Heavy-tailedness and diversification disasters: Implications for models in economics, finance and insurance

Rustam Ibragimov
Imperial College Business School

Based on joint works with Dwight Jaffee and Johan Walden (Haas School of Business, University of California at Berkeley)

Objectives and key results

- (Sub-)Optimality of diversification under heavy tails \& dependence
- (Non-)robustness of models in economics \& finance to heavy tails, heterogeneity \& dependence
- Implications for financial \& (re-)insurance markets: Diversification traps \& disasters
- M. Ibragimov, R. Ibragimov \& J. Walden, Heavy-tailedness and Robustness in Economics and Finance, Lecture Notes in Statistics, Springer, Forthcoming.
- R. Ibragimov \& A. Prokhorov, Topics in Majorization, Stochastic Openings and Dependence Modeling in Economics and Finance, World Scientific \& Imperial College Press, In preparation.

Stylized Facts of Real-World Returns

Daily \% changes in the Dow Jones Industrial Average, Jan. 1980 - Sept. 2007

Dependence vs. margins in economic and financial problems

- Problems in finance, economics \& risk management:

Solution is affected by both

- Marginal distributions (Heavy-Tailedness, Skewness)
- Dependence (Positive or Negative, Asymmetry)
- Portfolio choice \& value at risk (VaR)
- Marginal effects under independence: Heavy-Tailedness

Moderately HT vs. extremely $\mathrm{HT} \Longrightarrow$ Opposite solutions

- Different solutions: Positive vs. negative dependence
- Similar conclusions on (non-)robustness to heavy-tailedness: other models in economics, finance \& econometrics:
- Optimal bundling, firm growth theory, efficiency of statistical \& econometric estimators, time series models

Imperial College London
BUSINESS SCHOOL

Normal vs. Heavy-tailed Power Laws

Simulated normal and heavy-tailed series

Heavy-tailed margins

- Many economic \& financial time series: power law tails: $P(|X|>x) \approx \frac{c}{x^{\alpha}}, \alpha>0$: tail index
- Moments of order $p \geq \alpha$: infinite; $E|X|^{p}<\infty$ iff $p<\alpha$
- $\alpha \leq 4 \Longrightarrow$ Infinite fourth moments: $E X^{4}=\infty$
- $\alpha \leq 2 \Longrightarrow$ Infinite variances: $E X^{2}=\infty$
- $\alpha \leq 1 \Longrightarrow$ Infinite first moments: $E|X|=\infty$
- Returns on many stocks \& stock indices: $\alpha \in(2,4)$
\Rightarrow finite variance, infinite fourth moment

A tale of two tails

Light vs. heavy tails

Figure: Tails of Cauchy distributions are heavier than those of normal distributions. Tails of Lévy distributions are heavier than those of Cauchy or normal distributions.

A tale of two tails

Simulated data from Normal, Cauchy and Levy distributions, $\mathrm{n}=25$

Figure: Heavy-tailed distributions: more extreme observations

Heavy-tailed margins

$P(|X|>x) \approx \frac{c}{x^{\alpha}}$

- Income: $\alpha \in[1.5,3] \Rightarrow$ infinite $E X^{4}$, possibly infinite variances
- Wealth: $\alpha \approx 1.5 \Rightarrow$ infinite variances!
- Returns from technological innovations, Operational risks: $\alpha<1 \Rightarrow$ infinite means $E|X|=\infty$!
- Firm sizes, sizes of largest mutual funds, city sizes: $\alpha \approx 1$
- Economic losses from earthquakes: $\alpha \in[0.6,1.5]$
\Rightarrow infinite variances, possibly infinite means
- Economic losses from hurricanes: $\alpha \approx 1.56 ; \alpha \approx 2.49$

Stable distributions

- $X \sim S_{\alpha}(\sigma)$: symmetric stable distribution, $\alpha \in(0,2]$

CF: $E\left(e^{i \times X}\right)=\exp \left\{-\sigma^{\alpha}|x|^{\alpha}\right\}$

- Normal $\mathcal{N}(0, \sigma): \alpha=2$
- Cauchy: $\alpha=1, f(x)=\frac{\sigma}{\pi\left(\sigma^{2}+x^{2}\right)}$
- Lévy: $\alpha=1 / 2$, support $[0, \infty), f(x)=\frac{\sigma}{\sqrt{2 \pi}} x^{-3 / 2} \exp \left(-\frac{1}{2 x}\right)$
- Power laws: $P(|X|>x) \approx \frac{c}{x^{\alpha}}, \alpha \in(0,2)$
- Moments $E|X|^{p}$: finite iff $p<\alpha$
- Infinite variances for $\alpha<2$
- Portfolio formation: $\sum_{i=1}^{n} w_{i} X_{i}={ }_{d}\left(\sum_{i=1}^{n} w_{i}^{\alpha}\right)^{1 / \alpha} X_{1}$
- $\alpha=2$ (normal): $\frac{1}{\sqrt{n}}\left(X_{1}+\ldots+X_{n}\right)={ }_{d} X_{1}$

Value at risk (VaR)

- VaR
- Risk X; positive values $=$ losses
- Loss probability q
- $\operatorname{Va} R_{q}(X)=z: P(X>z)=q$
- Risks X_{1}, \ldots, X_{n}
- $Z_{w}=\sum_{i=1}^{n} w_{i} X_{i}$: return on portfolio with weights $w=\left(w_{1}, \ldots, w_{n}\right)$
- Problem of interest:

$$
\operatorname{Minimize} \operatorname{Va}_{a} R_{q}\left(Z_{w}\right)
$$

s.t. $w_{i} \geq 0, \sum_{i=1}^{n} w_{i}=1$

- When diversification \Rightarrow decrease in portfolio riskiness (VaR)?

