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Objectives and key results

• (Sub-)Optimality of diversification under heavy tails &
dependence

• (Non-)robustness of models in economics & finance to
heavy tails, heterogeneity & dependence

• Implications for financial & (re-)insurance markets:
Diversification traps & disasters

• M. Ibragimov, R. Ibragimov & J. Walden, Heavy-tailedness
and Robustness in Economics and Finance, Lecture Notes in
Statistics, Springer, Forthcoming.

• R. Ibragimov & A. Prokhorov, Topics in Majorization,
Stochastic Openings and Dependence Modeling in Economics
and Finance, World Scientific & Imperial College Press, In
preparation.
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Stylized Facts of Real-World Returns
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Dependence vs. margins in economic and financial

problems

• Problems in finance, economics & risk management:

Solution is affected by both

• Marginal distributions (Heavy-Tailedness, Skewness)

• Dependence (Positive or Negative, Asymmetry)

• Portfolio choice & value at risk (VaR)
• Marginal effects under independence: Heavy-Tailedness

Moderately HT vs. extremely HT =⇒ Opposite solutions

• Different solutions: Positive vs. negative dependence

• Similar conclusions on (non-)robustness to heavy-tailedness:
other models in economics, finance & econometrics:

• Optimal bundling, firm growth theory, efficiency of statistical &
econometric estimators, time series models
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Normal vs. Heavy-tailed Power Laws

25



Heavy-tailed margins

• Many economic & financial time series: power law tails:

P(|X | > x) ≈ C
xα

, α > 0 : tail index

• Moments of order p ≥ α : infinite; E |X |p < ∞ iff p < α

• α ≤ 4 =⇒ Infinite fourth moments: EX 4 = ∞
• α ≤ 2 =⇒ Infinite variances: EX 2 = ∞
• α ≤ 1 =⇒ Infinite first moments: E |X | = ∞

• Returns on many stocks & stock indices: α ∈ (2, 4)

⇒ finite variance, infinite fourth moment
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A tale of two tails

0 5 10

Light vs. heavy tails

Normal distributiion

Levy distribution α=1/2

Cauchy distribution α=1

Figure: Tails of Cauchy distributions are heavier than those of normal
distributions. Tails of Lévy distributions are heavier than those of Cauchy
or normal distributions.
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A tale of two tails

5 10 15 20 25

Simulated data from Normal, Cauchy and Levy distributions, n=25

Normal

Cauchy α=1

Levy α=1/2

Figure: Heavy-tailed distributions: more extreme observations
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Heavy-tailed margins

P(|X | > x) ≈ C
xα

• Income: α ∈ [1.5, 3] ⇒ infinite EX 4, possibly infinite variances

• Wealth: α ≈ 1.5 ⇒ infinite variances!

• Returns from technological innovations, Operational risks: α < 1 ⇒

infinite means E |X | = ∞!

• Firm sizes, sizes of largest mutual funds, city sizes: α ≈ 1

• Economic losses from earthquakes: α ∈ [0.6, 1.5]

⇒ infinite variances, possibly infinite means

• Economic losses from hurricanes: α ≈ 1.56; α ≈ 2.49
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Stable distributions

• X ∼ Sα(σ) : symmetric stable distribution, α ∈ (0, 2]

CF: E(e ixX ) = exp
{
− σα|x |α

}
• Normal N (0, σ): α = 2

• Cauchy: α = 1, f (x) = σ
π(σ2+x2)

• Lévy: α = 1/2, support [0,∞), f (x) = σ√
2π

x−3/2 exp(− 1
2x
)

• Power laws: P(|X | > x) ≈ C
xα

, α ∈ (0, 2)

• Moments E |X |p : finite iff p < α
• Infinite variances for α < 2

• Portfolio formation:
∑n

i=1 wiXi =d (
∑n

i=1 w
α
i )

1/αX1

• α = 2 (normal): 1√
n
(X1 + ...+ Xn) =d X1
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Value at risk (VaR)

• VaR

• Risk X ; positive values = losses
• Loss probability q
• VaRq(X ) = z : P(X > z) = q

• Risks X1, ...,Xn

• Zw =
∑n

i=1 wiXi : return on portfolio with weights w = (w1, ...,wn)

• Problem of interest:

MinimizeVaRq(Zw )

s.t. wi ≥ 0,
∑n

i=1 wi = 1

• When diversification ⇒ decrease in portfolio riskiness (VaR)?
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Diversification & risk

