PrObEx and Internal Model Calibrating dependencies among risks in Non-Life

Davide Canestraro

Quantitative Financial Risk Analyst

SCOR, IDEI & TSE Conference 10 January 2014, Paris

Disclaimer

Any views and opinions expressed in this presentation or any material distributed in conjunction with it solely reflect the views of the author and nothing herein is intended to, or should be deemed, to reflect the views or opinions of the employer of the presenter.

The information, statements, opinions, documents or any other material which is made available to you during this presentation are without any warranty, express or implied, including, but not limited to, warranties of correctness, of completeness, of fitness for any particular purpose.

PrObEx and Internal Model

1	Introduction
2	SCR and risk aggregation
3	PrObEx – a Bayesian model
4	Implementation in the Internal Model
5	Conclusion

- SCOR is the 5th largest reinsurer in the world (Premium income of EUR 9.514 billion in 2012).
- SCOR operates worldwide via its six Hubs located in Paris, Zurich, Cologne, New York and Singapore.

Ratings:

- A+ S&P positive outlook
 A A.M.Best stable outlook
 A1 Moody's stable outlook
 A+ Fitch stable outlook
- Priority of SCOR is the delivery of the Internal Model and its approval by the ACPR (Autorité de Contrôle Prudentiel et de Résolution) for purpose of use under Solvency II.
- $\hfill \square$ We illustrate a key innovation in SCOR's Internal Model: PrObEx

PrObEx and Internal Model

SCR and risk aggregation

- According to Solvency II, we need to determine the Solvency Capital Requirement (SCR).
- \Box The *SCR* is given by:

$$SCR = -\text{VaR}_{0.5\%}(G)$$

where G is the change in the economic value over the measurement period (one year), i.e.

$$G = v W_1 - W_0$$

where v is the discount factor (risk-free) from the horizon date to the valuation date, and the economic value is given by:

$$W_{t} = \sum_{p=1}^{P} A_{p}(t) - \sum_{q=1}^{Q} L_{q}(t)$$

 \Box W_0 and v are considered known a the valuation date, while W_1 is modeled as a random variable.

- \Box Monte-Carlo simulation methods are used to determine the stochastic value W_1 .
- \Box The valuation of W_1 requires to calculate the distribution of the Liabilities at time 1:

$$\sum_{q=1}^Q L_q(1)$$

- □ The latest financial crisis has dramatically shown that dependence among risks can not be ignored.
- U We use copula models in order to prudently account for dependence (especially in the tail!).
- Copula estimation procedures usually contain a large parameter uncertainty if data is scarce.
- \Box We developed a Bayesian model to calibrate copula parameters $\rightarrow PrObEx$

PrObEx and Internal Model

- \Box Let(*X*, *Y*) be a bivariate random vector and assume the marginal distributions *F*(*x*) and *G*(*y*) are known.
- □ The joint cumulative distribution can be represented as H(x, y) = C(F(x), G(y))

where *C* is the unique *copula* function that joins the two marginal distributions.

- There exist many copula families and some are relevant for modeling insurance risks.
 We focus on the most popular families characterized by one parameter.
- \Box We assume the copula family is already known. Our aim is to estimate the copula parameter γ_0 .
- Use the chose a dependence measure ρ which is familiar to insurance business experts and which can be linked to the copula parameter.
 - \rightarrow calculating an estimate $\widehat{\theta_0}$ of the value θ_0 of the dependence measure leads to an estimate of γ_0 .

