Heavy-tailedness and diversification disasters: Implications for models in economics, finance and insurance

> Rustam Ibragimov Imperial College Business School

Based on joint works with Dwight Jaffee and Johan Walden (Haas School of Business, University of California at Berkeley)

Objectives and key results

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
- Implications for financial & (re-)insurance markets: Diversification traps & disasters
 - M. Ibragimov, R. Ibragimov & J. Walden, *Heavy-tailedness* and *Robustness in Economics and Finance*, Lecture Notes in Statistics, Springer, Forthcoming.
 - R. Ibragimov & A. Prokhorov, Topics in Majorization, Stochastic Openings and Dependence Modeling in Economics and Finance, World Scientific & Imperial College Press, In preparation.

Imperial College London BUSINESS SCHOOL Stylized Facts of Real-World Returns

Dependence vs. margins in economic and financial problems

- Problems in finance, economics & risk management: Solution is affected by both
 - Marginal distributions (Heavy-Tailedness, Skewness)
 - Dependence (Positive or Negative, Asymmetry)
- Portfolio choice & value at risk (VaR)
 - Marginal effects under independence: Heavy-Tailedness

Moderately HT vs. extremely HT \implies Opposite solutions

- Different solutions: Positive vs. negative dependence
- Similar conclusions on (non-)robustness to heavy-tailedness: other models in economics, finance & econometrics:
 - Optimal **bundling**, firm **growth** theory, **efficiency** of statistical & econometric estimators, **time series** models

Imperial College London BUSINESS SCHOOL

Simulated normal and heavy-tailed series

Heavy-tailed margins

- Many economic & financial time series: power law tails: $P(|X| > x) \approx \frac{C}{\pi^{\alpha}}, \alpha > 0$: tail index
- Moments of order $p \ge \alpha$: infinite; $E|X|^p < \infty$ iff $p < \alpha$
 - $\alpha \leq 4 \implies$ Infinite fourth moments: $EX^4 = \infty$ $\alpha \leq 2 \implies$ Infinite variances: $EX^2 = \infty$

 - $\alpha \leq 1 \implies$ Infinite first moments: $E|X| = \infty$
- Returns on many stocks & stock indices: $\alpha \in (2, 4)$
 - \Rightarrow finite variance, infinite fourth moment

A tale of two tails

Figure: Tails of Cauchy distributions are heavier than those of normal distributions. Tails of Lévy distributions are heavier than those of Cauchy or normal distributions.

A tale of two tails

Figure: Heavy-tailed distributions: more extreme observations

Heavy-tailed margins

 $P(|X| > x) \approx \frac{C}{x^{\alpha}}$

- Income: $\alpha \in [1.5, 3] \Rightarrow$ infinite EX^4 , possibly infinite variances
- Wealth: $\alpha \approx 1.5 \Rightarrow$ infinite variances!
- Returns from technological innovations, Operational risks: α < 1 ⇒ infinite means E|X| = ∞!
- Firm sizes, sizes of largest mutual funds, city sizes: $\alpha \approx 1$
- Economic losses from earthquakes: $\alpha \in [0.6, 1.5]$
 - \Rightarrow infinite variances, possibly infinite means
- Economic losses from hurricanes: $\alpha \approx 1.56$; $\alpha \approx 2.49$

Stable distributions

- $X \sim S_{\alpha}(\sigma)$: symmetric stable distribution, $\alpha \in (0, 2]$ CF: $E(e^{ixX}) = exp\{-\sigma^{\alpha}|x|^{\alpha}\}$
 - Normal *N*(0, σ): α = 2
 - Cauchy: $\alpha = 1$, $f(x) = \frac{\sigma}{\pi(\sigma^2 + x^2)}$

• Lévy:
$$\alpha = 1/2$$
, support $[0, \infty)$, $f(x) = \frac{\sigma}{\sqrt{2\pi}} x^{-3/2} \exp(-\frac{1}{2x})$

- Power laws: $P(|X| > x) \approx \frac{c}{x^{\alpha}}, \ \alpha \in (0,2)$
 - Moments $E|X|^p$: finite iff $p < \alpha$
 - Infinite variances for $\alpha < 2$
- **Portfolio** formation: $\sum_{i=1}^{n} w_i X_i =_d (\sum_{i=1}^{n} w_i^{\alpha})^{1/\alpha} X_1$ • $\alpha = 2$ (normal): $\frac{1}{\sqrt{n}} (X_1 + ... + X_n) =_d X_1$

Value at risk (VaR)

VaR

- Risk X; positive values = losses
- Loss probability q
- $VaR_q(X) = z : P(X > z) = q$
- **Risks** *X*₁, ..., *X_n*
- $Z_w = \sum_{i=1}^n w_i X_i$: return on portfolio with weights $w = (w_1, ..., w_n)$
- Problem of interest:

Minimize $VaR_q(Z_w)$

- s.t. $w_i \ge 0$, $\sum_{i=1}^n w_i = 1$
- When diversification ⇒ decrease in portfolio riskiness (VaR)?