• Most diversified: w = (1/n, 1/n, ..., 1/n) ⇒ Zw = 1
n

∑n
i=1 Xi

• Least diversified: w = (1, 0, ..., 0) ⇒ Zw = X1

• X1, ...,Xn ∼ N (0, σ) (α = 2)

• Zw = 1
n

∑n
i=1 Xi =d

1√
n
X1 = 1√

n
Zw

• VaRq(Zw ) =
1√
n
VaRq(Zw ) < VaRq(Zw )

• VaRq(Zw ) :↘ as n ↗ (Diversification ↗)
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Diversification & risk

• X1, ...,Xn ∼ S1/2(σ), α = 1/2, Lévy distribution

• Zw = 1
n

∑n
i=1 Xi =d

[∑n
i=1(

1
n
)1/2

]2
X1 = nX1 = nZw

• VaRq(Zw ) = nVaRq(Zw ) > VaRq(Zw )

• VaRq(Zw ) :↗ as n ↗ (Diversification ↗)

• Heavy tails (margins) matter:

diversification =⇒ opposite effects on portfolio riskiness

• Skewness: typically priced
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Heavy-tailedness & diversification

• Moderate heavy tails α > 1 : finite first moments

VaRq(Zw ) < VaRq(Zw ) ∀q > 0

Optimal to diversify for all loss probabilities q

• Extremely heavy tails α < 1 : infinite first moments

VaRq(Zw ) < VaRq(Zw ) ∀q > 0

Diversification: suboptimal for all loss probabilities q

• Similar conclusions: Many other models in economics & finance

• Firm growth theory, optimal bundling, monotone consistency of sample
mean, efficiency of linear estimators

• Robust to moderate heavy tails

• Properties: reversed under extremely heavy tails
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What happens for
intermediate heavy-tails?

• X1, ...,Xn i.i.d. stable with α = 1: Cauchy distribution

• Density f (x) = σ
π(σ2+x2)

• Heavy power law tails: P(|X | > x) ≈ C
x

• Infinite first moment

• Zw =
∑n

i=1 wiXi =d X1 ∀w = (w1, ...,wn) : wi ≥ 0,

• Diversification: no effect at all!
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Summary so far: Diversification for heavy-tailed and bounded
distributions

Number of risks in
portfolio, n

1 10 100

D. Bounded Zi

70

A. Light-tailed i.i.d. Zi with
α>1.
 Example: Traditional
situation with normal Zi

B.Extremely heavy-tailed i.i.d.
Zi with α<1.

Example: Levy distribution with α=1/2

VaR of a portfolio of
Zi with equal
weights
(1/n, 1/n, ..., 1/n)

C. Specific boundary case:
i.i.d. Cauchy Zi with α=1
 

Figure: N = 10 risks/insurer; M = 7 insurers

• D: Individual/non-diversification corners vs insurer and
reinsurer equilibrium
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1st example: full risk pooling with normally distributed risks
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Assume: Results:
1 ≤ s ≤ M (= 5) insurers If M − 1 insurers are pooling,

N (= 20) risks/insurer so will Mth
1 ≤ j ≤ Ns total risks

i.i.d. normal Xi If no insurers pool,
CARA utility, Unlimited liability each still has N risks

zj ,s =
(∑j

i=1 Xi

)
/s
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2nd example: Bernoulli-Lévy distribution with limited liability
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Assume: Results:
Limited liability: If insurers can coordinate, they can reach

maximum loss (k = 80) MN = 100 reinsurance equilibrium
M = 5 insurers

N (= 20) max risks/insurer But if not, each insurer

u(x) = (x + k)3/4 reverts to the N = 0 corner

zj ,s =
( ∑j

i=1 Xi

)
/s

23 / 65



Implications for markets for catastrophic
risks

• Equilibria in re-insurance markets for catastrophe risks
(Ibragimov, Jaffee and Walden, RFS)

• A diversification equilibrium with full risk pooling for
normally distributed (light-tailed) risks

• No risk pooling & no insurance or reinsurance activity
(market collapse) for extremely heavy-tailed cat risks

• Intermediate cases (heavy tails): both
• Diversification equilibria, in which insurers offer

catastrophe coverage and reinsure their risks

• Non-diversification equilibria with no insurance or
re-insurance

• A coordination problem must be solved to shift from the
bad to the good equilibrium

Government regulations or well functioning capital markets
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Implications for markets for catastrophic
risks

• Catastrophic risks have many features favorable to the
provision of insurance

• Generally independent over risk types and geography

• Few issues of asymmetric information at the risk level

• So a complete failure of these markets is puzzling

• We have shown that market failures (non-diversification
traps) may arise when risks are fat-tailed and there is
limited liability
• Diversification may not be beneficial for the single insurer,

although a full reinsurance equilibrium may exist.

