Heavy-tailedness and diversification disasters: Implications for models in economics, finance and insurance

Rustam Ibragimov
Imperial College Business School

Based on joint works with Dwight Jaffee and Johan Walden
(Haas School of Business, University of California at Berkeley)
Objectives and key results

• *(Sub-)*Optimality of diversification under heavy tails & dependence

• *(Non-)*robustness of models in economics & finance to heavy tails, heterogeneity & dependence

• Implications for financial & (re-)insurance markets: Diversification traps & disasters

Stylized Facts of Real-World Returns

Daily % changes in the Dow Jones Industrial Average, Jan. 1980 - Sept. 2007
Dependence vs. margins in economic and financial problems

• Problems in finance, economics & risk management:
 Solution is affected by both

 • Marginal distributions (Heavy-Tailedness, Skewness)
 • Dependence (Positive or Negative, Asymmetry)

• Portfolio choice & value at risk (VaR)
 • Marginal effects under independence: Heavy-Tailedness
 Moderately HT vs. extremely HT \(\implies\) Opposite solutions
 • Different solutions: Positive vs. negative dependence

• Similar conclusions on (non-)robustness to heavy-tailedness:
 other models in economics, finance & econometrics:
 • Optimal bundling, firm growth theory, efficiency of statistical & econometric estimators, time series models
Normal vs. Heavy-tailed Power Laws
Heavy-tailed margins

• Many economic & financial time series: power law tails:
 \[P(|X| > x) \approx \frac{c}{x^\alpha}, \alpha > 0 \] : tail index

• Moments of order \(p \geq \alpha \) : infinite; \(E|X|^p < \infty \) iff \(p < \alpha \)

 • \(\alpha \leq 4 \implies \text{Infinite fourth moments: } E|X|^4 = \infty \)
 • \(\alpha \leq 2 \implies \text{Infinite variances: } E|X|^2 = \infty \)
 • \(\alpha \leq 1 \implies \text{Infinite first moments: } E|X| = \infty \)

• Returns on many stocks & stock indices: \(\alpha \in (2, 4) \)
 \(\Rightarrow \text{finite variance, infinite fourth moment} \)
A tale of two tails

Light vs. heavy tails

Figure: Tails of Cauchy distributions are heavier than those of normal distributions. Tails of Lévy distributions are heavier than those of Cauchy or normal distributions.
A tale of two tails

Simulated data from Normal, Cauchy and Levy distributions, n=25

Figure: Heavy-tailed distributions: more extreme observations
Heavy-tailed margins

\[P(|X| > x) \approx \frac{c}{x^\alpha} \]

- **Income**: \(\alpha \in [1.5, 3] \Rightarrow \text{infinite } EX^4 \), possibly infinite variances
- **Wealth**: \(\alpha \approx 1.5 \Rightarrow \text{infinite variances!} \)
- **Returns** from technological innovations, **Operational risks**: \(\alpha < 1 \Rightarrow \text{infinite means } E|X| = \infty! \)
- **Firm sizes, sizes of largest mutual funds, city sizes**: \(\alpha \approx 1 \)
- **Economic losses** from earthquakes: \(\alpha \in [0.6, 1.5] \Rightarrow \text{infinite variances, possibly infinite means} \)
- **Economic losses** from hurricanes: \(\alpha \approx 1.56; \alpha \approx 2.49 \)
Stable distributions

- $X \sim S_\alpha(\sigma)$: symmetric stable distribution, $\alpha \in (0, 2]
 \quad \text{CF: } E(e^{ixX}) = \exp\{-\sigma^\alpha |x|^\alpha\}$

- Normal $\mathcal{N}(0, \sigma)$: $\alpha = 2$

- Cauchy: $\alpha = 1$, $f(x) = \frac{\sigma}{\pi(\sigma^2 + x^2)}$

- Lévy: $\alpha = 1/2$, support $[0, \infty)$, $f(x) = \frac{\sigma}{\sqrt{2\pi}}x^{-3/2}\exp\left(-\frac{1}{2x}\right)$

- Power laws: $P(|X| > x) \approx \frac{C}{x^\alpha}$, $\alpha \in (0, 2)$

- Moments $E|X|^p$: finite iff $p < \alpha$
 - Infinite variances for $\alpha < 2$

- Portfolio formation: $\sum_{i=1}^n w_i X_i =_d (\sum_{i=1}^n w_i^\alpha)^{1/\alpha} X_1$
 - $\alpha = 2$ (normal): $\frac{1}{\sqrt{n}}(X_1 + \ldots + X_n) =_d X_1$
Value at risk (VaR)

• VaR
 • Risk X; positive values = losses
 • Loss probability q
 • $\text{VaR}_q(X) = z : P(X > z) = q$

• Risks X_1, \ldots, X_n

• $Z_w = \sum_{i=1}^{n} w_i X_i$: return on portfolio with weights $w = (w_1, \ldots, w_n)$

• Problem of interest:

 \[\text{Minimize} \, \text{VaR}_q(Z_w) \]

 s.t. $w_i \geq 0$, $\sum_{i=1}^{n} w_i = 1$

• When diversification \Rightarrow decrease in portfolio riskiness (VaR)?
Diversification & risk

- **Most diversified:** $w = (1/n, 1/n, \ldots, 1/n) \Rightarrow Z_w = \frac{1}{n} \sum_{i=1}^{n} X_i$