Diversification & risk

- Most diversified: $\underline{w} = (1/n, 1/n, ..., 1/n) \Rightarrow Z_{\underline{w}} = \frac{1}{n} \sum_{i=1}^{n} X_i$
- Least diversified: $\overline{w} = (1, 0, ..., 0) \Rightarrow Z_{\overline{w}} = X_1$

•
$$Z_{\underline{w}} = \frac{1}{n} \sum_{i=1}^{n} X_i =_d \frac{1}{\sqrt{n}} X_1 = \frac{1}{\sqrt{n}} Z_{\overline{w}}$$

- $VaR_q(Z_{\underline{w}}) = \frac{1}{\sqrt{n}} VaR_q(Z_{\overline{w}}) < VaR_q(Z_{\overline{w}})$
- VaR_q(Z_w) : ∖ as n ∧ (Diversification ∧)

Diversification & risk

- $X_1,...,X_n\sim S_{1/2}(\sigma)$, lpha=1/2, Lévy distribution
 - $Z_{\underline{w}} = \frac{1}{n} \sum_{i=1}^{n} X_i =_d \left[\sum_{i=1}^{n} (\frac{1}{n})^{1/2} \right]^2 X_1 = n X_1 = n Z_{\overline{w}}$
 - $VaR_q(Z_{\underline{w}}) = nVaR_q(Z_{\overline{w}}) > VaR_q(Z_{\overline{w}})$
 - $VaR_q(Z_{\underline{w}})$: \nearrow as $n \nearrow$ (Diversification \nearrow)
- Heavy tails (margins) matter:

diversification \Longrightarrow opposite effects on portfolio riskiness

• Skewness: typically priced

Heavy-tailedness & diversification

• Moderate heavy tails $\alpha > 1$: finite first moments

 $VaR_q(Z_{w}) < VaR_q(Z_{\overline{w}}) \ \forall q > 0$

Optimal to diversify for all loss probabilities q

• Extremely heavy tails $\alpha < 1$: infinite first moments

 $VaR_q(Z_{w}) < VaR_q(Z_{\overline{w}}) \ \forall q > 0$

Diversification: suboptimal for all loss probabilities q

• Similar conclusions: Many other models in economics & finance

- Firm growth theory, optimal bundling, monotone consistency of sample mean, efficiency of linear estimators
- Robust to moderate heavy tails
- Properties: reversed under extremely heavy tails

What happens for intermediate heavy-tails?

• $X_1, ..., X_n$ i.i.d. stable with $\alpha = 1$: Cauchy distribution

• Density
$$f(x) = \frac{\sigma}{\pi(\sigma^2 + x^2)}$$

- Heavy power law tails: $P(|X| > x) \approx \frac{C}{x}$
- Infinite first moment

•
$$Z_w = \sum_{i=1}^n w_i X_i =_d X_1 \ \forall w = (w_1, ..., w_n) : w_i \ge 0,$$

• Diversification: no effect at all!

Summary so far: Diversification for heavy-tailed and bounded distributions

Figure: N = 10 risks/insurer; M = 7 insurers

• D: Individual/non-diversification corners vs insurer and reinsurer equilibrium

1st example: full risk pooling with normally distributed risks

2nd example: Bernoulli-Lévy distribution with limited liability

Implications for markets for catastrophic risks

- Equilibria in re-insurance markets for catastrophe risks (Ibragimov, Jaffee and Walden, RFS)
 - A diversification equilibrium with full risk pooling for normally distributed (light-tailed) risks
 - No risk pooling & no insurance or reinsurance activity (market collapse) for extremely heavy-tailed cat risks
 - Intermediate cases (heavy tails): both
 - Diversification equilibria, in which insurers offer catastrophe coverage and reinsure their risks
 - Non-diversification equilibria with no insurance or re-insurance
 - A coordination problem must be solved to shift from the bad to the good equilibrium

Government regulations or well functioning capital markets

Implications for markets for catastrophic risks

- Catastrophic risks have many features favorable to the provision of insurance
 - Generally independent over risk types and geography
 - Few issues of asymmetric information at the risk level
 - So a complete failure of these markets is puzzling
- We have shown that market failures (non-diversification traps) may arise when risks are fat-tailed and there is limited liability
 - Diversification may not be beneficial for the single insurer, although a full reinsurance equilibrium may exist.
 - Government programs (or diversified equity owners) may allow the system to reach the full diversification outcome

Diversification & dependence

- Minimize $VaR_q(w_1X_1 + w_2X_2)$ s.t. $w_1, w_2 \ge 0, w_1 + w_2 = 1$
- Independence:
 - Optimal portfolio: (*w˜*₁, *w˜*₂) = (¹/₂, ¹/₂) (diversified) if α > 1 (not extremely heavy-tailed, finite means)
 - (*w˜*₁, *w˜*₂) = (1,0) (not diversified, one risk) if α < 1 (extremely heavy-tailed, infinite means)