• Government programs (or diversified equity owners) may
allow the system to reach the full diversification outcome
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Diversification & dependence

• Minimize VaRq(w1X1 + w2X2) s.t. w1,w2 ≥ 0, w1 + w2 = 1

• Independence:

• Optimal portfolio: (w̃1, w̃2) = ( 1
2
, 1
2
) (diversified) if α > 1 (not extremely

heavy-tailed, finite means)

• (w̃1, w̃2) = (1, 0) (not diversified, one risk) if α < 1 (extremely
heavy-tailed, infinite means)

12 / 65



Diversification & dependence

• Extreme positive dependence: X1 = X2 (a.s.) comonotonic risks

• VaRq(w1X1 + w2X2) = VaRq(X1) ∀w

• Diversification: no effect at all (similar to Cauchy) regardless of
heavy-tailedness

• Extreme negative dependence X1 = −X2 (a.s.) countermonotonic risks

• VaRq(w1X1 + w2X2) = (w1 − w2)VaRq(X1)

• Optimal portfolio: w = (1/2, 1/2) (most diversified regardless of
heavy-tailedness

• Optimal portfolio choice: affected by both dependence & properties of

margins
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Copulas and dependence

• Main idea: separate effects of dependence from effects of margins

• What matters more in portfolio choice: heavy-tailedness & skewness or
(positive or negative) dependence?

• Copulas: functions that join together marginal cdf’s to form

multidimensional cdf
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Copulas and dependence

• Sklar’s theorem

• Risks X , Y :

• Joint cdf HXY (x , y) = P(X ≤ x ,Y ≤ y): affected by dependence and by
marginal cdf’s FX (x) = P(X ≤ x) and GY (x) = P(Y ≤ y)

• CXY (u, v) : copula of X ,Y :

HXY (x , y) = CXY︸︷︷︸ (
FX (x),GY (y)︸ ︷︷ ︸ )

dependence marginals

• CXY : captures all dependence between risks X and Y
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Copulas and dependence

Advantages:

• Exists for any risks (correlation: finiteness of second moments)

• Characterizes all dependence properties

• Flexibility in dependence modeling

• Asymmetric dependence: Crashes vs. booms

• Positive vs. negative dependence

• Independence: Nested as a particular case: Product copula, particular
values of parameter(s)

• Extreme dependence: X = Y or X = −Y ⇔ extreme copulas;
dependence in CXY varies in between
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Copula structures

• Archimedean copulas

C (u, v) = ϕ−1(ϕ(u) + ϕ(v))

• Contagion: Non-zero tail dependence coeff.

λL = lim
u→0+

P[Y ≤ F−1(u)|X ≤ F−1
X (u)] = lim

u→0+

C (u, u)

u

λU = lim
u→1−

P[Y > F−1(u)|X > F−1
X (u)] = lim

u→1−

1− 2u + C (u, u)

1− u

• Clayton & Gumbel copulas
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Copula structures

• Eyraud-Farlie-Gumbel-Morgenstern (EFGM):

C (u, v) = uv [1 + γ(1− u)(1− v)]

γ ∈ [−1, 1] : dependence parameter Tail independent: no

contagion

• Heavy-tailed Pareto marginals:

P(X > x) =
1

xα
, x ≥ 1

P(X > x) =
1

xα
, x ≥ 1

• Power laws, tail index α
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Diversification: Copulas & heavy tails
Embrechts, Nešlehová & Wüthrich (2009): Archimedean copulas

• Moderate heavy tails α > 1 : finite first moment

VaRq(
X + Y

2
) < VaRq(X ) for sufficiently small q

Optimal to diversify for sufficiently small loss probabilities q

• Extremely heavy tails α < 1: infinite first moments

VaRq(
X + Y

2
) > VaRq(X ) for sufficiently small q

Diversification: suboptimal for suff. small loss prob. q

Ibragimov & Prokhorov (2013): Similar conclusions for EFGM

• Tail independent EFGM & tail dependent Archimedean
(Clayton, Gumbel): same boundary α = 1 as in the case of
independence

