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Motivation
In banks and insurances, one always considers portfolio of risks⇒
aggregation of risks (modeled with rv’s) = basis of the internal model.

In practice, when assuming aggregation of iid observations in the
portfolio model, distribution of the yearly log returns of financial
assets : often approximated by a normal distribution (CLT) .

Two main drawbacks when using the CLT for moderate heavy tail
distributions (e.g. Pareto with a shape parameter larger than 2).

↪→ if the CLT may apply to the sample mean because of a finite
variance, it also provides a normal approximation with a very
slow rate of convergence ; may be improved when removing
extremes from the sample (see e.g. Hall).
Even if we are interested only in the sample mean, samples of
small or moderate sizes will lead to a bad approximation. To
improve the approximation, existence of moments of order larger
than 2 may appear as necessary.
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↪→ With aggregated data, a heavy tail may appear :
- clearly on high frequency data (e.g. daily ones)
- not visible anymore when aggregating them in e.g. yearly data (i.e.

short samples),

although known that the tail index of the underlying distribution
remains constant under aggregation.

(data from https ://www.globalfinancialdata.com)
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Main objective : to obtain the most accurate evaluations of risk
measures when working on financial data under the presence of fat
tail. We explore various approaches to handle this problem,
theoretically and numerically.

With financial/actuarial applications in mind, we use power law
models, such as Pareto, for the marginal distributions of the risks.
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Some questions :

• Aggregation⇒ the number of observations decreases
so, is it reasonable to use a limit distribution as an approximation
of the true distribution ?

• Which type of approximation can be used whenever we are
under the presence of heavy tails ? (issue of heavy vs
moderately heavy) ?

• Why considering Pareto distribution ?
↪→ justified by the EVT :

• Recall Pickands theorem : for sufficiently high threshold u, the GPD
Gξ,σ(u) (with shape parameter ξ and scale parameter σ(u)) is a very
good approximation to the excess cdf defined by
Fu(x) = P[X − u ≤ x|X > u] :

Fu(y) ≈
u→∞

Gξ,σ(u) (y)

• Recall also that, for ξ > 0,

Gξ,σ(u)(y) ∼
y→∞

cy−1/ξ (c > 0 some constant)
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When considering heavy-tailed risks, it implies that the extreme
risks follow a GPD with a positive shape parameter ξ > 0, so it is
natural and quite general to consider a Pareto distribution for
heavy-tailed risks.

• About the iid condition

. In our practical example of log returns (the motivation of this work),
the independence condition is satisfied, hence is not a restriction in
this case of time aggregation.

. In the general case :

↪→ For different tail indices : EVT argument⇒ the tail index of the
aggregated distribution corresponds to the one of the marginal with
the heaviest tail, hence depends only weakly on considering the
dependence

↪→ For the other cases, the influence of dependence on the VaR is not
known, although it will have an impact, in particular increasing the
VaR for positive dependence. We plan to further study this effect.
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Outline

• Introduction - existing methods

• Normex : a mixed normal and extremes limit

• Application to risk measures - Comparison

• Conclusion : further development
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Introduction
. Notation

X : (type I) Pareto r.v., with shape parameter α , df f , cdf F
(F(x) := 1− F(x) = x−α, α > 0, x ≥ 1).

Inverse function of F : F←(z) = (1− z)−
1
α , for 0 < z < 1.

Recall that
E(X) <∞ for α > 1 (E(X) =

α

α− 1
)

var(X) <∞ for α > 2 (var(X) =
α

(α− 1)2(α− 2)
)

Portfolio of heavy-tailed risks : modeled by a Pareto sum
Sn :=

∑n
i=1 Xi , with (Xi, i = 1, . . . , n) an n-sample with parent r.v.X

X(1) 6 · · · 6 X(n) denote the order statistics of (Xi)16i6n.

Φ, ϕ denote, respectively, the cdf and df of N (0, 1).