Diversification & dependence

- Extreme positive dependence: $X_1 = X_2$ (a.s.) comonotonic risks
 - $VaR_q(w_1X_1 + w_2X_2) = VaR_q(X_1) \ \forall w$
 - Diversification: no effect at all (similar to Cauchy) regardless of heavy-tailedness
- Extreme negative dependence $X_1 = -X_2$ (a.s.) countermonotonic risks
 - $VaR_q(w_1X_1 + w_2X_2) = (w_1 w_2)VaR_q(X_1)$
 - Optimal portfolio: $\underline{w} = (1/2, 1/2)$ (most diversified regardless of heavy-tailedness
- Optimal portfolio choice: affected by both dependence & properties of margins

Copulas and dependence

- Main idea: separate effects of dependence from effects of margins
 - What matters more in portfolio choice: heavy-tailedness & skewness or (positive or negative) dependence?
- Copulas: functions that join together marginal cdf's to form multidimensional cdf

Copulas and dependence

- Sklar's theorem
- Risks X, Y:
 - Joint cdf $H_{XY}(x, y) = P(X \le x, Y \le y)$: affected by dependence and by marginal cdf's $F_X(x) = P(X \le x)$ and $G_Y(x) = P(Y \le y)$

$$H_{XY}(x,y) = \underbrace{C_{XY}}_{} (\underbrace{F_X(x), G_Y(y)}_{})$$

dependence marginals

• C_{XY}: captures all dependence between risks X and Y

Copulas and dependence

Advantages:

- Exists for any risks (correlation: finiteness of second moments)
- Characterizes all dependence properties
- Flexibility in dependence modeling
 - Asymmetric dependence: Crashes vs. booms
 - Positive vs. negative dependence
 - Independence: Nested as a particular case: Product copula, particular values of parameter(s)
 - Extreme dependence: X = Y or X = −Y ⇔ extreme copulas; dependence in C_{XY} varies in between

Copula structures

• Archimedean copulas

$$C(u, v) = \phi^{-1}(\phi(u) + \phi(v))$$

• Contagion: Non-zero tail dependence coeff.

$$\lambda_{L} = \lim_{u \to 0+} P[Y \le F^{-1}(u) | X \le F_{X}^{-1}(u)] = \lim_{u \to 0+} \frac{C(u, u)}{u}$$
$$\lambda_{U} = \lim_{u \to 1-} P[Y > F^{-1}(u) | X > F_{X}^{-1}(u)] = \lim_{u \to 1-} \frac{1 - 2u + C(u, u)}{1 - u}$$

• Clayton & Gumbel copulas

Copula structures

• Eyraud-Farlie-Gumbel-Morgenstern (EFGM):

$$C(u,v) = uv[1+\gamma(1-u)(1-v)]$$

 $\gamma \in [-1,1]$: dependence parameter Tail independent: no contagion

• Heavy-tailed Pareto marginals:

$$egin{aligned} P(X > x) &= rac{1}{x^lpha}, \ x \geq 1 \ P(X > x) &= rac{1}{x^lpha}, \ x \geq 1 \end{aligned}$$

• Power laws, tail index α

Diversification: Copulas & heavy tails

Embrechts, Nešlehová & Wüthrich (2009): Archimedean copulas

• Moderate heavy tails $\alpha > 1$: finite first moment

$$VaR_q(\frac{X+Y}{2}) < VaR_q(X)$$
 for sufficiently small q

Optimal to **diversify** for **sufficiently small** loss probabilities q

• Extremely heavy tails $\alpha < 1$: infinite first moments

$$VaR_q(rac{X+Y}{2}) > VaR_q(X)$$
 for sufficiently small q

Diversification: suboptimal for suff. small loss prob. q

Ibragimov & Prokhorov (2013): Similar conclusions for EFGM

• Tail independent EFGM & tail dependent Archimedean (Clayton, Gumbel): same boundary $\alpha = 1$ as in the case of independence

When dependence helps: Student-t copulas

• Conclusions similar to independence: Models with common shocks

$$X_1 = ZY_1, X_2 = ZY_2, ..., X_n = ZY_n$$

- Common shock Z > 0 affecting all risks X₁,..., X_n
- $Y_1, ..., Y_n$: i.i.d. normal or heavy-tailed with tail index α

Z : heavy-tailed with tail index β

Then X_i : heavy-tailed with tail index $\gamma = \min(\alpha, \beta)$

- Important particular case: (Dependent) Multivariate Student-t $X_1, X_2, ..., X_n$ with α d.f. (tail index) \Rightarrow Optimal to diversify for all loss probabilities q regardless of tail index α
 - Tail dependent Student-t copula and heavy-tailed margins with arbitrary tail index α : diversification pays off
- Contrast: Independent Student-t X₁, X₂, ..., X_n with α d.f. (tail index): diversification optimal for α > 1; suboptimal for α < 1