7 / 124



When dependence helps: Student-t copulas

• Conclusions similar to independence: Models with common shocks

X1 = ZY1,X2 = ZY2, ...,Xn = ZYn

• Common shock Z > 0 affecting all risks X1, ...,Xn

• Y1, ...,Yn : i.i.d. normal or heavy-tailed with tail index α

Z : heavy-tailed with tail index β

Then Xi : heavy-tailed with tail index γ = min(α, β)

• Important particular case: (Dependent) Multivariate Student-t
X1,X2, ...,Xn with α d.f. (tail index) ⇒ Optimal to diversify for all loss
probabilities q regardless of tail index α

• Tail dependent Student-t copula and heavy-tailed margins with arbitrary
tail index α : diversification pays off

• Contrast: Independent Student-t X1,X2, ...,Xn with α d.f. (tail index):

diversification optimal for α > 1; suboptimal for α < 1
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Diversification: Heavy-tailedness & dependence
matter

• Independence, Tail dependent models with common shocks (e.g.,
Student-t distr. = Student-t copula with Student-t marginals):

• Diversification always pays off for all loss probabilities q

• Tail independent EFGM, possibly tail dependent Archimedean copulas
(e.g., Clayton & Gumbel):

• Dividing boundary α = 1 for sufficiently small loss probability q

• Numerical results on interplay of heavy-tailedness & dependence
(copula) assumptions and loss probability q in diversification decisions:

• Deviations from threshold α = 1 for different copulas and loss
probabilities q

• Theoretical results for general copulas = ?

• (Non-)robustness of other models in economics & finance
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Key results

• (Sub-)Optimality of diversification under heavy tails &
dependence

• (Non-)robustness of models in economics & finance to
heavy tails, heterogeneity & dependence

• Implications for financial & (re-)insurance markets:
Diversification traps & disasters

• M. Ibragimov, R. Ibragimov & J. Walden, Heavy-tailedness
and Robustness in Economics and Finance, Lecture Notes in
Statistics, Springer, Forthcoming.

• R. Ibragimov & A. Prokhorov, Topics in Majorization,
Stochastic Openings and Dependence Modeling in Economics
and Finance, World Scientific & Imperial College Press, In
preparation.
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Key results

• (Sub-)Optimality of diversification under heavy tails &
dependence

• (Non-)robustness of models in economics & finance to
heavy tails, heterogeneity & dependence
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Diversification traps & disasters
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Characterizations of copulas & dependence

• V1, ...,Vn: i.i.d. U
(
[0, 1]

)
• C : n−copula iff ∃ g̃i1,...,ic s.t.

A1 (integrability):∫ 1

0

...

∫ 1

0

|g̃i1,...,ic (ti1 , ..., tic )|dti1 ...dtic < ∞

A2 (degeneracy):

EVik

[
g̃i1,...,ic (Vi1 , ...,Vik−1 ,Vik ,Vik+1 , ...,Vic )

]
= 0

A3 (positive definiteness):

Ũn(V1, ...,Vn) ≡
n∑

c=2

∑
1≤i1<...<ic≤n

g̃i1,...,ic (Vi1 , ...,Vic ) ≥ −1
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• Representation for C :

C(u1, ..., un) =

∫ u1

0

...

∫ un

0

(
1 + Ũn(t1, ..., tn)

) n∏
i=1

dti

• Ũn: sum of degenerate U−statistics
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Device for constructing n−copulas and cdf’s

• Bivariate Eyraud-Farlie-Gumbel-Morgenstern copulas & cdf’s:

Cθ(u, v) = uv (1 + θ(1− u)(1− v))

Hθ(x , y) = F (x)G(y)
(
1 + θ(1− F (x))(1− G(y)

)

n = 2; g̃1,2(t1, t2) = θ(1− 2t1)(1− 2t2), θ ∈ [−1, 1]

• Multivariate EFGM copulas & cdf’s:

Cθ(u1, u2, ..., un) =
n∏

i=1

ui

(
1 + θ

n∏
i=1

(1− ui )

)

g̃i1,...,ic (ti1 , ..., tic ) = θi1,...,ic (1− 2ti1)(1− 2ti2)...(1− 2tic )
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• Generalized multivariate EFGM copulas (Johnson and Kotz, 1975,