PrObEx – Combining three sources of information

□ (Up to) three sources of information can be combined:

- U We replace the prior density $\pi(\theta)$ by a posterior density $\pi(\theta|\mathcal{O},\mathcal{E})$ of θ given \mathcal{O} and \mathcal{E} .
- Bayes' Theorem leads to the relation

 $\pi(\boldsymbol{\theta}|\mathcal{O},\mathcal{E})h(\mathcal{O},\mathcal{E}) = h(\mathcal{O},\mathcal{E}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})$

Our model

U We make the following assumptions:

- The expert assessments and the observations are independent
- The observations are independent
- The experts form their opinion independently of each other
- Under these assumptions, the posterior distribution of the value of the dependence measure reads as:

$$\pi(\theta|\mathcal{O},\mathscr{E}) \propto \pi(\theta) \prod_{n=1}^{N} c(U_n, V_n|g(\theta)) \prod_{k=1}^{K} e_k(\varphi_k|\theta)$$
Prior Observation Experts

- □ Through this posterior distribution we can:
 - Estimate θ_0 , e.g. via $\widehat{\theta_0} = \mathbb{E}[\theta | \mathcal{O}, \mathcal{E}]$.
 - Assess the uncertainty of our estimate, e.g. via $\operatorname{Var}(\theta|\mathcal{O}, \mathcal{E})$.

Prior information

- Suppose we can infer a point estimate $\hat{\theta}_p$ of θ_0 from the prior source of information. We then model $\pi(\theta)$ with a shifted Beta distribution with mean $\mathbb{E}[\theta] = \hat{\theta}_p$.
- If the source of information leading to $\hat{\theta}_p$ does not specify a measure of uncertainty, we determine $var(\theta)$ through a qualitative approach:

	$(0.005(b-a)^2)$	for high confidence,
$\operatorname{var}(\theta) = \langle$	$0.02(b-a)^2$	for intermediate confidence,
	$(0.05(b-a)^2)$	for low confidence.

- If no prior belief is available then $\pi(\theta)$ can be set uninformative.
- The four mentioned qualitative approaches:

The elicitation of expert opinions

- An expert elicitation procedure needs to satisfy five principles in order to reach rational consensus, namely:
 - Reproducibility
 - Accountability
 - Empirical control
 - Neutrality
 - Fairness
- □ Psychological effects are involved and have to be considered carefully.
- The literature distinguishes between behavioral vs. mathematical approaches.

- □ The conditional density of the k-th expert is modeled via a shifted Beta distribution.
- U We model the expert estimates to be conditionally unbiased, i.e. $\mathbb{E}[\varphi_k|\theta] = \theta$.
- To reflect the expert uncertainty we assign each expert a variance σ_k^2 , which is assumed to be independent of θ , i.e. $var(\varphi_k|\theta) = \sigma_k^2$
- Three possible approaches to calculate estimates $\widehat{\sigma_k^2}$ of σ_k^2 are considered:
 - Subjective variances
 - Homogeneous experts
 - Seed variables

- \Box Let *C* be a T-copula* and the dependence measure ρ be Kendall's Tau.
- \Box Then, the dependence measure is linked to the copula parameter by the function: $g(\theta) = \sin(\theta \pi/2)$
- Suppose we have no prior information available.
- □ Let N=24 observations be given:

 \square Experts opinions: $\varphi_1=0.35$, $\varphi_2=0.5$, $\varphi_3=0.7$. Moreover:

		Seed	variables		
True value	0.3	0.7	0.5	0.55	
		Expert a	ssessments		Estimated variance
Expert 1	0.1	0.3	0.6	0.75	0.0625
Expert 2	0.5	0.5	0.35	0.6	0.0262
Expert 3	0.3	0.8	0.3	0.8	0.0281

* For the purpose of this example, we consider a T-copula with 3 degrees of freedom.

An illustrative example (2 of 2)

The best estimate $\widehat{\gamma_0}$ using all information is then:

 $\widehat{\gamma_0} = g(\mathbb{E}[\theta | \mathcal{O}, \mathcal{E}]) = g(0.399) = 0.587$

PrObEx: Two experts equally certain and no prior information...

SCOR

PrObEx: ... what if we can use an informative prior? ...

SCOR

PrObEx: ... confident experts increase further the precision

SCOR

PrObEx and Internal Model

Investor's day 2013

Why "Optimal Dynamics"?