- **Least diversified:** $\bar{w} = (1, 0, \ldots, 0) \Rightarrow Z_{\bar{w}} = X_1$

- $X_1, \ldots, X_n \sim \mathcal{N}(0, \sigma)$ ($\alpha = 2$)

- $Z_w = \frac{1}{n} \sum_{i=1}^{n} X_i = d \frac{1}{\sqrt{n}} X_1 = \frac{1}{\sqrt{n}} Z_{\bar{w}}$

- $\text{VaR}_q(Z_w) = \frac{1}{\sqrt{n}} \text{VaR}_q(Z_{\bar{w}}) < \text{VaR}_q(Z_{\bar{w}})$

- $\text{VaR}_q(Z_w) \downarrow$ as $n \uparrow$ (Diversification \nearrow)
Diversification & risk

- \(X_1, \ldots, X_n \sim S_{1/2}(\sigma), \alpha = 1/2, \) Lévy distribution
 - \(Z_w = \frac{1}{n} \sum_{i=1}^{n} X_i = d \left[\sum_{i=1}^{n} \left(\frac{1}{n} \right)^{1/2} \right]^2 X_1 = nX_1 = nZ_w \)
 - \(\text{VaR}_q(Z_w) = n\text{VaR}_q(Z_w) > \text{VaR}_q(Z_w) \)
 - \(\text{VaR}_q(Z_w) \uparrow \) as \(n \uparrow \) (Diversification \(\uparrow \))

- Heavy tails (margins) matter:
 - diversification \(\implies \) opposite effects on portfolio riskiness

- Skewness: typically priced
Heavy-tailedness & diversification

- **Moderate** heavy tails $\alpha > 1$: finite first moments

 $\text{VaR}_q(Z_w) < \text{VaR}_q(Z_{\bar{w}}) \quad \forall q > 0$

 Optimal to **diversify for all** loss probabilities q

- **Extremely** heavy tails $\alpha < 1$: infinite first moments

 $\text{VaR}_q(Z_w) < \text{VaR}_q(Z_{\bar{w}}) \quad \forall q > 0$

 Diversification: **suboptimal for all** loss probabilities q

- **Similar** conclusions: **Many other models in economics & finance**

 - Firm growth theory, optimal bundling, monotone consistency of sample mean, efficiency of linear estimators

 - Robust to moderate heavy tails

 - Properties: reversed under extremely heavy tails
What happens for intermediate heavy-tails?

- X_1, \ldots, X_n i.i.d. stable with $\alpha = 1$: Cauchy distribution
 - Density $f(x) = \frac{\sigma}{\pi(\sigma^2+x^2)}$
 - Heavy power law tails: $P(|X| > x) \approx \frac{C}{x}$
 - Infinite first moment

- $Z_w = \sum_{i=1}^{n} w_i X_i =_d X_1 \forall w = (w_1, \ldots, w_n) : w_i \geq 0,$

- Diversification: no effect at all!
Summary so far: Diversification for heavy-tailed and bounded distributions

- A. Light-tailed i.i.d. Z_i with $\alpha > 1$.
 Example: Traditional situation with normal Z_i

- B. Extremely heavy-tailed i.i.d. Z_i with $\alpha < 1$.
 Example: Levy distribution with $\alpha = 1/2$

- C. Specific boundary case: i.i.d. Cauchy Z_i with $\alpha = 1$

- D. Bounded Z_i

Figure: $N = 10$ risks/insurer; $M = 7$ insurers

- D: Individual/non-diversification corners vs insurer and reinsurer equilibrium
1st example: full risk pooling with normally distributed risks

Assume:
1 ≤ s ≤ M (= 5) insurers
N (= 20) risks/insurer
1 ≤ j ≤ Ns total risks
 i.i.d. normal X_i
CARA utility, Unlimited liability

Results:
If M − 1 insurers are pooling, so will Mth
If no insurers pool, each still has N risks

\[z_{j,s} = \left(\sum_{i=1}^{j} X_i \right) / s \]
2nd example: Bernoulli-Lévy distribution with limited liability

Assume:
Limited liability:
maximum loss \(k = 80 \)
\(M = 5 \) insurers
\(N = 20 \) max risks/insurer
\[u(x) = (x + k)^{3/4} \]
\[z_{j,s} = \left(\sum_{i=1}^{j} X_i \right) / s \]

Results:
If insurers can coordinate, they can reach
\(MN = 100 \) reinsurance equilibrium
But if not, each insurer reverts to the \(N = 0 \) corner
Implications for markets for catastrophic risks

- **Equilibria in re-insurance markets for catastrophe risks** (Ibragimov, Jaffee and Walden, RFS)
 - A *diversification equilibrium* with *full risk pooling* for normally distributed (*light-tailed*) risks
 - No risk pooling & no insurance or reinsurance activity (*market collapse*) for extremely heavy-tailed cat risks
 - Intermediate cases (*heavy tails*): both
 - *Diversification equilibria*, in which insurers offer catastrophe coverage and reinsurance their risks
 - *Non-diversification equilibria* with no insurance or re-insurance
 - A *coordination problem* must be solved to shift from the bad to the good equilibrium

Government regulations or well functioning capital markets
Implications for markets for catastrophic risks