Cambanis, 1977)

C(u1, ..., un) =
n∏

k=1

uk
(
1 +

n∑
c=2

∑
1≤i1<...<ic≤n

θi1,...,ic (1− uik )
)

g̃i1,...,ic (ti1 , ..., tic ) = 0, c < n − 1

g̃1,2,...,n(t1, t2, ..., tn) = θ(1− 2t1)(1− 2t2)...(1− 2tn)

• Generalized EFGM copulas: complete characterization of joint cdf’s of

two-valued r.v.’s (Sharakhmetov & Ibragimov, 2002)

29 / 65



From dependence to independence through
U−statistics

Gn: sums of U−statistics

Un(ξ1, ..., ξn) =
n∑

c=2

∑
1≤i1<...<ic≤n

gi1,...,ic (ξi1 , ..., ξic )

gi1,...,ic : satisfy A1-A3

• Arbitrarily dependent r.v.’s:

sum of U−statistics in independent r.v.’s

with canonical kernels

• Reduction of problems for dependence to well-studied objects

• Transfer of results for U−statistics under

independence
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From dependence to independence through
U−statistics

• X1, ...,Xn: 1-cdf’s Fk(xk)

• ξ1, ..., ξn: independent copies (1-cdf’s Fk(xk))

∃ Un ∈ Gn s.t. ∀f : Rn → R

Ef (X1, ...,Xn) = Ef (ξ1, ..., ξn)
(
1 + Un(ξ1, ..., ξn)

)

• Representation for c.f.’s:

Eexp

(
i

n∑
k=1

tkXk

)
= Eexp

(
i

n∑
k=1

tkξk

)
+

Eexp

(
i

n∑
k=1

tkξk

)
Un(ξ1, ..., ξn)

‡ CLT for bivariate r.v.’s
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Characterizations of dependence

• Canonical g ′s: complete characterizations of

dependence properties

• X1, ...,Xn: r−independent if ∀ r jointly independent ⇔

gi1,...,ic (Vi1 , ...,Vic ) = 0 (a.s.) 1 ≤ i1 < ... < ic ≤ n, c = 2, ..., r

•

gi1,...,ir+1(ui1 , ..., uir+1) =

α1...αn
αi1

...αir+1

(
(k + 1)uk

i1 − (k + 2)uk+1
i1

)
× ...×

(
(k + 1)uk

ic − (k + 2)uk+1
ic

)
C(u1, ..., un) =

n∏
i=1

ui
(
1 +

∑
1≤i1<...<ir+1≤n

α1...αn

αi1 ...αir+1
×

(uk
i1 − uk+1

i1
)× ...× (uk

ir+1
− uk+1

ir+1
)
)

Extensions of Wang (1990) (k = 0)
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Copulas and Markov processes

• Darsow, Nguyen and Olsen, 1992: copulas and first-order Markovness

• A,B : [0, 1]2 → [0, 1] :

(A ∗ B)(x , y) =

∫ 1

0

∂A(x , t)

∂t
· ∂B(t, y)

∂t
dt

• A : [0, 1]m → [0, 1], B : [0, 1]n → [0, 1] : ⋆−product

A ⋆ B(x1, ..., xm+n−1) =∫ xm

0

∂A(x1, ..., xm−1, ξ)

∂ξ
· ∂B(ξ, xm+1, ..., xm+n−1)

∂ξ
dξ
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Copulas and Markov processes

• Transition probabilities

P(s, x , t,A) = P(Xt ∈ A|Xs = x) satisfy CKE’s

iff Cst = Csu ∗ Cut ∀s < u < t

• Xt : first-order Markov iff

Ct1,...,tn = Ct1t2 ⋆ Ct2t3 ⋆ ... ⋆ Ctn−1tn
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New results: Higher-order Markovness and
copulas

• {Xt}t∈T : k−order Markov ⇔

P
(
Xt < xt

∣∣Xt1 , ...,Xtn−k ,Xtn−k+1 , ...,Xtn

)
=

P
(
Xt < xt

∣∣Xtn−k+1 , ...,Xtn

)
• Complete characterization in

terms of (k + 1)−copulas

• Ct1,...,tk : copulas of Xt1 , ...,Xtk

• {Xt}t∈T : k−order Markov iff ∀t1 < ... < tn, n ≥ k + 1

Ct1,..., tn = Ct1,..., tk+1 ⋆
k Ct2,..., tk+2 ⋆

k ... ⋆k Ctn−k ,..., tn
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Stationary case

• Xt : stationary k−order Markov iff

C1,...,n(u1, ..., un) = C ⋆k C ⋆k ... ⋆k C(u1, ..., un)

= C n−k+1(u1, ..., un) ∀n ≥ k + 1

C : (k + 1)− copula s.t.

