58% with respect to the PCM, the Nested Logit model, and the BLP model with random 

coefficients on travel category dummies, respectively. Thus, our model provides the best overall 

performance in both precision (i.e., RMSE, MSE) and deviation (i.e., MAD) of the predicted market share. 

The nested logit model presents the worst performance in the predictive power. Moreover, as illustrated in 

Table B5, when incorporating interaction effects, although both models show improvement in predictive 

power, the extended hybrid model performs much better than the extended BLP model.  

From Table B6 we find that by including the UGC, location-based, and service-based variables, our 

model fit improves by 31%, 55%, and 53% in RMSE. Similar trends in improvement in our model fit occur 

with respect to the other metrics, MSE and MAD. Therefore, our results suggest that the model predictive 

power will drop the most if we were to exclude the location-based variables from our model, followed by 

the service-based variables, and finally followed by the UGC variables. 

This strongly indicates that location- and service-based characteristics are indeed the two most 

influential factors for the hotel demand. We also find similar trend from the in-sample model comparison 

results. 

5.4   Counterfactual Experiments 

A key advantage of structural modeling is its potential for normative policy evaluation. To measure 

explicitly the economic impact of strategic policies, we conducted various counterfactual experiments. 

Specifically, we simulated the following three sets of scenarios.  

 

(i) Counterfactual Experiment I: Marginal effects under different location environments.  

        In this experiment, we aimed at examining the robustness for the rank order of marginal effects of the 

location features in different location environments (e.g., areas with no beach or no transportation). We first 

generated 6 derivative samples, by assuming each of the following 6 location features to be absent, beach, 

downtown, highway, lake, transportation, and external amenities, one at a time. Second, we re-computed 

the corresponding utilities for hotels, assuming the corresponding value for the absent location feature to be 

zero. Then, we re-estimated the marginal effects for the remaining features given the updated utilities. Our 

finding showed that the marginal effects for the remaining location features preserve the order from our 

original estimates. This strongly suggests that the rank order of economic significance of the location 

features is robust over different location environments.  
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(ii) Counterfactual Experiment II: Effects of price cut under different location environments. 

        To examine how pricing policy change will affect hotel demand under different location 

environments, we conducted the second set of counterfactual experiments. First, we consider the same 6 

different location environments as in the experiment I, by assuming each of the 6 location features to be 

absent one at a time. Then, we assumed a price cut by 20% for each environment and examine the demand 

change. Our finding showed that the increase of hotel demand is the lowest in areas with no highway 

compared to others. This low price elasticity suggests that in such areas consumers tend to be less sensitive 

to price cut.  

        Furthermore, we consider two additional types of location feature combinations: (1) Beach and 

highway (which represents the typical west/south coast setting), and (2) Downtown, transportation and 

external amenities (which represents the typical big city setting). Correspondingly, we generated two 

derivative datasets by assuming all other location features that are not in the combination to be absent for 

each case. Again, we re-computed the utilities and re-estimated the model. Results show that the increase in 

demand is 21% lower in big city setting than that in coastline setting. Consumers tend to react much less 

sensitively to hotel price in big cities. This strongly indicates that price change in big cities may not be an 

effective strategy in adjusting hotel demand, compared to that in coastline areas.  

 

(iii) Counterfactual Experiment III: Effects of price cut on substitution pattern. 

        In the third set of experiments, we looked into how price change in one type of hotels will affect the 

demand for other types of hotels. Specifically, we focused on hotels with different star ratings.  

        We assumed a price cut by 20% for all 4-star hotels. By doing so, we tried to find out what are the 

demand changes for the 5-, 3-, 2-, 1-star hotels. Our results showed that under the experimental setting, the 

demand for 4-star hotels will increase 2.79%, while the demand for hotels from all other classes will 

decrease. Among all of them, the demand for 5-star hotels drops the most with a rate of 5.13%, followed by 

3-star hotels with a rate of 3.73%. The negative impacts on the demand for 1-star and 2-star hotels are 

relatively smaller, with a rate of 2.76% and 2.50%, respectively. Meanwhile, we also conducted similar 

analyses for hotels from other classes. For example, by assuming a 20% price cut for the 3-star hotels, we 

found that the demand for 3-star hotels will increase by 2.68%. As a result, the demand for 4-star and 2-star 

hotels will drop the most, with a rate of 4.94% and 4.81%, respectively. 

        From the above set of experiments, that the basic findings are as follows: (i) A price cut for a 

particular class of hotels tends to cause a demand drop for all the hotels from the lower-level class(es); (ii) 

The closest substitutes for 4-star hotels are 5-star hotels; the closest substitutes for 3-star hotels are 4-star 

and 2-star hotels; the closest substitutes for 2-star hotels are 1-star hotels.   
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5.5   Estimation Results from Model Extensions 

        As discussed in sections 4.3 and 4.4., we also empirically estimated the two extended models.  

 

(i)  With additional text features 

        The estimation results for the extended model with additional text features are shown in Table 4. We 

see that the qualitative nature of our main results remains the same. In addition, we see that the three 

features that have a positive and statistically significant impact on demand are ―food quality,‖ ―hotel staff‖ 

and ―parking facilities.‖ In contrast, ―bedroom quality‖ had a negative impact on demand. While this 

negative sign is surprising, this can happen if consumers use bedroom quality as a cue for price, especially 

given that quality in our data is a proxy for the number of beds and size of the room (full, queen, king, etc). 

This is possible because sometimes prices are obfuscated on the main results page and are only available 

just before checkout. However, this is only one possible explanation. 

 

(ii)  With interaction effects 

        The additional interaction effects enable us to understand better how the distribution of consumers’ 

heterogeneous preferences is influenced by the distribution of consumers’ demographic information. More 

specifically, we estimated four sets of interaction effects:  

        1) Interaction between Income and Price;  

        2) Interaction between Travel Category and Price;  

        3) Interaction between Unobserved Consumer Characteristics and Hotel Characteristics.  

        4) Interaction between Travel Category and Hotel Characteristics (e.g., location, service, brand, etc.);  

        Due to the space limitation in this paper, we will only focus on the discussions of 2) and 4). The 

corresponding results for these two sets of interaction effects are provided in Table 5b, Table 5c, and Table 

5d. 
20

 The estimated mean coefficients are shown in Table 5a.  

        First, we notice that consumers’ heterogeneous tastes towards price can indeed be explained by their 

various travel purposes. For example, from Table 5a, we know that the mean price coefficient is -0.138. 

Thus, from Table 5b, we can infer that if a consumer is on a business trip, her price coefficient will increase 

0.023 above the mean, which yields an adjusted price coefficient of  -0.115. On the contrary, if a consumer 

is on a family trip or a romance trip, her adjusted price coefficient is -0.155 or  -0.141, respectively. Among 

all different types of travelers, we found that tourists (i.e., travelers on a large group tour) tend to be the 

most price-sensitive with an adjusted price coefficient of  -0.158, whereas business travelers are the least 

price-sensitive. This consumer heterogeneity in price sensitivity can be further interpreted by the marginal 

effects of price change on hotel demand. For instance, we find that a 20% increase in hotel price will lead 
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The results for 1) and 3) are available from the authors upon request. 
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to a 1.93% demand drop from business travelers, compared to a 2.59% drop from family travelers, a 2.36% 

demand drop from romance travelers, and a 2.64% demand drop from tourists.    

        Furthermore, we find that consumer heterogeneity towards different hotel location and service 

characteristics is also associated with travel purpose. For instance, we notice that business travelers have 

the highest marginal valuation for ―highway‖ and ―public transportation.‖ In other words, hotels with easy 

access to interstate highway or public transportations will attract business travelers the most. More 

specifically, this can be quantitatively interpreted by the marginal effects on hotel demand. From Table 5a, 

we see that the mean coefficients for ―highway‖ and ―transportation‖ are 0.098 and 0.163, respectively. 

According to the estimated interaction effects in Table 5c, we can infer that for business travelers the 

presence of ―highway‖ and ―transportation‖ weigh significantly higher than the mean coefficients, with an 

increase of 0.107 and 0.138 for each. Correspondingly, the presence of interstate highway near a hotel will 

increase hotel demand from business travelers by 21.40%, compared to a 10.23% demand increase on 

average, and a 7.20% demand increase from romance travelers (which is only about 1/3 of that from 

business travelers). Similarly, the presence of public transportation near a hotel will increase hotel demand 

from business travelers by 34.05%, compared to an 18.44% demand increase on average, and a 6.22% 

demand increase from family travelers (which is less than 1/5 of that from business travelers). On the 

contrary, we find that romance travelers are more sensitive to ―hotel class‖ and ―beach‖ compared to other 

types of travelers. For example, the presence of beach near a hotel will increase hotel demand from 

romance travelers by 18.84%, compared to a 14.59% demand increase on average, and a 5.97% demand 

increase from business travelers (which is only about 1/3 of that from romance travelers). Similarly, a 1-

star improvement in hotel class will lead to an increase in hotel demand from romance travelers by 19.23%, 

compared to a 5.30% demand increase on average, and a significantly lower demand increase from tourists 

at a rate of only 1.06%.  