- **Catastrophic risks** have many **features favorable** to the provision of insurance
 - Generally **independent** over **risk types** and **geography**
 - **Few issues** of **asymmetric information** at the risk level
 - So a **complete failure** of these markets is puzzling

- We have shown that **market failures** (non-diversification traps) may arise when risks are **fat-tailed** and there is **limited liability**
 - **Diversification** may not be **beneficial** for the **single insurer**, although a **full reinsurance equilibrium** may exist.
 - **Government** programs (or diversified equity owners) may allow the **system to reach** the **full diversification** outcome
Diversification & dependence

- Minimize $VaR_q(w_1X_1 + w_2X_2)$ s.t. $w_1, w_2 \geq 0, w_1 + w_2 = 1$

- Independence:
 - Optimal portfolio: $(\tilde{w}_1, \tilde{w}_2) = (\frac{1}{2}, \frac{1}{2})$ (diversified) if $\alpha > 1$ (not extremely heavy-tailed, finite means)
 - $(\tilde{w}_1, \tilde{w}_2) = (1, 0)$ (not diversified, one risk) if $\alpha < 1$ (extremely heavy-tailed, infinite means)
Diversification & dependence

- Extreme **positive dependence**: $X_1 = X_2$ (a.s.) comonotonic risks

 - $\text{VaR}_q(w_1 X_1 + w_2 X_2) = \text{VaR}_q(X_1)$ \(\forall w\)

 - Diversification: no effect at all (similar to Cauchy) regardless of heavy-tailedness

- Extreme **negative dependence** $X_1 = -X_2$ (a.s.) countermonotonic risks

 - $\text{VaR}_q(w_1 X_1 + w_2 X_2) = (w_1 - w_2) \text{VaR}_q(X_1)$

 - Optimal portfolio: $\overline{w} = (1/2, 1/2)$ (most diversified regardless of heavy-tailedness

- Optimal **portfolio choice**: affected by both dependence & properties of margins
Copulas and dependence

- **Main idea**: separate effects of *dependence* from effects of *margins*

 - What *matters* more in *portfolio choice*: heavy-tailedness & skewness or (positive or negative) *dependence*?

- **Copulas**: functions that *join together marginal* cdf’s to form *multidimensional* cdf
Copulas and dependence

- Sklar’s theorem

- Risks X, Y:

 - Joint cdf $H_{XY}(x, y) = P(X \leq x, Y \leq y)$: affected by dependence and by marginal cdf’s $F_X(x) = P(X \leq x)$ and $G_Y(y) = P(Y \leq y)$

 - $C_{XY}(u, v)$: copula of X, Y:

 $$H_{XY}(x, y) = C_{XY} \left(F_X(x), G_Y(y) \right)$$

 dependence marginals

- C_{XY}: captures all dependence between risks X and Y
Copulas and dependence

Advantages:

- **Exists for any risks** (correlation: finiteness of second moments)

- Characterizes **all dependence** properties

- **Flexibility in dependence modeling**

 - Asymmetric dependence: **Crashes vs. booms**

 - **Positive vs. negative** dependence

- **Independence**: Nested as a particular case: **Product** copula, particular values of parameter(s)

- **Extreme dependence**: $X = Y$ or $X = -Y$ \iff extreme copulas; dependence in C_{XY} varies in between
Copula structures

- **Archimedean** copulas

\[C(u, v) = \phi^{-1}(\phi(u) + \phi(v)) \]

- **Contagion**: Non-zero tail dependence coeff.

\[
\begin{align*}
\lambda_L &= \lim_{u \to 0^+} P[Y \leq F^{-1}(u) | X \leq F_X^{-1}(u)] = \lim_{u \to 0^+} \frac{C(u, u)}{u} \\
\lambda_U &= \lim_{u \to 1^-} P[Y > F^{-1}(u) | X > F_X^{-1}(u)] = \lim_{u \to 1^-} \frac{1 - 2u + C(u, u)}{1 - u}
\end{align*}
\]

- **Clayton & Gumbel** copulas
Copula structures

- **Eyraud-Farlie-Gumbel-Morgenstern (EFGM):**

 \[C(u, v) = uv[1 + \gamma (1 - u)(1 - v)] \]

 \(\gamma \in [-1, 1] \): dependence parameter Tail independent: no contagion

- **Heavy-tailed** Pareto marginals:

 \[P(X > x) = \frac{1}{x^\alpha}, \quad x \geq 1 \]

- **Power laws**, tail index \(\alpha \)
Diversification: Copulas & heavy tails

Embrechts, Nešlehová & Wüthrich (2009): **Archimedean** copulas

- **Moderate** heavy tails $\alpha > 1$: finite first moment

\[
\text{VaR}_q\left(\frac{X + Y}{2}\right) < \text{VaR}_q(X) \quad \text{for sufficiently small } q
\]

Optimal to **diversify** for sufficiently small loss probabilities q

- **Extremely** heavy tails $\alpha < 1$: infinite first moments

\[
\text{VaR}_q\left(\frac{X + Y}{2}\right) > \text{VaR}_q(X) \quad \text{for sufficiently small } q
\]

Diversification: suboptimal for suff. small loss prob. q

Ibragimov & Prokhorov (2013): Similar conclusions for **EFGM**

- Tail **independent** EFGM & tail **dependent** Archimedean
 (Clayton, Gumbel): *same* boundary $\alpha = 1$ as in the case of independence
When dependence helps: Student-t copulas