Ci1+h,...,il+h = Ci1,...,il , 1 ≤ j1 < ... < jl ≤ k + 1

• C s : s−fold product ⋆k of C
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Advantages of copula-based approach

• Modeling higher order Markov processes

alternative to transition matrices

‡ Instead of initial distribution & transition probabilities:

Prescribe marginals & (k + 1)−copulas

Generate copulas of higher order & finite-dimensional cdf’s

‡ Advantage: separation of properties of marginals (fat-tailedness) &

dependence properties (conditional symmetry, m−dependence,

r−independence, mixing)
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Advantages of copula-based approach

• Inversion method:

New k−Markov with dependence similar to a given Markov process

Different marginals

‡ Xt : stationary k−Markov

(k + 1)−cdf F̃ (x1, ..., xk+1), 1−cdf F

⇒ (k + 1)−copula:

C(u1, ..., uk+1) = F̃
(
F−1(u1), ...,F

−1(uk+1)
)
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† Another 1−cdf G :

Stationary k−Markov, same dependence as {Xt}, different 1-marginal G :

(k + 1)−copula:

C(u1, ..., uk+1) = F̃
(
G−1(u1), ...,G

−1(uk+1)
)

Representation ⇒ Higher-order copulas & cdf’s

{Xt}: stationary C−based k−Markov chain
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Advantages of copula-based approach

• C : all dependence properties of the time series

‡ k−independence, m−dependence, martingaleness, symmetry

‡ On-going project with Johan Walden: characterizations of

time-irreversibility; focus on Ct1,...,tk = Ctk ,...,t1

‡ Applications: forward-looking vs. backward-looking market participants

(“fundamentalists” vs. noise traders or “chartists”)

‡ “Compass rose” for Pt−1 and Pt : symmetry in copulas
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Combining higher-order Markovness with other
dependence properties

• A number of studies in dependence modeling: Higher-order Markovness +

m−dependence & r−independence

Lévy (1949): 2nd order Markovness + pairwise independence

Rosenblatt & Slepian (1962): N−order N−independent stationary Markov

• Impossibility/reduction :

N−order Markov + N−independence + two-valued ⇔ joint independence

‡ Testing sensitivity to WD in DGP Rosenblatt & Slepian (1962)
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Combining Markovness with other dependencies

‡ Examples:

Not 1−order Markovian

But 1-st order transition probabilities

P(s, x , t,A) = P(Xt ∈ A|Xs = x) satisfy C-K SE

P(s, x , t,A) =

∫ ∞

−∞
P(u, ξ, t,A)P(s, x , u, dξ)

(other examples: Feller, 1959, Rosenblatt, 1960)
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Combining Markovness with other dependencies

‡ 1-dependent Markov: Aaronson, Gilat and Keane (1992)

Burton, Goulet and Meester (1993), Matúš (1996)

‡ Matúš (1998): m−dependent

discrete-space Markov

‡ Impossibility/Reduction:

@ stationary m−dependent Markov if

card(Ω) < m + 2
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Markovness of higher-order and k−independence

• Characterization of stationary

k−independent k−Markov processes

• {Xt}: C−based k−independent stationary

k−Markov iff
∂k+1C(u1, ..., uk+1)

∂u1...∂uk+1
= 1 + g(u1, ..., uk+1)

g : [0, 1]k+1 → [0, 1]: canonical g−function

(Integrability + more degeneracy + positive definiteness)
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Markovness of higher-order and k−independence

∫ 1

0

...

∫ 1

0

|g(u1, ..., uk+1)|du1...duk+1 < ∞∫ 1

0

...