MOTIVATION INTRODUCTION NORMEX APPLICATION TO RISK MEASURES CONCLUSION M.KRATZ

Risk measures we consider :

- the Value-at-Risk VaR of order q of X, q ∈ (0, 1) :

VaRq(X) = inf{y ∈ R : P[X > y] ≤ 1− q} = F←X (q) (quantile of FX,
order q)

- if E|X| <∞, the Expected Shorfall ES (or Tail VaR) at confidence
level q ∈ (0, 1) :
ESq(X) = 1

1−q

∫ 1
q VaRβ(X) dβ or ESq(X) = E[X | X ≥ VaRq]
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. Existing methods to approximate the distribution of the Pareto
sum Sn

• A GCLT approach (see e.g. Samorodnitsky et al. 1994, Petrov
1995, Zaliapin et al. 2005, Furrer 2012)
The distribution of Sn can be approximated by

- a stable distribution whenever 0 < α < 2 (via the GCLT)
- a standard normal distribution for α ≥ 2 (via the CLT for α > 2 ; for
α = 2, comes back to a normal limit with a variance different from
var(X) =∞) :

If 0 < α < 2,
Sn − bn

n1/αCα
d→ Gα normalized α-stable distribution

If α ≥ 2,
1
dn

(
Sn −

nα
α− 1

)
d→ Φ

with

bn =


0 if 0 < α < 1
πn2

2
∫∞

1 sin
(πx

2n
)

dF(x) ' n (log n + 1 − C − log(2/π)) if α = 1
n E(X) = nα/(α − 1) if 1 < α < 2

(C = Euler constant 0.5772)

Cα =

{
(Γ(1 − α) cos(πα/2))1/α if α 6= 1
π/2 if α = 1

; dn =


√

n var(X) =
√

nα
(α−1)2(α−2)

if α > 2

inf
{

x :
2n log x

x2 ≤ 1
}

if α = 2
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• An EVT approach
Under the assumption of regular variation of the tail distribution
(with non negative tail index), the tail of the cdf of the sum of iid
rv’s is mainly determined by the tail of the cdf of the maximum of
these rv’s :

P[Sn > x] ' P[ max
1≤i≤n

Xi > x] as x→∞

• A mixed approach by Zaliapin et al., in the case 2/3 < α < 2
(var(X) =∞).
- Idea of the method : to rewrite the sum of the Xi’s as the sum of
the order statistics X(i) and to separate it into two terms, one with
order statistics having finite variance and the other as the
complement

Sn =

n∑
i=1

Xi =

n−2∑
i=1

X(i) +
(
X(n−1) + X(n)

)
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- Results :

Compared with the GCLT method, this ’approximative’ approach
provides

↪→ a better approximation for the Pareto sum, for any n, with a
higher degree of accuracy ;
↪→ a better result for the evaluation of the VaR

- Main drawbacks :

↪→ assuming a condition of independence between the two
dependent subsums
↪→ approximating the quantile of the Pareto sum as the sum of
the quantiles of each subsum
↪→ when considering the case α > 2, we still remain with a poor
normal approximation for the tail distribution
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. A general mixed approach

• Main idea, inspired by the Zaliapin et al.’s method : to separate
mean behavior and extreme behavior, writing Sn as

Sn =
n∑

i=1

X(i)

• Main goal : to improve approximations of the distribution of Sn and
of the risk measures, when

- taking into account the dependence of the order statistics

- for any shape parameter α, in particular for the case 2 < α < 4 (for
financial application, e.g. market risk data known to have α in this
range)
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• Choice of the threshold k for the trimmed sum by removing the k
largest order statistics from the sample

k selected in order to use the CLT, but also to improve its fit since
we want to approximate the behavior of Tk by a normal one.

- The finitude of the 2nd moment of X may lead to a poor normal
approximation, if higher moments do not exist, as occurs for instance
with financial market data.