- Conclusions similar to independence: Models with common shocks

 \[X_1 = ZY_1, X_2 = ZY_2, \ldots, X_n = ZY_n \]

- Common shock $Z > 0$ affecting all risks X_1, \ldots, X_n

- $Y_1, \ldots, Y_n : \text{i.i.d. normal or heavy-tailed with tail index } \alpha$

 \[Z : \text{heavy-tailed with tail index } \beta \]

 Then $X_i : \text{heavy-tailed with tail index } \gamma = \min(\alpha, \beta)$

- Important particular case: (Dependent) Multivariate Student-t

 X_1, X_2, \ldots, X_n with α d.f. (tail index) \Rightarrow Optimal to diversify for all loss probabilities q regardless of tail index α

 - Tail dependent Student-t copula and heavy-tailed margins with arbitrary tail index α : diversification pays off

- Contrast: Independent Student-t X_1, X_2, \ldots, X_n with α d.f. (tail index): diversification optimal for $\alpha > 1$; suboptimal for $\alpha < 1$
Diversification: Heavy-tailedness & dependence matter

- **Independence, Tail dependent** models with **common shocks** (e.g., Student-\(t\) distr. = Student-\(t\) copula with Student-\(t\) marginals):
 - Diversification always **pays off** for all loss probabilities \(q\)

- **Tail independent** EFGM, possibly **tail dependent** Archimedean copulas (e.g., Clayton & Gumbel):
 - **Dividing boundary** \(\alpha = 1\) for sufficiently small loss probability \(q\)

- **Numerical** results on interplay of **heavy-tailedness & dependence** (copula) assumptions and **loss probability** \(q\) in **diversification** decisions:
 - **Deviations** from threshold \(\alpha = 1\) for different **copulas** and **loss probabilities** \(q\)

- **Theoretical** results for **general** copulas = ?

- **(Non-)robustness** of other models in economics & finance
Key results

• **(Sub-)Optimality** of diversification under **heavy tails & dependence**

• **(Non-)robustness** of models in economics & finance to heavy tails, heterogeneity & dependence

• Implications for **financial & (re-)insurance markets**:
 Diversification traps & disasters

Key results

- (Sub-)Optimality of diversification under heavy tails & dependence

- (Non-)Robustness of models in economics & finance to heavy tails, heterogeneity & dependence

- Implications for financial & (re-)insurance markets: Diversification traps & disasters
Characterizations of copulas & dependence

- V_1, \ldots, V_n: i.i.d. $\mathcal{U}([0, 1])$

- C: $n-$copula iff $\exists \tilde{g}_{i_1, \ldots, i_c}$ s.t.

 A1 (integrability):

 \[
 \int_0^1 \cdots \int_0^1 |\tilde{g}_{i_1, \ldots, i_c}(t_{i_1}, \ldots, t_{i_c})| dt_{i_1} \cdots dt_{i_c} < \infty
 \]

 A2 (degeneracy):

 \[
 E_{V_{i_k}} \left[\tilde{g}_{i_1, \ldots, i_c} (V_{i_1}, \ldots, V_{i_{k-1}}, V_{i_k}, V_{i_{k+1}}, \ldots, V_{i_c}) \right] = 0
 \]

 A3 (positive definiteness):

 \[
 \tilde{U}_n(V_1, \ldots, V_n) \equiv \sum_{c=2}^{n} \sum_{1 \leq i_1 < \ldots < i_c \leq n} \tilde{g}_{i_1, \ldots, i_c} (V_{i_1}, \ldots, V_{i_c}) \geq -1
 \]
• Representation for C:

$$C(u_1, ..., u_n) = \int_0^{u_1} ... \int_0^{u_n} (1 + \tilde{U}_n(t_1, ..., t_n)) \prod_{i=1}^n dt_i$$

• \tilde{U}_n: sum of **degenerate** $U-$statistics
Device for **constructing* n–copulas and cdf’s**

- **Bivariate Eyraud-Farlie-Gumbel-Morgenstern copulas & cdf’s:**
 \[
 C_\theta(u, v) = uv (1 + \theta(1 - u)(1 - v)) \\
 H_\theta(x, y) = F(x)G(y)\left(1 + \theta(1 - F(x))(1 - G(y))\right)
 \]

 $n = 2; \; \tilde{g}_{1,2}(t_1, t_2) = \theta(1 - 2t_1)(1 - 2t_2), \; \theta \in [-1, 1]$

- **Multivariate EFGM copulas & cdf’s:**
 \[
 C_\theta(u_1, u_2, ..., u_n) = \prod_{i=1}^{n} u_i \left(1 + \theta \prod_{i=1}^{n} (1 - u_i)\right)
 \]
 \[
 \tilde{g}_{i_1, ..., i_c}(t_{i_1}, ..., t_{i_c}) = \theta_{i_1, ..., i_c} (1 - 2t_{i_1})(1 - 2t_{i_2})...(1 - 2t_{i_c})
 \]
• **Generalized multivariate EFGM copulas** (Johnson and Kotz, 1975, Cambanis, 1977)

\[
C(u_1, \ldots, u_n) = \prod_{k=1}^{n} u_k \left(1 + \sum_{c=2}^{n} \sum_{1 \leq i_1 < \cdots < i_c \leq n} \theta_{i_1, \ldots, i_c} (1 - u_{i_k}) \right)
\]

\[
\tilde{g}_{i_1, \ldots, i_c}(t_{i_1}, \ldots, t_{i_c}) = 0, \; c < n - 1
\]

\[
\tilde{g}_{1,2,\ldots,n}(t_1, t_2, \ldots, t_n) = \theta(1 - 2t_1)(1 - 2t_2)\cdots(1 - 2t_n)
\]