∫ 1

0

g(u1, ..., uk+1)g(u2, ..., uk+2)...g(us , ..., uk+s)dui1 ...duis = 0

∀s ≤ ui1 < ... < uis ≤ k + 1, s = 1, 2, ...,
[
k+1
2

]
g(u1, ..., uk+1) ≥ −1

• Integration: w.r. to all s among us , us+1, ..., uk+1 common to all g−functions

g(u1, ..., uk+1), g(u2, ..., uk+2), ..., g(us , ..., uk+s)

k−marginals: product copulas, independence

k−independence: satisfied
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Markovness of higher-order and m−independence

• {Xt}: C−based m−dependent 1-Markov iff

∂2C(u1, u2)

∂u1∂u2
= 1 + g(u1, u2)

g : [0, 1]2 → [0, 1]: canonical g−function:∫ 1

0

∫ 1

0

|g(u1, u2)|du1du2 < ∞

∫ 1

0

g(u1, u2)dui = 0, g(u1, u2) ≥ −1∫ 1

0

g(u1, u2)g(u2, u3)...g(um, um+1)du2du3...dum = 0

‡ Integration: w.r. to u2, u3, ..., um more than once among g(u1, u2), g(u2, u3),

..., g(um, um+1)

X1, Xm+1: independent; Process: m−dependent
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New examples via existing constructions

• Higher-order Markovness + martingaleness

• Inversion method + existing examples ⇒

k−independent, m−dependent Markov processes

different marginals
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Reduction & impossibility for k−order Markov
processes

• {Xt}: C−based k−independent stationary k−Markov

‡ ∂k+1C(u1,...,uk+1)

∂u1...∂uk+1
= 1 + g(u1, ..., uk+1)

‡ g : product form (EFGM-type):

g(u1, u2, ..., uk+1) = αf (u1)f (u2)...f (uk+1)

⇔ {Xt}: jointly independent
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Examples: EFGM and power copulas

• (k + 1)−EFGM copulas:

C(u1, u2, ..., uk+1) =
k+1∏
i=1

ui
(
1 + α(1− u1)(1− u2)...(1− uk+1)

)

g(u1, u2, ..., uk+1) = α(1− 2u1)(1− 2u2)...(1− 2uk+1)

• (k + 1)−power copulas

C(u1, u2, ..., uk+1) =
k+1∏
i=1

ui
(
1 + α(ul

1 − ul+1
1 )(ul

2 − ul+1
2 )...(ul

k+1 − ul+1
k+1)

)

l ≥ 0 (EFGM: l = 0)
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Impossibility/reduction for m−dependence

• {Xt}: C−based m−dependent Markov

‡ ∂2C(u1,u2)
∂u1∂u2

= 1 + αf (u1)f (u2)

(separable product form)

⇔ Xt : jointly independent

• Representations ⇒∫ 1

0

...

∫ 1

0

αmf (u1)f
2(u2)...f

2(um)f (um+1)du2...dum = 0;

αmf (u1)f (um+1)
[ ∫ 1

0

f 2(u2)du2
]m−1

= 0

⇒ f = 0 ⇔ Independence
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Examples, new and old

‡ EFGM copulas, k = 1:

C(u1, u2) = u1u2
(
1 + α(1− u1)(1− u2)

)
g(u1, u2) = α(1− 2u1)(1− 2u2)

• Limitations of EFGM copulas,

separable copulas:

Complement & generalize existing results
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Examples, new and old

‡ Cambanis (1991): common dependencies

cannot be exhibited by multivariate EFGM

Cj1,...,jn (uj1 , ..., ujn ) =

n∏
s=1

ujk

(
1 +

∑
1≤l<m≤n

αlm(1− ujl )(1− ujm )
)

‡ Rosenblatt & Slepian (1962): non-existence of bivariate N−independent

N−Markov

Sharakhmetov & Ibragimov (2002):

EFGM copulas for two-valued r.v.’s

‡ Technical difficulties in modeling
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Solution: New flexible copula classes

• Copula-based TS with flexible dependencies

‡ Copulas based on Fourier polynomials

• k−independent k−Markov: Conditions satisfied for

g(u1, ..., uk+1) =
N∑
j=1

[
αjsin(2π

k+1∑
i=1

βj
i ui ) + γjcos(2π

k+1∑
i=1

βj
i ui )
]

‡ αj , γj ∈ R, βj
i ∈ Z, i = 1, ..., k + 1, j = 1, ...,N :

† βj1
1 +

∑s
l=2 ϵl−1β

jl
l ̸= 0

ϵ1, ..., ϵs−1 ∈ {−1, 1}, s = 2, ..., k + 1

† 1 +
∑N

j=1

[
αjϵj + γjϵj+N

]
≥ 0, ϵ1, ..., ϵ2N ∈ {−1, 1}
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Fourier copulas

C(u1, ..., uk+1) =

∫ u1

0

...