- The existence of the third moment provides a better rate of
convergence to the normal distribution in the CLT (Berry Esséen
inequality)

- Another information useful to improve the approximation of the
distribution of Sn with its limit distribution, is the Fisher index (kurtosis),

defined by the ratio γ =
E[(X−E(X))4]

(var(X))2
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Therefore, fixing p = 4, we select k = k(α) such that

E[Xp
(j)]

{
<∞ ∀ j ≤ n− k
=∞ ∀ j > n− k

In our case of α-Pareto rv’s : k >
p
α
− 1

Note that the choice of k is independent of the sample size n

Value of the threshold k = k(α) for which the 4th moment is finite,
according to the set of definition of α :

α ∈ I(k) with I(k) = ] 1
2 ; 4

7 ] ] 4
7 ; 2

3 ] ] 2
3 ; 4

5 ] ] 4
5 ; 1 ]1; 4

3 ] ] 4
3 ; 2[ [2,4]

k = k(α) = 7 6 5 4 3 2 1
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Normex - A mixed normal and extremes limit
• Main steps

• A conditional decomposition

Because of the dependence between the two subsums
Tk :=

∑n−k
j=1 X(j) and Un−k :=

∑k−1
j=0 X(n−j), we decompose the

Pareto sum Sn in a slightly different way as

Sn = Tk + X(n−k+1) + Un−k+1

to use the property of conditional independence between
Tk/X(n−k+1) and Un−k+1/X(n−k+1).

• A normal approximation for the conditional trimmed sum

Now, since Tk/X(n−k+1)
d∼

n→∞

∑n−k
j=1 Yj with (Yj) an (n− k)-sample

with parent cdf defined by FY(.) = P
(

Xi ≤ . / Xi < X(n−k+1)

)
, the

CLT applies ; we have to compute the conditional first two moments.
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Proposition

L
(

Tk/(X(n−k+1) = y)
)

d∼
n→∞

N
(

m1(α, n, k, y), σ2(α, n, k, y)
)

where m1(α, n, k, y) =
n− k(α)

1− y−α
×


1−y1−α

1−1/α if α 6= 1

ln(y) if α = 1

σ2(α, n, k, y) :=
(
m2(α, n, k, y)− m2

1(α, n, k, y)
)

(y > 1)

= (n− k(1))y
(

1− y ln2(y)

(y− 1)2

)
1I(α=1)

+ 2(n− k(2))
y2

y2 − 1

(
ln(y)− 2

y− 1
y + 1

)
1I(α=2)

+
n− k(α)

1− y−α

(
1− y2−α

1− 2/α
− 1

(1− 1/α)2 ×
(1− y1−α)2

1− y−α

)
1I(α6=1,2)
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• A Pareto distribution for the conditional sum of the largest order
statistics

Un−k+1/
(
X(n−k+1) = y

)
can be written as

Un−k+1/
(
X(n−k+1) = y

)
=
∑k−1

j=1 Zj

with (Zj) iid rv’s with parent cdf defined by
FZ(.) = P

[
X ≤ . / (X > X(n−k+1) = y)

]
= Pareto cdf with

parameters α and y(> 1).

Hence the density function of Un−k+1/
(
X(n−k+1) = y

)
is the

convolution product of order k − 1 of the df of Z :

fUn−k+1/(X(n−k+1)=y) = h?(k−1)
y , with hy(x) =

α yα

xα+1 1I(x≥y)
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• Main result - an approximation of the distribution of the Pareto
sum via Normex
Theorem. The cdf of Sn can be approximated, for any n, by Gn,α,k

defined for any x ≥ 1 by

Gn,α,k(x) =


∫ x

1 f(n−k+1)(y)
∫ x−y

0 ϕm1(y),σ(y) ? h?(k−1)
y (v)dv dy if k ≥ 2

∫ x
1

f(n)(y)
σ(y)

∫ x−y
0 ϕ

(
v−m1(y)
σ(y)

)
dv dy if k = 1

For k = 1, the cdf of Sn is given by

Gn,α,1(x) = nα
∫ x

1

1
σ(y)

y−(1+α)(1− y−α)n−1
∫ x−y

0
ϕ

(
v− m1(y)

σ(y)

)
dv dy

For k ≥ 2 (but small), we have

Gn,α,k(x) =

∫ x

1

f(n−k+1)(y)

σ(y)

∫ x−y

0

(∫ v

0
ϕ
( v− u− m1(y)

σ(y)