 

6.    Utility-Based Hotel Ranking 

 After we estimate the parameters, we can derive the utility gain that a consumer with a particular 

travel purpose receives from paying for a given hotel. Thereafter, we propose to design a new ranking tool 

for hotels based on the average utility gain from transactions in that hotel. As discussed in Section 4, to 

capture the consumer heterogeneity, we represent the utility from each hotel for each consumer as 

consisting of two parts: the mean and the standard deviation. The mean utility provides us with a good 

estimation of how much consumers can benefit from choosing this particular hotel, while the standard 

deviation of utility describes the variance of this benefit. In our case, we are interested in knowing what the 

excess utility is for consumers on an aggregate level from choosing a certain hotel. Therefore, we define the 

average utility gain from hotel j with travel category type k as the sum of its mean utility, defined in Eq. 

(2.1) - divided by the mean price coefficient - over all markets: 
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6.1   Ranking Hotels  

        We thereby propose a new ranking approach for hotels based on the utility gain from each hotel for 

consumers on an aggregate level. If a hotel provides a comparably higher utility gain, then it would appear 

on the top of our ranking list. Since the mean price coefficient is consistent over all hotels, and our final 

goal is to relatively compare hotels and rank them based on the utility gain, we can simply ignore , which 

gives us the following form:
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Utility Gain                                                  (4) 

        Therefore, after estimating the economic impact for each hotel characteristic, we propose to design a 

local hotel ranking function based on the average utility gain that consumers get from the transactions in a 

given hotel. Then, we rank all the hotels according to the utility gain they provide to the consumers in an 

descending order. This provides us with the best valuation on the hotel cost performance and provides 

customers with the best-valued hotels, consequently.  

6.2   User Study Based on Field Experiments 

To evaluate the quality of our ranking technique, we conducted an extensive user study toward which 

we designed and executed several field experiments using Amazon Mechanical Turk. We generated 

different rankings for the top-10 hotels in accordance with several existing baseline criteria deployed by 

travel search engines: Most booked, Price low to high, Price high to low, Hotel class, Hotel size (number of 

rooms), and Number of internal amenities. We also considered 4 other benchmark criteria based on user-

generated content: Customer rating from Tripadvisor.com, Customer rating from Travelocity.com, Mixed 

rating from Tripadvisor.com and Travelocity.com 
21

, and Maximum online review count. Moreover, to 

examine the significance of the user-generated content and of the comprehensive model to the overall 

performance of the ranking scheme, we generated two more baselines using the same hybrid model but 

excluding all the UGC variables, and using the BLP model (as described in Sec 5.2). Finally, we also 

generated a ―combined ranking" using combined criteria of ―price‖ and ―hotel class‖ to examine whether a 

ranking that attempts to introduce diversity artificially can compete with our utility-based one. We did this 

by interlacing the top-5 hotels with ―the lowest price‖ and the top-5 hotels with ―the highest number of 

stars.‖ This resulted in a total of 13 different experiments for each of the six cities (Los Angeles, New 
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Since some hotels have zero reviews, we considered a mixed approach for their ratings. More details are provided in 

Appendix C. 
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Orleans, New York, Orlando, San Francisco, and Salt Lake City) resulting in a total of 78 experiments each 

having 200 participants and involved more than 15,600 user comparisons of different ranking lists.
22

 

We computed the expected utility for each hotel from our parameter estimates, and ranked the hotels 

in each city according to their average utility gain. Then we generated different rankings for the top-10 

hotels in a given city based on various existing benchmark systems used in travel search engines. Then we 

presented our model generated ranking together with an alternative ranking and asked users to compare 

each pair of rankings, i.e., our ranking paired with one of the existing benchmarks. To avoid any potential 

bias, we did not release any information to the users about the criteria for generating those rankings and 

randomized the orders of presentation of the rankings. The studies in our ranking evaluations were blind, 

pair-wise, tests, in which the two rankings were presented side by side, and the user had to pick one of 

them, without having any further information beyond the list of the hotels in each. 

A large majority of customers preferred our ranking, when listed in a blind setting, side-by-side with 

the other competing baseline techniques (p = 0.05, sign test). Moreover, our ranking based on the hybrid 

model with UGC variables was significantly preferred over the one without UGC variables, and over the 

one generated based on the BLP model. Table C in Appendix C shows how often users preferred our own 

ranking scheme when presented side-by-side with an alternative. Notice that in all 78 experiments, we 

observe a statistically significant difference for our ranking (p = 0.05, sign test) and that each test was 

conducted using 200 participants. The overall set of results (in none of the 78 experiments our ranking was 

deemed worse), is a strong indication that our ranking strategy is preferable to the existing baselines. 

As part of this study, we also asked consumers why they chose a particular ranking. This was done to 

better understand how users interpret the utility-based ranking. The majority of users indicated that our 

utility-based ranking promoted the idea that price was not the main factor in rating the quality of hotels. 

Instead, a good ranking recommendation is one that could satisfy customers' multidimensional preferences 

for hotels. Moreover, users strongly preferred the diversity of the retrieved results, given that the list 

consisted of a mix of hotels cutting across several price and quality ranges. In contrast, the other ranking 

approaches tended to list hotel of only one type (e.g., very expensive for ―star ratings,‖ or mainly 3-star 

hotels for ―most booked‖). Notice that even the ranking baseline with the combined criteria showed the 

similar trend. This further indicates that customers prefer a list of hotels that each specializes in a variety of 

characteristics, rather than a variety of hotels that each specializes in only a few characteristics.  

Of course, diversity of results is well-known to be a factor of user satisfaction in web search 

(Agichtein 2006). While we could potentially try to imitate solutions from web search and introduce 

diversity in the results in an exogenous manner, we observe that the approach based on ―consumer utility‖ 
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We also tried interlacing rankings with different criteria, such as ―the highest price‖ and the ―lowest number of 

stars,‖ or ―the lowest price‖ and the ―lowest number of stars,‖ or ―the highest price‖ and the ―highest number of 

stars.‖The results are similar. This suggests that customers prefer a list of hotels that  specialize in a variety of 

characteristics, rather than a variety of hotels that each specialize in only one characteristic.   
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theory introduces diversity naturally in the results. This result seems intuitive: if a specific segment of the 

market systematically appears to be underpriced, hence introducing a non-diverse set of results, then 

market forces would modify the prices for the whole segment accordingly. Thus, these results dovetail well 

with our empirical estimation, which suggests that our utility-based ranking model can capture consumers' 

true purchase motivations. 

Moreover, our user study indicates that a star-rating system would not come close to achieving the 

same goal. Apparently one could interpret a subject’s star-rating as a discrete approximation of her utility 

for a hotel, thus ranking based on star-rating ought to perform as well as ranking based on utility as the 

latter is just a money-metric transformation of the former. However, this is not true. The reason is that the 

matching of consumers to hotels in star rating systems is not random. A consumer only rates the hotel that 

she has already chosen before (i.e., the one that maximizes her perceived utility gain). Consequently, the 

average star rating for each hotel need not reflect the population average utility but rather the satisfaction of 

consumers with their own choices. Thus, rankings based on average star ratings need not reflect a ranking 

based on average utility.  

 

7. Conclusions and Implications 

In this paper, we estimate the economic value of different hotel characteristics, especially the location-

based and service-based characteristics, given the associated local infrastructure. We propose a random 

coefficient hybrid structural model, taking into consideration the two sources of consumer heterogeneity 

introduced by the different travel occasions and different hotel characteristics. Combining this econometric 

model with user-generated content data, using techniques from text mining, image classification, social 

geo-tagging, human annotations and geo-mapping tools, we examine a unique dataset consisting of actual 

transactions for hotels located in the US and infer the economic impact of various hotel characteristics. We 

then incorporate them into a new hotel ranking system based on the derived average utility gain. By doing 

so, we can provide customers with the ―best-value" hotels early on, hence, improving the quality of local 

searches for such hotels.  

On a broader note, the objective of this paper was to illustrate how user-generated content (UGC) on 

the Internet can be mined and incorporated into a demand estimation model. Our inter-disciplinary 

approach can provide insights for using text mining and image classification techniques in economics and 

marketing research. Simultaneously, such research can also highlight the value of using an economic 

context to computer scientists to estimate both the intensity and the polarity of the UGC, especially in 

reviews and blogs. Towards this, we empirically estimated the economic value of different hotel 

characteristics, including both service based and location-based characteristics, from multiple sources of 

UGC.  
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Our research enables us to not only quantify the economic impact of hotel characteristics, but also, by 

reversing the logic of this analysis, enables us to identify the characteristics that most influence demand for 

a particular hotel. After inferring the economic significance of each characteristic, we incorporate them in a 

model of expected utility gain estimation. The end goal is to generate a ranking system that recommends 

hotels providing the best value for money on an average. The key idea is that hotels (or products in general) 

that provide consumers with a higher surplus should be ranked higher in response to consumer queries. We 

conducted blind tests using real users, recruited through AMT to examine how well our ranking system 

performs in comparison with existing alternatives. We find that our ranking performs significantly better 

than several baseline-ranking systems that are being currently used. 