Diversification: Heavy-tailedness & dependence matter

- **Independence**, **Tail dependent** models with **common shocks** (e.g., Student-*t* distr. = Student-*t* copula with Student-*t* marginals):
 - Diversification always pays off for all loss probabilities q
- Tail independent EFGM, possibly tail dependent Archimedean copulas (e.g., Clayton & Gumbel):
 - Dividing boundary $\alpha = 1$ for sufficiently small loss probability q
- Numerical results on interplay of heavy-tailedness & dependence (copula) assumptions and loss probability q in diversification decisions:
 - Deviations from threshold $\alpha=1$ for different copulas and loss probabilities q
- Theoretical results for general copulas = ?
- (Non-)robustness of other models in economics & finance

Key results

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
- Implications for financial & (re-)insurance markets: Diversification traps & disasters
 - M. Ibragimov, R. Ibragimov & J. Walden, *Heavy-tailedness* and *Robustness in Economics and Finance*, Lecture Notes in Statistics, Springer, Forthcoming.
 - R. Ibragimov & A. Prokhorov, Topics in Majorization, Stochastic Openings and Dependence Modeling in Economics and Finance, World Scientific & Imperial College Press, In preparation.

Key results

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
- Implications for financial & (re-)insurance markets: Diversification traps & disasters

Characterizations of copulas & dependence

- $V_1, ..., V_n$: i.i.d. $\mathcal{U}([0, 1])$
- C: n-copula iff $\exists \tilde{g}_{i_1,...,i_c}$ s.t.
 - A1 (integrability):

$$\int_{0}^{1}...\int_{0}^{1}| ilde{g}_{i_{1},...,i_{c}}(t_{i_{1}},...,t_{i_{c}})|dt_{i_{1}}...dt_{i_{c}}<\infty$$

A2 (degeneracy):

$$E_{V_{i_k}}\left[\tilde{g}_{i_1,...,i_c}(V_{i_1},...,V_{i_{k-1}},V_{i_k},V_{i_{k+1}},...,V_{i_c})\right] = 0$$

A3 (positive definiteness):

$$ilde{U}_n(V_1,...,V_n) \equiv \sum_{c=2}^n \sum_{1 \le i_1 < ... < i_c \le n} ilde{g}_{i_1,...,i_c}(V_{i_1},...,V_{i_c}) \ge -1$$

• **Representation for** *C* :

$$C(u_1,...,u_n) = \int_0^{u_1} ... \int_0^{u_n} (1 + \tilde{U}_n(t_1,...,t_n)) \prod_{i=1}^n dt_i$$

•
$$\tilde{U}_n$$
: sum of degenerate U-statistics

Device for constructing *n*-copulas and cdf's

• Bivariate Eyraud-Farlie-Gumbel-Morgenstern copulas & cdf's:

$$C_{\theta}(u,v) = uv \left(1 + \theta(1-u)(1-v)\right)$$
$$H_{\theta}(x,y) = F(x)G(y)\left(1 + \theta(1-F(x))(1-G(y))\right)$$

$$n = 2; \ \tilde{g}_{1,2}(t_1, t_2) = \theta(1 - 2t_1)(1 - 2t_2), \ \theta \in [-1, 1]$$

• Multivariate EFGM copulas & cdf's:

$$C_{\theta}(u_1, u_2, ..., u_n) = \prod_{i=1}^n u_i \left(1 + \theta \prod_{i=1}^n (1 - u_i) \right)$$
$$\tilde{g}_{i_1, ..., i_c}(t_{i_1}, ..., t_{i_c}) = \theta_{i_1, ..., i_c} (1 - 2t_{i_1}) (1 - 2t_{i_2}) ... (1 - 2t_{i_c})$$

• Generalized multivariate EFGM copulas (Johnson and Kotz, 1975, Cambanis, 1977)

$$C(u_1, ..., u_n) = \prod_{k=1}^n u_k \left(1 + \sum_{c=2}^n \sum_{1 \le i_1 < ... < i_c \le n} \theta_{i_1, ..., i_c} (1 - u_{i_k}) \right)$$
$$\tilde{g}_{i_1, ..., i_c}(t_{i_1}, ..., t_{i_c}) = 0, \ c < n - 1$$
$$\tilde{g}_{1, 2, ..., n}(t_1, t_2, ..., t_n) = \theta(1 - 2t_1)(1 - 2t_2)...(1 - 2t_n)$$

 Generalized EFGM copulas: complete characterization of joint cdf's of two-valued r.v.'s (Sharakhmetov & Ibragimov, 2002)

From dependence to independence through *U*-statistics

 \mathcal{G}_n : sums of *U*-statistics

$$U_n(\xi_1,...,\xi_n) = \sum_{c=2}^n \sum_{1 \le i_1 < ... < i_c \le n} g_{i_1,...,i_c}(\xi_{i_1},...,\xi_{i_c})$$