Diversification \& risk

- Most diversified: $\underline{w}=(1 / n, 1 / n, \ldots, 1 / n) \Rightarrow Z_{\underline{w}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$
- Least diversified: $\bar{w}=(1,0, \ldots, 0) \Rightarrow Z_{\bar{w}}=X_{1}$
- $X_{1}, \ldots, X_{n} \sim \mathcal{N}(0, \sigma)(\alpha=2)$
- $Z_{\underline{w}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}={ }_{d} \frac{1}{\sqrt{n}} X_{1}=\frac{1}{\sqrt{n}} Z_{\bar{w}}$
- $\operatorname{Va} R_{q}\left(Z_{\underline{w}}\right)=\frac{1}{\sqrt{n}} \operatorname{Va}_{q}\left(Z_{\bar{w}}\right)<\operatorname{Va}_{q}\left(Z_{\bar{w}}\right)$
- $\operatorname{Va} R_{q}\left(Z_{\underline{w}}\right): \searrow$ as $n \nearrow($ Diversification $\nearrow)$

Diversification \& risk

- $X_{1}, \ldots, X_{n} \sim S_{1 / 2}(\sigma), \alpha=1 / 2$, Lévy distribution
- $Z_{\underline{w}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}={ }_{d}\left[\sum_{i=1}^{n}\left(\frac{1}{n}\right)^{1 / 2}\right]^{2} X_{1}=n X_{1}=n Z_{\bar{w}}$
- $\operatorname{VaR}_{q}\left(Z_{\underline{\underline{w}}}\right)=n \operatorname{VaR}_{q}\left(Z_{\bar{w}}\right)>\operatorname{VaR}_{q}\left(Z_{\bar{w}}\right)$
- $\operatorname{VaR}_{q}\left(Z_{\underline{w}}\right): \nearrow$ as $n ~ \nearrow($ Diversification $\nearrow)$
- Heavy tails (margins) matter:
diversification \Longrightarrow opposite effects on portfolio riskiness
- Skewness: typically priced

Heavy-tailedness \& diversification

- Moderate heavy tails $\alpha>1$: finite first moments

$$
\operatorname{Va}_{a}\left(Z_{\underline{w}}\right)<\operatorname{Va}_{q}\left(Z_{\bar{w}}\right) \quad \forall q>0
$$

Optimal to diversify for all loss probabilities q

- Extremely heavy tails $\alpha<1$: infinite first moments

$$
\operatorname{Va}_{a}\left(Z_{\underline{w}}\right)<\operatorname{Va}_{q}\left(Z_{\bar{w}}\right) \quad \forall q>0
$$

Diversification: suboptimal for all loss probabilities q

- Similar conclusions: Many other models in economics \& finance
- Firm growth theory, optimal bundling, monotone consistency of sample mean, efficiency of linear estimators
- Robust to moderate heavy tails
- Properties: reversed under extremely heavy tails

What happens for intermediate heavy-tails?

- X_{1}, \ldots, X_{n} i.i.d. stable with $\alpha=1$: Cauchy distribution
- Density $f(x)=\frac{\sigma}{\pi\left(\sigma^{2}+x^{2}\right)}$
- Heavy power law tails: $P(|X|>x) \approx \frac{c}{x}$
- Infinite first moment
- $Z_{w}=\sum_{i=1}^{n} w_{i} X_{i}={ }_{d} X_{1} \forall w=\left(w_{1}, \ldots, w_{n}\right): w_{i} \geq 0$,
- Diversification: no effect at all!

Summary so far: Diversification for heavy-tailed and bounded distributions

Figure: $N=10$ risks/insurer; $M=7$ insurers

- D: Individual/non-diversification corners vs insurer and reinsurer equilibrium

1st example: full risk pooling with normally distributed risks

$1 \leq s \leq \frac{\text { Assume: }}{M(=5)}$ insurers
Results:
$N(=20)$ risks/insurer
$1 \leq j \leq N s$ total risks
i.i.d. normal X_{i}

CARA utility, Unlimited liability

$$
z_{j, s}=\left(\sum_{i=1}^{j} X_{i}\right) / s
$$

If no insurers pool, each still has N risks

2nd example: Bernoulli-Lévy distribution with limited liability

Assume:
Limited liability: maximum loss ($k=80$) $M=5$ insurers
$N(=20)$ max risks/insurer $u(x)=(x+k)^{3 / 4}$ $z_{j, s}=\left(\sum_{i=1}^{j} X_{i}\right) / s$

Results:

If insurers can coordinate, they can reach $M N=100$ reinsurance equilibrium

But if not, each insurer reverts to the $N=0$ corner

Implications for markets for catastrophic

risks

- Equilibria in re-insurance markets for catastrophe risks (Ibragimov, Jaffee and Walden, RFS)
- A diversification equilibrium with full risk pooling for normally distributed (light-tailed) risks
- No risk pooling \& no insurance or reinsurance activity (market collapse) for extremely heavy-tailed cat risks
- Intermediate cases (heavy tails): both
- Diversification equilibria, in which insurers offer catastrophe coverage and reinsure their risks
- Non-diversification equilibria with no insurance or re-insurance
- A coordination problem must be solved to shift from the bad to the good equilibrium

Government regulations or well functioning capital markets

Implications for markets for catastrophic

risks

- Catastrophic risks have many features favorable to the provision of insurance
- Generally independent over risk types and geography
- Few issues of asymmetric information at the risk level
- So a complete failure of these markets is puzzling
- We have shown that market failures (non-diversification traps) may arise when risks are fat-tailed and there is limited liability
- Diversification may not be beneficial for the single insurer, although a full reinsurance equilibrium may exist.
- Government programs (or diversified equity owners) may allow the system to reach the full diversification outcome

Diversification \& dependence

- Minimize $\operatorname{Va} R_{q}\left(w_{1} X_{1}+w_{2} X_{2}\right)$ s.t. $w_{1}, w_{2} \geq 0, w_{1}+w_{2}=1$
- Independence:
- Optimal portfolio: $\left(\tilde{w}_{1}, \tilde{w}_{2}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$ (diversified) if $\alpha>1$ (not extremely heavy-tailed, finite means)
- $\left(\tilde{w}_{1}, \tilde{w}_{2}\right)=(1,0)$ (not diversified, one risk) if $\alpha<1$ (extremely heavy-tailed, infinite means)