Optimal Dynamics balances profitability and solvency I SGPC is well positioned I SGL continues to prov profitability I SGI propressively rebalances its portfolio I SCOR's risk appetite is refined I SCOR's dynamic

- As part of SCOR internal model, PrObEx contributes to the determination of the SCR → it has an impact on key areas, such as capital allocation, underwriting and investment strategies.
- □ In line with SCOR's strategic plan "Optimal Dynamics", PrObEx offers support for high diversification and controlled risk appetite.
- □ To ensure robustness of final results, the process of gathering the expert's opinion has been industrialized and fully documented.
- □ 33 workshops were organized and more than 100 experts, scattered in 7 different locations around the World, were involved in the project.
- Overall, more than 1'300 dependence assessments were elicited, covering 16 different Lines of Business.

The calibration process

The risk aggregation tree for **Specialty** Non-Life LoBs

Dependence measure – what we asked to SCOR experts

□ The experts were asked to answer a question like:

"Suppose Y exceeds the 1-in-100 year threshold. What is the probability that also X exceeds its 1-in-100 year threshold?"

□ This is equivalent to quantify the so called Quantile Exceedance Probability:

```
P[X > VaR_{0.99}(X) | Y > VaR_{0.99}(Y)]
```

Workshop agenda

Stage 0 – WORKSHOP AGENDA presented by *Davide Canestraro* and *Nigel Riley* SCOR Paris, September 29, 2011

PrObEx and Dependence Calibration

Stage 1 - OVERVIEW presented by Davide Canestraro and Nigel Riley Paris, September 29, 2011

PrObEx and Dependence Calibration

Stage 2 – TRAINING SESSION presented by Davide Canestraro and Nigel Riley Paris, September 29, 2011

PrObEx and Dependence Calibration

Stage 3 – BRAINSTORMING Facilitators: *Davide Canestraro* and *Nigel Riley* Paris, September 29, 2011

PrObEx and Dependence Calibration

Stage 4 – QUESTIONNAIRE Facilitators: Davide Canestraro and Nigel Riley SCOR Paris, September 29, 2011

Expert judgment and heuristics (1)

Representativeness (1)

Linda is 31 years old, single, outspoken and very bright. She majored in philosopy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demostrations.

Is it more likely that:

- (A) Linda is a bank teller?
- (B) Linda is a bank teller and active in the feminist movement?

Expert judgment and heuristics (2)

Representativeness (2)

Linda is 31 years old, single, outspoken and very bright. She majored in philosopy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in antinuclear demostrations.

There are 100 people who fit the description above. How many of them are:

(A) bank tellers?

(B) bank tellers and active in the feminist movement?

Answer:

Availability

Are there more words in the English language that begin with R or have R as their third letter?

Which hazard claims more lives in the United States: lightning or tornadoes?

Expert judgment and heuristics (3)

Anchoring

Is the population of Chicago more or less than 200,000? Estimate the population.

Is the population of Chicago more or less than 5 million? Estimate the population.

Given that an extremely bad outcome is observed in the legal entity Switzerland, what is your estimate of the probability that the legal entity France will experience an extremely bad outcome?

Which are the risk drivers which can cause such a bad outcome in the legal entity Switzerland?

Assume they are:

- Eurowind
- European Earthquake
- North American Tropical Cyclone

Section A.1

Given that an extremely bad outcome is observed in the Legal Entity Switzerland, list some of the risk drivers for which ALSO Legal Entity France will experience an extremely bad outcome.

Probability	Risk driver	Weight
100%	Eurowind	0.3
50%	European Earthquake	0.3

Section A.2

Given that an extremely bad outcome is observed in the Legal Entity Switzerland, list some of the risk drivers for which Legal Entity France will NOT experience an extremely bad outcome.