Such research can provide us with critical insights into how humans make choice when exposed to 

multiple ranked lists of choices on the same computer screen. Furthermore, by examining product search 

through the ―economic lens‖ of utilities, we leverage and integrate theories of relevance from information 

retrieval and micro-economic theory. Our inter-disciplinary approach has the potential improve the quality 

of results displayed by any product search engine on the Internet and improve the quality of product 

choices that consumers perform through the Internet. 

Our work has several limitations some of which can serve as fruitful areas for future research. One can 

further break down the textual content of user-generated reviews in order to extract multiple service 

amenity related dimensions of every single hotel and examine the economic impact of each amenity. This 

can be done by conducting auto topic extraction techniques from text mining, combining with sentimental 

analysis to evaluate the subjectivity level of each interesting topic. This will enable us to better recover 

customers’ multi-dimensional heterogeneous tastes towards different product characteristics. In order to 

better understand the antecedents of consumer’s decisions, future work can look not only at transaction data 

but also into their browsing history and learning behavior. Furthermore, by incorporating more individual 

level demographics and context information from the time of purchase, one can extend our techniques to 

infer utilities at a more personalized level. This will enable one to improve the evaluation process by 

comparing our recommendations with the results from the traditional collaborative filtering or content-

based algorithms. Our model also has limited structure with regard to competition, which does not allow us 

to study the impact of entry-exit decisions of hotels in different regions. In our model, the travel category-

level shock is independently and identically distributed across consumers and travel categories. However, 

there could also be correlations in the travel category shocks wherein a consumer combines multiple 

purposes in one trip occasion.
23

 While this our model does not capture this, it is a promising area for future 

work. 
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 We thank an anonymous reviewer for pointing this out. 
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Table 1: Summary of Different Methods for Extracting Hotel Characteristics 

Category Hotel Characteristics Methods 

Transaction Data 
Transaction Price (per room per night) 

Number of Rooms sold (per night) 
Travelocity 

Service-based 
Hotel Class 

Hotel Amenities 
Tripadvisor 

Review-based 

Number of Customer Reviews 

Overall Reviewer Rating 

Disclosure of Reviewer Identity Information  

Travelocity and Tripadvisor 

Subjectivity 
Mean Probability 

Std. Dev. Of Probability 

Text Analysis 

Readability 

Number of Characters 

Number of Syllables 

Number of Spelling Errors 

Average Length of Sentence  

SMOG Index 

(Additional) 

Breakfast 

Hotel Staff 

Bathroom 

Bedroom  

Parking 

Location-based 

Near the Beach 

Near Downtown 

Image Classification,  

Tags from Geonames.org and 

Social Annotations from 

Amazon Mechanical Turk 

External Amenities (Number of restaurants/ 

                                 Shopping destinations) 

Microsoft Virtual Earth Geo-

Mapping Search SDK 

Near Public Transportation Tags from Geonames.org 

Near the Interstate Highway 

Near the Lake/River 

Social Annotations from 

Amazon Mechanical Turk 

City Annual Crime Rate FBI online statistics 
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Table 2: Definitions and Summary Statistics of Variables 

  Variable Definition Mean Std. Dev. Min Max 

PRICE Transaction price per room per night 126.59 79.47 12 978 

CHARACTERS Average number of characters 766.54 167.13 121 2187 

COMPLEXITY Average sentence length 16.41 3.95 2 44. 

SYLLABLES Average number of syllables 245.48 53.77 37 700 

SMOG SMOG index 9.91 .63 3 19.80 

SPELLERR Average number of spelling errors 1.10 .37 0 3.33 

SUB Subjectivity - mean .99 .03 .05 1 

SUBDEV Subjectivity - standard deviation .02 .02 0 .25 

ID Disclosure of reviewer identity .77 .14 0 1 

CLASS Hotel class 3.02 .93 1 5 

CRIME City annual crime rate 195.09 123.11 3 1310 

AMENITYCNT Total number of hotel amenities 16.38 3.21 2 23 

EXTAMENITY Number of external amenities within 1 

mile, i.e., restaurants or shops 

4.95 7.37 0 27 

BEACH Beachfront within 0.6 miles .24 .43 0 1 

LAKE Lake or river within 0.6 miles .23 .42 0 1 

TRANS Public transportation within 0.6 miles .11 .31 0 1 

HIGHWAY Highway exits within 0.6 miles .68 .47 0 1 

DOWNTOWN Downtown area within 0.6 miles .69 .46 0 1 

TA_REVIEWCNT Total number of reviews (TripAdvisor) 127.81 164.22 0 999 

TA_REVIEWCNT^2 Square of TA_REVIEWCNT 28573.16     70943.83 0 998001 

TA_RATING Overall reviewer rating (TripAdvisor) 3.49 .59 1 5 

TL_REVIEWCNT Total number of reviews (Travelocity) 25.26 29.77 0 202 

TL_REVIEWCNT^2 Square of TL_REVIEWCNT 731.40 1794.81 0 40804 

TL_RATING Overall reviewer rating (Travelocity) 3.87 .74 1 5 

Number of Observations:    8099               

Time Period:    1/11/2008-1/31/2009 

 



   

Table 3:  Main Estimation Results 

Variable Coef. 

(Std. Err)
I 

Coef. 

(Std. Err)
II

 

Coef. 

(Std. Err)
III 

Coef. 

(Std. Err)
A1 

Coef. 

(Std. Err)
A2 

Coef. 

(Std. Err)
A3 

Coef. 

 (Std. Err)
A4

 

Coef. 

(Std. Err)
T
 

Coef. 

(Std. Err)
N
 

Means 

Price
(L)

 -.131
***

 (.025) -.130
***

 (.025) -.127
***

 (.026) -.139
***

 (.036) -.145
***

 (.038) -.143
***

 (.021) -.133
***

 (.025) -.131
***

 (.025) -.130
***

 (.025) 

CHARACTERS
(L)

 .009
***

 (.002) .008
***

 (.002) .009
***

 (.002) .008
***

 (.002) .006
*
    (.003) .010

***
 (.003) .009

***
 (.002) .008

***
 (.002) .009

***
 (.002) 

COMPLEXITY -.005
*    

 (.002) -.006
*    

 (.003) -.007
*    

 (.003) -.005
*    

 (.002) -.009
***

(.002) -.005
*    

 (.002) -.005
*    

 (.002) -.006
**  

 (.002) -.005
*    

 (.002) 

SYLLABLES
(L)

 -.024
***

 (.006) -.025
***

 (.006) -.032
***

 (.006) -.024
***

(.006) -.026
** 

  (.009) -.026
***

 (.002) -.027
***

 (.005) -.024
***

 (.006) -.023
***

(.006) 

SMOG .063
*    

 (.024) .060
*    

 (.028) .058
*    

 (.026) .061
*    

 (.025) .068
*     

 (.028) .074
***

 (.008) .066
*     

 (.027) .062
*     

 (.026) .062
*    

 (.024) 

SPELLERR
(L)

 -.121
*** 

(.039) -.120
*** 

 (.036) -.128
*** 

 (.039) -.115
***

 (.038) -.110
*     

 (.059) -.096
*** 

(.033) -.111
**   

(.047) -.125
***  

(.037) -.122
*** 

(.038) 

SUB -.223
***

 (.071) -.219
**  

 (.072) -.212
**  

 (.072) -.227
***

 (.038) -.240
***

 (.022) -.230
***

 (.037) -.216
***  

(.021) -.228
*     

(.072) -.221
***

 (.072) 

SUBDEV -.283
***  

(.078) -.282
***  

(.079) -.280
***  

(.079) -.281
**   

(.094) -.293
***  

(.036) -.257
*** 

(.032) -.287
*** 

(.058) -.282
*** 

(.072) -.282
*** 

(.078) 

ID .121
***

 (.026) .128
***

  (.026) .130
*** 

 (.026) .127
***

 (.027) .156
***

 (.042) .167
***

 (.044) .144
***

 (.035) .127
***

 (.026) .124
***

 (.026) 

CLASS .045
***

 (.009) .042
***

 (.009) .039
***

 (.008) .046
**  

 (.017) .047
***

 (.002) .058
***

 (.017) .053
***

 (.012) .051
***

 (.010) .043
***

 (.008) 

CRIME
(L)

 -.028
*    

 (.014) -.026
* 
   (.014) -.030

*    
 (.015) -.028

*    
 (.015) -.035

**  
 (.012) -.038

**  
 (.014) -.032

**  
 (.011) -.029

*    
 (.014) -.027

*    
 (.014) 