Diversification \& dependence

- Extreme positive dependence: $X_{1}=X_{2}$ (a.s.) comonotonic risks
- $\operatorname{Va} R_{q}\left(w_{1} X_{1}+w_{2} X_{2}\right)=\operatorname{Va}_{q}\left(X_{1}\right) \forall w$
- Diversification: no effect at all (similar to Cauchy) regardless of heavy-tailedness
- Extreme negative dependence $X_{1}=-X_{2}$ (a.s.) countermonotonic risks
- $\operatorname{VaR} R_{q}\left(w_{1} X_{1}+w_{2} X_{2}\right)=\left(w_{1}-w_{2}\right) \operatorname{VaR}_{q}\left(X_{1}\right)$
- Optimal portfolio: $\underline{w}=(1 / 2,1 / 2)$ (most diversified regardless of heavy-tailedness
- Optimal portfolio choice: affected by both dependence \& properties of margins

Copulas and dependence

- Main idea: separate effects of dependence from effects of margins
- What matters more in portfolio choice: heavy-tailedness \& skewness or (positive or negative) dependence?
- Copulas: functions that join together marginal cdf's to form multidimensional cdf

Copulas and dependence

- Sklar's theorem
- Risks X, Y :
- Joint cdf $H_{X Y}(x, y)=P(X \leq x, Y \leq y)$: affected by dependence and by marginal cdf's $F_{X}(x)=P(X \leq x)$ and $G_{Y}(x)=P(Y \leq y)$
- $C_{X Y}(u, v)$: copula of X, Y :

$$
H_{X Y}(x, y)=\underbrace{C_{X Y}}_{\text {dependence }}(\underbrace{F_{X}(x), G_{Y}(y)}_{\text {marginals }})
$$

- $C_{X Y}$: captures all dependence between risks X and Y

Copulas and dependence

Advantages:

- Exists for any risks (correlation: finiteness of second moments)
- Characterizes all dependence properties
- Flexibility in dependence modeling
- Asymmetric dependence: Crashes vs. booms
- Positive vs. negative dependence
- Independence: Nested as a particular case: Product copula, particular values of parameter(s)
- Extreme dependence: $X=Y$ or $X=-Y \Leftrightarrow$ extreme copulas; dependence in $C_{X Y}$ varies in between

Copula structures

- Archimedean copulas

$$
C(u, v)=\phi^{-1}(\phi(u)+\phi(v))
$$

- Contagion: Non-zero tail dependence coeff.

$$
\begin{gathered}
\lambda_{L}=\lim _{u \rightarrow 0+} P\left[Y \leq F^{-1}(u) \mid X \leq F_{X}^{-1}(u)\right]=\lim _{u \rightarrow 0+} \frac{C(u, u)}{u} \\
\lambda_{U}=\lim _{u \rightarrow 1-} P\left[Y>F^{-1}(u) \mid X>F_{X}^{-1}(u)\right]=\lim _{u \rightarrow 1-} \frac{1-2 u+C(u, u)}{1-u}
\end{gathered}
$$

- Clayton \& Gumbel copulas

Copula structures

- Eyraud-Farlie-Gumbel-Morgenstern (EFGM):

$$
C(u, v)=u v[1+\gamma(1-u)(1-v)]
$$

$\gamma \in[-1,1]$: dependence parameter Tail independent: no contagion

- Heavy-tailed Pareto marginals:

$$
\begin{aligned}
& P(X>x)=\frac{1}{x^{\alpha}}, \quad x \geq 1 \\
& P(X>x)=\frac{1}{x^{\alpha}}, \quad x \geq 1
\end{aligned}
$$

- Power laws, tail index α

Diversification: Copulas \& heavy tails

Embrechts, Nešlehová \& Wüthrich (2009): Archimedean copulas

- Moderate heavy tails $\alpha>1$: finite first moment

$$
\operatorname{Va}_{q}\left(\frac{X+Y}{2}\right)<\operatorname{Va}_{q}(X) \text { for sufficiently small } q
$$

Optimal to diversify for sufficiently small loss probabilities q

- Extremely heavy tails $\alpha<1$: infinite first moments

$$
\operatorname{Va} R_{q}\left(\frac{X+Y}{2}\right)>\operatorname{Va}_{q}(X) \text { for sufficiently small } q
$$

Diversification: suboptimal for suff. small loss prob. q
Ibragimov \& Prokhorov (2013): Similar conclusions for EFGM

- Tail independent EFGM \& tail dependent Archimedean (Clayton, Gumbel): same boundary $\alpha=1$ as in the case of independence

When dependence helps: Student- t copulas

- Conclusions similar to independence: Models with common shocks

$$
X_{1}=Z Y_{1}, X_{2}=Z Y_{2}, \ldots, X_{n}=Z Y_{n}
$$

- Common shock $Z>0$ affecting all risks X_{1}, \ldots, X_{n}
- Y_{1}, \ldots, Y_{n} : i.i.d. normal or heavy-tailed with tail index α
Z : heavy-tailed with tail index β
Then X_{i} : heavy-tailed with tail index $\gamma=\min (\alpha, \beta)$
- Important particular case: (Dependent) Multivariate Student- t $X_{1}, X_{2}, \ldots, X_{n}$ with α d.f. (tail index) $\Rightarrow \mathbf{O p t i m a l}$ to diversify for all loss probabilities q regardless of tail index α
- Tail dependent Student- t copula and heavy-tailed margins with arbitrary tail index α : diversification pays off
- Contrast: Independent Student- $t X_{1}, X_{2}, \ldots, X_{n}$ with α d.f. (tail index): diversification optimal for $\alpha>1$; suboptimal for $\alpha<1$