• **Generalized EFGM copulas**: complete **characterization** of joint **cdf’s** of **two-valued r.v.’s** (Sharakhmetov & Ibragimov, 2002)
From dependence to independence through
\(U \)-statistics

\(G_n: \) sums of \(U \)-statistics

\[
U_n(\xi_1, \ldots, \xi_n) = \sum_{c=2}^{n} \sum_{1 \leq i_1 < \ldots < i_c \leq n} g_{i_1, \ldots, i_c}(\xi_{i_1}, \ldots, \xi_{i_c})
\]

\(g_{i_1, \ldots, i_c} \): satisfy A1-A3

- Arbitrarily dependent r.v.'s:
 sum of \(U \)-statistics in independent r.v.'s with canonical kernels

- Reduction of problems for dependence to well-studied objects

- Transfer of results for \(U \)-statistics under independence
From dependence to independence through U–statistics

- $X_1, ..., X_n$: 1-cdf’s $F_k(x_k)$
- $\xi_1, ..., \xi_n$: independent copies (1-cdf’s $F_k(x_k)$)

$\exists U_n \in G_n$ s.t. $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$Ef(X_1, ..., X_n) = Ef(\xi_1, ..., \xi_n) \left(1 + U_n(\xi_1, ..., \xi_n) \right)$$

- Representation for c.f.’s:

$$E\exp \left(i \sum_{k=1}^{n} t_k X_k \right) = E\exp \left(i \sum_{k=1}^{n} t_k \xi_k \right) + E\exp \left(i \sum_{k=1}^{n} t_k \xi_k \right) U_n(\xi_1, ..., \xi_n)$$

‡ CLT for bivariate r.v.’s
Characterizations of dependence

- **Canonical** g's: complete **characterizations** of dependence properties

- $X_1, ..., X_n$: r-**independent** if \forall r jointly independent \iff $g_{i_1, ..., i_c}(V_{i_1}, ..., V_{i_c}) = 0$ (a.s.) $1 \leq i_1 < ... < i_c \leq n$, $c = 2, ..., r$

\[
g_{i_1, ..., i_{r+1}}(u_{i_1}, ..., u_{i_{r+1}}) = \frac{\alpha_1 \cdots \alpha_n}{\alpha_{i_1} \cdots \alpha_{i_{r+1}}} \left((k + 1)u_{i_1}^k - (k + 2)u_{i_1}^{k+1} \right) \times \cdots \times \left((k + 1)u_{i_c}^k - (k + 2)u_{i_c}^{k+1} \right)
\]

\[
C(u_1, ..., u_n) = \prod_{i=1}^{n} u_i \left(1 + \sum_{1 \leq i_1 < ... < i_{r+1} \leq n} \frac{\alpha_1 \cdots \alpha_n}{\alpha_{i_1} \cdots \alpha_{i_{r+1}}} \times \left(u_{i_1}^k - u_{i_1}^{k+1} \right) \times \cdots \times \left(u_{i_{r+1}}^k - u_{i_{r+1}}^{k+1} \right) \right)
\]

Extensions of Wang (1990) $(k = 0)$
Copulas and Markov processes

- Darsow, Nguyen and Olsen, 1992: copulas and first-order Markovness

- $A, B : [0, 1]^2 \rightarrow [0, 1] :$

$$ (A \ast B)(x, y) = \int_0^1 \frac{\partial A(x, t)}{\partial t} \cdot \frac{\partial B(t, y)}{\partial t} dt $$

- $A : [0, 1]^m \rightarrow [0, 1], B : [0, 1]^n \rightarrow [0, 1] : \ast - product$

$$ A \ast B(x_1, \ldots, x_{m+n-1}) = $$

$$ \int_0^{x_m} \frac{\partial A(x_1, \ldots, x_{m-1}, \xi)}{\partial \xi} \cdot \frac{\partial B(\xi, x_{m+1}, \ldots, x_{m+n-1})}{\partial \xi} d\xi $$
Copulas and Markov processes

- Transition probabilities

$$P(s, x, t, A) = P(X_t \in A | X_s = x)$$ satisfy CKE's

iff $$C_{st} = C_{su} \ast C_{ut} \ \forall s < u < t$$

- $$X_t$$: first-order Markov iff

$$C_{t_1, \ldots, t_n} = C_{t_1 t_2} \ast C_{t_2 t_3} \ast \ldots \ast C_{t_{n-1} t_n}$$
New results: Higher-order Markovness and copulas