AMENITYCNT
(L)

 .005
*    

 (.002) .004
*    

 (.002) .004
*  

  (.002) .005
*    

 (.002) .007
*    

 (.004) .010
**  

 (.004) .007
***

 (.001) .005
*    

 (.002) .005
*    

 (.002) 

EXTAMENITY
(L)

 .006
***

 (.002) .005
** 

  (.002) .007
***

 (.002) .005
** 

 (.002) .010
***

 (.002) .007
***

 (.002) .007
***

 (.002) .006
***

 (.002) .006
***

 (.002) 

BEACH .124
***

 (.031) .123
***

 (.031) .125
***

 (.031) .122
*
    (.062) .138

***
 (.037) .141

***
 (.043) .142

***
 (.022) -.017

***
 (.004) .123

***
 (.030) 

LAKE -.089
***

 (.026) -.091
***

 (.026) -.087
***

 (.026) -.090
**

  (.035) -.092
*
    (.048) -.065     (.044) -.087

*
    (.045) -.092     (.072) -.088

***
 (.026) 

TRANS .159
***

 (.035) .159
***

 (.036) .164
***

 (.036) .159
***

 (.036) .177
***

 (.055) .167
***

 (.050) .169
***

 (.043) .170
***

 (.036) .159
***

 (.035) 

HIGHWAY .087
***

 (.024) .088
***

 (.025) .091
***

 (.025) .081
***

 (.024) .089
***

 (.026) .094
***

 (.024) .069
***

 (.012) .094
***

 (.024) .087
***

 (.023) 

DOWNTOWN .071
**

  (.025) .079
**

  (.026) .075
**

  (.026) .071
*
    (.032) .070

**
  (.024) .084

**
  (.033) .078

***
 (.021) .071

*  
  (.026) .072

**
  (.025) 

TA_RATING .010
*    

 (.004) .011
*    

 (.004) .014
*    

 (.006) .010
***

(.002) .017
***

(.005) .016
***

 (.005) .012
***

 (.003) .010
*    

 (.005) .010
*    

 (.004) 

TL_RATING .017
*
    (.006) .018

*      
(.006) .018

*
    (.006) .019

***
(.001) .019

***
(.006) .019

***
(.005) .015

***
(.002) .015

†
    (.009) .018

*
    (.006) 

TA_REVIEWCNT
(L)

 .142
**  

 (.049) .146
**  

 (.047) .142
**  

 (.044) .145
†    

 (.086) .149
*** 

(.029) .168
***

 (.008) .155
*** 

(.028) .161
***

 (.049) .142
**  

 (.049) 

TA_REVIEWCNT^2
(L)

 -.034
***

 (.006) -.035
***

 (.008) -.032
***

 (.006) -.034
* 
   (.015) -.032

* 
   (.016) -.044

***
 (.009) -.026

*** 
(.003) -.037

***
 (.006) -.035

***
 (.006) 

TL_REVIEWCNT
(L)

 .010
**  

 (.003) .012
**

  (.004) .015
***

 (.003) .012
***

(.003) .009
*    

 (.004) .014
***

 (.004) .010
**

  (.003) .015
**  

 (.006) .010
**  

 (.003) 

TL_REVIEWCNT^2
(L)

 -.013
** 

  (.005) -.012
** 

  (.005) -.014
** 

  (.005) -.017
*   

  (.008) -.018
***

(.005) -.015
*   

  (.009) -.018
***

(.005) -.012
** 

 (.005) -.014
** 

 (.005) 

Constant .217
 
    (.254) .232     (.246) .211     (.249) .164

 
    (.559) .771

***
(.172) .112

 
    (.117) .335

 
    (.301) .250

 
    (.254) .255

 
    (.241) 

Brand Control 
24

 Yes Yes Yes Yes Yes Yes Yes Yes Yes 

                                                           
24

 We use dummy variables to control for 9 major hotel brands: Accor, Best Western, Cendant, Choice, Hilton, Hyatt, Intercontinental, Marriott, and Starwood. 

The detailed information on these brands is provided in Table 5. 
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Instruments Price Price Price 
Lag Price with  

Google Trend 

Cost – Employee 

Wage 

Cost – Region  

Dummies 

BLP Style  

Instruments 
Price Price 

Distribution of 

idiosyncratic error 

term 

Type I  

Extreme Value 

Type I  

Extreme Value 

Type I  

Extreme Value 

Type I  

Extreme Value 

Type I  

Extreme Value 

Type I  

Extreme Value 

Type I  

Extreme Value 

Type I  

Extreme Value 

Normal  

Distribution 

HIGH TEMP ---- ---- ---- ---- ---- ---- ---- .076     (.059) ---- 

HIGH TEMP * LAKE ---- ---- ---- ---- ---- ---- ---- .014
**

  (.006) ---- 

HIGH TEMP * BEACH ---- ---- ---- ---- ---- ---- ---- .151
***

 (.038) ---- 

Standard Deviations 

 .0000011 .0000014 .0000014 .0000022 .0000019 .0000021 .0000018 .0000024 .0000012 

 .0011 .0010 .0018 .0020 .0020 .0015 .0017 .0017 .0011 

GMM Obj Value 7.362e-18 3.883e-17 7.677e-17 1.189e-17 1.822e-17 1.562e-17 7.012e-18 2.211e-17 7.187e-18 

***   Significant at a 0.1% level.      

**  Significant at a 1% level.      

*  Significant at a 5% level.      

†  Significant at a 10% level.      

I   Based on the main dataset (at least 1 review from either TA or TL).      

II  Based on the main dataset with review count >= 5.      

III   Based on the main dataset with review count >= 10.      

A1  Alternative Instruments 1 – Lag Price with Google Trend      

A2  Alternative Instruments 2 – Employee Wage      

A3  Alternative Instruments 3 – Region Dummy variables (Northeast, South, Midwest, Southwest, West)    

A4   Alternative Instruments 4 – BLP Style Instruments (Average characteristics of the same-star hotels in other markets)     

T  Based on dataset I, considering interactions of temperatures with ―lake/river‖ and with ―beach.‖    

N  Normal distribution of the idiosyncratic error term.    

(L)  Logarithm of the variable.    

 

 

 

 

I

v



   

Table 4:   Extended Model (I) –With Additional Text Features 

Variable Coef. (Std. Err)
I 

Coef. (Std. Err)
II
 Coef. (Std. Err)

III 

Means 

Price(L) -.133
***

 (.025) -.131
***

 (.026) -.130
***

 (.026) 

CHARACTERS(L) .008
***

 (.002) .009
***

 (.002) .009
***

 (.002) 

COMPLEXITY -.005
*    

 (.002) -.006
*    

 (.003) -.006
*    

 (.003) 

SYLLABLES(L) -.026
***

 (.006) -.029
***

 (.006) -.027
***

 (.006) 

SMOG .063
*    

 (.026) .064
*    

 (.028) .055
†    

 (.028) 

SPELLERR(L) -.124
*** 

 (.037) -.124
*** 

 (.040) -.123
***

 (.040) 

SUB -.225
***

 (.071) -.225
***

 (.070) -.224
***

 (.070) 

SUBDEV -.261
***  

(.079) -.259
***  

(.079) -.263
***  

(.079) 

ID .108
***

 (.025) .105
***

 (.026) .106
***

 (.026) 

CLASS .038
***

 (.010) .037
***

 (.010) .037
***

 (.010) 

CRIME -.035
*    

 (.014) -.031
*    

 (.014) -.031
*    

 (.015) 

EXTAMENITY(L) .006
***

 (.002) .007
***

 (.002) .007
***

 (.002) 

BEACH .134
***

 (.031) .136
***

 (.031) .139
***

 (.032) 

LAKE -.076
**  

 (.026) -.075
**  

 (.026) -.071
**  

 (.026) 

TRANS .167
***

 (.035) .168
***

 (.036) .168
***

 (.036) 

HIGHWAY .087
***

 (.025) .085
***

 (.025) .088
***

 (.025) 

DOWNTOWN .072
**

  (.025) .076
**

  (.026) .075
**

  (.025) 

TA_RATING .015
†    

 (.008) .014 
    

 (.008) .014 
    

 (.008) 

TL_RATING .017
†    

 (.008) .011
*    

 (.005) .010
†    

 (.005) 

TA_REVIEWCNT(L) .137
***

 (.014) .136
***

 (.015) .140
***

 (.015) 

TA_REVIEWCNT^2(L) -.034
***

 (.006) -.034
***

 (.008) -.032
***

 (.006) 

TL_REVIEWCNT(L) .015
***

 (.003) .015
***

 (.003) .016
***

 (.003) 

TL_REVIEWCNT^2(L) -.012
** 

  (.005) -.013
** 

  (.005) -.015
** 

  (.005) 

BREAKFAST .139
** 

  (.049) .137
** 

  (.053) .145
** 

  (.054) 

STAFF .078
* 
   (.049) .076

* 
   (.049) .077

* 
   (.049) 

BATHROOM .016
 
    (.042) .012

 
    (.043) .010

 
    (.043) 

BEDROOM -.026
†
    (.018) -.028

†
    (.017) -.029

†
    (.018) 

PARKING .021
* 
   (.009) .021

* 
   (.009) .021

* 
   (.009) 

Constant . 264  
 
  (.238) .215     (.234) .258     (.249) 

Brand Control Yes Yes Yes 

Standard Deviations 

 .0000015 .0000018 .0000021 

 .0022 .0012 .0010 

GMM Obj Value 5.763e-17 4. 688e-17 2.212e-17 

***  P<= 0.001     ** P<=0.01 * P<= 0.05 †  P<=0. 1 
I Based on the main dataset (at least 1 review from either TA or TL). 