Diversification: Heavy-tailedness \& dependence matter

- Independence, Tail dependent models with common shocks (e.g., Student- t distr. = Student- t copula with Student- t marginals):
- Diversification always pays off for all loss probabilities q
- Tail independent EFGM, possibly tail dependent Archimedean copulas (e.g., Clayton \& Gumbel):
- Dividing boundary $\alpha=1$ for sufficiently small loss probability q
- Numerical results on interplay of heavy-tailedness \& dependence (copula) assumptions and loss probability q in diversification decisions:
- Deviations from threshold $\alpha=1$ for different copulas and loss probabilities q
- Theoretical results for general copulas $=$?
- (Non-)robustness of other models in economics \& finance

Key results

- (Sub-)Optimality of diversification under heavy tails \& dependence
- (Non-)robustness of models in economics \& finance to heavy tails, heterogeneity \& dependence
- Implications for financial \& (re-)insurance markets: Diversification traps \& disasters
- M. Ibragimov, R. Ibragimov \& J. Walden, Heavy-tailedness and Robustness in Economics and Finance, Lecture Notes in Statistics, Springer, Forthcoming.
- R. Ibragimov \& A. Prokhorov, Topics in Majorization, Stochastic Openings and Dependence Modeling in Economics and Finance, World Scientific \& Imperial College Press, In preparation.

Key results

- (Sub-)Optimality of diversification under heavy tails \& dependence
- (Non-)robustness of models in economics \& finance to heavy tails, heterogeneity \& dependence
- Implications for financial \& (re-)insurance markets: Diversification traps \& disasters

Characterizations of copulas \& dependence

- V_{1}, \ldots, V_{n} : i.i.d. $\mathcal{U}([0,1])$
- C: n-copula iff $\exists \tilde{g}_{i 1}, \ldots,,_{c}$ s.t.

A1 (integrability):

$$
\int_{0}^{1} \ldots \int_{0}^{1}\left|\tilde{g}_{i_{1}, \ldots, i_{c}}\left(t_{i_{1}}, \ldots, t_{i_{c}}\right)\right| d t_{i_{1}} \ldots d t_{i_{c}}<\infty
$$

A2 (degeneracy):

$$
E_{V_{i_{k}}}\left[\tilde{g}_{i_{1}}, \ldots, i_{c}\left(V_{i_{1}}, \ldots, V_{i_{k-1}}, V_{i_{k}}, V_{i_{k+1}}, \ldots, V_{i_{c}}\right)\right]=0
$$

A3 (positive definiteness):

$$
\tilde{U}_{n}\left(V_{1}, \ldots, V_{n}\right) \equiv \sum_{c=2}^{n} \sum_{1 \leq i_{1}<\ldots<i_{c} \leq n} \tilde{g}_{i_{1}, \ldots, i_{c}}\left(V_{i_{1}}, \ldots, V_{i_{c}}\right) \geq-1
$$

- Representation for C :

$$
C\left(u_{1}, \ldots, u_{n}\right)=\int_{0}^{u_{1}} \ldots \int_{0}^{u_{n}}\left(1+\tilde{U}_{n}\left(t_{1}, \ldots, t_{n}\right)\right) \prod_{i=1}^{n} d t_{i}
$$

- \tilde{U}_{n} : sum of degenerate U-statistics

Device for constructing n-copulas and cdf's

- Bivariate Eyraud-Farlie-Gumbel-Morgenstern copulas \& cdf's:

$$
\begin{gathered}
C_{\theta}(u, v)=u v(1+\theta(1-u)(1-v)) \\
H_{\theta}(x, y)=F(x) G(y)(1+\theta(1-F(x))(1-G(y)) \\
n=2 ; \tilde{g}_{1,2}\left(t_{1}, t_{2}\right)=\theta\left(1-2 t_{1}\right)\left(1-2 t_{2}\right), \theta \in[-1,1]
\end{gathered}
$$

- Multivariate EFGM copulas \& cdf's:

$$
\begin{gathered}
C_{\theta}\left(u_{1}, u_{2}, \ldots, u_{n}\right)=\prod_{i=1}^{n} u_{i}\left(1+\theta \prod_{i=1}^{n}\left(1-u_{i}\right)\right) \\
\tilde{g}_{i_{1}, \ldots, i_{c}}\left(t_{i_{1}}, \ldots, t_{i_{c}}\right)=\theta_{i_{1}, \ldots, i_{c}}\left(1-2 t_{i_{1}}\right)\left(1-2 t_{i_{2}}\right) \ldots\left(1-2 t_{i_{c}}\right)
\end{gathered}
$$

- Generalized multivariate EFGM copulas (Johnson and Kotz, 1975, Cambanis, 1977)

$$
C\left(u_{1}, \ldots, u_{n}\right)=\prod_{k=1}^{n} u_{k}\left(1+\sum_{c=2}^{n} \sum_{1 \leq i_{1}<\ldots<i_{c} \leq n} \theta_{i_{1}, \ldots, i_{c}}\left(1-u_{i_{k}}\right)\right)
$$

$\tilde{g}_{i_{1}, \ldots, i_{c}}\left(t_{i_{1}}, \ldots, t_{i_{c}}\right)=0, c<n-1$
$\tilde{g}_{1,2, \ldots, n}\left(t_{1}, t_{2}, \ldots, t_{n}\right)=\theta\left(1-2 t_{1}\right)\left(1-2 t_{2}\right) \ldots\left(1-2 t_{n}\right)$

- Generalized EFGM copulas: complete characterization of joint cdf's of two-valued r.v.'s (Sharakhmetov \& Ibragimov, 2002)

From dependence to independence through U-statistics

\mathcal{G}_{n} : sums of U-statistics

$$
U_{n}\left(\xi_{1}, \ldots, \xi_{n}\right)=\sum_{c=2}^{n} \sum_{1 \leq i_{1}<\ldots<i_{c} \leq n} g_{i_{1}, \ldots, i_{c}}\left(\xi_{i_{1}}, \ldots, \xi_{i_{c}}\right)
$$