 $g_{i_1,...,i_c}$: satisfy A1-A3

• Arbitrarily dependent r.v.'s:

sum of U-statistics in independent r.v.'s

with canonical kernels

- Reduction of problems for dependence to well-studied objects
- Transfer of results for U-**statistics** under

independence

From dependence to independence through *U*-statistics

- X₁,..., X_n: **1-cdf's** F_k(x_k)
- $\xi_1, ..., \xi_n$: independent copies (1-cdf's $F_k(x_k)$)

 $\exists U_n \in \mathcal{G}_n \text{ s.t. } \forall f : \mathbf{R}^n \to \mathbf{R}$

$$Ef(X_1,...,X_n) = Ef(\xi_1,...,\xi_n) \Big(1 + U_n(\xi_1,...,\xi_n) \Big)$$

• Representation for c.f.'s:

$$Eexp\left(i\sum_{k=1}^{n}t_{k}X_{k}\right) = Eexp\left(i\sum_{k=1}^{n}t_{k}\xi_{k}\right) + \\Eexp\left(i\sum_{k=1}^{n}t_{k}\xi_{k}\right)U_{n}(\xi_{1},...,\xi_{n})$$

‡ CLT for bivariate r.v.'s

Characterizations of dependence

• Canonical g's: complete characterizations of

dependence properties

• $X_1, ..., X_n$: r-independent if $\forall r$ jointly independent \Leftrightarrow $g_{i_1,...,i_c}(V_{i_1}, ..., V_{i_c}) = 0$ (a.s.) $1 \le i_1 < ... < i_c \le n, c = 2, ..., r$

$$g_{i_1,...,i_{r+1}}(u_{i_1},...,u_{i_{r+1}}) = \frac{\alpha_1...\alpha_n}{\alpha_{i_1}...\alpha_{i_{r+1}}} \left((k+1)u_{i_1}^k - (k+2)u_{i_1}^{k+1} \right) \times ... \times \left((k+1)u_{i_c}^k - (k+2)u_{i_c}^{k+1} \right)$$

$$C(u_1, ..., u_n) = \prod_{i=1}^n u_i \left(1 + \sum_{1 \le i_1 < \dots < i_{r+1} \le n} \frac{\alpha_1 \dots \alpha_n}{\alpha_{i_1} \dots \alpha_{i_{r+1}}} \times (u_{i_1}^k - u_{i_1}^{k+1}) \times \dots \times (u_{i_{r+1}}^k - u_{i_{r+1}}^{k+1}) \right)$$

Extensions of Wang (1990) (k = 0)

Copulas and Markov processes

• Darsow, Nguyen and Olsen, 1992: copulas and first-order Markovness

• $A, B : [0,1]^2 \rightarrow [0,1]$:

$$(A * B)(x, y) = \int_0^1 \frac{\partial A(x, t)}{\partial t} \cdot \frac{\partial B(t, y)}{\partial t} dt$$

• $A: [0,1]^m \rightarrow [0,1], \ B: [0,1]^n \rightarrow [0,1]: \star - \text{product}$

$$A \star B(x_1, \dots, x_{m+n-1}) =$$

$$\int_0^{x_m} \frac{\partial A(x_1, \dots, x_{m-1}, \xi)}{\partial \xi} \cdot \frac{\partial B(\xi, x_{m+1}, \dots, x_{m+n-1})}{\partial \xi} d\xi$$

Copulas and Markov processes

• Transition probabilities

$$P(s, x, t, A) = P(X_t \in A | X_s = x)$$
 satisfy CKE's

 $\text{iff } C_{st} = C_{su} \ast C_{ut} \ \forall s < u < t$

• X_t: first-order Markov iff

$$C_{t_1,\ldots,t_n}=C_{t_1t_2}\star C_{t_2t_3}\star\ldots\star C_{t_{n-1}t_n}$$

New results: Higher-order Markovness and copulas

• $\{X_t\}_{t\in\mathcal{T}}$: *k*-order Markov \Leftrightarrow

$$egin{aligned} & Pig(X_t < x_t ig| X_{t_1}, ..., X_{t_{n-k}}, X_{t_{n-k+1}}, ..., X_{t_n}ig) = \ & Pig(X_t < x_t ig| X_{t_{n-k+1}}, ..., X_{t_n}ig) \end{aligned}$$

• Complete characterization in terms of (k + 1)-copulas

• $C_{t_1,...,t_k}$: copulas of $X_{t_1},...,X_{t_k}$

• $\{X_t\}_{t \in T}$: k-order Markov iff $\forall t_1 < ... < t_n, n \ge k+1$

$$C_{t_1,...,t_n} = C_{t_1,...,t_{k+1}} \star^k C_{t_2,...,t_{k+2}} \star^k ... \star^k C_{t_{n-k},...,t_n}$$

Stationary case

• X_t : stationary k-order Markov iff

$$C_{1,...,n}(u_1,...,u_n) = C \star^k C \star^k ... \star^k C(u_1,...,u_n)$$

= $C^{n-k+1}(u_1,...,u_n) \quad \forall n \ge k+1$

C: (k+1)- copula s.t.