II Based on main dataset with reviews >=5. III Based on main dataset with reviews >=10. 

(L) Logarithm of the variable.   

I
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Table 5:   Extended Model (II) –With Additional Interaction Effects 
25

 

 

 
5a)   Mean coefficients from the extended model. 

Mean Coefficients 

Price(L) -.138
*** 

 (.027)  BEACH .127
*** 

 (.040) 

CHARACTERS(L) .010
*** 

 (.003)  LAKE -.101
***

 (.027) 

COMPLEXITY -.005
*
    (.002)  TRANS .163

***
 (.036) 

SYLLABLES(L) -.025
*** 

 (.007)  HIGHWAY .098
***

 (.024) 

SMOG .067
* 
   (.024)  DOWNTOWN .073

**
  (.028) 

SPELLERR(L) -.122
*** 

 (.038)  TA_RATING .015
***  

(.004) 

SUB -.222
**  

 (.073)  TL_RATING .019
* 
   (.008) 

SUBDEV -.285
***

 (.082)  TA_REVIEWCNT(L) .134
**

   (.045) 

ID .108
***

 (.028)  TA_REVIEWCNT^2(L) -.030
***

 (.006) 

CLASS .035
**  

 (.015)  TL_REVIEWCNT(L) .011
***  

(.003) 

CRIME -.030
*
    (.018)  TL_REVIEWCNT^2(L) -.012

** 
  (.005) 

AMENITYCNT(L) .006
*    

 (.003)  Constant .235
 
    (.289) 

EXTAMENITY(L) .006
***

 (.002)    

 

 

5b)   Interaction effects between Travel Purpose and Price. 

 PRICE(L) 

FAMILY -.017
*    

 (.007) 

BUSINESS .023
***

 (.007) 

ROMANCE -.003
*    

 (.001) 

TOURIST -.020
***

 (.006) 

KIDS .016
***

 (.003) 

SENIORS .115  
   
 (.019) 

PETS .018     (.024) 

DISABILITY -.006     (.022) 

                                                           
25

  Note:     ***  P<= 0.001,    ** P<=0.01,    * P<= 0.05,     †  P<=0. 1. 

                   (L) Logarithm of the variable. 



   

 

5c)   Interaction effects between Travel Purpose and Hotel Characteristics.  

 CLASS
 

HIGHWAY DOWNTOWN TRANSPORT

ATIONS 

BEACH LAKE EXTERNAL 

AMENITIES(L) 

FAMILY .033
***

 (.009) -.027
*
    (.048) .122

***
 (.045) -.108

***
 (.014) -.084     (.071) -.205   (.155) -.085    (.115) 

BUSINESS .011
*    

 (.008) .107
*** 

 (.033) -.028
 
    (.068) .138

***
 (.066) -.075

*** 
(.014) .007   (.083) .004

** 
(.002) 

ROMANCE .092
***

 (.003) -.029
**

   (.011) -.014     (.010) -.032     (.031) .037
**

   (.019) -.040
**

(.019) -.003    (.009) 

TOURIST -.028
**  

 (.011) .023
***

 (.004) -.086
**  

 (.033) -.073
 
    (.059) -.225

***
 (.058) -.145   (.048) -.005    (.003) 

KIDS .029
***

 (.005) .051
***

 (.014) .090
***

(.015) .032     (.035) .167
***

 (.027) -.022   (.025) .005
***

(.001) 

SENIORS .045  
   
 (.043) .124  

    
 (.104) -.010  

   
 (.115) .196  

   
 (.156) .011  

   
 (.015) -.079 

  
 (.244) .011  

   
 (.010) 

PETS -.095     (.073) .211     (.122) .156     (.154) -.097
***

(.017) -.004     (.009) .019   (.243) .061     (.043) 

DISABILITY -.057     (.061) -.003     (.131) -.064     (.116) -.081     (.117) .089     (.110) -.367    (245) -.015    (.016) 

 

 

5d)   Interaction effects between Travel Purpose and Hotel brands: 

 ACCOR
 

BESTWESTERN CENDANT CHOICE HILTON 

FAMILY -.031    (.041) .022
**

  (.010) .031
**

   (.012) .038     (.052) .035    
 
(.047) 

BUSINESS .029    (.056) -.024     (.038) .077
***

 (.025) -.037     (.074) .026     (.021) 

ROMANCE -.026    (.074) -.019     (.015) .022
**

   (.009) -.060
***

(.018) .094     (.080) 

TOURIST .037    (.035) .087     (.074) -.019     (.017) -.039     (.034) .042
*
    (.022) 

KIDS .038
*
   (.017) .037

*
    (.018) -.013     (.009) .071

***
(.012) .068

***
(.006) 

SENIORS .011    (.008) .021
**

  (.008) -.002     (.003) .026
 
    (.028) .035     (.037) 

PETS .021    (.046) -.038     (.043) .025     (.042) .050     (.074) .049     (.073) 

DISABILITY -.034    (.078) .037     (.032) .022     (.033) -.042     (.061) .051     (.076) 
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 HYATT
 

INTERCONTINENTAL MARRIOTT STARWOOD OTHERS 

FAMILY .039
*** 

(.009) .008     (.006) .022     (.026) .026
**

  (.011) -.029
†
    (.016) 

BUSINESS -.019
***

 (.002) .011
* 
   (.005) -.025     (.028) .021     (.024) .020     (.017) 

ROMANCE -.017     (.013) .010     (.009) -.082
***

(.009) -.025
*
    (.012) .034

***
(.005) 

TOURIST -.026     (.042) .030
***

(.003) .064     (.043) -.014     (.023) -.018
†
    (.011) 

KIDS .022
***

 (.005) .011     (.010) .024
*
    (.012) .056

*
    (.027) -.032

***
(.005) 

SENIORS -.006     (.013) .012     (.031) .034     (.052) -.011     (.021) -.005     (.021) 

PETS .024     (.043) -.020     (.074) -.024     (.030) -.012     (.012) -.005     (.033) 

DISABILITY .062     (.098) .032     (.031) -.068     (.073) -.057     (.083) .039     (.040) 

 

Note: All hotel brands considered in our study represent major hotel groups that may contain several sub-brands as listed below. 

Accor:                    Sofitel, Pullman, MGallery, Novotel, Mercure, and Suitehotel. 

Best Western:        Best Western. 

Cendant:                Howard Johnson, Days Inn, Ramada, Travelodge, Knights Inn, Wingate Inn, Super 8, and Amerihost Inn. 

Choice:                  Comfort Inn, Comfort Suites, Cambria Suites, Ascend Collection, Quality Inn, Clarion, Sleep Inn, Econo Loddge, Rodeway Inn, Suburban, and  

                               MainStay Suites. 

Hilton:                   Conrad, Hilton, Waldorf Astoria, Double Tree, Embassy Suites, Hilton Garden Inn, Hampton, Homewood suites, and Hilton Grand Vacations.  

Hyatt:                    Hyatt Regency, Grand Hyatt, Park Hyatt, Hyatt Vacation Club, Hyatt Resort, Hyatt Summerfield Suites, Hyatt Place, and ANDAZ. 

InterContinental:  InterContinental, Crowne Plaza, Holiday Inn, Holiday Inn Express, Candlewood Suites, Hotel INDIGO and Staybridge Suites. 

Marriott:                Marriott, JW Marriott, Renaissance, EDITION, Autograph Collection, Courtyard, Residence Inn, Fairfield Inn, TownePlace Suite, SpringHill  

                              Suites, Ritz-Carlton, Marriott ExecuStay, Marriott Vacation Club, Marriott Executive Apartments, and Grand Residences.  

Starwood:              Sheraton, St.Regis, The Luxury Collection, Westin, Four Points, W Hotel, Aloft, Element, and Le Meridien. 