$g_{i 1}, \ldots, i_{c}:$ satisfy A1-A3

- Arbitrarily dependent r.v.'s:
sum of U-statistics in independent r.v.'s
with canonical kernels
- Reduction of problems for dependence to well-studied objects
- Transfer of results for U-statistics under independence

From dependence to independence through

 U-statistics- $X_{1}, \ldots, X_{n}: 1$-cdf's $F_{k}\left(x_{k}\right)$
- ξ_{1}, \ldots, ξ_{n} : independent copies (1-cdf's $\left.F_{k}\left(x_{k}\right)\right)$
$\exists U_{n} \in \mathcal{G}_{n}$ s.t. $\forall f: \mathbf{R}^{n} \rightarrow \mathbf{R}$

$$
E f\left(X_{1}, \ldots, X_{n}\right)=E f\left(\xi_{1}, \ldots, \xi_{n}\right)\left(1+U_{n}\left(\xi_{1}, \ldots, \xi_{n}\right)\right)
$$

- Representation for c.f.'s:

$$
\begin{gathered}
\operatorname{Eexp}\left(i \sum_{k=1}^{n} t_{k} x_{k}\right)=\operatorname{Eexp}\left(i \sum_{k=1}^{n} t_{k} \xi_{k}\right)+ \\
\operatorname{Eexp}\left(i \sum_{k=1}^{n} t_{k} \xi_{k}\right) U_{n}\left(\xi_{1}, \ldots, \xi_{n}\right)
\end{gathered}
$$

\ddagger CLT for bivariate r.v.'s

Characterizations of dependence

- Canonical g^{\prime} s: complete characterizations of dependence properties
- X_{1}, \ldots, X_{n} : r-independent if $\forall r$ jointly independent \Leftrightarrow $g_{i_{1}, \ldots, i_{c}}\left(V_{i_{1}}, \ldots, V_{i_{c}}\right)=0$ (a.s.) $1 \leq i_{1}<\ldots<i_{c} \leq n, c=2, \ldots, r$
$g_{i_{1}, \ldots, i_{r+1}}\left(u_{i_{1}}, \ldots, u_{i_{r+1}}\right)=$
$\frac{\alpha_{1} \ldots \alpha_{n}}{\alpha_{i_{1}} \ldots \alpha_{i r+1}}\left((k+1) u_{i_{1}}^{k}-(k+2) u_{i_{1}}^{k+1}\right) \times \ldots \times\left((k+1) u_{i_{c}}^{k}-(k+2) u_{i_{c}}^{k+1}\right)$

$$
\begin{gathered}
C\left(u_{1}, \ldots, u_{n}\right)=\prod_{i=1}^{n} u_{i}\left(1+\sum_{1 \leq i_{1}<\ldots<i_{r+1} \leq n} \frac{\alpha_{1} \ldots \alpha_{n}}{\alpha_{1} \ldots \alpha_{i_{r}+1}} \times\right. \\
\left.\left(u_{i_{1}}^{k}-u_{i_{1}}^{k+1}\right) \times \ldots \times\left(u_{i_{r+1}}^{k}-u_{i_{r+1}}^{k+1}\right)\right)
\end{gathered}
$$

Extensions of Wang (1990) ($k=0$)

Copulas and Markov processes

- Darsow, Nguyen and Olsen, 1992: copulas and first-order Markovness
- $A, B:[0,1]^{2} \rightarrow[0,1]:$

$$
(A * B)(x, y)=\int_{0}^{1} \frac{\partial A(x, t)}{\partial t} \cdot \frac{\partial B(t, y)}{\partial t} d t
$$

- $A:[0,1]^{m} \rightarrow[0,1], B:[0,1]^{n} \rightarrow[0,1]: \star-$ product

$$
\begin{gathered}
A \star B\left(x_{1}, \ldots, x_{m+n-1}\right)= \\
\int_{0}^{x_{m}} \frac{\partial A\left(x_{1}, \ldots, x_{m-1}, \xi\right)}{\partial \xi} \cdot \frac{\partial B\left(\xi, x_{m+1}, \ldots, x_{m+n-1}\right)}{\partial \xi} d \xi
\end{gathered}
$$

Copulas and Markov processes

- Transition probabilities
$P(s, x, t, A)=P\left(X_{t} \in A \mid X_{s}=x\right)$ satisfy CKE's
iff $C_{s t}=C_{s u} * C_{u t} \forall s<u<t$
- X_{t} : first-order Markov iff

$$
C_{t_{1}, \ldots, t_{n}}=C_{t_{1} t_{2}} \star C_{t_{2} t_{3}} \star \ldots \star C_{t_{n-1} t_{n}}
$$

New results: Higher-order Markovness and copulas

- $\left\{X_{t}\right\}_{t \in T}: k$-order Markov \Leftrightarrow

$$
\begin{gathered}
P\left(X_{t}<X_{t} \mid X_{t_{1}}, \ldots, X_{t_{n-k}}, X_{t_{n-k+1}}, \ldots, X_{t_{n}}\right)= \\
P\left(X_{t}<x_{t} \mid X_{t_{n-k+1}}, \ldots, X_{t_{n}}\right)
\end{gathered}
$$

- Complete characterization in terms of ($k+1$)-copulas
- $C_{t_{1}, \ldots, t_{k}}$: copulas of $X_{t_{1}}, \ldots, X_{t_{k}}$
- $\left\{X_{t}\right\}_{t \in T}: k$-order Markov iff $\forall t_{1}<\ldots<t_{n}, n \geq k+1$

$$
C_{t_{1}, \ldots, t_{n}}=C_{t_{1}, \ldots, t_{k+1}} \star^{k} C_{t_{2}, \ldots, t_{k+2}} \star^{k} \ldots \star^{k} C_{t_{n-k}, \ldots, t_{n}}
$$