∫ uk+1

0

(1 + g(u1, ..., uk+1))du1...duk+1

(k + 1)−Fourier copulas
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Fourier copulas

• 1−dependent 1−Markov:

Conditions satisfied for Fourier copulas

C(u1, u2) =

∫ u1

0

∫ u2

0

(1 + g(u1, u2))du1du2

g(u1, u2) =
N∑
j=1

[
αjsin(2π(β

j
1u1 + βj

2u2)) + γjcos(2π(β
j
1u1 + βj

2u2))
]

‡ αj , γj ∈ R, βj
1, β

j
2 ∈ Z :

βj1
1 + βj2

2 ̸= 0

βj1
1 − βj2

2 ̸= 0

1 +
N∑
j=1

[
αjϵj + γjϵj+N

]
≥ 0

∀ϵ1, ..., ϵ2N ∈ {−1, 1}

60 / 65



Concluding remarks

• (Sub-)Optimality of diversification under heavy tails & dependence

• (Non-)robustness of models in economics & finance to heavy tails,

heterogeneity & dependence

• General representations for joint cdf’s and copulas of arbitrary r.v.’s

• Joint cdf’s and copulas of dependent r.v.’s = sums of U−statistics in
independent r.v.’s

• Similar results: expectations of arbitrary statistics in dependent r.v.’s

• New representations for
multivariate dependence measures

• Complete characterizations of
classes of dependent r.v.’s

• Methods for constructing new copulas

• Modeling different dependence structures
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Concluding remarks

• Copula-based modeling for time series

• Characterizations of dependence in terms of copulas

• Markovness of arbitrary order

• Combining Markovness with other dependencies:

m−dependence, r−independence, martingaleness, conditional symmetry

Non-Markovian processes satisfying Kolmogorov-Chapman SE
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Concluding remarks

• New flexible copulas to combine dependencies

• Expansions by linear functions (Eyraud-Fairlie-Gumbel-Morgensten

copulas)

• power functions (power copulas); Fourier polynomials (Fourier copulas)

• Impossibility/reduction: Copula-based dependence + specific copulas

⇔ Independence
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Copula memory

• Long-memory via copulas: various definitions

• Dependence measures & copulas

• Gaussian & EFGM ⇒ short-memory Markov

• Fast exponential decay of dependence between Xt & Xt+h

• Numerical results ⇒ Clayton copula-based Markov {Xt} : can behave as
long memory (copulas) in finite samples

• High persistence important for finance & economics

• Long memory-like: Xt & Xt+h : slow decay of dependence for

commonly used lages h

• Volatility modeling & Nonlinear dependence in finance

• Non-linear CH & long memory-like volatility

• Generalizations of GARCH
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Copula memory

Beare (2008) & Chen, Wu & Yi (2008): numerical & theoretical results on

(short & long) memory in copulas

Beare (2008): α, β & ϕ−mixing

• κ(h) ≤ α(h) ≤ β(h) ≤ 0.5ϕ(h)

• Numerical results ⇒ Clayton: exponential decay in β(h) ⇒ short

κ−memory in copulas

Theoretical results in Chen, Wu & Yi (2008):

• Clayton: weakly dependent & short memory in terms of mixing

properties!

• Our numerical results + Chen, Wu & Yi (2008): Non-robustness of

procedures for detecting long memory in copulas
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Objectives and key results

• (Sub-)Optimality of diversification under heavy tails & dependence

• (Non-)robustness of models in economics & finance to heavy tails,
heterogeneity & dependence

• M. Ibragimov, R. Ibragimov & J. Walden, Heavy-tailedness and Robustness
in Economics and Finance, Lecture Notes in Statistics, Springer,
Forthcoming.

• R. Ibragimov & A. Prokhorov, Topics in Majorization, Stochastic Openings
and Dependence Modeling in Economics and Finance, World Scientific
Press, In preparation.

• General representations for joint cdf’s and copulas of arbitrary r.v.’s

• Copula-based modeling for time series

• Characterizations of time series dependence in terms of copulas

• New flexible copulas to combine dependencies

• Long-memory via copulas: various definitions

• Non-robustness of procedures for detecting long memory in copulas
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