• $\{X_t\}_{t \in T}$: k-order Markov \iff

$$P(X_t < x_t | X_{t_1}, \ldots, X_{t_{n-k}}, X_{t_{n-k+1}}, \ldots, X_{t_n}) =$$

$$P(X_t < x_t | X_{t_{n-k+1}}, \ldots, X_{t_n})$$

• Complete characterization in terms of $(k+1)$-copulas

• C_{t_1, \ldots, t_k}: copulas of X_{t_1}, \ldots, X_{t_k}

• $\{X_t\}_{t \in T}$: k-order Markov iff $\forall t_1 < \ldots < t_n, \ n \geq k + 1$

$$C_{t_1, \ldots, t_n} = C_{t_1, \ldots, t_{k+1}} \ast^k C_{t_2, \ldots, t_{k+2}} \ast^k \ldots \ast^k C_{t_{n-k}, \ldots, t_n}$$
Stationary case

- \(X_t \): stationary \(k \)-order Markov iff

\[
C_{1,...,n}(u_1, ..., u_n) = C \star^k C \star^k ... \star^k C(u_1, ..., u_n)
= C^{n-k+1}(u_1, ..., u_n) \quad \forall n \geq k + 1
\]

\(C \): \((k+1) \)-copula s.t.

\[
C_{i_1+h, ..., i_l+h} = C_{i_1, ..., i_l}, \quad 1 \leq j_1 < ... < j_l \leq k + 1
\]

- \(C^s \): \(s \)-fold product \(\star^k \) of \(C \)
Advantages of copula-based approach

- **Modeling higher order Markov** processes by using an alternative to transition matrices.

 - Instead of initial distribution & transition probabilities:
 - Prescribe marginals & $(k + 1)$–copulas

- Generate **copulas of higher order** & finite-dimensional cdf’s

 - **Advantage**: separation of properties of marginals (fat-tailedness) & dependence properties (conditional symmetry, m–dependence, r–independence, mixing)
Advantages of copula-based approach

- Inversion method:

New $k-$Markov with dependence similar to a given Markov process

Different marginals

† X_t: stationary $k-$Markov

$(k + 1)-\text{cdf } \tilde{F}(x_1, \ldots, x_{k+1}), 1-\text{cdf } F$

$\Rightarrow (k + 1)-\text{copula:}$

$$C(u_1, \ldots, u_{k+1}) = \tilde{F}\left(F^{-1}(u_1), \ldots, F^{-1}(u_{k+1}) \right)$$
Another 1–cdf G:

Stationary k–Markov, same dependence as $\{X_t\}$, **different** 1-marginal G:

$(k + 1)$–copula:

$$ C(u_1, ..., u_{k+1}) = \tilde{F}(G^{-1}(u_1), ..., G^{-1}(u_{k+1})) $$

Representation \Rightarrow **Higher-order copulas & cdf’s**

$\{X_t\}$: stationary C–based k–Markov chain
Advantages of copula-based approach

- C: all dependence properties of the time series
 - k-independence, m-dependence, martingaleness, symmetry
 - On-going project with Johan Walden: characterizations of time-irreversibility; focus on $C_{t_1,...,t_k} = C_{t_k,...,t_1}$
 - Applications: forward-looking vs. backward-looking market participants ("fundamentalists" vs. noise traders or "chartists")
 - "Compass rose" for P_{t-1} and P_t: symmetry in copulas
Combining higher-order Markovness with other dependence properties

- A number of studies in dependence modeling: Higher-order Markovness + \(m \)-dependence & \(r \)-independence

Lévy (1949): 2nd order Markovness + pairwise independence

Rosenblatt & Slepian (1962): \(N \)-order \(N \)-independent stationary Markov

- Impossibility/reduction:
 \(N \)-order Markov + \(N \)-independence + two-valued \(\Leftrightarrow \) joint independence

‡ Testing sensitivity to WD in DGP Rosenblatt & Slepian (1962)
Combining Markovness with other dependencies

‡ Examples:

Not 1-order Markovian

But 1-st order transition probabilities

\[P(s, x, t, A) = P(X_t \in A|X_s = x) \]

satisfy C-K SE

\[P(s, x, t, A) = \int_{-\infty}^{\infty} P(u, \xi, t, A)P(s, x, u, d\xi) \]

(other examples: Feller, 1959, Rosenblatt, 1960)
Combining Markovness with other dependencies

† 1-dependent Markov: Aaronson, Gilat and Keane (1992)
Burton, Goulet and Meester (1993), Matúš (1996)

† Matúš (1998): m–dependent discrete-space Markov

† Impossibility/Reduction:

‡ stationary m–dependent Markov if

\[\text{card}(\Omega) < m + 2 \]
Markovness of higher-order and $k-$independence

- Characterization of stationary $k-$\textbf{independent} $k-$\textbf{Markov} processes

- $\{X_t\}$: $C-$based $k-$\textbf{independent} stationary $k-$\textbf{Markov} iff

$$\frac{\partial^{k+1} C(u_1, ..., u_{k+1})}{\partial u_1 ... \partial u_{k+1}} = 1 + g(u_1, ..., u_{k+1})$$

$g : [0, 1]^{k+1} \rightarrow [0, 1]:$ \textbf{canonical} $g-$\textbf{function}

(Integrability + more degeneracy + positive definiteness)
Markovness of higher-order and k–independence

\[\int_0^1 \cdots \int_0^1 |g(u_1, \ldots, u_{k+1})| \, du_1 \cdots du_{k+1} < \infty \]

\[\int_0^1 \cdots \int_0^1 g(u_1, \ldots, u_{k+1}) g(u_2, \ldots, u_{k+2}) \cdots g(u_s, \ldots, u_{k+s}) \, du_1 \cdots du_s = 0 \]