 

 

 



   

Appendix A 

Table A1:   Robustness Test (I) –Using Alternative Sample Splits 

Variable Coef. (Std. Err)
IV 

Coef. (Std. Err)
V
 Coef. (Std. Err)

VI 

Means 

Price(L) -.137
*** 

 (.037) -.133
***

 (.025) -.135
***

 (.025) 

CHARACTERS(L) .010
*** 

 (.003) .009
***

 (.002) .008
***

 (.002) 

COMPLEXITY -.005
*
    (.002) -.006

*    
 (.002) -.006

*    
 (.002) 

SYLLABLES(L) -.030
*** 

 (.009) -.026
***

 (.006) -.027
***

 (.006) 

SMOG .076
† 
    (.042) .067

*    
 (.027) .067

*    
 (.027) 

SPELLERR(L) -.122
*** 

 (.037) -.117
***  

(.037) -.118
*** 

 (.037) 

SUB -.221
**  

 (.073) -.216
**  

 (.071) -.219
**  

 (.070) 

SUBDEV -.265
**  

 (.105) -.269
***  

(.087) -.274
***  

(.079) 

ID .078
      

 (.045) .095
 
    (.075) .099     (.085) 

CLASS .035
**  

 (.014) .040
***

 (.009) .039
***

 (.009) 

CRIME(L) -.032
*
    (.019) -.033

*    
 (.014) -.034

**  
 (.014) 

AMENITYCNT(L) .006
*    

 (.003) .003 
    

 (.002) .003  
  
  (.002) 

EXTAMENITY(L) .006
***

 (.002) .006
***

 (.002) .006
***

 (.002) 

BEACH .126
*** 

 (.041) .130
***

 (.031) .132
***

 (.031) 

LAKE -.098
***

 (.026) -.075
**  

 (.026) -.087
**  

 (.026) 

TRANS .168
***

 (.036) .171
***

 (.035) .164
***

 (.035) 

HIGHWAY .088
***

 (.024) .087
***

 (.025) .087
***

 (.024) 

DOWNTOWN .068
* 
   (.035) .082

**
  (.025) .078

**
  (.025) 

TA_RATING .012
***

 (.002) .014
†    

 (.008) .014
†    

 (.008) 

TL_RATING .011
† 
   (.005) .011

      
 (.007) .012

†
    (.006) 

TA_REVIEWCNT(L) .131
***

 (.025) .132
***

 (.014) .132
***

 (.014) 

TA_REVIEWCNT^2(L) -.037
***

 (.006) -.036
***

 (.006) -.037
***

 (.006) 

TL_REVIEWCNT(L) .013
**  

 (.005) .014
**

  (.005) .014
**  

 (.005) 

TL_REVIEWCNT^2(L) -.013
** 

  (.005) -.012
** 

  (.005) -.013
** 

  (.005) 

Constant .135
 
    (.258) .340     (.408) .145     (.257) 

Brand Control Yes Yes Yes 

Standard Deviations 

 .0000020 .0000017 .0000015 

 .0016 .0012 .0011 

GMM Obj Value 2.204e-17 5.453e-17 2.237e-17 

***  P<= 0.001     ** P<=0.01 * P<= 0.05 †  P<=0. 1 

IV.  Filtered dataset (>= 1 review from TA). V. Filtered dataset (>= 1 review from TL). 

VI.    Filtered dataset (at least 1 review from both TA and TL).  
(L)     Logarithm of the variable.  

 

I

v



   

Table A2:     Robustness Test (II) - Using BLP Model 

Variable Coef. (Std. Err)
I 

Coef. (Std. Err)
II

 Coef. (Std. Err)
III 

Coef. (Std. Err)
IV

 Coef. (Std. Err)
V 

Coef. (Std. Err)
VI

 Coef. (Std. Err)
 R

 

Means 

Price
(L)

 -.251
** 

 (.091) -.247
** 

 (.091) -.242
** 

 (.091) -.233
** 

 (.089) -.227
** 

 (.089) -.225
** 

 (.089) -.249
** 

 (.089) 

CHARACTERS
(L)

 .034
***

(.005) .040
***

(.005) .036
***

(.005) .039
***

(.006) .032
***

(.006) .034
***

(.006) .035
***

(.005) 

COMPLEXITY -.012
* 
   (.004) -.014

* 
   (.004) -.014

* 
   (.004) -.018

***
(.004) -.020

***
(.004) -.025

***
(.004) -.012

* 
   (.004) 

SYLLABLES
(L)

 -.121
***

(.021) -.123
***

(.021) -.127
***

(.023) -.126
***

(.022) -.132
***

(.025) -.135
***

(.025) -.123
***

(.023) 

SMOG .155
†   

 (.090) .163
†   

 (.089) .169
†   

 (.091) .157
†   

 (.096) .177
†   

 (.096) .181
*    

 (.095) .160
†   

 (.090) 

SPELLERR
(L)

 -.089
*   

 (.037) -.091
*   

 (.037) -.094
** 

 (.037) -.103
** 

 (.040) -.111
**

 (.041) -.119
**  

 (.041) -.089
*   

 (.037) 

SUB -.542
* 
   (.261) -.545

* 
   (.261) -.551

* 
   (.261) -.543

† 
   (.273) -.537

†
   (.271) -.551

* 
   (.264) -.544

* 
   (.261) 

SUBDEV -.611
*    

 (.294) -.612
*    

 (.293) -.614
*    

 (.294) -.601
*    

 (.290) -.598
*    

 (.290) -.604
*    

 (.291) -.611
*    

 (.294) 

ID .334
***

(.094) .327
***

(.093) .326
***

(.094) .335
***

(.095) .336
***

(.094) .338
***

(.095) .331
***

(.093) 

CLASS .055
***

(.016) .058
***

(.016) .063
*** 

(.017) .068
***

(.017) .068
***

(.017) .068
***

(.017) .052
***

(.016) 

CRIME -.091
†   

 (.053) -.091
†   

 (.053) -.095
†   

 (.053) -.066  
   
 (.052) -.071  

   
 (.053) -.089

†    
 (.052) -.092

†   
 (.053) 

AMENITYCNT
(L)

 .037
** 

 (.017) .034
**  

(.017) .035
** 

(.017) .035
** 

 (.017) .037
** 

 (.017) .035
**  

(.017) .041
**  

(.018) 

EXTAMENITY
(L)

 .045
***

(.006) .052
***

(.007) .052
***

(.006) .051
***

(.006) .049
***

(.006) .051
***

(.006) .049
***

(.007) 

BEACH .460
***

(.117) .462
***

(.116) .457
***

(.116) .461
***

(.116) .466
***

(.117) .472
***

(.117) .460
***

(.117) 

LAKE -.195
* 
   (.095) -.193

* 
   (.095) -.204

* 
   (.096) -.210

* 
   (.096) -.194

* 
   (.095) -.198

* 
   (.096) -.196

* 
   (.095) 

TRANS .431
***

(.126) .427
***

(.125) .438
***

(.122) .442
***

(.131) .436
***

(.130) .434
***

(.130) .432
***

(.126) 

HIGHWAY .464
***

(.091) .470
***

(.091) .478
***

(.092) .479
***

(.092) .484
***

(.092) .475
***

(.092) .467
***

(.091) 

DOWNTOWN .221
** 

 (.094) .226
** 

 (.094) .231
** 

 (.094) .238
** 

 (.094) .235
** 

 (.093) .242
** 

 (.093) .223
** 

 (.094) 

TA_RATING .117
***

(.032) .112
***

(.033) .115
***

(.032) .110
***

(.032) .121
***

(.035) .117
***

(.032) .116
***

(.033) 

TL_RATING .050
*
 
  
 (.023) .055

*
 
  
 (.025) .056

* 
 
  
 (.026) .066

*
 
  
 (.026) .087

**  
 (.029) .075

*
 
  
 (.028) .051

*
 
  
 (.023) 

TA_REVIEWCNT
(L)

 .467
***

(.114) .462
***

(.112) .465
***

(.112) .453
***

(.108) .457
***

(.109) .460
***

(.111) .468
***

(.112) 

TA_REVIEWCNT^2
(L)

 -.041
***

(.007) -.044
***

(.007) -.044
***

(.007) -.043
***

(.006) -.045
***

(.006) -.039
***

(.006) -.041
***

(.007) 

TL_REVIEWCNT
(L)

 .132
***

(.022) .139
***

(.023) .136
***

(.022) .129
***

(.024) .133
***

(.022) .141
***

(.025) .133
***

(.023) 

TL_REVIEWCNT^2
(L)

 -.032
***

(.006) -.034
*** 

.006) -.035
***

(.005) -.042
***

(.006) -.048
***

(.007) -.036
***

(.005) -.033
***

(.006) 

Constant .737
    

  (.821) .728
   
  (.808) .988  

 
  (.879) 1.001

    
  (.790) .853

   
   (.729) 1.017

    
  (.981) .702

    
  (.817) 

Brand Control Yes Yes Yes Yes Yes Yes Yes 
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Travel Category with 

Homogeneous Coef. 
26

 
Yes Yes Yes Yes Yes Yes No 

Travel Category with  

Random Coef. 
27

 
No No No No No No Yes 

Standard Deviations 

 .523 .520 .512 .501 .508 .515 .527 

 .022 .021 .017 .011 .026 .019 .028 

GMM Obj Value 8.783e-18 8.639e-18 9.107e-18 2.224e-17 2.821e-17 7.857e-18 8.288e-18 

***   Significant at a 0.1% level.    

**  Significant at a 1% level.    

*  Significant at a 5% level.    