Stationary case

- X_{t} : stationary k-order Markov iff

$$
\begin{gathered}
C_{1, \ldots, n}\left(u_{1}, \ldots, u_{n}\right)=C \star^{k} C \star^{k} \ldots \star^{k} C\left(u_{1}, \ldots, u_{n}\right) \\
=C^{n-k+1}\left(u_{1}, \ldots, u_{n}\right) \forall n \geq k+1
\end{gathered}
$$

C: $(k+1)-$ copula s.t.

$$
C_{i_{1}+h, \ldots, i_{i}+h}=C_{i_{1}, \ldots, i_{i}}, \quad 1 \leq j_{1}<\ldots<j_{1} \leq k+1
$$

- $C^{s}: s$-fold product \star^{k} of C

Advantages of copula-based approach

- Modeling higher order Markov processes
alternative to transition matrices
\ddagger Instead of initial distribution \& transition probabilities:

Prescribe marginals \& $(k+1)$-copulas

Generate copulas of higher order \& finite-dimensional cdf's
\ddagger Advantage: separation of properties of marginals (fat-tailedness) \& dependence properties (conditional symmetry, m-dependence, r-independence, mixing)

Advantages of copula-based approach

- Inversion method:

New k-Markov with dependence similar to a given Markov process Different marginals
$\ddagger X_{t}$: stationary k-Markov
$(k+1)-\operatorname{cdf} \tilde{F}\left(x_{1}, \ldots, x_{k+1}\right), 1-\operatorname{cdf} F$
$\Rightarrow(k+1)$-copula:

$$
C\left(u_{1}, \ldots, u_{k+1}\right)=\tilde{F}\left(F^{-1}\left(u_{1}\right), \ldots, F^{-1}\left(u_{k+1}\right)\right)
$$

\dagger Another 1-cdf G:
Stationary k-Markov, same dependence as $\left\{X_{t}\right\}$, different 1-marginal G :
$(k+1)$-copula:

$$
C\left(u_{1}, \ldots, u_{k+1}\right)=\tilde{F}\left(G^{-1}\left(u_{1}\right), \ldots, G^{-1}\left(u_{k+1}\right)\right)
$$

Representation \Rightarrow Higher-order copulas \& cdf's
$\left\{X_{t}\right\}$: stationary C-based k-Markov chain

Advantages of copula-based approach

- C: all dependence properties of the time series
$\ddagger k$-independence, m-dependence, martingaleness, symmetry
\ddagger On-going project with Johan Walden: characterizations of time-irreversibility; focus on $C_{t_{1}, \ldots, t_{k}}=C_{t_{k}, \ldots, t_{1}}$
\ddagger Applications: forward-looking vs. backward-looking market participants ("fundamentalists" vs. noise traders or "chartists")
\ddagger "Compass rose" for P_{t-1} and P_{t} : symmetry in copulas

Combining higher-order Markovness with other dependence properties

- A number of studies in dependence modeling: Higher-order Markovness + m-dependence \& r-independence

Lévy (1949): 2nd order Markovness + pairwise independence

Rosenblatt \& Slepian (1962): N-order N-independent stationary Markov

- Impossibility/reduction :
N-order Markov $+N$-independence + two-valued \Leftrightarrow joint independence
\ddagger Testing sensitivity to WD in DGP Rosenblatt \& Slepian (1962)

Combining Markovness with other dependencies

\ddagger Examples:

Not 1-order Markovian

But 1-st order transition probabilities
$P(s, x, t, A)=P\left(X_{t} \in A \mid X_{s}=x\right)$ satisfy C-K SE

$$
P(s, x, t, A)=\int_{-\infty}^{\infty} P(u, \xi, t, A) P(s, x, u, d \xi)
$$

(other examples: Feller, 1959, Rosenblatt, 1960)

Combining Markovness with other dependencies

\ddagger 1-dependent Markov: Aaronson, Gilat and Keane (1992)

Burton, Goulet and Meester (1993), Matúš (1996)
\ddagger Matúš (1998): m-dependent
discrete-space Markov
\ddagger Impossibility/Reduction:
\nexists stationary m-dependent Markov if
$\operatorname{card}(\Omega)<m+2$

Markovness of higher-order and k-independence

- Characterization of stationary
k-independent k-Markov processes
- $\left\{X_{t}\right\}: C$-based k-independent stationary
k-Markov iff

$$
\frac{\partial^{k+1} C\left(u_{1}, \ldots, u_{k+1}\right)}{\partial u_{1} \ldots \partial u_{k+1}}=1+g\left(u_{1}, \ldots, u_{k+1}\right)
$$

$g:[0,1]^{k+1} \rightarrow[0,1]:$ canonical g-function
(Integrability + more degeneracy + positive definiteness)

Markovness of higher-order and k-independence

$$
\begin{gathered}
\int_{0}^{1} \ldots \int_{0}^{1}\left|g\left(u_{1}, \ldots, u_{k+1}\right)\right| d u_{1} \ldots d u_{k+1}<\infty \\
\int_{0}^{1} \ldots \int_{0}^{1} g\left(u_{1}, \ldots, u_{k+1}\right) g\left(u_{2}, \ldots, u_{k+2}\right) \ldots g\left(u_{s}, \ldots, u_{k+s}\right) d u_{i_{1}} \ldots d u_{i_{s}}=0 \\
\forall s \leq u_{i_{1}}<\ldots<u_{i_{s}} \leq k+1, s=1,2, \ldots,\left[\frac{k+1}{2}\right] \\
g\left(u_{1}, \ldots, u_{k+1}\right) \geq-1
\end{gathered}
$$

- Integration: w.r. to all s among $u_{s}, u_{s+1}, \ldots, u_{k+1}$ common to all g-functions $g\left(u_{1}, \ldots, u_{k+1}\right), g\left(u_{2}, \ldots, u_{k+2}\right), \ldots, g\left(u_{s}, \ldots, u_{k+s}\right)$
k-marginals: product copulas, independence
k-independence: satisfied