Probability	Risk driver	Weight
0%	North American Tropical Cyclone	0.4

The aggregation tree for Non-Life

GIM new LE (Assembly Tree Collection) - 2011Q1 Operationa	al Run (Scor Global P&C) (ne	w LE structure) - NORMA					
File Tools Window Help							
🗃 🖬 🕼 🔻 🥝 I 📓							
Overview Edit Tree Assign Collections Assign Models Planning (Data Edit Dependency/Correla	ation Reports Diversification Functio	ns Users				
Name	Modelling Unit	ReinsuranceType	Cover Type	Business Maturity	Legal Entity	egion	
Al; Al; Al; Al; Al; Al; None;	Al	Al	Al	Al	Al	one	
E CASUALTY RELATED	All	All	All	All	Al	one	
Auto_All incl Lloyds Syndicates	Auto_All	All	All	All	All	one	
Auto SCOR ASIA PACIF.	Auto	All	All	All	SCOR ASIA PACIF.	one	
Auto SCOR ASIA PACIF. (Beijing branch of Scor SE)	Auto	All	All	All	SCOR ASIA PACIF. (Beijing branch of Scor SE) one	
Auto SCOR CANADA	Auto	All	Al	All	SCOR CANADA	one	
Auto SCOR GERMANY	Auto	All	All	All	SCOR GERMANY	one	
Auto SCOR ITALIA	Auto	All	All	All	SCOR ITALIA	one	
Trasty NonProportional	Auto	All	NonProportional	NewBusiness	SCOR ITALIA	one	
Treaty Pronotional	Auto	Treaty	Proportional	NewBusiness	SCOR ITALIA	one	
PriorYearBusiness	Auto	All	All	PriorYearBusiness	SCOR ITALIA	one	
1 Reserves	Auto	All	All	Reserves	SCOR ITALIA	one	
Auto SCOR RE US	Auto	All	All	All	SCOR RE US	one	
	2011Q1 Operationa	al Run (Scor Global P&C)	(new LE structure) - N	ORMA	lisers		-
Name		Modelling Unit	Reinsur	anceType	Cover Type	Business Maturity	Legal Entity
		AII	A11		AU	AII	AU
AI; AI; AI; AI; AI; AI; None;		All	All		All	All	Al
CASUALTY RELATED		All	All		All	All	All
Auto All incl Lloyds Syndicates		Auto All	All		All	All	All
E Auto SCOP ASIA PACIE		Auto	01		All	All	SCOP ASIA PACIE
ADIO SCON ASIA PACIF.		Abio	741				SCON ASIA FACIF.
🖭 🦲 Auto SCOR ASIA PACIF. (Beiji	ng branch of Scor SE)	Auto	All		All	All	SCOR ASIA PACIF. (Beijing branch of Scor SE)
Auto SCOR CANADA		Auto	All		All	All	SCOR CANADA
E Auto SCOR GERMANY		Auto	All		All		SCOR GERMANY
		Auto	741				SCOT GENMANT
Auto SCOR ITALIA		Auto	All		All	All	SCORITALIA
🖃 🚞 NewBusiness		Auto	All		All	NewBusiness	SCOR ITALIA
Treaty NonProportional		Auto	Treaty		Non Proportional	NewBusiness	SCOR ITALIA
Treaty Remational		Auto	Treat		Presentienel	Mau Dusiness	SCOD ITALIA
I reaty Proportional		Auto	Treaty		Proportional	IvewBusiness	SCORTIALIA
PriorYearBusiness		Auto	All		All	PriorYearBusiness	SCOR ITALIA
🕀 🚞 Reserves		Auto	All		All	Reserves	SCOR ITALIA
# Auto SCOB BE US		Auto	All		All	All	SCOB BE US
	Credit and Sumby All	All	All	Pasageras	Al.	Nese	
Decennial	Decennial	Al	Al	All	All	None	
Miscellaneous_All	Miscellaneous_Al	A	AL	All	All	None	
E Space	Space	All	All	All	All	None	
🗉 🚞 Special Risk_All	Special Risk_All	All	All	All	All	None	
E DPROPERTY RELATED	All	All	All	All	Al	None	
🗉 🧰 Agriculture_All	Agriculture_All	All	Al	All	All	None	
III III PROPERTY CAT TOTAL	All	Al	All	All	Al	None	
PROPERTY NON CAT TOTAL	All	All	All	All	All	None	
12 Im Property Related Engineering	Property Related	Al	All	All	All	None	
🚥 📖 Froperty Helated Manne	Froperty Related	~	A	A	~	wone	