†  Significant at a 10% level.    

I   Based on the main dataset (at least 1 review from either TA or TL).    

II  Based on the main dataset with review count >= 5.    

III   Based on the main dataset with review count >= 10.    

IV  Based on the filtered dataset (at least 1 review from TA).    

V  Based on the filtered dataset (at least 1 review from TL).    

VI  Based on the filtered dataset (at least 1 review from both TA and TL).    

R  Based on dataset I, with random coefficients on travel category dummies.    

(L)  Logarithm of the variable.    

 

 

  

                                                           
26

 We consider dummy variables with homogeneous coefficients to control for the 8 corresponding travel categories. 
27

 We consider dummy variables with random coefficients to control for the 8 corresponding travel categories. 

I

v



   

Appendix B      

In-sample and Out-of-sample Model Comparison Results 

 

Table B1: In-sample Basic Model Validation Results 

 

Hybrid  

Model
 

BLP without  

Random  

Coef. on Travel 

Categories 

BLP with  

Random  

Coef. on Travel  

Categories 

PCM 

Nested Logit 

(Random 

UtilityMaximiza

tion)  

RMSE 0.0442 0.0612 0.0560 0.1001 0.1297 

MSE 0.0020 0.0037 0.0031 0.0100 0.0168 

MAD 0.0176 0.0205 0.0198 0.0339 0.0416 

10-fold Cross-Validation Estimation Sample Size:    5669 

 

 

 

Table B2:   In-sample Extended Model Validation Results 

 Hybrid Model With  

Interaction Effects 

BLP With  

Interaction Effects 

RMSE 0.0410 0.0502 

MSE 0.0017 0.0025 

MAD 0.0152 0.0187 

10-fold Cross-Validation Estimation Sample Size:    5669 

 

 

 

Table B3:  In-sample Model Validation Results by Excluding Certain Features 

 Hybrid Model  

Without UGC  

Variables 

Hybrid Model  

Without Location 

Variables 

Hybrid Model  

Without Service  

Variables 

RMSE 0.0743 0.1202 0.1167  

MSE 0.0055 0.0144 0.0136  

MAD 0.0359 0.0405 0.0396  

10-fold Cross-Validation Estimation Sample Size:    5669 
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Table B4:   Out-of-sample Basic Model Validation Results 

 

Hybrid  

Model
 

BLP without  

Random  

Coef. on Travel 

Categories 

BLP with  

Random  

Coef. on Travel  

Categories 

PCM 

Nested Logit 

(Random 

UtilityMaximiza

tion)  

RMSE 0.1034 0.1166 0.1131 0.2204 0.2700 

MSE 0.0107 0.0136 0.0128 0.0486 0.0729 

MAD 0.0334 0.0419 0.0457 0.0628 0.1586 

10-fold 

Cross-Validation 

  Estimation Sample Size:    5669 

Holdout Sample Size:        2430 

 

 

 

Table B5:  Out-of-sample Extended Model Validation Results 

 Hybrid Model With  

Interaction Effects 

BLP With  

Interaction Effects 

RMSE 0.0995 0.1068 

MSE 0.0099 0.0114 

MAD 0.0302 0.0361 

10-fold 

Cross-Validation 

  Estimation Sample Size:    5669 

Holdout Sample Size:        2430 

 

 

 

Table B6:  Out-of-sample Model Validation Results by Excluding Certain Features 

 Hybrid Model  

Without UGC  

Variables 

Hybrid Model  

Without Location 

Variables 

Hybrid Model  

Without Service  

Variables 

RMSE 0.1501 0.2289 0.2184 

MSE 0.0225 0.0524 0.0477 

MAD 0.1098 0.1381 0.1265 

10-fold 

Cross-Validation 

  Estimation Sample Size:    5669 

Holdout Sample Size:        2430 

 



   

Appendix C 

 

Table C:   Ranking User Study Results  

  

 

Rating 

(TA+) 

Rating 

(TL++) 

Rating 

(Mixed
*
) 

Most 

Booked 

Price 

Low 

to 

high 

Price 

High 

to 

Low 

Hotel 

Class 

# of 

Reviews 

# of 

Rooms 

# of 

Amenities 

Combine 

Price  

With  

Rating 

No 

UGC  

 

BLP# 

New York 77% 63% 70% 61% 57% 71% 88% 76% 89% 60% 80% 88% 65% 

Los Angeles 72% 58% 57% 71% 59% 84% 89% 87% 86% 69% 76% 84% 67% 

San Francisco 79% 57% 64% 65% 62% 70% 82% 68% 79% 79% 72% 82% 70% 

Orlando 83% 81% 79% 62% 63% 73% 79% 73% 79% 61% 79% 79% 61% 

New Orleans 61% 69% 71% 60% 78% 69% 80% 72% 91% 58% 85% 74% 58% 

Salt Lake 

City 

61% 80% 77% 69% 66% 79% 83% 73% 70% 76% 79% 83% 62% 

Significance 

Level 
  

P=0.05 

≥ 56% 

P=0.01 

≥ 59% 

P=0.001 

≥ 61% 
(Sign Test,  N=200)  

 

+      TripAdvisor.com
 

++     Travelocity.com
 

*           
Mixed Rating Strategy:     (i) Average of Tripadvisor rating and Travelocity rating when both are available;  

                                                   (ii) Equal to one of the two ratings if the other one is missing; 

                                                   (iii) Zero when both ratings are missing. 

  

#          
BLP with homogeneous coefficients on travel category dummies.

   

 

 

  



   

Appendix D      Market Share Calculation 

A rational consumer with a marginal utility of income 
i  

chooses travel category k over other travel 

categories if and only if the best hotel (the one that provides the highest utility) within this travel category 

exceeds the best hotel within any other travel category: 

max ( ) max( ) ,   .k r

k k v i I i k it r r v i I i r itj t j t j t j t j t j tk rj H j Hk r

X v I P X v I P r k

 

Thus, similar to Song (2010), by assuming  has a type I extreme value distribution 
28

, we can 

calculate the market share for a travel category type k as the probability of this category being chosen:                                 

1

exp( max ( ))

( ) ( ) .

exp(max( ))

k k v i I i kj t j t j tkj Hk
k K

r r v i I i rj t j t j trj Hrr

X v I P

s f I g v dIdv

X v I P

                       (D1)          

 

 

Furthermore, within travel category k consumer  chooses hotel  if and only if its utility exceeds the 

utility from any of the other hotels within the same travel category: 

,     ,k k k

k k v i I i k k k v i I i k kj t j t j t h t h t h t
X v I P X v I P h H and h j  

where kH  represents the subset of hotels with travel category type k. This can be transformed to  

 

Similar to Berry and Pakes (2007), we rank the hotels within each travel category in the order of 

ascending price. Therefore, conditioning on , a consumer with income type will choose hotel  if and 

only if 

 

               (D2) 

Let  denote the cdf of , and  denote the cdf of . Hence, the market share of hotel j within 

travel category type k can be calculated as 

 
( | ) [ ( ( | , )) ( ( | , ))] 1 [ ( | , ) ( | , )] ( ),k kk kj jj jj category ks F v F v v v dG v

  

  (D3) 

where  is an indicator for the condition, and  is a vector containing  and . Note here, in 

order to compute the income upper bound  and lower bound , we need the value of . 

                                                           
28

 As a robustness check, we tested different assumptions for (e.g., using a normal distribution), consistent with 

Chintagunta (2001). Our results showed high consistency with the previous estimates (i.e., based on the Type I 

extreme value distribution), similar to findings of Chintagunta (2001). The results are given in the last column of 

Table 3. 

i kj

( ) ( ) ( ).k k k k v i I i k kj t h t j t h t j t h t
X X v I P P

iv iI kj

( ) ( )
min ( | , ),

( )

k k k k v ij t h t j t h t

i k kj h I k kj t h t

X X v
I v

P P

( ) ( )
and  max ( | , ).