$$C_{i_1+h,...,i_l+h} = C_{i_1,...,i_l}, \ 1 \le j_1 < ... < j_l \le k+1$$

• C^s : *s*-fold product \star^k of *C*

Advantages of copula-based approach

• Modeling higher order Markov processes alternative to transition matrices

‡ Instead of initial distribution & transition probabilities:

Prescribe marginals & (k + 1)-copulas

Generate copulas of higher order & finite-dimensional cdf's

[‡] Advantage: separation of properties of marginals (fat-tailedness) & dependence properties (conditional symmetry, m-dependence, r-independence, mixing)

Advantages of copula-based approach

• Inversion method:

New k-Markov with dependence similar to a given Markov process Different marginals

 $\ddagger X_t: \text{ stationary } k-\text{Markov}$ $(k+1)-\text{cdf } \tilde{F}(x_1,...,x_{k+1}), \ 1-\text{cdf } F$

 \Rightarrow (k + 1)-copula:

$$C(u_1,...,u_{k+1}) = \tilde{F}\Big(F^{-1}(u_1),...,F^{-1}(u_{k+1})\Big)$$

[†] Another 1–cdf *G*: **Stationary** k–**Markov**, **same** dependence as { X_t }, **different** 1-marginal *G*:

(k+1)-copula:

$$C(u_1,...,u_{k+1}) = \tilde{F}\Big(G^{-1}(u_1),...,G^{-1}(u_{k+1})\Big)$$

Representation \Rightarrow Higher-order copulas & cdf's

 $\{X_t\}$: stationary *C*-based *k*-Markov chain

Advantages of copula-based approach

• C: all dependence properties of the time series

 $\ddagger k$ -independence, m-dependence, martingaleness, symmetry

[‡] On-going project with Johan Walden: characterizations of **time-irreversibility**; focus on $C_{t_1,...,t_k} = C_{t_k,...,t_1}$

‡ Applications: forward-looking vs. backward-looking market participants ("fundamentalists" vs. noise traders or "chartists")

‡ "Compass rose" for P_{t-1} and P_t : symmetry in copulas

Combining higher-order Markovness with other dependence properties

• A number of studies in **dependence modeling: Higher-order Markovness** + *m*-**dependence** & *r*-**independence**

Lévy (1949): 2nd order Markovness + pairwise independence

Rosenblatt & Slepian (1962): N-order N-independent stationary Markov

• Impossibility/reduction :

N-order Markov + *N*-independence + two-valued \Leftrightarrow joint independence **‡** Testing sensitivity to WD in DGP Rosenblatt & Slepian (1962)

Combining Markovness with other dependencies

‡ Examples:

Not 1-order Markovian

But 1-st order transition probabilities

 $P(s, x, t, A) = P(X_t \in A | X_s = x)$ satisfy C-K SE

$$P(s,x,t,A) = \int_{-\infty}^{\infty} P(u,\xi,t,A)P(s,x,u,d\xi)$$

(other examples: Feller, 1959, Rosenblatt, 1960)

Combining Markovness with other dependencies

‡ 1-dependent Markov: Aaronson, Gilat and Keane (1992)

Burton, Goulet and Meester (1993), Matúš (1996)

‡ Matúš (1998): m-dependent discrete-space Markov

‡ Impossibility/Reduction:

 \nexists stationary *m*-dependent Markov if *card*(Ω) < *m* + 2

Markovness of higher-order and *k*-independence

- Characterization of stationary
- k-independent k-Markov processes
- $\{X_t\}$: *C*-based *k*-independent stationary
- k-Markov iff

$$\frac{\partial^{k+1}C(u_1,...,u_{k+1})}{\partial u_1...\partial u_{k+1}} = 1 + g(u_1,...,u_{k+1})$$

 $g: [0,1]^{k+1} \rightarrow [0,1]$: canonical g-function

(Integrability + more degeneracy + positive definiteness)

Markovness of higher-order and *k*-independence

$$\begin{split} \int_0^1 ... \int_0^1 |g(u_1,...,u_{k+1})| du_1 ... du_{k+1} < \infty \\ \int_0^1 ... \int_0^1 g(u_1,...,u_{k+1}) g(u_2,...,u_{k+2}) ... g(u_s,...,u_{k+s}) du_{i_1} ... du_{i_s} = 0 \\ \forall s \le u_{i_1} < ... < u_{i_s} \le k+1, \ s = 1,2,..., \left[\frac{k+1}{2}\right] \\ g(u_1,...,u_{k+1}) \ge -1 \end{split}$$

• Integration: w.r. to all s among $u_s, u_{s+1}, ..., u_{k+1}$ common to all g-functions $g(u_1, ..., u_{k+1}), g(u_2, ..., u_{k+2}), ..., g(u_s, ..., u_{k+s})$