Dependence parameters

Overview	Edit Tree Assign Collections Assign Mod	els Planning Data Edit Dep	endency/Correlation	Reports Diversificat	on Functions Us	sers											
	Name	Modelling Unit Y	Legal Entity	Y Cover Type	Reinsurance	Business V	Region	Y Copula	YI	heta Exceedan	e Los	ss-Premium/Exp					
1262	Auto Scor Switzerland AG	Ato	Scor Switzerland AG	Al	Al	Al	None	Clayton	-	0.83 0	44	nse Correlation					
1263	Reserves	Auto	Scor Switzerland AG	AI	A	Reserves	None	Clayton	-	0.88	46						
1264	Treaty Proportional	Auto	Scor Switzerland AG	Proportional	Treaty	Reserves	None		1000								
1265	Treaty NonProportional	Auto	Scor Switzerland AG	NonProportional	Treaty	Reserves	None										
1266	Facultative NonProportional	Auto	Scor Switzerland AG	NonProportional	Facultative	Reserves	None										
1267	PriorYearBusiness	Auto	Scor Switzerland AG	AL	All	PriorYearBusiness	None										
1268	Treaty Proportional	Auto	Scor Switzerland AG	Proportional	Treaty	PriorYearBusiness	None										
1269	Treaty NonProportional	Auto	Scor Switzerland AG	NonProportional	Treaty	PriorYearBusiness	None										
1270	Auto SCOR GERMANY	Auto	SCOR GERMANY	Al	All	Al	None										
1271	NewBusiness	Auto	SCOR GERMANY	Al	AI	NewBusiness	None										
Overv	iew Edit Tree Assign Coll	ections Assign M	Iodels Plann	ning Data Ed	it Depende	ency/Correlation	Report	s Diversi	ification	Functions U	sers						
				-				_		. .	_					~! .	
	Na	ime	Mo	odelling Unit	Υu	egal Entity	Y Co	ver Type	Y	Type		7 Business Maturity	Region V	7 Copula Type	Y	Theta Parameter	Probability
12	Auto Scor Switzerland	AG	Auto		Scor	r Switzerland AG	All		A	JI		All	None	Clavton	-	0.83	0.44
13	2 Perenver		Arto		See	Switzedapd AG						Perenver	None	Claston		0.00	0.40
12	5 neserves		Auto		300	Switzenand Ad			-	VI		neserves	None	Ciayton		0.00	0.40
1281	NewBusiness	Auto	SCOR ITALIA	Al	Al	NewBusiness	None	_									
1282	Treaty Proportional	Auto	SCOR ITALIA	Proportional	Treaty	NewBusiness	None	_									
1283	Treaty NonProportional	Auto	SCOR ITALIA	NonProportional	Ireaty	NewBusiness	None										
1284	Reserves	Auto	SCOR ITALIA	Al	Al	Reserves	None	-									
1285	Treaty Proportional	PLEO	SCOR ITALIA	Proportional	Treaty	neserves	None	-									
1286	Freaty NonProportional	Auto	SCOR ITALIA	NonProportional	Treaty	Reserves	None	-									
1287	Pacutative NonProportional	ALEO	SCOR ITALIA	NonProportional	Facultative	Preserves	None										
1288	Filor tearbusiness	ALLO	SCOR ITALIA	Descentioned	<u> </u>	Phor Tearbushess	None	-									
1207	http://www.congregational	Auto Auto	SCOR BELIS	All	All	Phor rear business	None	-									
1290	NewPurpose Standard lines template	Atto	SCOR RE US	45	48	NewPasiness	None										
1291	Teach Presentional	ALEO	SCOR RE US	Propositional	Treatu	NewDusness	None										
1292	Teach New Department	A de	SCOR RE US	NecOmpositional	Treaty	NewDusiness	Mana										
1295	Reserves Standard lines template	heto	SCOR RE US	All	All	Reserves	None										
1294	Treaty Proportional	Auto	SCOR RE US	Proportional	Treaty	Reserves	None										
1296	Treaty NonProportional	Auto	SCOR RE US	NonProportional	Treaty	Reserves	None										
1297	Facultative NonProportional	Auto	SCOR RE US	NonProportional	Facultative	Reserves	None										
1298	Prior Year Business Standard lines template	Auto	SCOR RE US	All	Al	PriorYearBusiness	None										
1299	Treaty Proportional	Auto	SCOR RE US	Proportional	Treaty	PriorYearBusiness	None										
1300	Treaty NonProportional	Auto	SCOR RE US	NonProportional	Treaty	PriorYearBusiness	None										
1301	Auto SCOR REASS excl. UK taly Germany	v anc Auto	SCOR REASS excl.	ULAI	All	Al	None										
1302	NewBusiness Standard lines template	Auto	SCOR REASS. excl.	ULAI	All	NewBusiness	None										
1303	Treaty Proportional	Auto	SCOR REASS. excl.	UI Proportional	Treaty	NewBusiness	None										
1304	Treaty NonProportional	Auto	SCOR REASS. excl.	UI NonProportional	Treaty	NewBusiness	None										
1305	Reserves Standard lines template	Auto	SCOR REASS. excl	ULAI	Al	Reserves	None										
1306	Treaty Proportional	Auto	SCOR REASS. excl.	UI Proportional	Treaty	Reserves	None										
1307	Treaty NonProportional	Auto	SCOR REASS. excl.	UI NonProportional	Treaty	Reserves	None										
1308	PriorYearBusiness Standard lines template	Auto	SCOR REASS. excl.	ULAI	AI	PriorYearBusiness	None										
	Total Description			IN Description of	Treate	Draw Vere During and	Manage	1.1									