)
h?(k−1)

y (u)du
)

dv dy

where the convolution product h?(k−1)
y can be numerically evaluated

using the recursive convolution equation applied to h, or, explicitly for
α = 1, 2
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• On the quality of the approximation of the distribution of the
Pareto sum Sn

Consider for instance the case 2 < α ≤ 3
• When applying the CLT directly to Sn, for any x,

Fn(x)− Φ(x) =
1√
n

Q1(x) +
1
n

Q2(x) + o(1/n)

with Q1(x) = −ϕ(x)
H2(x)

6
E[(X − E(X))3]

(var(X))3/2 =∞

Q2(x) = −ϕ(x)
{H5(x)

72

(
E[(X − E(X))3]

)2

(var(X))3 +
H3(x)

24
(
γ − 3

)}
=∞

• With Normex, using simply Berry-Esséen on the trimmed sum, we
can write the error as

|P(Sn ≤ x)−Gn,α;1(x)| ≤ K(x) =
c√

n− 1

∫ x

1

C(y)(
1 +

∣∣∣ x−y−(n−1)µy√
n−1 γy

∣∣∣)3 f(n)(y) dy

with c = 0.4693, C(y), µy and γy computed explicitly.
Moreover, for any n ≥ 52 and α ∈ (2; 3], 0 ≤ max

x>1
K(x) < 5% and K

decreases very fast to 0 after having reached its maximum ; the
larger n, the faster to 0.
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Application to VaR and Comparison
Possible approximations of VaR
Approximations z(i)

q of the VaR of order q , deduced from the various
limit theorems (case 0 < α ≤ 4) :

. via the GCLT , for α ≤ 2 :

- for α < 2 :

z(1)
q = n1/αCα G←α (q) + bn (Gα (α, 1, 1, 0)-stable distribution)

for 1/2 < α < 2, and for q > 0.95,
z(1bis)

q = n1/αq−1/α + bn

- for α = 2 :

z(1)
q = dn Φ←(q) + 2n

. via the CLT, for α > 2 :

z(2)
q =

√
nα

(α− 1)
√
α− 2

Φ←(q) +
nα
α− 1
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. via the Max (EVT) approach, for high order q, for any α

z(3)
q = n1/α

(
log(1/q)

)−1/α
+ bn

. via Normex, for any α

z(5)
q = G←n,α,k(q) with

Gn,α,k(x) =

∫ x

1

f(n−k+1)(y)

σ(y)

∫ x−y

0

(∫ v

0
ϕ
(v− u− m1(y)

σ(y)

)
h?(k−1)

y (u)du
)

dv dy
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Numerical comparison - examples

Simulation of samples (Xi, i = 1, . . . , n) with parent r.v. X for different
shape parameters, namely α = 3/2; 2; 5/2; 3; 4, respectively.

For each n and each α, we aggregate the xi’s (i = 1, . . . , n). We repeat
the operation N = 107 times, thus obtaining 107 realizations of the
Pareto sum Sn, from which we can deduce its quantiles.

Three possible order q : 95%, 99% (Basel II) and 99.5% (Solvency 2)

Approximative relative empirical error :

δ(i) = δ(i)(q) =
z(i)

q

zq
− 1
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- Case α = 5/2
n = 52 Simul CLT Max Normex

q zq z(2)
q z(3)

q z(5)
q

δ(1) (%) δ(3)(%) δ(5)(%)

95% 103.23 104.35 102.60 103.17
1.08 -0.61 -0.06

99% 119.08 111.67 117.25 119.11
-6.22 -1.54 0.03

99.5% 128.66 114.35 127.07 131.5
-11.12 -1.24 2.21

n = 100 Simul CLT Max Normex

q zq z(2)
q z(3)

q z(5)
q

δ(1) (%) δ(3)(%) δ(5)(%)

95% 189.98 191.19 187.37 189.84
0.63 -1.38 -0.07

99% 210.54 201.35 206.40 209.98
-4.36 -1.96 -0.27

99.5% 222.73 205.06 219.14 223.77
-7.93 -1.61 0.47
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n = 250 Simul CLT Max Normex

q zq z(2)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 454.76 455.44 446.53 453.92