\forall s \leq u_{i_1} < \ldots < u_{i_s} \leq k + 1, \ s = 1, 2, \ldots, \left\lceil \frac{k+1}{2} \right\rceil

\[g(u_1, \ldots, u_{k+1}) \geq -1 \]

- Integration: w.r. to all s among $u_s, u_{s+1}, \ldots, u_{k+1}$ common to all g–functions

$g(u_1, \ldots, u_{k+1}), g(u_2, \ldots, u_{k+2}), \ldots, g(u_s, \ldots, u_{k+s})$

k–marginals: product copulas, independence

k–independence: satisfied
Markovness of higher-order and m–independence

- $\{X_t\}$: C–based m–dependent 1-Markov iff

$$\frac{\partial^2 C(u_1, u_2)}{\partial u_1 \partial u_2} = 1 + g(u_1, u_2)$$

$g : [0, 1]^2 \rightarrow [0, 1]$: canonical g–function:

$$\int_0^1 \int_0^1 |g(u_1, u_2)| du_1 du_2 < \infty$$

$$\int_0^1 g(u_1, u_2) du_i = 0, \ g(u_1, u_2) \geq -1$$

$$\int_0^1 g(u_1, u_2) g(u_2, u_3) ... g(u_m, u_{m+1}) du_2 du_3 ... du_m = 0$$

‡ Integration: w.r. to $u_2, u_3, ..., u_m$ more than once among $g(u_1, u_2), g(u_2, u_3), ... , g(u_m, u_{m+1})$

X_1, X_{m+1}: independent; Process: m–dependent
New examples via existing constructions

- Higher-order Markovness + martingaleness
- Inversion method + existing examples ⇒

k–independent, m–dependent Markov processes

different marginals
Reduction & impossibility for k–order Markov processes

- $\{X_t\}$: C–based k–independent stationary k–Markov

\[\frac{\partial^{k+1} c(u_1, \ldots, u_{k+1})}{\partial u_1 \cdots \partial u_{k+1}} = 1 + g(u_1, \ldots, u_{k+1}) \]

g : product form (EFGM-type):

\[g(u_1, u_2, \ldots, u_{k+1}) = \alpha f(u_1)f(u_2)\cdots f(u_{k+1}) \]

$\Leftrightarrow \{X_t\}$: jointly independent
Examples: EFGM and power copulas

• \((k + 1)-\text{EFGM}\) copulas:

\[
C(u_1, u_2, \ldots, u_{k+1}) = \prod_{i=1}^{k+1} u_i \left(1 + \alpha (1 - u_1)(1 - u_2)\ldots(1 - u_{k+1})\right)
\]

\[
g(u_1, u_2, \ldots, u_{k+1}) = \alpha (1 - 2u_1)(1 - 2u_2)\ldots(1 - 2u_{k+1})
\]

• \((k + 1)-\text{power}\) copulas

\[
C(u_1, u_2, \ldots, u_{k+1}) = \prod_{i=1}^{k+1} u_i \left(1 + \alpha (u_1^l - u_1^{l+1})(u_2^l - u_2^{l+1})\ldots(u_{k+1}^l - u_{k+1}^{l+1})\right)
\]

\(l \geq 0\) (EFGM: \(l = 0\))
Impossibility/reduction for \(m\)-dependence

- \(\{X_t\}\): \(C\)-based \(m\)-dependent Markov

\[\frac{\partial^2 C(u_1,u_2)}{\partial u_1 \partial u_2} = 1 + \alpha f(u_1)f(u_2) \]

(separable product form)

\[\Leftrightarrow X_t: \text{jointly independent} \]

- Representations \(\Rightarrow\)

\[\int_0^1 \ldots \int_0^1 \alpha^m f(u_1)f^2(u_2)\ldots f^2(u_m)f(u_{m+1}) du_2\ldots du_m = 0; \]

\[\alpha^m f(u_1)f(u_{m+1}) \left[\int_0^1 f^2(u_2) du_2 \right]^{m-1} = 0 \]

\[\Rightarrow f = 0 \Leftrightarrow \text{Independence} \]
Examples, new and old

† EFGM copulas, $k = 1$:

\[
C(u_1, u_2) = u_1 u_2 \left(1 + \alpha (1 - u_1)(1 - u_2) \right)
\]

\[
g(u_1, u_2) = \alpha (1 - 2u_1)(1 - 2u_2)
\]

● Limitations of EFGM copulas,

separable copulas:

Complement & generalize existing results
Examples, new and old

† Cambanis (1991): **common dependencies**

cannot be exhibited by multivariate EFGM

\[
C_{j_1,...,j_n}(u_{j_1},...,u_{j_n}) = \\
\prod_{s=1}^{n} u_{j_k} \left(1 + \sum_{1 \leq l < m \leq n} \alpha_{l m} (1 - u_{j_l})(1 - u_{j_m}) \right)
\]

† Rosenblatt & Slepian (1962): **non-existence** of bivariate \(N \)-independent \(N \)-Markov

Sharakhmetov & Ibragimov (2002):