PrObEx and Internal Model

Conclusion

- PrObEx provides a sound mathematical framework for estimating copula parameters.
- PrObEx allows to reduce the parameter uncertainty when estimating copula parameters.
- □ A statistical analysis conducted from Professor Sebastien Van Bellegem (Toulouse School of Economics) has demonstrated the robustness and the absence of bias in the results.
- PrObEx can be used to calibrate dependencies also in other contexts (e.g. Life, Economy, etc.).
- A scientific paper on PrObEx has been published in the ASTIN Bulletin.

- Arbenz, P. and Canestraro, D. (2010): PrObEx A new method for the calibration of copula parameters from prior information, observations and expert opinions. SCOR Paper n. 10
- Arbenz, P. and Canestraro, D. (2012): *Estimating copula for insurance from scarce observations, expert opinion and prior information: a Bayesian approach.* ASTIN Bulletin, 42 (1): 271-290
- Dacorogna, M.D. and Canestraro, D. (2010): The Influence of Risk Measures and Tail Dependencies on Capital Allocation. SCOR Paper n. 7

Thank you for your attention !

dcanestraro@scor.com

Thank you for your attention !

dcanestraro@scor.com

Appendix

Copula

Let $(X, Y) \in \mathbb{R}^2$ be a bivariate random vector. Assume the margins $F(x) = \mathbb{P}[X \le x]$ and $G(y) = \mathbb{P}[Y \le y]$ of (X, Y) are continuous.

We can represent the joint cdf $H(x, y) = \mathbb{P}[X \le x, Y \le y]$ as:

$$H(x,y) = C(F(x), G(y)), \text{ for all } x, y \in \mathbb{R},$$

where $C: [0,1]^2 \rightarrow [0,1]$ is the unique copula function.

The copula C is also the cdf of the random vector $(U, V) = (F(X), G(Y)) \in [0, 1]^2$, denoted with $(U, V) \sim C$.