Markovness of higher-order and m-independence

- $\left\{X_{t}\right\}: C$-based m-dependent 1 -Markov iff

$$
\frac{\partial^{2} C\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}}=1+g\left(u_{1}, u_{2}\right)
$$

$g:[0,1]^{2} \rightarrow[0,1]:$ canonical g-function:

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1}\left|g\left(u_{1}, u_{2}\right)\right| d u_{1} d u_{2}<\infty \\
\int_{0}^{1} g\left(u_{1}, u_{2}\right) d u_{i}=0, \quad g\left(u_{1}, u_{2}\right) \geq-1 \\
\int_{0}^{1} g\left(u_{1}, u_{2}\right) g\left(u_{2}, u_{3}\right) \ldots g\left(u_{m}, u_{m+1}\right) d u_{2} d u_{3} \ldots d u_{m}=0
\end{gathered}
$$

\ddagger Integration: w.r. to $u_{2}, u_{3}, \ldots, u_{m}$ more than once among $g\left(u_{1}, u_{2}\right), g\left(u_{2}, u_{3}\right)$,
$\ldots, g\left(u_{m}, u_{m+1}\right)$
X_{1}, X_{m+1} : independent; Process: m-dependent

New examples via existing constructions

- Higher-order Markovness + martingaleness
- Inversion method + existing examples \Rightarrow
k-independent, m-dependent Markov processes
different marginals

Reduction \& impossibility for k-order Markov

 processes- $\left\{X_{t}\right\}$: C-based k-independent stationary k-Markov
$\ddagger \frac{\partial^{k+1} c\left(u_{1}, \ldots, u_{k+1}\right)}{\partial u_{1} \ldots \partial u_{k+1}}=1+g\left(u_{1}, \ldots, u_{k+1}\right)$
$\ddagger g$: product form (EFGM-type):
$g\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)=\alpha f\left(u_{1}\right) f\left(u_{2}\right) \ldots f\left(u_{k+1}\right)$
$\Leftrightarrow\left\{X_{t}\right\}$: jointly independent

Examples: EFGM and power copulas

- $(k+1)$-EFGM copulas:

$$
\begin{gathered}
C\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)=\prod_{i=1}^{k+1} u_{i}\left(1+\alpha\left(1-u_{1}\right)\left(1-u_{2}\right) \ldots\left(1-u_{k+1}\right)\right) \\
g\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)=\alpha\left(1-2 u_{1}\right)\left(1-2 u_{2}\right) \ldots\left(1-2 u_{k+1}\right)
\end{gathered}
$$

- $(k+1)$-power copulas

$$
C\left(u_{1}, u_{2}, \ldots, u_{k+1}\right)=\prod_{i=1}^{k+1} u_{i}\left(1+\alpha\left(u_{1}^{\prime}-u_{1}^{I+1}\right)\left(u_{2}^{\prime}-u_{2}^{I+1}\right) \ldots\left(u_{k+1}^{\prime}-u_{k+1}^{I+1}\right)\right)
$$

$I \geq 0(E F G M: I=0)$

Impossibility/reduction for m-dependence

- $\left\{X_{t}\right\}: C$-based m-dependent Markov
$\ddagger \frac{\partial^{2} C\left(u_{1}, u_{2}\right)}{\partial u_{1} \partial u_{2}}=1+\alpha f\left(u_{1}\right) f\left(u_{2}\right)$
(separable product form)
$\Leftrightarrow X_{t}$: jointly independent
- Representations \Rightarrow

$$
\begin{gathered}
\int_{0}^{1} \ldots \int_{0}^{1} \alpha^{m} f\left(u_{1}\right) f^{2}\left(u_{2}\right) \ldots f^{2}\left(u_{m}\right) f\left(u_{m+1}\right) d u_{2} \ldots d u_{m}=0 \\
\alpha^{m} f\left(u_{1}\right) f\left(u_{m+1}\right)\left[\int_{0}^{1} f^{2}\left(u_{2}\right) d u_{2}\right]^{m-1}=0
\end{gathered}
$$

$\Rightarrow f=0 \Leftrightarrow$ Independence

Examples, new and old

\ddagger EFGM copulas, $k=1$:

$$
\begin{gathered}
C\left(u_{1}, u_{2}\right)=u_{1} u_{2}\left(1+\alpha\left(1-u_{1}\right)\left(1-u_{2}\right)\right) \\
g\left(u_{1}, u_{2}\right)=\alpha\left(1-2 u_{1}\right)\left(1-2 u_{2}\right)
\end{gathered}
$$

- Limitations of EFGM copulas,
separable copulas:
Complement \& generalize existing results

Examples, new and old

\ddagger Cambanis (1991): common dependencies
cannot be exhibited by multivariate EFGM

$$
\begin{gathered}
C_{j_{1}, \ldots, j_{n}}\left(u_{j_{1}}, \ldots, u_{j_{n}}\right)= \\
\prod_{s=1}^{n} u_{j_{k}}\left(1+\sum_{1 \leq l<m \leq n} \alpha_{l m}\left(1-u_{j_{l}}\right)\left(1-u_{j_{m}}\right)\right)
\end{gathered}
$$

\ddagger Rosenblatt \& Slepian (1962): non-existence of bivariate N-independent N-Markov

Sharakhmetov \& Ibragimov (2002):

EFGM copulas for two-valued r.v.'s

\ddagger Technical difficulties in modeling

Solution: New flexible copula classes

- Copula-based TS with flexible dependencies
\ddagger Copulas based on Fourier polynomials
- k-independent k-Markov: Conditions satisfied for

$$
g\left(u_{1}, \ldots, u_{k+1}\right)=\sum_{j=1}^{N}\left[\alpha_{j} \sin \left(2 \pi \sum_{i=1}^{k+1} \beta_{i}^{j} u_{i}\right)+\gamma_{j} \cos \left(2 \pi \sum_{i=1}^{k+1} \beta_{i}^{j} u_{i}\right)\right]
$$