EFGM copulas for two-valued r.v.’s

† **Technical difficulties in modeling**
Solution: New flexible copula classes

- **Copula-based TS with flexible dependencies**

† Copulas based on **Fourier polynomials**

- **k–independent k–Markov: Conditions satisfied for**

$$g(u_1, ..., u_{k+1}) = \sum_{j=1}^{N} \left[\alpha_j \sin(2\pi \sum_{i=1}^{k+1} \beta_{ij} u_i) + \gamma_j \cos(2\pi \sum_{i=1}^{k+1} \beta_{ij} u_i) \right]$$

† $\alpha_j, \gamma_j \in \mathbb{R}, \beta_{ij} \in \mathbb{Z}, i = 1, ..., k + 1, j = 1, ..., N$:

† $\beta_{11}^{ij} + \sum_{l=2}^{s} \epsilon_{l-1} \beta_{l}^{ij} \neq 0$

$\epsilon_1, ..., \epsilon_{s-1} \in \{-1, 1\}, s = 2, ..., k + 1$

† $1 + \sum_{j=1}^{N} [\alpha_j \epsilon_j + \gamma_j \epsilon_{j+N}] \geq 0, \epsilon_1, ..., \epsilon_{2N} \in \{-1, 1\}$
Fourier copulas

\[C(u_1, \ldots, u_{k+1}) = \int_{0}^{u_1} \cdots \int_{0}^{u_{k+1}} (1 + g(u_1, \ldots, u_{k+1})) \, du_1 \cdots du_{k+1} \]

\((k + 1)-\text{Fourier copulas}\)
Fourier copulas

- \(1\)-dependent \(1\)-Markov:

Conditions satisfied for Fourier copulas

\[
C(u_1, u_2) = \int_0^{u_1} \int_0^{u_2} (1 + g(u_1, u_2))du_1du_2
\]

\[
g(u_1, u_2) = \sum_{j=1}^{N} \left[\alpha_j \sin(2\pi(\beta_1^j u_1 + \beta_2^j u_2)) + \gamma_j \cos(2\pi(\beta_1^j u_1 + \beta_2^j u_2)) \right]
\]

\(\downarrow\) \(\alpha_j, \gamma_j \in \mathbb{R}, \beta_1^j, \beta_2^j \in \mathbb{Z} :\)

\[
\beta_1^j + \beta_2^j \neq 0
\]

\[
\beta_1^j - \beta_2^j \neq 0
\]

\[
1 + \sum_{j=1}^{N} \left[\alpha_j \epsilon_j + \gamma_j \epsilon_{j+N} \right] \geq 0
\]

\(\forall \epsilon_1, ..., \epsilon_{2N} \in \{-1, 1\}\)
Concluding remarks

- (Sub-)Optimality of diversification under heavy tails & dependence
- (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence
- General representations for joint cdf’s and copulas of arbitrary r.v.’s
 - Joint cdf’s and copulas of dependent r.v.’s = sums of U—statistics in independent r.v.’s
 - Similar results: expectations of arbitrary statistics in dependent r.v.’s
 - New representations for multivariate dependence measures
 - Complete characterizations of classes of dependent r.v.’s
 - Methods for constructing new copulas
 - Modeling different dependence structures
Concluding remarks

- **Copula-based** modeling for time series
- **Characterizations** of dependence in terms of copulas
 - Markovness of arbitrary order
 - Combining Markovness with other dependencies:
 - \(m \)-dependence, \(r \)-independence, martingaleness, conditional symmetry
 - Non-Markovian processes satisfying **Kolmogorov-Chapman SE**
Concluding remarks

- New flexible copulas to combine dependencies
- Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten copulas)
 - power functions (power copulas); Fourier polynomials (Fourier copulas)
- Impossibility/reduction: Copula-based dependence + specific copulas
 ⇔ Independence
Copula memory

- **Long-memory** via copulas: various definitions
- Dependence measures & copulas
- Gaussian & EFGM \Rightarrow short-memory Markov
- Fast exponential decay of dependence between X_t & X_{t+h}
- Numerical results \Rightarrow Clayton copula-based Markov $\{X_t\}$: can behave as long memory (copulas) in finite samples
 - High persistence important for finance & economics
- Long memory-like: X_t & X_{t+h}: slow decay of dependence for commonly used lages h
- **Volatility** modeling & **Nonlinear dependence** in finance
- Non-linear CH & long memory-like volatility
- Generalizations of GARCH
Copula memory

Beare (2008): α, β & ϕ–mixing

- $\kappa(h) \leq \alpha(h) \leq \beta(h) \leq 0.5\phi(h)$
- **Numerical** results \Rightarrow **Clayton**: exponential decay in $\beta(h) \Rightarrow$ short κ–memory in copulas

Theoretical results in Chen, Wu & Yi (2008):

- **Clayton**: weakly dependent & short memory in terms of mixing properties!
- Our numerical results $+$ Chen, Wu & Yi (2008): **Non-robustness** of procedures for detecting long memory in copulas
Objectives and key results

• (Sub-)Optimality of diversification under heavy tails & dependence

• (Non-)robustness of models in economics & finance to heavy tails, heterogeneity & dependence

• General representations for joint cdf’s and copulas of arbitrary r.v.’s

• Copula-based modeling for time series

• Characterizations of time series dependence in terms of copulas

• New flexible copulas to combine dependencies

• Long-memory via copulas: various definitions

• Non-robustness of procedures for detecting long memory in copulas