0.17 -1.81 -0.18
99% 484.48 471.5 473.99 483.27

-2.68 -2.17 -0.25
99.5% 501.02 477.38 492.38 501.31

-4.72 -1.73 0.06

n = 500 Simul CLT Max Normex

q zq z(2)
q z(3)

q z(5)
q

δ(1) (%) δ(3) (%) δ(5) (%)
95% 888.00 888.16 872.74 886.07

0.02 -1.72 -0.22
99% 928.80 910.88 908.97 925.19

-1.93 -2.14 -0.39
99.5% 950.90 919.19 933.23 948.31

-3.33 -1.86 -0.27
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Comments

• Normex always gives sharp results (error less than 0.5% and
often extremely close) ; it appears more or less independent of n.
Among the various methods we tested, it is the one giving the
most accurate evaluations, for the entire distribution of the sum
and for the extreme quantiles, for any n and any α ∈ (0, 4].

• The max-method overestimates for α < 2 and underestimates for
α ≥ 2 ; it improves a bit when n increases.

• The GCLT method (α < 2) overestimates the quantiles but
improves with higher quantiles and when n increases.

• The CLT method underestimates the quantiles and the higher the
quantile, the higher the underestimation ; it improves slightly
when n increases.
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Normex in practice
We dispose of a sample (X1, · · · ,Xn), with unknown heavy tailed cdf and
positive tail index α. We consider the aggregated risks

Sn :=
n∑

i=1

Xi =

n∑
i=1

X(i), with X(1) ≤ X(2) ≤ · · · ≤ X(n)

1. Preliminary step : estimation α̂ of α, with standard EVT methods (e.g.
Hill estimator, QQ-estimator, ...)

2. Define k = [p/α̂− 1] + 1 with p = 4, such that E[X 4
(i)] =∞ iff i > n− k

3. The n− k first order statistics and the k− 1 last ones being, conditionally
on X(n−k+1), independent,
- apply the CLT to the sum of the n− k first order statistics conditionally
on X(n−k+1)

- and compute the distribution of the sum of the last k − 1 ones
conditionally on X(n−k+1) assuming a Pareto distribution for the rv’s.

4. Then approximate the cdf of Sn by Gn,α,k defined in our Theorem, which
provides a sharp approximation, easily computable whatever the size of
the sample is.

5. Deduce any quantile zq of order q of Sn as zq = G←n,α,k(q) ; allows in part.
an accurate evaluation of risk measures of aggregated heavy tailed
risks.
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Conclusion
• Advantage of Normex : a quite general method

- Fitting a normal distribution for the mean behavior can apply, not
only for the Pareto distribution, but for any underlying distribution,
without having to know about it, hence the method is quite general

- For the extreme behavior, we have already seen that a Pareto type
is standard in this context

- Trimming the total sum by taking away extremes having infinite
moments (of order p ≥ 3) is always possible and allows to better
approximate the distribution of the trimmed sum with a normal one
(via the CLT), whatever underlying distributions

• This mixed distribution could be used to find out a range for the
tail index α when fitting it to the empirical distribution (type of
inverse problem).
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• Next steps (ongoing work)

↪→ Application to real data

↪→ Extension to the dependent case, via
- GCLT method : using the theorem on stable limits for sums of

dependent infinite variance r.v. (Bartkiewicz et al., 2010) / LDP
(Mikosch et al.)

- CLT under weak dependence theorem
- Max method (no need of independence)

↪→ Study of the scaling behavior of VaR under aggregation



MOTIVATION INTRODUCTION NORMEX APPLICATION TO RISK MEASURES CONCLUSION M.KRATZ

Some references :
• H. David, H. Nagaraja, Order Statistics. Wiley, 2003

• H. Furrer. Uber die Konvergenz zentrierter und normierter Summen von
Zufallsvariablen und ihre Auswirkungen auf die Risikomessung. ETH Preprint
(http ://www.math.ethz.ch/ hjfurrer/publications/NormalisedSums.pdf) 2012

• M.G. Hahn, D.M. Mason, D.C. Weiner . Sums, Trimmed Sums and Extremes.
Progress in Probability 23, Birkhäuser, 1991
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