Let $\mathscr{C}_0 = \{C_\gamma : \gamma \in \Gamma\}$ denote a family of bivariate copulas, with parameter set Γ and density $c(\cdot|\gamma)$. We assume that

$$C=C_{\gamma_0}\in \mathscr{C}_0$$

where γ_0 is an unknown but fixed parameter. Our aim is to estimate γ_0 .

Copula family	Definition	Parameter range Γ
Gaussian	$C_{\gamma}^{Ga}(u,v) = \Phi_{\gamma}\left(\Phi^{-1}(u), \Phi^{-1}(v)\right)$	$\gamma \in (-1,1)$
t	$C_{\nu,\gamma}^{t}(u,v) = \mathbf{t}_{\nu,\gamma}\left(t_{\nu}^{-1}(u), t_{\nu}^{-1}(v)\right)$	$\gamma \in (-1,1)$
Clayton	$C_{\gamma}^{CI}(u,v) = (u^{-\gamma} + v^{-\gamma} - 1)^{-1/\gamma}$	$\gamma \in (0,\infty)$
Gumbel	$C_{\gamma}^{Gu}(u,v) = \exp\left(-\left((-\ln(u))^{\gamma} + (-\ln(v))^{\gamma}\right)^{1/\gamma}\right)$	$\gamma \in [1,\infty)$

Four popular copula families – rank scatter plots

Let $\rho(\cdot, \cdot)$ denote a fixed dependence measure. Define the set of attainable values of ρ for copulas in \mathscr{C}_0 by

$$\Theta = \left\{ \rho(U^*, V^*) : (U^*, V^*) \sim C^* \in \mathscr{C}_0 \right\}.$$

We assume that Θ is an interval, i.e. $\Theta = [a, b] \subset \mathbb{R}$

We focus on $\rho(\cdot, \cdot)$ which satisfy $\rho(U, V) = \rho(X, Y)$

We assume there exists $g : [a, b] \to \Gamma$ a bijective link function s.t. $g(\rho(U^*, V^*)) = \gamma^*$ for all $(U^*, V^*) \sim C_{\gamma^*}$

Calculating an estimate $\widehat{\theta_0}$ of θ_0 leads to an estimate $\widehat{\gamma_0} = g(\widehat{\theta_0})$ of γ_0 .

(Up to) three sources of information can be combined:

Prior A prior density $\pi(\theta) : [a, b] \to [0, \infty)$ e.g. from previous years or from regulators.

Observations N independent observations (U_n, V_n) , n = 1, ..., N, of $(U, V) \sim C_{\gamma_0}$. The set of observations is denoted by $\mathcal{O} = \{(U_n, V_n) : n = 1, ..., N\}$.

Experts K experts, each providing one point estimate φ_k , k = 1, ..., K, of $\rho(U, V)$. The set of expert assessments is denoted by $\mathscr{E} = \{\varphi_k : k = 1, ..., K\}.$

We replace the prior density $\pi(\theta)$ by a posterior density $\pi(\theta|\mathcal{O},\mathcal{E})$ of θ given \mathcal{O} and \mathcal{E} .

Bayes' Theorem leads to the relation

 $\pi(\theta|\mathcal{O},\mathcal{E})h(\mathcal{O},\mathcal{E}) = h(\mathcal{O},\mathcal{E}|\theta)\pi(\theta),$

Bayesian inference

We assume that the expert assessments and the observations are independent, thus:

 $h(\mathcal{O},\mathcal{E}|\theta) = h_O(\mathcal{O}|\theta)h_E(\mathcal{E}|\theta),$

where h_O and h_E are the conditional densities, given θ , of \mathcal{O} and \mathcal{E} , respectively.

As the observations (U_n, V_n) , n = 1, ..., N, are independent,

$$h_O(\mathcal{O}|\theta) = \prod_{n=1}^N c(U_n, V_n|g(\theta)),$$

where $c(u, v|\gamma) = \frac{\partial}{\partial u} \frac{\partial}{\partial v} C_{\gamma}(u, v)$.