$\ddagger \alpha_{j}, \gamma_{j} \in \mathbf{R}, \beta_{i}^{j} \in \mathbf{Z}, i=1, \ldots, k+1, j=1, \ldots, N:$
$\dagger \beta_{1}^{j_{1}}+\sum_{l=2}^{s} \epsilon_{l-1} \beta_{l}^{j_{l}} \neq 0$
$\epsilon_{1}, \ldots, \epsilon_{s-1} \in\{-1,1\}, s=2, \ldots, k+1$
$\dagger 1+\sum_{j=1}^{N}\left[\alpha_{j} \epsilon_{j}+\gamma_{j} \epsilon_{j+N}\right] \geq 0, \epsilon_{1}, \ldots, \epsilon_{2 N} \in\{-1,1\}$

Fourier copulas

$$
C\left(u_{1}, \ldots, u_{k+1}\right)=\int_{0}^{u_{1}} \ldots \int_{0}^{u_{k+1}}\left(1+g\left(u_{1}, \ldots, u_{k+1}\right)\right) d u_{1} \ldots d u_{k+1}
$$

$(k+1)$-Fourier copulas

Fourier copulas

- 1-dependent 1-Markov:

Conditions satisfied for Fourier copulas

$$
\begin{gathered}
C\left(u_{1}, u_{2}\right)=\int_{0}^{u_{1}} \int_{0}^{u_{2}}\left(1+g\left(u_{1}, u_{2}\right)\right) d u_{1} d u_{2} \\
g\left(u_{1}, u_{2}\right)=\sum_{j=1}^{N}\left[\alpha_{j} \sin \left(2 \pi\left(\beta_{1}^{j} u_{1}+\beta_{2}^{j} u_{2}\right)\right)+\gamma_{j} \cos \left(2 \pi\left(\beta_{1}^{j} u_{1}+\beta_{2}^{j} u_{2}\right)\right)\right] \\
\ddagger \alpha_{j}, \gamma_{j} \in \mathbf{R}, \beta_{1}^{j}, \beta_{2}^{j} \in \mathbf{Z}: \quad \beta_{1}^{j_{1}}+\beta_{2}^{j_{2}} \neq 0 \\
\beta_{1}^{j_{1}}-\beta_{2}^{j_{2}} \neq 0 \\
1+\sum_{j=1}^{N}\left[\alpha_{j} \epsilon_{j}+\gamma_{j} \epsilon_{j+N}\right] \geq 0 \\
\forall \epsilon_{1}, \ldots, \epsilon_{2 N} \in\{-1,1\}
\end{gathered}
$$

Concluding remarks

- (Sub-)Optimality of diversification under heavy tails \& dependence
- (Non-)robustness of models in economics \& finance to heavy tails, heterogeneity \& dependence
- General representations for joint cdf's and copulas of arbitrary r.v.'s
- Joint cdf's and copulas of dependent r.v.'s $=$ sums of U-statistics in independent r.v.'s
- Similar results: expectations of arbitrary statistics in dependent r.v.'s
- New representations for multivariate dependence measures
- Complete characterizations of classes of dependent r.v.'s
- Methods for constructing new copulas
- Modeling different dependence structures

Concluding remarks

- Copula-based modeling for time series
- Characterizations of dependence in terms of copulas
- Markovness of arbitrary order
- Combining Markovness with other dependencies:
m-dependence, r-independence, martingaleness, conditional symmetry Non-Markovian processes satisfying Kolmogorov-Chapman SE

Concluding remarks

- New flexible copulas to combine dependencies
- Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten copulas)
- power functions (power copulas); Fourier polynomials (Fourier copulas)
- Impossibility/reduction: Copula-based dependence + specific copulas \Leftrightarrow Independence

Copula memory

- Long-memory via copulas: various definitions
- Dependence measures \& copulas
- Gaussian \& EFGM \Rightarrow short-memory Markov
- Fast exponential decay of dependence between $X_{t} \& X_{t+h}$
- Numerical results \Rightarrow Clayton copula-based Markov $\{X t\}$: can behave as long memory (copulas) in finite samples
- High persistence important for finance \& economics
- Long memory-like: $X_{t} \& X_{t+h}$: slow decay of dependence for commonly used lages h
- Volatility modeling \& Nonlinear dependence in finance
- Non-linear CH \& long memory-like volatility
- Generalizations of GARCH

Copula memory

Beare (2008) \& Chen, Wu \& Yi (2008): numerical \& theoretical results on (short \& long) memory in copulas

Beare (2008): $\alpha, \beta \& \phi$-mixing

- $\kappa(h) \leq \alpha(h) \leq \beta(h) \leq 0.5 \phi(h)$
- Numerical results \Rightarrow Clayton: exponential decay in $\beta(h) \Rightarrow$ short κ-memory in copulas

Theoretical results in Chen, Wu \& Yi (2008):

- Clayton: weakly dependent \& short memory in terms of mixing properties!
- Our numerical results + Chen, Wu \& Yi (2008): Non-robustness of procedures for detecting long memory in copulas

Objectives and key results

- (Sub-)Optimality of diversification under heavy tails \& dependence
- (Non-)robustness of models in economics \& finance to heavy tails, heterogeneity \& dependence
- M. Ibragimov, R. Ibragimov \& J. Walden, Heavy-tailedness and Robustness in Economics and Finance, Lecture Notes in Statistics, Springer, Forthcoming.
- R. Ibragimov \& A. Prokhorov, Topics in Majorization, Stochastic Openings and Dependence Modeling in Economics and Finance, World Scientific Press, In preparation.
- General representations for joint cdf's and copulas of arbitrary r.v.'s
- Copula-based modeling for time series
- Characterizations of time series dependence in terms of copulas
- New flexible copulas to combine dependencies
- Long-memory via copulas: various definitions
- Non-robustness of procedures for detecting long memory in copulas