- *k*-marginals: product copulas, independence
- k-independence: satisfied

Markovness of higher-order and *m*-independence

• $\{X_t\}$: C-based m-dependent 1-Markov iff

$$\frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} = 1 + g(u_1, u_2)$$

 $g: [0,1]^2 \rightarrow [0,1]$: canonical g-function:

$$\int_0^1 \int_0^1 |g(u_1, u_2)| du_1 du_2 < \infty$$

 $\int_0^1 g(u_1, u_2) du_i = 0, \ g(u_1, u_2) \ge -1$
 $\int_0^1 g(u_1, u_2) g(u_2, u_3) ... g(u_m, u_{m+1}) du_2 du_3 ... du_m = 0$

‡ Integration: w.r. to u_2, u_3, \dots, u_m more than once among $g(u_1, u_2), g(u_2, u_3), \dots, g(u_m, u_{m+1})$

 X_1 , X_{m+1} : independent; Process: *m*-dependent

New examples via existing constructions

- Higher-order Markovness + martingaleness
- Inversion method + existing examples \Rightarrow
- k-independent, m-dependent Markov processes

different marginals

Reduction & impossibility for *k*-order Markov processes

$$\ddagger \frac{\partial^{k+1} C(u_1,...,u_{k+1})}{\partial u_1...\partial u_{k+1}} = 1 + g(u_1,...,u_{k+1})$$

 $\ddagger g :$ product form (EFGM-type): $g(u_1, u_2, ..., u_{k+1}) = \alpha f(u_1) f(u_2) ... f(u_{k+1})$

 $\Leftrightarrow \{X_t\}$: jointly independent

Examples: EFGM and power copulas

• (k+1)-**EFGM** copulas:

$$C(u_1, u_2, ..., u_{k+1}) = \prod_{i=1}^{k+1} u_i \Big(1 + \alpha (1 - u_1)(1 - u_2) ... (1 - u_{k+1}) \Big)$$

$$g(u_1, u_2, ..., u_{k+1}) = \alpha(1 - 2u_1)(1 - 2u_2)...(1 - 2u_{k+1})$$

• (k+1)-power copulas

$$C(u_1, u_2, ..., u_{k+1}) = \prod_{i=1}^{k+1} u_i \Big(1 + \alpha (u_1' - u_1'^{i+1}) (u_2' - u_2'^{i+1}) ... (u_{k+1}' - u_{k+1}'^{i+1}) \Big)$$

 $l \ge 0$ (EFGM: l = 0)

Impossibility/reduction for *m*-dependence

•
$${X_t}: C-based m-dependent Markov$$

$$\ddagger \frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} = 1 + \alpha f(u_1) f(u_2)$$

(separable product form)

- $\Leftrightarrow X_t$: jointly independent
- Representations \Rightarrow

$$\int_{0}^{1} \dots \int_{0}^{1} \alpha^{m} f(u_{1}) f^{2}(u_{2}) \dots f^{2}(u_{m}) f(u_{m+1}) du_{2} \dots du_{m} = 0;$$

$$\alpha^{m} f(u_{1}) f(u_{m+1}) \Big[\int_{0}^{1} f^{2}(u_{2}) du_{2} \Big]^{m-1} = 0$$

 $\Rightarrow f = 0 \Leftrightarrow$ Independence

Examples, new and old

‡ EFGM copulas, k = 1:

$$C(u_1, u_2) = u_1 u_2 \Big(1 + \alpha (1 - u_1) (1 - u_2) \Big)$$
$$g(u_1, u_2) = \alpha (1 - 2u_1) (1 - 2u_2)$$

• Limitations of EFGM copulas,

separable copulas:

Complement & generalize existing results

Examples, new and old

‡ Cambanis (1991): common dependenciescannot be exhibited by multivariate EFGM

$$egin{aligned} & C_{j_1,...,j_n}(u_{j_1},...,u_{j_n}) = \ & \prod_{s=1}^n u_{j_k} \Big(1 + \sum_{1 \leq l < m \leq n} lpha_{lm} (1-u_{j_l}) (1-u_{j_m}) \Big) \end{aligned}$$

‡ Rosenblatt & Slepian (1962): non-existence of bivariate N-independent N-Markov

Sharakhmetov & Ibragimov (2002):

EFGM copulas for two-valued r.v.'s

† Technical difficulties in modeling

Solution: New flexible copula classes

- Copula-based TS with flexible dependencies
- ‡ Copulas based on Fourier polynomials
- k-independent k-Markov: Conditions satisfied for

$$g(u_1, ..., u_{k+1}) = \sum_{j=1}^{N} \left[\alpha_j \sin(2\pi \sum_{i=1}^{k+1} \beta_i^j u_i) + \gamma_j \cos(2\pi \sum_{i=1}^{k+1} \beta_i^j u_i) \right]$$

$$\ddagger \alpha_j, \gamma_j \in \mathbf{R}, \ \beta_i^j \in \mathbf{Z}, \ i = 1, ..., k+1, \ j = 1, ..., N:$$

$$\ddagger \beta_1^{j_1} + \sum_{l=2}^{s} \epsilon_{l-1} \beta_l^{j_l} \neq 0$$

$$\epsilon_1, ..., \epsilon_{s-1} \in \{-1, 1\}, \ s = 2, ..., k+1$$

$$\ddagger 1 + \sum_{j=1}^{N} \left[\alpha_j \epsilon_j + \gamma_j \epsilon_{j+N} \right] \ge 0, \ \epsilon_1, ..., \epsilon_{2N} \in \{-1, 1\}$$