Assuming the experts form their opinions independently of each other, we have:

$$h_{E}(\mathscr{E}|\theta) = \prod_{k=1}^{K} e_{k}(\varphi_{k}|\theta)$$

where $e_k(\cdot | \theta)$ is the conditional density, given θ , of the k-th expert assessment.

Our model

Since

$\pi(\theta|\mathcal{O},\mathcal{E}) \propto \pi(\theta) h(\mathcal{O},\mathcal{E}|\theta)$

we get:

$$\pi(\theta|\mathcal{O},\mathcal{E}) \propto \pi(\theta) \prod_{n=1}^{N} c(U_n, V_n|g(\theta)) \prod_{k=1}^{K} e_k(\varphi_k|\theta)$$

For sensitivity analysis or in case no expert opinions or observations are available, we can also compute:

$$\pi(\theta|\mathcal{O}) \propto \pi(\theta) \prod_{n=1}^{N} c(U_n, V_n | g(\theta)), \qquad \pi(\theta|\mathcal{E}) \propto \pi(\theta) \prod_{k=1}^{K} e_k(\varphi_k | \theta)$$

Through this posterior distribution we can:

- estimate θ_0 , e.g. via $\widehat{\theta_0} = \mathbb{E}[\theta | \mathcal{O}, \mathcal{E}]$.
- assess the uncertainty of our estimate, e.g. via $var(\theta | \mathcal{O}, \mathcal{E})$.

The modeling of expert opinions (1 of 2)

The conditional density $e_k(\cdot|\theta)$ is modeled via a shifted Beta distribution. We model the expert estimates to be conditionally unbiased, i.e.

$$\mathbb{E}[\varphi_k|\theta] = \theta \quad \text{for all} \quad \theta \in [a, b],$$

To reflect the expert uncertainty we assign each expert a variance σ_k^2 , k = 1, ..., K, which is assumed to be independent of θ :

$$\operatorname{var}(\varphi_k|\theta) = \sigma_k^2 \quad \text{for all} \quad \theta \in [a, b].$$

Three possible approaches to calculate estimates $\widehat{\sigma_k^2}$ of σ_k^2 :

- Subjective variances
- Homogeneous experts

$$\widehat{\sigma^2} = \frac{1}{K-1} \sum_{k=1}^{K} (\varphi_k - \overline{\varphi})^2,$$

where $\overline{\varphi} = \frac{1}{K} \sum_{k=1}^{K} \varphi_k$.

The modeling of expert opinions (2 of 2)

Seed variables

	S	eed variab	les	
True value	$\psi_{0}^{(1)}$		$\psi_0^{(H)}$	
	Exp	erts' estin	nates	Estimated variance
Expert 1	$\psi_1^{(1)}$		$\psi_1^{(H)}$	$\widehat{\sigma_1^2} = \frac{1}{H} \sum_{h=1}^{H} (\psi_1^{(h)} - \psi_0^{(h)})^2$
	÷			
Expert M	$\psi_{M}^{(1)}$		$\psi_M^{(H)}$	$\widehat{\sigma_M^2} = \frac{1}{H} \sum_{h=1}^{H} (\psi_M^{(h)} - \psi_0^{(h)})$

Investor's day 2011

Accelerating towards "Strong Momentum" | SCOR ERM case study | SCOR Global P&C... | SCOR Global Life... | SCOR Global Investments... | Capital Management... | Closing remarks

Strong Momentum V1.1 is consistent with the Group's four strategic cornerstones

	SCOR consistent execution of its strategic cornerstones
Strong franchise	 Is reaching a new perimeter Is deepening its global franchise Is pursuing the announced "Strong Momentum" growth initiatives
Controlled risk appetite	Sticks to the "Strong Momentum" mid level risk appetite
High diversification	Adds additional diversification benefits
Robust capital shield	 Proves the relevance of its capital shield policy Pursues active capital management

8

The risk aggregation tree for **Standard** Non-Life LoBs