( )

k k k k v ij t h t j t h t

i
k kj h I k kj t h t

X X v
I v

P P

( )F iI ( )G iv

1 [ ] I v

( | , )v ( | , )v



 

 

 

Given the set of values for , this integration is typically not analytically solvable. For this reason, we use 

a Monte Carlo simulation to approximate it. Since  follows the standard normal distribution , 

we can obtain an unbiased estimator of this integral by taking  random draws of :

( | )

1
( , , ; , , ) [ ( ( , , )) ( ( , , ))] 1 [ ( , , ) ( , , )]

ns

k kk kj jj jj category k ns i i i i

iv

s p X F G F v F v v v
ns

         (D4) 

 

 

We can further derive the market share, which is the probability that a hotel j within category type k is 

chosen by consumer type (
iI , 

iv ), to be the following  

,

1

exp( )
  ( ) ( ) ,

exp(max ( ))

k k v i I i kj t j t j t

k Kj
I v Ci i kj r r v i I i rj t j t j trr j Hr

X v I P
s f I g v dIdv

X v I P

                  (D5) 

where , ki i j
I v C  indicates consumers who choose hotel j in travel category k. Note that there is no 

max function in the numerator. This market share function can be rewritten as the product of the equation 

(D3) and the probability that travel category k is chosen by those consumers who choose hotel j of travel 

category k. That is 

1

exp( )
[ ( ( , , )) ( ( , , ))]  ( ) ( ) ,

exp(max( ))

k k v i I i kj t j t j t
k kj jk i i Kj

v C I Ci k i kj j r r v i I i rj t j t j trj Hrr

X v I P
s F v F v h I dI g v dv

X v I P

    

(D6) 

where   

. 

 

Again, these integrals are not analytically solvable. Hence, we use a Monte Carlo simulation-based 

approach to approximate their values based on the distributions ( )G v  and ( )H I : 

1

exp( )1 1
[ ( ( , , )) ( ( , , ))] ,

exp(max( ))

k k v i I i kj t j t j t
k kj jk i i Kj

v C I Cv Ii k i kj j r r v i I i rj t j t j trj Hrr

X v I P
s F v F v

ns ns
X v I P

  

(D7) 

 

where ns is the number of simulated consumers whose [ ( ( | , )), ( ( | , ))]kk jjF v F v . By 

restricting the taste shock at a travel category level, this hybrid model combines the choice probabilities of 

the PCM and the BLP (Song 2010).  
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Appendix E 

Comparison of Mechanical Turk Users with overall US Internet Population 
 

 
June 2008 October 2008 December 2008 

 

US Internet Users 

comscore Data 
Mechanical Turk Users Mechanical Turk Users 

Total Audience 100 100 100 

Persons - Age 
   

Persons: 15+ 85.9 100 100 

Persons: 18+ 80.1 99.6 99.5 

Persons: 21+ 74.3 92.9 91.1 

Persons: 35+ 52.4 39.3 37.1 

Persons: 50+ 24.3 11.2 10.7 

Persons: 55+ 16.2 5.2 5.4 

Persons: 2-11 9.5 0 0 

Persons: 2-17 19.9 0.2 0.4 

Persons: 6-11 7.4 0 0 

Persons: 6-14 12 0 0 

Persons: 9-14 8.9 0 0 

Persons: 12-17 10.4 0.2 0.4 

Persons: 12-24 22.9 19 21.5 

Persons: 12-34 38 57.8 60 

Persons: 12-49 66.2 87.4 88.2 

Persons: 18-24 12.5 18.7 21.1 

Persons: 18-34 27.6 57.5 59.7 

Persons: 18-49 55.8 87.2 87.8 

Persons: 21-34 21.9 53.3 53.9 

Persons: 21-49 50 82.9 82 

Persons: 25-34 15.1 38.8 38.6 

Persons: 25-49 43.2 68.4 66.7 

Persons: 25-54 51.3 75.2 72.3 

Persons: 35-44 18.7 22.4 21.5 

Persons: 35-49 28.2 29.7 28.1 

Persons: 35-54 36.2 36.4 33.7 

Persons: 35-64 46.8 41.4 38.8 

Persons: 45-54 17.6 14 12.2 

Persons: 45-64 28.1 19 17.4 

Persons: 55-64 10.5 5 5.2 

Persons: 65+ 5.7 0.7 1.1 

Males - Age 
   

All Males 49.5 28 36.6 

Male: 15+ 42.1 28 36.6 

Male: 18+ 39.1 27.8 36.3 

Male: 21+ 36.1 24.7 32.4 

Male: 35+ 25.7 9.5 11.3 

Male: 50+ 12 2.8 2.6 

Male: 55+ 8.1 1.4 1.1 

Male: 2-11 4.9 0 0 



 

 

 

Male: 2-17 10.4 0.1 0.2 

Male: 6-11 3.9 0 0 

Male: 6-14 6.3 0 0 

Male: 9-14 4.5 0 0 

Male: 12-17 5.5 0.1 0.2 

Male: 12-24 11.6 7.5 9.1 

Male: 12-34 18.9 17.3 24.2 

Male: 12-49 32.5 25 33.9 

Male: 18-24 6.1 7.4 8.9 

Male: 18-34 13.4 17.2 23.9 

Male: 18-49 27.1 24.9 33.7 

Male: 21-34 10.4 15.2 21.1 

Male: 21-49 24.1 22.9 30.8 

Males: 25-34 7.3 9.8 15 

Male: 25-49 20.9 17.6 24.8 

Male: 25-54 24.8 19 26.3 

Males: 35-44 9.1 6 8 

Male: 35-49 13.7 7.7 9.7 

Male: 35-54 17.5 9.1 11.2 

Male: 35-64 22.6 10.6 12.3 

Male: 45-54 8.4 3.1 3.2 

Male: 45-64 13.5 4.5 4.3 

Males: 55-64 5.1 1.4 1.1 

Males: 65+ 3 0 0.1 

Females - Age 
   

All Females 50.5 72 63.4 

Female: 15+ 43.8 72 63.4 

Female: 18+ 41 71.9 63.3 

Female: 21+ 38.2 68.2 58.7 

Female: 35+ 26.8 29.8 25.8 

Female: 50+ 12.3 8.3 8.1 

Female: 55+ 8.1 3.8 4.3 

Female: 2-11 4.6 0 0 

Female: 2-17 9.5 0.1 0.1 

Female: 6-11 3.6 0 0 

Female: 6-14 5.7 0 0 

Female: 9-14 4.5 0 0 

Female: 12-17 4.9 0.1 0.1 

Female: 12-24 11.3 11.5 12.3 

Female: 12-34 19.1 40.5 35.9 

Female: 12-49 33.6 62.4 54.3 

Female: 18-24 6.4 11.5 12.2 

Female: 18-34 14.2 40.5 35.8 

Female: 18-49 28.7 62.4 54.1 

Female: 21-34 11.5 38.1 32.8 

Female: 21-49 25.9 60 51.2 

Females: 25-34 7.8 28.9 23.6 

Female: 25-49 22.3 50.9 41.9 

Female: 25-54 26.5 56.2 46 

Females: 35-44 9.5 16.4 13.4 



 

 

 

Female: 35-49 14.5 21.9 18.4 

Female: 35-54 18.7 27.3 22.4 

Female: 35-64 24.1 30.8 26.5 

Female: 45-54 9.2 10.9 9 

Female: 45-64 14.6 14.5 13.1 

Females: 55-64 5.4 3.6 4.1 

Females: 65+ 2.6 0.7 1 

HH Income (US) 
   

HHI USD: Less than 15,000 6 11.4 12.9 

HHI US: Under $25K 9.3 22.8 23.1 

HHI US: Under $60K 44.5 64.8 60.5 

HHI US: $60K+ 55.5 34.8 39.1 

HHI US: $75K+ 43 22.7 27.5 

HHI USD: 15,000 - 24,999 3.4 11.4 10.1 

HHI USD: 25,000 - 39,999 9.9 21.8 18.9 

HHI USD: 40,000 - 59,999 25.3 20.2 18.6 

HHI USD: 60,000 - 74,999 12.6 12.1 11.6 

HHI USD: 75,000 - 99,999 17.7 10.2 11.5 

HHI USD: 100,000 or more 25.3 12.5 16 

Region (US)  

   
Region US:West North 

Central 
7.6 5.8 7.5 

Region US:Mountain 6.9 6.4 7.4 

Region US:Pacific 15.4 13.3 15.7 

Region US:New England 5.5 6.4 4.7 

Region US:Mid Atlantic 14.2 13.9 15.8 

Region US:South Atlantic 18.7 19.2 19.9 

         Region US:East South 

Central 
5.1 8.3 5.2 

         Region US:West South 

Central 
10.5 10.7 9 

         Region US:East North 

Central 
16.1 15.7 14.8 

Children 
   

Children:No 39.3 52.7 57.6 

Children:Yes 60.7 47.3 42.3 

HH Size 
   

HH Size: 1 4.4 17.7 17.3 

HH Size: 2 24.2 28.9 30.6 

HH Size: 3 21.4 19.7 19.2 

HH Size: 4 25.3 20.5 21.9 

HH Size: 5+ 24.8 12.9 10.7 

HH Size: 1-2 28.5 46.6 47.8 

HH Size: 3+ 71.5 33.5 32.7 

Race 
   

Race:White 87.3 82.7 82 

Race:Black 8 6.5 5.3 

Race:Asian 1.6 5.7 6.8 

Race:Other 3.1 4.9 5.8 

 

http://en.wikipedia.org/wiki/United_States_Census#Regions_and_divisions