Fourier copulas

$$C(u_1,...,u_{k+1}) = \int_0^{u_1} \dots \int_0^{u_{k+1}} (1 + g(u_1,...,u_{k+1})) du_1 \dots du_{k+1}$$

(k+1)-Fourier copulas

Fourier copulas

• 1-dependent 1-Markov:

Conditions satisfied for Fourier copulas

$$C(u_1, u_2) = \int_0^{u_1} \int_0^{u_2} (1 + g(u_1, u_2)) du_1 du_2$$

$$g(u_1, u_2) = \sum_{j=1}^{N} \left[\alpha_j sin(2\pi(\beta_1^j u_1 + \beta_2^j u_2)) + \gamma_j cos(2\pi(\beta_1^j u_1 + \beta_2^j u_2)) \right]$$

 $\ddagger \alpha_j, \gamma_j \in \mathbf{R}, \ \beta_1^j, \beta_2^j \in \mathbf{Z}$:

$$\begin{aligned} \beta_1^{j_1} + \beta_2^{j_2} \neq \mathbf{0} \\ \beta_1^{j_1} - \beta_2^{j_2} \neq \mathbf{0} \\ \mathbf{1} + \sum_{j=1}^N [\alpha_j \epsilon_j + \gamma_j \epsilon_{j+N}] \geq \mathbf{0} \end{aligned}$$

 $\forall \epsilon_1,...,\epsilon_{2\textit{N}} \in \{-1,1\}$

Concluding remarks

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
- · General representations for joint cdf's and copulas of arbitrary r.v.'s
 - Joint cdf's and copulas of **dependent** r.v.'s = sums of *U*-statistics in **independent** r.v.'s
 - Similar results: expectations of arbitrary statistics in dependent r.v.'s
 - New representations for multivariate dependence measures
 - Complete characterizations of classes of dependent r.v.'s
 - Methods for constructing new copulas
 - Modeling different dependence structures

Concluding remarks

- Copula-based modeling for time series
- Characterizations of dependence in terms of copulas
 - Markovness of arbitrary order
 - Combining Markovness with other dependencies:

m-dependence, r-independence, martingaleness, conditional symmetry

Non-Markovian processes satisfying Kolmogorov-Chapman SE

Concluding remarks

- New flexible copulas to combine dependencies
- Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten copulas)
- power functions (power copulas); Fourier polynomials (Fourier copulas)
- Impossibility/reduction: Copula-based dependence + specific copulas
 ⇔ Independence

Copula memory

- Long-memory via copulas: various definitions
- Dependence measures & copulas
- Gaussian & EFGM ⇒ short-memory Markov
- Fast exponential decay of dependence between X_t & X_{t+h}
- Numerical results ⇒ Clayton copula-based Markov {*Xt*} : can behave as long memory (copulas) in finite samples
 - High persistence important for finance & economics
- Long memory-like: X_t & X_{t+h} : slow decay of dependence for commonly used lages h
- Volatility modeling & Nonlinear dependence in finance
- Non-linear CH & long memory-like volatility
- Generalizations of GARCH

Copula memory

Beare (2008) & Chen, Wu & Yi (2008): numerical & theoretical results on (short & long) memory in copulas

Beare (2008): α , β & ϕ -mixing

- $\kappa(h) \leq \alpha(h) \leq \beta(h) \leq 0.5\phi(h)$
- Numerical results \Rightarrow Clayton: exponential decay in $\beta(h) \Rightarrow$ short κ -memory in copulas

Theoretical results in Chen, Wu & Yi (2008):

- Clayton: weakly dependent & short memory in terms of mixing properties!
- Our numerical results + Chen, Wu & Yi (2008): Non-robustness of procedures for detecting long memory in copulas

Objectives and key results

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
 - M. Ibragimov, R. Ibragimov & J. Walden, *Heavy-tailedness and Robustness in Economics and Finance*, Lecture Notes in Statistics, Springer, Forthcoming.
 - R. Ibragimov & A. Prokhorov, *Topics in Majorization, Stochastic Openings and Dependence Modeling in Economics and Finance*, World Scientific Press, In preparation.
- General representations for joint cdf's and copulas of arbitrary r.v.'s
- Copula-based modeling for time series
- Characterizations of time series dependence in terms of copulas
- New flexible copulas to combine dependencies
- Long-memory via copulas: various definitions
- · Non-robustness of procedures for detecting long memory in copulas